Dr. Volker Runde, Publications


Books and memoirs

  1. Derivationen auf kommutativen Banachalgebren (German). Schriftenreihe Math. Inst. Univ. Münster (3) 1 (1990).


  2. Lectures on Amenability. Lectures Notes in Mathematics 1774, Springer Verlag, 2002. (For errata and updates, click here.)


  3. (with A. T.-M. Lau; eds.) Banach Algebras and Their Applications. Contemporary Mathematics 363, American Mathematical Society, 2004.


  4. A Taste of Topology. Universitext. Springer Verlag, 2005. (For reviews, click here, here, or here.)


  5. (with R. J. Loy and A. Sołtysiak; eds.) Banach Algebras 2009. Banach Center Publications 91, Polish Academy of Sciences, 2010.

Papers in refereed journals (reviewed in MathSciNet and Zentralblatt MATH)

  1. Automatic continuity of derivations and epimorphisms. Pacific J. Math. 147 (1991), 365-374.


  2. Approximation in commutative Banach algebras with dense principal ideals. Arch. Math. (Basel) 58 (1992), 183-189.


  3. A functorial approach to weak amenability for commutative Banach algebras. Glasgow Math. J. 34 (1992), 241-251.


  4. (with M. Mathieu) Derivations mapping into the radical, II. Bull. London Math. Soc. 24 (1992), 485-487.


  5. Approximation in commutative Banach algebras with dense principal ideals, II. Rend. Circ. Mat. Palermo 41 (1992), 388-390.


  6. An epimorphism from a C*-algebra is continuous on the center of its domain. J. reine angew. Math. 439 (1993), 93-102.


  7. Range inclusions results for derivations on non-commutative Banach algebras. Studia Math. 105 (1993), 159-172.


  8. The structure of discontinuous homomorphisms from non-commutative C*-algebras. Glasgow Math. J. 36 (1994), 209-218.


  9. Homomorphisms from L1(G) for G [FIA]- [Moore]. J. Funct. Anal. 122 (1994), 25-51.


  10. When does continuity on the center imply continuity? Rend. Circ. Mat. Palermo 43 (1994), 133-140.


  11. When is there a discontinuous homomorphism from L1(G)? Studia Math. 110 (1994), 97-104.


  12. Locally compact groups which have the weakly compact homomorphism property. Proc. Amer. Math. Soc. 123 (1995), 3363-3364.


  13. Local spectral properties of convolution operators on non-abelian groups. Proc. Edinburgh Math. Soc. 39 (1996), 143-149.


  14. Intertwining operators over L1(G) for G [PG] [SIN]. Math. Z. 221 (1996), 495-506.


  15. Discontinuous homomorphisms from Banach *-algebras. Math. Proc. Cambridge Phil. Soc. 120 (1996), 703-708.


  16. Automatic continuity over Moore groups. Monatshefte Math. 123 (1997), 245-252.


  17. (with H. G. Dales) Discontinuous homomorphisms from non-commutative Banach algebras. Bull. London Math. Soc. 29 (1997), 475-479.


  18. Intertwining maps from certain group algebras. J. London Math. Soc. (2) 57 (1998), 433-448.


  19. (with E. Illoussamen) Topologically simple Banach algebras with derivation. Bull. Austral. Math. Soc. 60 (1999), 153-161.


  20. (with F. Ghahramani and G. A. Willis) Derivations on group algebras. Proc. London Math. Soc. (3) 80 (2000), 360-390.


  21. (with R. J. Loy, C. J. Read, and G. A. Willis), Amenable and weakly amenable Banach algebras with compact multiplication. J. Funct. Anal. 171 (2000), 78-114.


  22. Automatic continuity and second order cohomology. J. Austral. Math. Soc. A 68 (2000), 231-243.


  23. Banach space properties forcing a reflexive, amenable Banach algebra to be trivial. Arch. Math. (Basel) 77 (2001), 265-272.


  24. Amenability for dual Banach algebras. Studia Math. 148 (2001), 47-66.


  25. (with R. Choukri and E. Illoussamen) Gelfand theory for non-commutative Banach algebras. Quarterly J. Math. Oxford 53 (2002), 161-172.


  26. The flip is often discontinuous. J. Operator Theory 48 (2002), 447-451.


  27. Operator Figà-Talamanca-Herz algebras. Studia Math. 155 (2003), 153-170.


  28. Connes-amenability and normal, virtual diagonals for measure algebras, I. J. London Math. Soc. 67 (2003), 643-656.


  29. Connes-amenability and normal, virtual diagonals for measure algebras, II. Bull. Austral. Math. Soc. 68 (2003), 325-328.


  30. The operator amenability of uniform algebras. Canad. Math. Bull. 46 (2003), 632-634.


  31. (with O. Yu. Aristov and N. Spronk) Operator biflatness of the Fourier algebra and approximate indicators for subgroups. J. Funct. Anal. 209 (2004), 367-387.


  32. (with N. Spronk) Operator amenability of Fourier-Stieltjes algebras. Math. Proc. Cambridge Phil. Soc. 136 (2004), 675-686.


  33. (with A. Lambert and M. Neufang) Operator space structure and amenability for Figà-Talamanca-Herz algebras. J. Funct. Anal. 211 (2004), 245-269.


  34. Applications of operator spaces to abstract harmonic analysis. Expo. Math. 22 (2004), 317-363.


  35. Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. Math. Scand. 95 (2004), 124-144.


  36. (with B. E. Forrest) Amenability and weak amenability of the Fourier algebra. Math. Z. 250 (2005), 731-744.


  37. Representations of locally compact groups on QSLp-spaces and a p-analog of the Fourier-Stieltjes algebra. Pacific J. Math. 221 (2005), 379-397.


  38. A Connes-amenable, dual Banach algebra need not have a normal, virtual diagonal. Trans. Amer. Math. Soc. 358 (2006), 391-402.


  39. The amenability constant of the Fourier algebra. Proc. Amer. Math. Soc. 134 (2006), 1473-1481.


  40. Cohen-Host type idempotent theorems for representations on Banach spaces and applications to Figà-Talamanca-Herz algebras. J. Math. Anal. Appl. 329 (2007), 736-751.


  41. (with M. Neufang) Harmonic operators: the dual perspective. Math. Z. 255 (2007), 669-690.


  42. (with N. Spronk) Operator amenability of Fourier-Stieltjes algebras, II. Bull. London Math. Soc. 39 (2007), 194-202.


  43. (with B. E. Forrest and N. Spronk) Operator amenability of the Fourier algebra in the cb-multiplier norm. Canadian J. Math. 59 (2007), 966-980.


  44. (with M. Daws) Can B(lp) ever be amenable? Studia Math. 188 (2008), 151-174. - Erratum. Studia Math. 195 (2009), 297-298.


  45. Characterizations of compact and discrete quantum groups through second duals. J. Operator Theory 60 (2008), 415-428.


  46. (with M. Neufang) Column and row operator spaces over QSLp-spaces and their use in abstract harmonic analysis. J. Math. Anal. Appl. 349 (2009), 21-29.


  47. Biflatness and biprojectivity of the Fourier algebra. Arch. Math. (Basel) 92 (2009), 525-530.


  48. Uniform continuity over locally compact quantum groups. J. London Math. Soc. 80 (2009), 55-71.


  49. (with M.Daws) Reiter's properties (P1) and (P2) for locally compact quantum groups. J. Math. Anal. Appl. 364 (2010), 352-365.


  50. B(lp) is never amenable. J. Amer. Math. Soc. 23 (2010), 1175-1185.


  51. Co-representations of Hopf-von Neumann algebras on operator spaces other than column Hilbert space. Bull. Austral. Math. Soc. 82 (2010), 205-210.


  52. (with B. E. Forrest) Norm one idempotent cb-multipliers with applications to the Fourier algebra in the cb-multiplier norm. Canadian Math. Bull. 54 (2011), 654-662.


  53. Completely almost periodic functionals. Arch. Math. (Basel) 97 (2011), 325-331.


  54. Factorization of completely bounded maps through reflexive operator spaces with applications to weak almost periodicity. J. Math. Anal. Appl. 385 (2012), 477-484.


  55. (with S. Öztop and N. Spronk) Beurling-Figà-Talamanca-Herz algebras. Studia Math. 210 (2012), 117-135..

Papers in conference proceedings

  1. The structure of contractible and amenable Banach algebras. In: E. Albrecht and M. Mathieu (eds.), Banach Algebras '97, pp. 415-430. Walter de Gruyter, Berlin, 1998.


  2. (with E. Albrecht et al.) List of open problems. In: E. Albrecht and M. Mathieu (eds.), Banach Algebras '97, pp. 549-560. Walter de Gruyter, Berlin, 1998.


  3. Abstract harmonic analysis, homological algebra, and operator spaces. In: K. Jarosz (ed.) Function Spaces, pp. 263-274. Contemporary Mathematics 328, American Mathematical Society, 2003.


  4. (Non-)amenability of B(E). In: R. J. Loy, V. Runde, and A. Sołtysiak (eds.) Banach Algebras 2009, pp. 339-351. Banach Center Publications 91, Polish Academy of Sciences, 2010.

Other articles

  1. An amenable, radical Banach algebra. Unpublished manuscript (1996).


  2. The Banach-Tarski paradox or What mathematics and miracles have in common. in the Sky 2 (2000), 13-15. (Compare with the uncensored version...)


  3. Weierstraß. in the Sky 4 (2001), 7-9.


  4. Noether. in the Sky 5 (2002), 20-22.


  5. Why I don't like "pure mathematics". in the Sky 7 (2003), 30-31.


  6. Why proof? in the Sky 11 (2008), 12-15.


  7. A new and simple proof of Schauder's theorem. Unpublished Manuscript (2010).


  8. Why Banach algebras? CMS Notes 44, no. 3, (2012), 10-11. (See here for the uncut version.)

Preprints (mostly arXived)

  1. (with A. Viselter) Ergodic theory for quantum semigroups. J. London Math. Soc. (to appear).


  2. Erratum to ``A Connes-amenable, dual Banach algebra need not have a normal, virtual diagonal''. Preprint (2013).

In preparation

  1. (with F. Uygul), Connes-amenability of Fourier-Stieltjes algebras


  2. Amenable Banach Algebras - a Panorama (Book project).

You are visitor number
Last update: 2/26/14.