A simple derivation of rigid-rotation formula

S P Shen†

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Abstract A brief, easy and elementary way of deriving the vector formula for the finite rigid-body rotation about a fixed axis is presented in this article.

The vector description of a rigid body rotating around an arbitrary fixed axis is a classical problem that has been studied repeatedly in recent years, as pointed out by Beatty (1977). Of course, the published articles have their own styles and use a variety of methods. For example, Grubin (1962) got his result by solving a vector differential equation; Beatty (1963) used the method of vector analytic geometry; Pearlman (1967) gave a similar geometrical construction; Palazzolo (1976) obtained the result through a very complicated process of matrix algebra that later was improved by Neuberger (1977) but there is no intrinsic difference between their methods, and I doubt that either may be easily understood by an undergraduate student. Pearlman's method appears to be the most elementary; nevertheless, his procedure of vector projection tends to make the analysis obscure. One may find detailed historical materials with numerous references about this problem in the review article by Beatty (1977).

This article presents a brief, easy and elementary derivation of the vector formula for the finite rigid-body rotation about a fixed axis. The method is similar to Pearlman's in the choice of reference frame, but new in its use of the matrix formula for the rotation vector in terms of the initial directed vector of a body point. The matrix formula is constructed by the elementary methods of geometry and the analytical representation of a vector in terms of its components.

†This work was done in 1981 when the author was an undergraduate in the Department of Mechanics, East China Engineering Institute, Nanjing, People's Republic of China.

Zusammenfassung Dieser Artikel geht eine einfache, kurze und elementare Methode zur Herleitung der Vektorformel für die endliche Rotation eines starren Körpers um eine feste Achse.

Let a unit vector \(\mathbf{e}_0 \) be along the fixed axis of rotation, and let a reference frame \(0-x_1, x_2, x_3 \) be fixed in space with its \(x_3 \) direction along \(\mathbf{e}_0 \), as shown in figure 1.

After the rotation through an angle \(\theta \) in the usual right-handed sense around \(\mathbf{e}_0 \), the position vector \(r_0 \) of a particle \(P \) becomes \(r \). We assume that both vectors are referred to the same fixed frame. It may be seen from the geometry in figure 2 that:

\[
\begin{align*}
\mathbf{x}_1 &= x_{10} \cos \theta + x_{30} \sin \theta \\
\mathbf{x}_2 &= x_{20} \\
\mathbf{x}_3 &= -x_{10} \sin \theta + x_{30} \cos \theta
\end{align*}
\]

(1)

Figure 1 A rigid body rotating around a fixed axis.
A simple derivation of rigid-rotation formula

where \(x_i = r_0 \cdot e_i \cdot e_i \cdot e_i \) (\(i = 1, 2, 3 \)) define the cartesian coordinates of \(P \) at \(r_0 \) and \(r \) respectively, and \(e_i \) denotes the basic vectors of the frame with \(e_2 = e_2 \).

If we note

\[
A = \begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}
\]

\[
r_0 = \sum_i (r_0 \cdot e_i) e_i, \quad r = \sum_i (r \cdot e_i) e_i
\]

(2)

then the three scalar equations (1) may be written

\[
r = (e_1 \cdot r_0) e_1 + \sin \theta[(e_3 \cdot r_0) e_1 - (e_2 \cdot r_0) e_3] + \cos \theta[(e_1 \cdot r_0) e_1 + (e_3 \cdot r_0) e_3].
\]

We now recall the formula

\[
e_1(e_1 \cdot r_0) - e_1(e_1 \cdot r_0) = (e_1 \times e_1) \times r_0
\]

and equation (2) for \(r_0 \) to obtain

\[
r = (e_0 \cdot r_0) e_0 + \sin \theta(e_0 \times r_0) + \cos \theta[(r_0 - (e_0 \cdot r_0) e_0]
\]

(3)

which is the desired result.

We point out, incidentally, that the infinitesimal rotation may be readily obtained from here. In this case, \(\theta \ll 1 \), \(\sin \theta \approx \theta \), \(\cos \theta \approx 1 \). It follows that

\[
\Delta r = r - r_0 = (\theta e_0) \times r_0
\]

i.e., with \(\Delta \theta = \theta e_0 \), \(\Delta r = \Delta \theta \times r_\).

Acknowledgment

The author improved the presentation of this note under the direction of Millard F. Beatty, University of Kentucky, USA. I would like to thank Professor Beatty for his encouragement.

References

Beatty M F 1963 Am. J. Phys. 31 134
Easthope C E 1958 Three Dimensional Mechanics (New York: Academic) p. 59
Grubin C 1962 Am. J. Phys. 30 416
Pearlman N 1967 Am. J. Phys. 35 1164