1. Evaluate the improper integral
\[\int_0^\infty e^{-\alpha x} \cos(\beta x) \, dx \]
for \(\alpha > 0 \).

Solution: Let \(R > 0 \). Integration by parts yields
\[\int_0^R e^{-\alpha x} \cos(\beta x) \, dx = -\frac{1}{\alpha} e^{-\alpha x} \cos(\beta x) \bigg|_0^R - \frac{\beta}{\alpha} \int_0^R e^{-\alpha x} \sin(\beta x) \, dx \]
\[= -\frac{1}{\alpha} e^{-\alpha R} \cos(\beta R) + \frac{1}{\alpha} - \frac{\beta}{\alpha} \int_0^R e^{-\alpha x} \sin(\beta x) \, dx. \]

Using integration by parts again, we obtain
\[\int_0^R e^{-\alpha x} \sin(\beta x) \, dx = -\frac{1}{\alpha} e^{-\alpha x} \sin(\beta x) \bigg|_0^R + \frac{\beta}{\alpha} \int_0^R e^{-\alpha x} \cos(\beta x) \, dx \]
\[= -\frac{1}{\alpha} e^{-\alpha R} \sin(\beta R) + \frac{\beta}{\alpha} \int_0^R e^{-\alpha x} \cos(\beta x) \, dx. \]

Plugging the last equation into the right hand side of the first one, we get
\[\int_0^R e^{-\alpha x} \cos(\beta x) \, dx \]
\[= -\frac{1}{\alpha} e^{-\alpha R} \cos(\beta R) + \frac{1}{\alpha} + \frac{\beta}{\alpha} e^{-\alpha R} \sin(\beta R) - \frac{\beta^2}{\alpha^2} \int_0^R e^{-\alpha x} \cos(\beta x) \, dx \]
and thus
\[\left(1 + \frac{\beta^2}{\alpha^2} \right) \int_0^R e^{-\alpha x} \cos(\beta x) \, dx = -\frac{1}{\alpha} e^{-\alpha R} \cos(\beta R) + \frac{1}{\alpha} + \frac{\beta}{\alpha^2} e^{-\alpha R} \sin(\beta R). \]

Division by \(1 + \frac{\beta^2}{\alpha^2} \), then yields
\[\int_0^R e^{-\alpha x} \cos(\beta x) \, dx = \left(\frac{\alpha^2}{\alpha^2 + \beta^2} \right) \left(-\frac{1}{\alpha} e^{-\alpha R} \cos(\beta R) + \frac{1}{\alpha} + \frac{\beta}{\alpha^2} e^{-\alpha R} \sin(\beta R) \right). \]

Finally, letting \(R \to \infty \), we obtain
\[\int_0^\infty e^{-\alpha x} \cos(\beta x) \, dx = \frac{\alpha}{\alpha^2 + \beta^2}. \]

2. Determine whether or not the following improper integrals exist:
(a) \[\int_{0}^{\infty} \frac{x}{\sqrt{1+x^2}} \, dx; \]
(b) \[\int_{0}^{1} \frac{dx}{\sqrt{\sin x}}; \]
(c) \[\int_{0}^{\infty} \sin(x^2) \, dx. \]

(Hint for (c): Substitute \(x = \sqrt{u} \).)

Solution:

(a) As
\[\lim_{x \to \infty} \sqrt{\frac{x^3}{1+x^3}} = 1, \]
there is \(R_0 > 0 \) such that
\[\sqrt{\frac{x^3}{1+x^3}} = \frac{x}{\sqrt{1+x^3}} \sqrt{x} \geq \frac{1}{2} \]
for \(x \geq R_0 \) and thus
\[\frac{x}{\sqrt{1+x^3}} \geq \frac{1}{2\sqrt{x}} \]
for \(x \geq R_0 \). Since \(\int_{R_0}^{\infty} \frac{1}{2\sqrt{x}} \, dx \) does not exist, \(\int_{R_0}^{\infty} \frac{x}{\sqrt{1+x^3}} \, dx \) does not exist either by the Comparison Test. Consequently, \(\int_{0}^{\infty} \frac{x}{\sqrt{1+x^3}} \, dx \) does not exist.

(b) As
\[\lim_{x \to 0} \sqrt{\frac{x}{\sin x}} = 1, \]
there is \(C \geq 0 \) such that
\[\frac{1}{\sqrt{\sin x}} \leq \frac{C}{\sqrt{x}} \]
for \(x \in [0,1] \). Since \(\int_{0}^{1} \frac{1}{\sqrt{x}} \, dx \) easily seen to exist, the existence of \(\int_{0}^{1} \frac{dx}{\sqrt{\sin x}} \) follows from (an obvious modification of) the comparison test.

(c) It is sufficient to decide whether or not \(\int_{1}^{\infty} \sin(x^2) \, dx \) exists.

Let \(R > 1 \). The change of variables \(x = \sqrt{u} \) yields
\[\int_{1}^{R} \sin(x^2) \, dx = \frac{1}{2} \int_{1}^{R^2} \sin u \, du. \]
Integration by parts applied to the integral on the right hand side yields
\[\int_{1}^{R^2} \sin u \, du = -\frac{\cos u}{\sqrt{u}} \bigg|_{1}^{R^2} - \frac{1}{2} \int_{1}^{R^2} \frac{\cos u}{u^2} \, du. \]
By the Comparison Test, the improper integral \(\frac{1}{2} \int_{1}^{\infty} \frac{\cos u}{u^2} \, du \) converges absolutely, so that \(\lim_{R \to \infty} \int_{1}^{R^2} \frac{\cos u}{u^2} \, du \) exists. Since \(\lim_{R \to \infty} -\frac{\cos u}{\sqrt{u}} \bigg|_{1}^{R^2} = \cos 1 \), it follows that
\[\int_{1}^{\infty} \sin(x^2) \, dx = \lim_{R \to \infty} \int_{1}^{R} \sin(x^2) \, dx = \lim_{R \to \infty} \frac{1}{2} \int_{1}^{R^2} \sin u \, du \]
exists.
3. Determine those $p > 0$ for which the series $\sum_{n=10}^{\infty} \frac{1}{n^{(\log n)(\log(\log n))^{p}}$ converges.

Solution: The function

$$f : [10, \infty) \to \mathbb{R}, \quad x \mapsto \frac{1}{x(\log x)(\log(\log x))^{p}}$$

is non-negative and decreasing, so that the integral comparison test is applicable. Let $R > 10$. Changing variables twice yields

$$\int_{10}^{R} \frac{dx}{x(\log x)(\log(\log x))^{p}} = \int_{\log 10}^{\log R} \frac{du}{u(\log u)^{p}} = \int_{\log(\log 10)}^{\log(\log R)} \frac{dv}{v^{p}},$$

so that

$$\int_{10}^{R} \frac{dx}{x(\log x)(\log(\log x))^{p}} = \begin{cases} \frac{\log v}{1 \log(\log R)} - 1 \log(\log R), & \text{if } p = 1, \\ \frac{1}{1 - p} \frac{1}{v^{p}} - 1 \log(\log 10), & \text{if } p \neq 1, \end{cases}$$

As $\lim_{R \to \infty} \log(\log R) = \infty$, it follows that $\int_{10}^{R} \frac{dx}{x(\log x)(\log(\log x))^{p}}$ does exist if and only if $p > 1$. By the Integral Comparison Test, $\sum_{n=10}^{\infty} \frac{1}{n^{(\log n)(\log(\log n))^{p}}$ converges if and only if $p > 1$.

4. For $n \in \mathbb{N}$, let

$$f_{n} : [0, \infty) \to \mathbb{R}, \quad x \mapsto \frac{x}{n^{2}} e^{-\frac{x}{n}}.$$

Show that $f_{n} \to 0$ uniformly on $[0, \infty)$, but that

$$\lim_{n \to \infty} \int_{0}^{\infty} f_{n}(x) \, dx = 1.$$

Why doesn’t this contradict Corollary 8.1.4 from the notes?

Solution: First, note that

$$f_{n}'(x) = \frac{1}{n^{2}} e^{-\frac{x}{n}} - \frac{x}{n^{3}} e^{-\frac{x}{n}} = \left(\frac{1}{n^{2}} - \frac{x}{n^{3}} \right) e^{-\frac{x}{n}}$$

for $x \in [0, \infty)$. It follows that $f_{n}'(x) > 0$ for $x < n$, $f_{n}'(n) = 0$ and $f_{n}'(x) < 0$ for $x > n$. Hence, f_{n} is increasing on $[0, n]$ and decreasing on $[n, \infty)$, so that

$$0 \leq f_{n}(x) \leq f_{n}(n) = \frac{1}{ne}$$

for $x \in [0, \infty)$. Let $\epsilon > 0$, and choose $n_{\epsilon} \in \mathbb{N}$ such that $\frac{1}{en} < \epsilon$ for $n \geq n_{\epsilon}$. It follows that $|f_{n}(x)| < \epsilon$ for $x \in [0, \infty)$ and $n \geq n_{\epsilon}$, so that $f_{n} \to 0$ uniformly on $[0, \infty)$.

Let $R > 0$ and note that

$$\int_{0}^{R} \frac{x}{n^{2}} e^{-\frac{x}{n}} \, dx = -\frac{x}{n} e^{-\frac{x}{n}} \bigg|_{0}^{R} + \frac{1}{n} \int_{0}^{R} e^{-\frac{x}{n}} \, dx$$

$$= -\frac{R}{n} e^{-\frac{R}{n}} - e^{-\frac{R}{n}} + 1$$

$$\to 1 \quad \text{as } R \to \infty.$$
Consequently,
\[\int_0^\infty f_n(x) \, dx = 1 \]
holds for all \(n \in \mathbb{N} \).

Since the integrals in this problem are not Riemann integrals, but improper integrals, there is no contradiction.

5. Show that the series \(\sum_{n=0}^{\infty} \frac{x^n}{n!} \) does not uniformly converge to \(e^x \) on all of \(\mathbb{R} \).

\textit{Solution:} Assume that we have uniform convergence. Then there is \(N \in \mathbb{N} \) such that
\[\left| e^x - \sum_{n=0}^{N} \frac{x^n}{n!} \right| < 1 \]
for all \(x \in \mathbb{R} \). Division by \(|x^{N+1}| \) yields
\[\left| \frac{e^x}{x^{N+1}} - \sum_{n=0}^{N} \frac{x^{n-N-1}}{n!} \right| < \frac{1}{|x^{N+1}|} \]
for \(x \in \mathbb{R} \) and thus
\[\left| \frac{e^x}{x^{N+1}} \right| < \frac{1}{|x^{N+1}|} + \sum_{n=0}^{N} \frac{|x^{n-N-1}|}{n!} \]
for \(x \in \mathbb{R} \). The right hand side of this inequality tends to zero if \(x \to \infty \), and so the same must be true for the left hand side. However, it is well known (from de l’Hospital’s Rule) that \(\lim_{x \to \infty} \frac{e^x}{x^{N+1}} = \infty \).

6*. Let \(\emptyset \neq D \subset \mathbb{R}^N \) have content, and let \((f_n)_{n=1}^{\infty} \) be a sequence of Riemann-integrable functions on \(D \) that converges uniformly to a function \(f : D \to \mathbb{R} \). Show that \(f \) is Riemann-integrable as well such that
\[\int_D f = \lim_{n \to \infty} \int_D f_n. \]

Give an example of a sequence of Riemann-integrable functions on \([0,1]\) that converges pointwise to a bounded, but not Riemann-integrable function.

\textit{Solution:} Without loss of generality, suppose that \(D \) is an \(N \)-dimensional compact interval \(I \) (with \(\mu(I) > 0 \)).

Let \(\epsilon > 0 \). Choose \(n_\epsilon \in \mathbb{N} \) such that \(|f_n(x) - f(x)| < \frac{\epsilon}{5\mu(I)} \) for all \(n \geq n_\epsilon \) and for all \(x \in I \).

By the Cauchy Criterion for the Riemann-integrability, there is a partition \(\mathcal{P}_\epsilon \) of \(I \) with the following property: Whenever \(\mathcal{P} \) is a partition finer than \(\mathcal{P}_\epsilon \), \((I_\nu)_\nu\) is the
subdivision of I corresponding to \mathcal{P}, and ξ_ν and η_ν are arbitrary points in I_ν, we have
\[
\left| \sum_\nu f_n(\xi_\nu)\mu(I_\nu) - \sum_\nu f_n(\eta_\nu)\mu(I_\nu) \right| < \frac{\epsilon}{3}
\]
For such \mathcal{P}, $(I_\nu)_\nu$, and ξ_ν and η_ν, we obtain
\[
\left| \sum_\nu f(\xi_\nu)\mu(I_\nu) - \sum_\nu f(\eta_\nu)\mu(I_\nu) \right|
\leq \left| \sum_\nu f(\xi_\nu)\mu(I_\nu) - \sum_\nu f_n(\xi_\nu)\mu(I_\nu) \right| + \left| \sum_\nu f_n(\xi_\nu)\mu(I_\nu) - \sum_\nu f_n(\eta_\nu)\mu(I_\nu) \right|
+ \left| \sum_\nu f_n(\eta_\nu)\mu(I_\nu) - \sum_\nu f(\eta_\nu)\mu(I_\nu) \right|
\leq \sum_\nu |f(\xi_\nu) - f_n(\xi_\nu)|\mu(I_\nu) + \frac{\epsilon}{3} + \sum_\nu |f_n(\eta_\nu) - f(\eta_\nu)|\mu(I_\nu)
\leq \frac{2\epsilon}{3\mu(I)} \sum_\nu \mu(I_\nu) + \frac{\epsilon}{3}
= \frac{2\epsilon}{3} + \frac{\epsilon}{3}
= \epsilon.
\]
By the Cauchy criterion again, this means that f is Riemann-integrable.

The fact that
\[
\int_D f = \lim_{n \to \infty} \int_D f_n.
\]
is proven exactly as for continuous functions.

Let $\{q_1, q_2, \ldots\}$ be an enumeration of $\mathbb{Q} \cap [0, 1]$. For $n \in \mathbb{N}$, let $f_n := \chi_{\{q_1, \ldots, q_n\}}$. Then $(f_n)_{n=1}^\infty$ converges pointwise to $f := \chi_{\mathbb{Q} \cap [0,1]}$. Since each f_n is discontinuous only at $\{q_1, \ldots, q_n\}$, it follows that each f_n is Riemann-integrable. However, f clearly isn’t.