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Chapter 1

Topological Vector Spaces

1.1 A Vector Space That Cannot Be Turned into a Banach

Space

Throughout these notes, we use F to denote a field that can either be the real numbers R
or the complex numbers C.

Recall that a Banach space is a vector space E over F equipped with a norm ‖ · ‖, i.e.,

a normed space, such that every Cauchy sequence in (E, ‖ · ‖) converges.

Examples. 1. Consider the vector space

C([0, 1]) := {f : [0, 1]→ F : f is continuous}.

The supremum norm on C([0, 1]) is defined to be

‖f‖∞ := sup
t∈[0,1]

|f(t)| (f ∈ C([0, 1])).

It is well known that (C([0, 1]), ‖ · ‖∞) is a Banach space.

2. For n ∈ N, consider the vector space

Cn([0, 1]) := {f : [0, 1]→ F : f is n-times continuously differentiable}.

The Weierstraß Approximation Theorem, states that the polynomials are dense in

(C([0, 1]), ‖ · ‖∞). Therefore (Cn([0, 1]), ‖ · ‖∞) cannot be a Banach space. However,

if we define

‖f‖Cn :=

n∑
j=0

∥∥∥f (j)
∥∥∥
∞

(f ∈ Cn([0, 1])),

then (Cn([0, 1]), ‖ · ‖Cn) is a Banach space.
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3. Consider the vector space

C∞([0, 1]) :=
∞⋂
n=1

Cn([0, 1]).

Again, the Weierstraß Approximation Theorem yields that (C∞([0, 1]), ‖ · ‖∞) is not

a Banach space. With a little more work one can see that (C∞([0, 1]), ‖ · ‖Cn) is not

a Banach space either for all n ∈ N.

We claim that more is true:

Claim 1 There is no norm ‖ · ‖ on C∞([0, 1]) such that:

(a) (C∞([0, 1]), ‖ · ‖) is a Banach space;

(b) for each t ∈ [0, 1], the linear functional

C∞([0, 1])→ F, f 7→ f(t)

is continuous with respect to ‖ · ‖.

In what follows, we will suppress the symbol ‖ · ‖ in (C∞([0, 1]), ‖ · ‖) and simply

write C∞([0, 1]).

We will prove Claim 1 by contradiction. Assume that there is a norm ‖ · ‖ on

C∞([0, 1]) such that (a) and (b) hold. We prove two auxiliary claims that will lead

us towards a contradiction.

Claim 2 For each t ∈ [0, 1], the linear functional

C∞([0, 1])→ F, f 7→ f ′(t) (1.1)

is continuous with respect to ‖ · ‖.

Proof. Fix t ∈ [0, 1], and let the functional (1.1) be denoted by φ. Let (hn)∞n=1 be a

sequence of non-zero reals such that t + hn ∈ [0, 1] for all n ∈ N and hn → 0. For

n ∈ N, set

φn : C∞([0, 1])→ F, f 7→ f(t+ hn)− f(t)

hn
.

By (b), each φn is a linear combination of continuous, linear functionals and therefore

itself continuous. As 〈f, φ〉 = limn→∞〈f, φn〉 for all f ∈ C∞([0, 1]) by the very

definition of the first derivative (a well known corollary of) the Uniform Boundedness

Theorem yields the continuity of φ.

Claim 3 The linear operator

d

dx
: C∞([0, 1])→ C∞([0, 1]), f 7→ f ′

is continuous.
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Proof. We will apply the Closed Graph Theorem. Let (fn)∞n=1 be a sequence in

C∞([0, 1]), and let g ∈ C∞([0, 1]) be such that

fn → 0 and f ′n → g.

We need to show that g ≡ 0. To see this, let t ∈ [0, 1]. By Claim 2, we have

f ′n(t)→ 0 whereas (b) yields f ′n(t)→ g(t), so that g(t) = 0. As t ∈ [0, 1] is arbitrary,

this means g ≡ 0.

To complete the proof of Claim 2, choose C >
∥∥ d
dx

∥∥ where
∥∥ d
dx

∥∥ is the operator

norm of d
dx on the Banach space C∞([0, 1]). Define

f : [0, 1]→ R, t 7→ eCt,

so that f ∈ C∞([0, 1]) and

f ′(t) = C eCt = C f(t) (t ∈ [0, 1]).

This yields

C‖f‖ = ‖C f‖ = ‖f ′‖ ≤
∥∥∥∥ ddx

∥∥∥∥ ‖f‖
and, consequently,

C ≤
∥∥∥∥ ddx

∥∥∥∥ ,
which contradicts the choice of C.

The last example strongly suggests that we may have to look beyond the realm of

normed and Banach spaces if we want to investigate certain natural examples of function

spaces with functional analytic methods.

1.2 Locally Convex Spaces

Unless specified otherwise, all vector spaces will from now on be over F, i.e., over R or

over C

Definition 1.2.1. A topological vector space—short: TVS—is a vector space E over F
equipped with a Hausdorff topology T such that the maps

E × E → E, (x, y) 7→ x+ y

and

F× E → E, (λ, x) 7→ λx

are continuous, where E×E and F×E are equipped with the respective product topologies.
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We refer to a topological vector space E with its given topology T by the symbol

(E, T ) or simply by E if no confusion can occur about T .

Of course, every normed space is a topological vector space with T being the topology

induced by the norm.

Definition 1.2.2. Let E be a vector space. Then a map p : E → [0,∞) is called a

seminorm if

p(x+ y) ≤ p(x) + p(y) (x, y ∈ E)

and

p(λx) = |λ|p(x) (λ ∈ F, x ∈ E).

Remarks. 1. If p(x) = 0 implies that x = 0 for all x ∈ E, then p is, in fact, a norm.

2. We have

|p(x)− p(y)| ≤ p(x− y) (x, y ∈ E). (1.2)

This is proved exactly like the corresponding statement for norms.

Proposition 1.2.3. Let E be a topological vector space, and let p be a seminorm on E.

Then the following are equivalent:

(i) p is continuous;

(ii) {x ∈ E : p(x) < 1} is open;

(iii) 0 ∈ int{x ∈ E : p(x) < 1};

(iv) 0 ∈ int{x ∈ E : p(x) ≤ 1};

(v) p is continuous at 0;

(vi) there is a continuous seminorm q on E such that p ≤ q.

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) are straightforward.

(iv) =⇒ (v): Let U be a neighborhood of 0 in F. We need to show that p−1(U) is a

neighborhood of 0 in E. Choose ε > 0 such that (−ε, ε) ⊂ U . It follows that

p−1((−ε, ε)) ⊃ p−1
([
− ε

2
,
ε

2

])
=
ε

2
p−1([−1, 1]) =

ε

2
{x ∈ E : p(x) ≤ 1}.

By (iv), 0 ∈ E is an interior point of {x ∈ E : p(x) ≤ 1} and therefore of p−1((−ε, ε)).
This means that p−1((−ε, ε)) is a neighborhood of 0 as is, consequently, p−1(U).

(v) =⇒ (i): Let x ∈ E and let (xα)α be a net in E such that xα → x. It follows that

xα − x→ 0, so that—by (1.2)—

|p(xα)− p(x)| ≤ p(xα − x)→ 0.
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This proves the continuity of p at x.

(i) =⇒ (vi) is obvious

(vi) =⇒ (v): Let (xα)α be a net in E such that xα → 0. It follows that

p(xα) ≤ q(xα)→ 0,

so that p is continuous at 0.

Remarks. 1. If p1, . . . , pn are continuous seminorms on E, then so are p1 + · · ·+pn and

maxj=1,...,n pj .

2. If P is a family of seminorms on E such that there is a continuous seminorm q with

p ≤ q for all p ∈ P, then

E → [0,∞), x 7→ sup
p∈P

p(x)

is a continuous seminorm.

Definition 1.2.4. A vector space E equipped with a family P of seminorms such that⋂
{p−1({0}) : p ∈ P} = {0} is a called a locally convex (vector) space—in short: LCS.

We will write (E,P) for a locally convex space with its given family of seminorms and

often suppress the symbol P if no confusion can arise.

Note that we do not a priori require that a locally convex space be a topological vector

space. Next, we will see that a locally convex space (E,P) is equipped with a canonical

topology induced by P.

Theorem 1.2.5. Let (E,P) be a locally convex space, and consider the collection of all

subsets U of E such that, for each x ∈ U , there are p1, . . . , pn ∈ P and ε1, . . . , εn > 0 such

that

{y ∈ E : pj(x− y) < εj for j = 1, . . . , n} ⊂ U.

Then these subsets of E form Hausdorff topology T over E turning E into a topological

vector space. Furthermore, for any x ∈ E and any net (xα)α in E, we have

xα
T−→ x ⇐⇒ p(xα − x)→ 0 for all p ∈ P.

Proof. We start with proving that T is indeed a topology over E.

It is obvious that ∅, E ∈ T .

Let U1, U2 ∈ T , and let x ∈ U1 ∩ U2. For j = 1, 2, there are p
(j)
1 , . . . , p

(j)
nj ∈ P and

ε
(j)
1 , . . . , ε

(j)
nj > 0 such that{

y ∈ E : p(j)
ν (x− y) < ε(j)ν for ν = 1, . . . , nj

}
⊂ Uj .

6



It follows that{
y ∈ E : p(j)

ν (x− y) < ε(j)ν for ν = 1, . . . , nj and j = 1, 2
}
⊂ U1 ∩ U2,

and therefore U1 ∩ U2 ∈ T .

Let U ⊂ T , and let x ∈
⋃
{U : U ∈ U}. Then there is U0 ∈ U with x ∈ U0. As U0 ∈ T ,

there are p1, . . . , pn ∈ P and ε1, . . . , εn > 0 such that

{y ∈ E : pj(x− y) < εj for j = 1, . . . , n} ⊂ U0 ⊂
⋃
{U : U ∈ U}.

It follows that
⋃
{U : U ∈ U} ∈ T .

Next, we show that T is a Hausdorff topology. Let x, y ∈ E be such that x 6= y. As⋂
{p−1({0}) : p ∈ P} = {0}, there is p ∈ P such that p(x − y) > 0. Set ε := 1

2p(x − y),

and define

U := {z ∈ E : p(x− z) < ε} and V := {z ∈ E : p(y − z) < ε};

it is easy to see that U, V ∈ T , and it is obvious that x ∈ U and y ∈ V . Assume that

there is z ∈ U ∩ V . Then we have

p(x− y) ≤ p(x− z) + p(z − y) < 2ε = p(x− y),

which is a contradiction. It follows that U ∩ V = ∅, so that T is a Hausdorff topology.

Before we prove that T turns E into a topological vector space, we show the “Fur-

thermore” part of Theorem 1.2.5. Let x ∈ E, and let (xα)α be a net in E. Suppose that

xα
T−→ x. It is immediate from the definition of T that every p ∈ P is continuous, so that

p(xα − x)→ 0 (p ∈ P). (1.3)

Conversely, suppose that (1.3) holds, and assume towards a contradiction that xα 6→ x

with respect to T . This means that there are U ∈ T with x ∈ U and a subnet (xβ)β of

(xα)α such that xβ /∈ U for all indices β. By the definition of T , there are p1, . . . , pn ∈ P
and ε1, . . . , εn > 0 such that

{y ∈ E : pj(x− y) < εj for j = 1, . . . , n} ⊂ U.

As limβ pj(xβ −x) = 0 for j = 1, . . . , n, there are β1, . . . , βn in the index set of (xβ)β such

that pj(xβ−x) < εj for all j = 1, . . . , n and all indices β with βj � β. Choose an index β0

such that β1, . . . , βn � β0, which is possible because the index set of a net is directed. It

follows that pj(xβ − x) < εj for j = 1, . . . , n and all β with β0 � β and therefore xβ ∈ U
for those β. This contradicts the choice of (xβ)β.

To complete the proof, let (xα)α and (yβ)β be nets in E, and let x, y ∈ E be such that

xα → x and yβ → y. By the foregoing this means that

p(xα − x)→ 0 and p(yβ − y)→ 0 (p ∈ P),
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so that

p(xα + yβ − (x+ y)) ≤ p(xα − x) + p(yβ − y)→ 0 (p ∈ P)

and therefore xα + yβ → x+ y. This proves the continuity of addition in E; the proof of

the continuity of scalar multiplication is similarly easy.

We call the topology described in Theorem 1.2.5, the topology induced by P.

Examples. 1. Let E := C∞([0, 1]), and let P := {‖ · ‖Cn : n ∈ N}. A net (fα)α in E the

converges to f ∈ E if and only if
(
f

(n)
α

)
α

converges to f (n) uniformly on [0, 1] for

each n ∈ N0.

2. Let ∅ 6= S be any set, let E := FS , and let P := {ps : s ∈ S} where

ps : E → F, f 7→ |f(s)| (s ∈ S).

Then a net (fα)α in E converges to f ∈ E if and only if fα → f pointwise on S.

3. Let X be a topological space, and let

E := C(X) := {f : X → F : f is continuous};

note that we do not require the functions in E to be bounded. For ∅ 6= K ⊂ X

compact, define ‖ · ‖K : E → [0,∞) by letting

‖f‖K := sup
x∈K
|f(x)|.

Set P := {‖ · ‖K : ∅ 6= K ⊂ X compact}. Let f ∈ E \ {0}. Then there is x ∈ X
with f(x) 6= 0, so that ‖f‖{x} > 0. It follows that

⋂
{p−1({0}) : p ∈ P} = {0}, so

that (E,P) is a locally convex vector space. It is easy to see that a net (fα)α in E

the converges to f ∈ E if and only if fα → f uniformly on all compact subsets of X.

4. Let E be any normed space with dual space E∗. For φ ∈ E∗, define

pφ : E → [0,∞), x 7→ |〈x, φ〉|.

Set P := {pφ : φ ∈ E∗}. By the Hahn–Banach Theorem, there is, for each x ∈ E \
{0}, a functional φ ∈ E∗ with 〈x, φ〉 6= 0. It follows that

⋂
{p−1({0}) : p ∈ P} = {0},

so that (E,P) is a locally convex space. The resulting topology on E is called the

weak topology on E and denoted by σ(E,E∗).

5. Let E be any normed space with dual space E∗. For x ∈ E, define

px : E∗ → [0,∞), φ 7→ |〈x, φ〉|.

Set P := {px : x ∈ E}. Then (E∗,P) is a locally convex space. The resulting

topology on E∗ is called the weak∗ topology on E and denoted by σ(E∗, E).
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Why are locally convex spaces called “locally convex”? This will soon become appar-

ent.

Recall that a subset C of a vector space E is called convex if tx+ (1− t)y ∈ C for all

x, y ∈ C and t ∈ [0, 1].

Definition 1.2.6. Let E be a topological vector space, and let S ⊂ E. Then:

(a) the convex hull convS of S is defined as the intersection of all convex subsets of E

containing S;

(b) the closed convex hull convS of S is defined as the intersection of all closed convex

subsets of E containing S.

Lemma 1.2.7. Let E be a topological vector space, and let C ⊂ E be convex. Then C is

convex.

Proof. Let x ∈ C, let y ∈ C, and let t ∈ [0, 1]. We claim that tx+ (1− t)y ∈ C. As y ∈ C,

there is a net (yα)α ∈ C with yα → y. It follows that

tx+ (1− t)yα︸ ︷︷ ︸
∈C

→ tx+ (1− t)y ∈ C.

Now, let x, y ∈ C, and let t ∈ [0, 1]. Let (xα)α be a net in C with xα → x. It follows

that

txα + (1− t)y︸ ︷︷ ︸
∈C

→ tx+ (1− t)y ∈ C,

so that C is convex.

Proposition 1.2.8. Let E be a topological vector space, and let S ⊂ E. Then

convS =


n∑
j=1

tjxj : n ∈ N, x1, . . . , xn ∈ S, t1, . . . , tn ≥ 0,
n∑
j=1

tj = 1

 (1.4)

and convS = convS.

Proof. To prove (1.4), let the right hand side of (1.4) be denoted by C. Obviously, S ⊂ C,

and it is routinely checked that C is convex, so that convS ⊂ C.

For the reverse inclusion, we show that
∑n

j=1 tjxj ∈ convS for all n ∈ N, x1, . . . , xn ∈
S, and t1, . . . , tn ≥ 0 with

∑n
j=1 tj = 1. We proceed by induction on n.

The case where n = 1 is trivial. So, let n ≥ 2 be such that
∑n−1

j=1 tjxj ∈ convS for all

x1, . . . , xn−1 ∈ S, and t1, . . . , tn−1 ≥ 0 with
∑n−1

j=1 tj = 1. Let x1, . . . , xn−1, xn ∈ S, and

let t1, . . . , tn−1, tn ≥ 0 be such that
∑n

j=1 tj = 1. Without loss of generality suppose that

tn 6= 0. If
∑n−1

j=1 tj = 0 we have t1 = · · · = tn−1 = 0 and tn = 1, so nothing needs to be
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shown. Suppose therefore that t :=
∑n−1

j=1 tj ∈ (0, 1]. It follows that
∑n−1

j=1 t
−1tj = 1, so

that
∑n−1

j=1 t
−1tjxj ∈ convS by the induction hypothesis. It follows that

n∑
j=1

tjxj =
n−1∑
j=1

tjxj + tnxn = t

n−1∑
j=1

t−1tjxj


︸ ︷︷ ︸

∈convS

+(1− t) xn︸︷︷︸
∈convS

∈ convS.

(It should be noted that nothing in the proof of (1.4) requires the presence of a topology,

i.e., (1.4) holds in any vector space.)

By Lemma 1.2.7, convS is convex, so that convS ⊂ convS. On the other hand,

convS ⊂ convS by definition, so that convS ⊂ convS as well.

Definition 1.2.9. Let E be a vector space. A set S ⊂ E is called:

(a) balanced if λx ∈ S for all x ∈ S and all λ ∈ F with |λ| ≤ 1;

(b) absorbing if, for each x ∈ E, there is ε > 0 such that tx ∈ S for all t ∈ (0, ε);

(c) absorbing at x ∈ S if S − x is absorbing.

Remark. It is clear that a balanced set must contain 0, and that a set is absorbing if and

only if it is absorbing at 0.

Example. Let E be a vector space, and let p be a seminorm on E. Then

{x ∈ E : p(x) < 1}

is convex, balanced, and absorbing at each of its points.

As it turns out, all convex and balanced sets that are absorbing at each of their points

arise in this fashion.

Proposition 1.2.10. Let E be a vector space, and let C be a convex, balanced set that

is absorbing at each of its points. Then there is a unique seminorm pC on E such that

C = {x ∈ E : pC(x) < 1}

Proof. The uniqueness assertion is clear.

To prove the existence of pC , define

pC(x) := inf{t ≥ 0 : x ∈ tC} (x ∈ E).

As C is absorbing, this is well defined. It is obvious that p(0) = 0.
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Let x ∈ E, and let λ ∈ F \ {0}. We obtain

pC(λx) = inf{t ≥ 0 : λx ∈ tC}

= inf

{
t ≥ 0 : x ∈ t

(
1

λ
C

)}
= inf

{
t ≥ 0 : x ∈ t

(
1

|λ|
C

)}
, because C is balanced,

= |λ| inf

{
t

|λ|
: t ≥ 0, x ∈ t

(
1

|λ|
C

)}
= |λ| inf{t ≥ 0 : x ∈ tC}

= |λ|pC(x).

Let x, y ∈ E, and let ε > 0. Choose s, t > 0 such that x ∈ sC, y ∈ tC, s < pC(x) + ε
2 ,

and t < pC(y) + ε
2 . It follows that

x

s+ t
∈ s

s+ t
C and

y

s+ t
∈ t

s+ t
C

and
x+ y

s+ t
∈ s

s+ t
C +

t

s+ t
C ⊂ C,

so that x+ y ∈ (s+ t)C. It follows that

pC(x+ y) ≤ s+ t ≤ pC(x) + pC(y) + ε.

All in all, pC is a seminorm.

Let x ∈ E be such that pC(x) < 1, and let t ∈ [0, 1) be such that x ∈ tC. As C is

balanced, tC ⊂ C, so that x ∈ C. On the other hand, let x ∈ C. It is then immediate that

pC(x) ≤ 1. As C is absorbing at x, there is ε > 0 such that x + tx ∈ C for all t ∈ (0, ε).

It follows that

pC(x) =
1

1 + t
pC((1 + t)x) ≤ 1

1 + t
< 1,

which completes the proof.

Lemma 1.2.11. Let E be a topological vector space, and the U ⊂ E be open. Then U is

absorbing at each of its points.

Proof. Let x ∈ U . Then U − x is open and contains zero. We can therefore suppose that

0 ∈ U , and it is enough to show that U is absorbing.

Let x ∈ E be arbitrary and consider the map

f : R→ E, t 7→ tx.

Then f is continuous, so that f−1(U) is open in R and contains 0. Therefore, there is

ε > 0 such that (−ε, ε) ⊂ f−1(U), i.e., tx ∈ U for all t ∈ R with |t| < ε. In particular, this

means that tx ∈ U for all t ∈ (0, ε), i.e., U is absorbing.
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We can now characterize the locally convex vector spaces among the topological ones.

This also reveals why those spaces were name “locally convex” in the first place.

Theorem 1.2.12. The following are equivalent for a topological vector space (E, T ):

(i) there is a family P of seminorms on E with
⋂
{p−1({0}) : p ∈ P} = {0} such that

T is the topology induced by P;

(ii) the open, convex, balanced subsets of E form a base of neighborhoods for 0.

Proof. (i) =⇒ (ii): The sets of the form

{x ∈ E : pj(x) < εj for j = 1, . . . , n}

where n ∈ N, p1, . . . , pn ∈ P, and ε1, . . . , εn > 0 are open, balanced, and convex, and form

a base of neighborhoods of 0.

(ii) =⇒ (i): Let C be the collection of all open, convex, balanced subsets of (E, T ),

and let P := {pC : C ∈ C} with pC as in Proposition 1.2.10 for each C ∈ C. As

{x ∈ E : pC(x) < 1} = C, it follows that pC is continuous by Proposition 1.2.3 with

respect to T for each C ∈ C.
Let x ∈ E \ {0}. Then there is C ∈ C such that x /∈ C and therefore pC(x) ≥ 1. It

follows that
⋂
{p−1({0}) : p ∈ P} = {0}.

Let (xα)α be a net in E such that xα
T−→ 0. As all p ∈ P are continuous, this means

that p(xα) → 0 for all p ∈ P. Consequently, the topology on E induced by P is coarser

than T .

On the other hand, let U be a neighborhood of 0 with respect to T . As C is a base

of neighborhoods for 0, there is C ∈ C such that C ⊂ U . Now, C is open with respect to

the topology induced by P, which means that U is a neighborhood of 0 in that topology,

too.

We conclude this section with a topological vector space that is not locally convex.

Example. Let p ∈ (0, 1), and let Lp([0, 1]) denote the (equivalence classes) of all measurable

functions f : [0, 1]→ F such that

((f))p :=

∫ 1

0
|f(t)|p dt <∞.

Claim 1 Let x, y ∈ [0,∞). Then (x+ y)p ≤ xp + yp.

Proof. Fix x ∈ [0,∞), and define

f : [0,∞)→ R, y 7→ xp + yp − (x+ y)p.

12



Then f is differentiable on (0,∞) such that

f ′(y) = pyp−1 − p(x+ y)p−1 (y ∈ (0,∞)).

As p− 1 < 0 and x+ y ≥ y, it is clear that f ′(y) ≥ 0 for all y > 0, so that f is increasing

and, in particular,

0 = f(0) ≤ f(y) = xp + yp − (x+ y)p (y ∈ [0,∞)).

This proves the claim.

Claim 2 Lp([0, 1]) is a vector space.

Proof. Let f ∈ Lp([0, 1]), and let λ ∈ F. Then it is immediate that λf ∈ Lp([0, 1]) as well.

Let f, g ∈ Lp([0, 1]). By Claim 1, this means that

((f + g))p =

∫ 1

0
|f(t) + g(t)|p dt ≤

∫ 1

0
|f(t)|p dt+

∫ 1

0
|g(t)|p dt <∞,

so that f + g ∈ Lp([0, 1]) as well.

Claim 3 Setting

d(f, g) := ((f − g))p (f, g ∈ Lp([0, 1]))

defines a translation invariant metric on Lp([0, 1]), i.e.,

d(f + h, g + h) = d(f, g) (f, g, h ∈ Lp([0, 1])).

Proof. Let f, g, h ∈ Lp([0, 1]), and observe that

d(f, h) =

∫ 1

0
|f(t)− h(t)|p dt

=

∫ 1

0
(|f(t)− g(t)|+ |g(t)− h(t)|)p dt

≤
∫ 1

0
|f(t)− g(t)|p + |g(t)− h(t)|p dt, by Claim 1,

≤
∫ 1

0
|f(t)− g(t)|p dt+

∫ 1

0
|g(t)− h(t)|p dt

= d(f, g) + d(g, h).

This proves the triangle inequality. The other axioms of a metric are obvious, as is

translation invariance.

Claim 4 Lp([0, 1]) equipped with the topology induced by d is a topological vector space.

13



Proof. Let (fn)∞n=1 and (gn)∞n=1 be sequences in Lp([0, 1]) such that fn → f ∈ Lp([0, 1])

and gn → g ∈ Lp([0, 1]), and let (λn)∞n=1 be a sequence in F such that λn → λ. We obtain

d(fn + gn, f + g) ≤ d(fn + gn, fn + g) + d(fn + g, f + g)),

= d(gn, g) + (fn, f), by translation invariance,

→ 0

as well as

d(λnfn, λf) ≤ d(λnfn, λnf) + d(λnf, λf)

= ((λnfn − λnf))p + ((λnf − λf))p

= |λn|p︸ ︷︷ ︸
bounded

((fn − f))p︸ ︷︷ ︸
=d(fn,f)→0

+ |λn − λ|p︸ ︷︷ ︸
→0

((f))p

→ 0,

which proves the claim.

For R > 0, we now define

BR := {f ∈ Lp([0, 1]) : ((f))p < R}.

Claim 5 B2n(1−p)R ⊂ convBR for all R > 0 and all n ∈ N.

Proof. We proceed by induction on n.

Let R > 0 be arbitrary, and let f ∈ B2(1−p)R, i.e, r := ((f))p < 2(1−p)R. Use the

Intermediate Value Theorem to obtain x ∈ (0, 1) such that
∫ x

0 |f(t)|p dt = r
2 . Define

g, h : [0, 1]→ F by letting

g(t) :=

{
f(t), t ≤ x,

0, t > x,

and

h(t) :=

{
0, t ≤ x,
f(t), t > x.

It follows that

f =
1

2
(2g + 2h) and ((2g))p = ((2h))p = 2p

r

2
= r2p−1 =

r

21−p <
2(1−p)R

21−p = R,

so that f ∈ convBR.

Let n ≥ 2 be such that B2(n−1)(1−p)R ⊂ convBR for all R > 0. It follows that

B2n(1−p)R = B2(n−1)(1−p)21−pR

⊂ convB21−pR, by the induction hypothesis with R en lieu of 21−pR,

⊂ convBR, by the base step.

This completes the proof.

14



Claim 6 The only open, convex subsets of Lp([0, 1]) are ∅ and Lp([0, 1]).

Proof. Let ∅ 6= C ⊂ Lp([0, 1]) be open and convex, and suppose without loss of generality

that 0 ∈ C. By the definition of the topology of Lp([0, 1]), there is R > 0 such that

BR ⊂ C. Let f ∈ Lp([0, 1]). As 1− p > 0, there is n ∈ N such that ((f))p < 2n(1−p)R, so

that

f ∈ B2n(1−p)R ⊂ convBR ⊂ C.

As f ∈ Lp([0, 1]) is arbitrary, this means that C = Lp([0, 1]).

In view of Claim 6, it is clear that Lp([0, 1]) cannot be locally convex.

1.3 Geometric Consequences of the Hahn–Banach Theorem

Definition 1.3.1. Let E be a vector space. Then a map p : E → R is called a sublinear

functional if

p(x+ y) ≤ p(x) + p(y) (x, y ∈ E)

and

p(tx) = t p(x) (t ≥ 0, x ∈ E).

Examples. 1. Every seminorm is a sublinear functional.

2. Let E := `∞R denote the space of all bounded sequences in R. Define

p : E → R, (xn)∞n=1 7→ lim sup
n→∞

xn.

Then p is a sublinear functional on E, but not a seminorm.

We recall:

Theorem 1.3.2 (Hahn–Banach Theorem). Let E be a vector space over R, let F be a

subspace of E, let p : E → R be a sublinear functional, and let φ : F → R be linear such

that

〈x, φ〉 ≤ p(x) (x ∈ F ).

Then there is a linear functional φ̃ : E → R such that φ̃|F = φ and〈
x, φ̃

〉
≤ p(x) (x ∈ E).

Corollary 1.3.3. Let (E,P) be a locally convex vector space. Then, for each x ∈ E \{0},
there is a continuous linear functional φ : E → F such that 〈x, φ〉 6= 0.
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Proof. Let x ∈ E \ {0}. Then there is p ∈ P such that p(x) > 0.

We first treat the case where F = R. Set F = Rx. Define

ψ : F → R, tx 7→ t p(x)

Then ψ is a linear functional on F with 〈x, ψ〉 = p(x) 6= 0 such that

〈tx, ψ〉 = t p(x) = p(tx) (t ≥ 0)

and

〈tx, ψ〉 = t p(x) = −|t|p(x) = −p(tx) ≤ p(tx) (t ≤ 0),

so that

〈y, ψ〉 ≤ p(y) (y ∈ F ).

By the Hahn–Banach Theorem, there is therefore a linear functional φ : E → R with

φ|F = ψ—so that, in particular, 〈x, φ〉 6= 0—and

〈y, φ〉 ≤ p(y) (y ∈ E).

Let y ∈ E. We claim that |〈y, φ〉| ≤ p(y). If 〈y, φ〉 ≥ 0, this is clear, so suppose that

〈y, φ〉 < 0. In this case, we have

|〈y, φ〉| = −〈y, φ〉 = 〈−y, φ〉 ≤ p(−y) = p(y),

which proves the claim. This entails that φ is continuous.

Suppose now that F = C. As any any vector space over C is also one over R, we

use the case where F = R to obtain a continuous R-linear functional φR : E → R with

〈x, φR〉 6= 0. Define

φ : E → C, y 7→ 〈y, φR〉 − i〈iy, φR〉. (1.5)

It is clear that φ is R-linear and continuous such that Re〈y, φ〉 = 〈y, φR〉 for y ∈ E; in

particular, 〈x, φ〉 6= 0. Observe that

〈iy, φ〉 = 〈iy, φR〉 − i〈−y, φR〉

= 〈iy, φR〉+ i〈y, φR〉 = i(〈y, φR〉 − i〈iy, φR〉) = i〈y, φ〉 (y ∈ E),

so that φ is, in fact, C-linear.

Example. A Banach limit is a linear functional LIM: `∞R → R such that, for each (xn)∞n=1 ∈
`∞R ,

(a) lim infn→∞ xn ≤ LIM((xn)∞n=1) ≤ lim supn→∞ xn, and

(b) LIM((xn)∞n=1) = LIM((xn+1)∞n=1).

16



We claim that Banach limits exist.

Define

p : `∞R → R, (xn)∞n=1 7→ lim sup
n→∞

xn,

so that p is a sublinear functional.

Let

F :=

{
(xn)∞n=1 ∈ `∞R : lim

n→∞

1

n

n∑
k=1

xk exists

}
,

and define

Lim: F → R, (xn)∞n=1 7→ lim
n→∞

1

n

n∑
k=1

xk.

Let (xn)∞n=1 ∈ F . For n ∈ N, let cn := supk≥n xk. It follows that xn ≤ cn for each

n ∈ N and that (cn)∞n=1 converges (to lim supn→∞ xn). Hence, we have

Lim((xn))∞n=1) = lim
n→∞

1

n

n∑
k=1

xk

≤ lim
n→∞

1

n

n∑
k=1

ck

= lim
n→∞

cn

= lim sup
n→∞

xn

= p((xn)∞n=1).

The Hahn–Banach Theorem thus yields a linear functional LIM : `∞R → R with

LIM |F = Lim such that

LIM((xn)∞n=1) ≤ p((xn)∞n=1) ((xn)∞n=1 ∈ `∞R ),

i.e.,

LIM((xn)∞n=1) ≤ lim sup
n→∞

xn ((xn)∞n=1 ∈ `∞R ).

This, in turn, implies that

lim inf
n→∞

xn = − lim sup
n→∞

−xn

≤ −LIM((−xn)∞n=1) = LIM((xn)∞n=1) ((xn)∞n=1 ∈ `∞R ),

so that (a) has been proven.

For (xn)∞n=1 ∈ `∞R , note that

1

n

n∑
k=1

(xk − xk+1) =
1

n
(x1 − xn+1)→ 0,
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so that, in particular, (xn − xn+1)∞n=1 ∈ F . Hence, we obtain

LIM((xn)∞n=1)− LIM((xn+1)∞n=1) = LIM((xn − xn+1)∞n=1)

= Lim((xn − xn+1)∞n=1)

= lim
n→∞

1

n

n∑
k=1

(xk − xk+1)

= 0.

This proves (b).

Our first lemma has a proof very similar to that of Proposition 1.2.10, so we omit it.

Lemma 1.3.4. Let E be a vector space, and let ∅ 6= C ⊂ E be convex and absorbing and

contain 0. Then

pC(x) := inf{t ≥ 0 : x ∈ tC} (x ∈ E)

defines a sublinear functional on E. If, moreover, C is absorbing at each of its points,

then

C = {x ∈ E : pC(x) < 1}.

Our second lemma is yet another variation of the theme that boundedness implies

continuity:

Lemma 1.3.5. Let E be a topological vector space, and let U be a neighborhood of zero.

Then any linear functional φ : E → F with sup{|〈x, φ〉| : x ∈ U} <∞ is continuous.

Proof. Let ε > 0, and set C := sup{|〈x, φ〉| : x ∈ U}. It follows that
{

ε
C+1x : x ∈ U

}
is a

neighborhood of zero contained in φ−1((−ε, ε)), so that φ−1((−ε, ε)) is a neighborhood of

0.

As for normed spaces, we shall, from now on, use the symbol E∗ for the collection of

all continuous linear functionals on a locally convex space E.

Proposition 1.3.6. Let E be a topological vector space, and let U,C ⊂ E be non-empty

and convex with U open such that U ∩C = ∅. Then there are φ ∈ E∗ and c ∈ R such that

Re〈x, φ〉 < c ≤ Re〈y, φ〉 (x ∈ U, y ∈ C).

Proof. Suppose first that F = R.

Fix x0 ∈ U , y0 ∈ C, set z0 := y0 − x0, and define

V := U − C + z0 = {x− y + z0 : x ∈ U, y ∈ C}.

18



Then V is open and convex and contains 0, so that pV is a sublinear functional on E with

V = {x ∈ E : pV (x) < 1} by Lemma 1.3.4. As U ∩ C = ∅, we have z0 /∈ V , so that

pV (z0) ≥ 1. Set F := R z0, and define ψ : F → R by letting 〈tz0, ψ〉 = t for t ∈ R, so that

〈tz0, ψ〉 =

{
t ≤ t pV (z0) = pV (tz0), t ≥ 0,

t < 0 ≤ pV (tz0), t < 0.

Use the Hahn–Banach Theorem to find φ : E → R with

φ|F = ψ and 〈x, φ〉 ≤ pV (x) (x ∈ E).

Let x ∈ U and y ∈ C. It follows that

〈x, φ〉 − 〈y, φ〉+ 1 = 〈x− y + z0, φ〉 ≤ pV (x− y + z0︸ ︷︷ ︸
∈V

) < 1.

It follows that

〈x, φ〉 < 〈y, φ〉 (x ∈ U, y ∈ C).

As 〈x, φ〉 < 1 for x ∈ V , we have 〈x, φ〉 > −1 for x ∈ −V , so that |〈x, φ〉| < 1 for

x ∈ V ∩ (−V ). By Lemma 1.3.5, this means that φ ∈ E∗.
The subsets φ(U) and φ(C) of R are convex and disjoint. Set c := supx∈U 〈x, φ〉, so

that

〈x, φ〉 ≤ c ≤ 〈y, φ〉 (x ∈ U, y ∈ C).

Assume towards a contradiction that there is x ∈ U with 〈x, φ〉 = c. As U is open, there

ε > 0 such that x+ tz0 ∈ U for all t ∈ R with |t| < ε. It follows that

c ≥
〈
x+

ε

2
z0, φ

〉
= 〈x, φ〉+

ε

2
= c+

ε

2
,

which is a contradiction.

We have thus established the claim in the case where F = R. Suppose now that F = C.

By the F = R case, there is a continuous, R-linear φR : E → R such that there is c ∈ R
with

〈x, φR〉 < c ≤ 〈y, φR〉 (x ∈ U, y ∈ C).

Construct φ : E → C from φR as in (1.5).

Lemma 1.3.7. Let E be a locally convex vector space, and let F,K ⊂ E be non-empty

and convex with F and K compact such that K∩F = ∅. Then there is an open, balanced,

convex neighborhood C of 0 such that (K + C) ∩ F = ∅.

Proof. For each x ∈ K, the set F − x is closed and does not contain 0. Consequently,

E \ (F − x) is an open neighborhood of 0. As E is locally convex, there is an open,
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balanced, convex neighborhood Cx of 0 with Cx ⊂ E \ (F −x), i.e., Cx ∩ (F −x) = ∅ and

therefore (x+ Cx) ∩ F = ∅.

The family
{
x+ 1

2Cx : x ∈ K
}

is an open cover for K. As K is compact, there are

x1, . . . , xn ∈ K such that K ⊂
⋃n
j=1

(
xj + 1

2Cxj
)
. Set C :=

⋂n
j=1

1
2Cxj , so that C is an

open, balanced, convex neighborhood of 0. It follows that

K + C ⊂
n⋃
j=1

(
xj +

1

2
Cxj + C

)

⊂
n⋃
j=1

(
xj +

1

2
Cxj +

1

2
Cxj

)

⊂
n⋃
j=1

(xj + Cxj )

⊂ E \ F,

i.e., (K + C) ∩ F = ∅.

Theorem 1.3.8 (Hahn–Banach Separation Theorem). Let E be a locally convex vector

space, and let F,K ⊂ E be non-empty and convex with F and K compact such that

K ∩ F = ∅. Then there are φ ∈ E∗ and c1, c2 ∈ R such that

Re〈x, φ〉 ≤ c1 < c2 ≤ Re〈y, φ〉 (x ∈ K, y ∈ F ).

Proof. By Lemma 1.3.7, there is an open, balanced, convex neighborhood C of 0 such

that (K + C) ∩ F = ∅. As K + C is open and convex, Proposition 1.3.6 applies, so that

there are φ ∈ E∗ and c ∈ R with

Re〈x, φ〉 < c ≤ Re〈y, φ〉 (x ∈ K + C, y ∈ F ).

Set

c1 := sup
x∈K

Re〈x, φ〉 and c2 := inf
y∈F

Re〈y, φ〉.

It follows that

c ≤ c2 ≤ Re〈y, φ〉 (y ∈ E). (1.6)

Also, as K is compact, there is x0 ∈ K such that Re〈x0, φ〉 = c1, so that

Re〈x, φ〉 ≤ c1 = Re〈x0, φ〉 < c (x ∈ K). (1.7)

Together, (1.6) and (1.7) prove the claim.

Loosely speaking, the Hahn–Banach Separation Theorem assert that two non-empty,

closed, disjoint subsets of a locally convex vector space, of which one is compact, can be

separated by a hyperplane.
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Figure 1.1: Separating convex subsetsets of R2 by a line

Corollary 1.3.9. Let E be a locally convex vector space, and let ∅ 6= S ⊂ E be arbitrary.

Then, for each x0 ∈ E \ convS, there are φ ∈ E∗ and c ∈ R such that

Re〈x0, φ〉 < c ≤ Re〈x, φ〉 (x ∈ S).

Corollary 1.3.10. Let E be a locally convex vector space, and let F be a closed subspace

of E. Then, for each x0 ∈ E \ F , there is φ ∈ E∗ such that

〈x0, φ〉 = 1 and φ|F ≡ 0.

Proof. By the Corollary 1.3.9, there is φ ∈ E∗ such that

Re〈x0, φ〉 < Re〈x, φ〉 (x ∈ F ). (1.8)

Assume towards a contradiction that there is x ∈ F with Re〈x, φ〉 6= 0. Choose t ∈ R,

such that

Re〈tx, φ〉 = tRe〈x, φ〉 ≤ Re〈x0, φ〉.

As tx ∈ F as well, this contradicts (1.8). It follows that Reφ|F ≡ 0. If F = R, this means

φ|F ≡ 0. For F = C, note that

〈x, φ〉 = Re〈x, φ〉 − iRe〈ix, φ〉 (x ∈ E),

so that φ|F ≡ 0 in this case as well. Finally, since 0 ∈ F , we have Re〈x0, φ〉 < 0 and

therefore 〈x0, φ〉 6= 0. Replacing φ by 〈x0, φ〉−1φ, we obtain φ ∈ E∗ with the desired

properties.

Corollaries 1.3.9 and 1.3.10 can be used to prove approximation theorems. As an

application, we will use Corollary 1.3.9 to prove the Bipolar Theorem.
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Definition 1.3.11. We call (E,F, 〈·, ·〉) a dual pairing of vector spaces if E and F are

vector spaces and 〈·, ·〉 : E × F → F is bilinear such that:

(a) for each x ∈ E \ {0}, there is y ∈ F with 〈x, y〉 6= 0;

(b) for each y ∈ F \ {0}, there is x ∈ E with 〈x, y〉 6= 0.

Example. Let E be a locally convex vector space. Then (E,E∗, 〈·, ·〉) is a dual pairing of

vector spaces with 〈·, ·〉 being the usual duality between E and E∗, i.e.,

〈·, ·〉 : E × E∗ → F, (x, φ) 7→ 〈x, φ〉.

Given a dual pairing (E,F, 〈·, ·〉), we define a family {py : y ∈ F} of seminorms on E

by letting

py(x) = |〈x, y〉| (x ∈ E).

These seminorms turn E into a locally convex space; the induced topology is denoted by

σ(E,F ). In the same vein, we define a family {px : x ∈ E} of seminorms on F by letting

px(y) = |〈x, y〉| (y ∈ F ),

which turns F into a locally convex space as well; the induced topology is denoted by

σ(F,E).

Lemma 1.3.12. Let (E,F, 〈·, ·〉) be a dual pairing of vector spaces. Then a linear func-

tional φ : E → F is σ(E,F ) continuous if and only if there is y ∈ F such that

〈x, φ〉 = 〈x, y〉 (x ∈ E). (1.9)

Proof. Only the “only if” part needs proof.

Suppose that φ is σ(E,F ) continuous. By Problem 2 on Assignment #1, there are

C ≥ 0 and y1, . . . , yn ∈ F such that

|〈x, φ〉| ≤ C max
j=1,...,n

pyj (x) = C max
j=1,...,n

|〈x, yj〉| (x ∈ E). (1.10)

For j = 1, . . . , n, define φj : E → F by letting

〈x, φj〉 := 〈x, yj〉 (x ∈ E).

From (1.10), it is evident that
⋂n
j=1 kerφj ⊂ kerφ. By Problem 3 on Assignment #1, this

means that there are λ1, . . . , λn ∈ F such that φ =
∑n

j=1 λjφj . Set y :=
∑n

j=1 λjyj . Then

(1.9) holds.

Remark. It is clear that y ∈ F satisfying (1.9) is necessarily unique.

Definition 1.3.13. Let E be a vector space. Then:
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(a) a subset of E is called absolutely convex if it is both convex and balanced;

(b) the absolutely convex hull absconv S of a set S ⊂ E is the intersection of all absolutely

convex subsets of E containing S.

Remarks. 1. A set C ⊂ E is absolutely convex if and only if λ1x1 + · · ·λnxn ∈ C

whenever x1, . . . , xn ∈ C and λ1, . . . , λn ∈ F with
∑n

j=1 |λj | ≤ 1.

2. Given S ⊂ E, we have

absconv S =


n∑
j=1

λjxj : n ∈ N, x1, . . . , xn ∈ S, λ1, . . . , λn ∈ F,
n∑
j=1

|λj | ≤ 1

 .

3. If E is a topological vector space and C ⊂ E is absolutely convex, then C is abso-

lutely convex as well.

Definition 1.3.14. Let (E,F, 〈·, ·〉) be a dual pairing of vector spaces, and let S ⊂ E and

T ⊂ F . Then:

(a) the polar of S in F is defined as

S◦ := {y ∈ F : |〈x, y〉| ≤ 1 for all x ∈ S};

(b) the polar of T in E is defined as

T◦ := {x ∈ E : |〈x, y〉| ≤ 1 for all y ∈ T}.

The following is immediate:

Proposition 1.3.15. Let (E,F, 〈·, ·〉) be a dual pairing of vector spaces, and let S ⊂ E

and T ⊂ F . Then:

(i) S◦ is a σ(E,F ) closed, absolutely convex subset of F ;

(ii) T◦ is a σ(F,E) closed, absolutely convex subset of E.

Theorem 1.3.16 (Bipolar Theorem). Let (E,F, 〈·, ·〉) be a dual pair of vector spaces, and

let ∅ 6= S ⊂ E. Then

absconv S
σ(E,F )

= (S◦)◦.

Proof. As S ⊂ (S◦)◦, and since (S◦)◦ is σ(E,F ) closed and absolutely convex, we have

absconv S
σ(E,F ) ⊂ (S◦)◦.
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Assume towards a contradiction that there is x0 ∈ (S◦)◦ \ absconv S
σ(E,F )

. From

the Hahn–Banach Separation Theorem, we conclude that there are a σ(E,F ) continuous,

linear functional φ : E → F as well as c1, c2 ∈ R such that

Re〈x, φ〉 ≤ c1 < c2 ≤ Re〈x0, φ〉 (x ∈ absconv S).

(Apply Theorem 1.3.8 with K = {x0} and F = absconv S, and then replace φ, c1, and c2

with their respective negatives.) Making c1 a little larger, we can suppose that

Re〈x, φ〉 < c1 < c2 ≤ Re〈x0, φ〉 (x ∈ absconv S). (1.11)

As 0 ∈ absconv S, it is then clear that c1 > 0. Without loss of generality, suppose that

c1 = 1. From (1.11), it follows that there is ε > 0 such that

Re 〈x, φ〉 ≤ 1 < 1 + ε ≤ Re〈x0, φ〉 (x ∈ absconv S).

By Lemma 1.3.12, there is y ∈ F such that

〈x, φ〉 = 〈x, y〉 (x ∈ E).

Let x ∈ S, and choose λ ∈ F with |λ| = 1 such that 〈x, φ〉 = λ|〈x, φ〉|. It follows that

λ−1x ∈ absconv S, so that

|〈x, y〉| = |〈x, φ〉| = 〈λ−1x, φ〉 = Re〈λ−1x, φ〉 < 1

and therefore y ∈ S◦.
On the other hand, we have

|〈x0, y〉| = |〈x0, φ〉| ≥ Re〈x0, φ〉 ≥ 1 + ε,

so that x0 /∈ (S◦)◦, which is a contradiction.

Given a normed space E and r > 0, we denote by ballr(E) and Ballr(E) the open and

the closed ball in E, respectively, with radius r centered at 0; if r = 1, we simply write

ball(E) and Ball(E).

Corollary 1.3.17 (Goldstine’s Theorem). Let E be a normed space. Then Ball(E) is

σ(E∗∗, E∗) dense in Ball(E∗∗).

Proof. Consider the dual pairing (E∗∗, E∗, 〈·, ·〉).
As Ball(E) is absolutely convex, the Bipolar Theorem yields

Ball(E)
σ(E∗∗,E∗)

= (Ball(E)◦)◦.

Since

Ball(E)◦ = {φ ∈ E∗ : |〈x, φ〉| ≤ 1 for all x ∈ Ball(E)} = Ball(E∗)

and

(Ball(E)◦)◦ = Ball(E∗)◦ = {X ∈ E∗∗ : |〈X,φ〉| ≤ 1 for all φ ∈ Ball(E∗)} = Ball(E∗∗),

this yields the claim.
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1.4 The Krein–Milman Theorem

Definition 1.4.1. Let E be a vector space, and let C ⊂ V be convex. Then:

(a) a convex subset C0 of C is called extremal if tx + (1 − t)y ∈ C0 with x, y ∈ C and

t ∈ (0, 1) if and only if x, y ∈ C0;

(b) x ∈ C is called an extreme point of C if {x} is an extremal subset of C.

The set of extreme points of C is denoted by ext C.

Examples. 1. Let E be a normed space.

Claim.

ext Ball(E) ⊂ {x ∈ E : ‖x‖ = 1}.

Proof. Let x ∈ E be such that ‖x‖ < 1. If x = 0, pick any y ∈ Ball(E) \ {0}, and

note that

0 =
1

2
y +

1

2
(−y).

If x 6= 0, set t := ‖x‖ and y := t−1x, so that

x = ty + (1− t)0.

In either case, x /∈ ext Ball(E).

2. Let E = RN be equipped with the Euclidean norm ‖ · ‖2.

Claim.

ext Ball(E) = {x ∈ E : ‖x‖2 = 1}.

Proof. The function

f : R→ R, x 7→ x2

is convex, i.e.,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (x, y ∈ R, t ∈ [0, 1]).

We first show that, if x, y ∈ R and t ∈ (0, 1) are such that

f(tx+ (1− t)y) = tf(x) + (1− t)y,

then x = y. To see this, let x < y and t ∈ (0, 1), and set z := tx+ (1− t)y, so that

x < z < y. By the Mean Value Theorem, there are ξ ∈ (x, z) and η ∈ (z, y) such

that
f(z)− f(x)

z − x
= 2ξ < 2η =

f(y)− f(z)

y − z
.
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As z − x = (1− t)(y − x) and y − z = t(y − x), this implies

f(z)− f(x)

1− t
<
f(y)− f(x)

t
,

so that

f(z) < tf(x) + (1− t)f(y).

Let x ∈ E be such that ‖x‖2 = 1, and let y, z ∈ Ball(E) and t ∈ (0, 1) be such that

x = ty + (1− t)y. Since

1 = ‖x‖2 ≤ t‖y‖2 + (1− t)‖z‖2,

it clear that ‖y‖2 = ‖z‖2 = 1 as well. Assume that y 6= z. Then there is at least one

j0 ∈ {1, . . . , N} such that yj0 6= zj0 . It follows that

1 = ‖x‖22
= ‖ty + (1− t)z‖22

=

n∑
j=1

(tyj + (1− t)zj)2

<
n∑
j=1

ty2
j + (1− t)z2

j

= t‖y‖22 + (1− t)‖z‖22
= 1,

which is a contradiction; consequently, x ∈ ext Ball(E).

3. Let E = RN be equipped with the `1-norm ‖ · ‖1, i.e.,

‖x‖1 :=
N∑
j=1

|xj | (x ∈ RN ).

Claim.

ext Ball(E) = {εej : ε ∈ {−1, 1}, j = 1, . . . , N}

where e1, . . . , eN are the canonical basis vectors of RN .

Proof. We first show that e1, . . . , eN ∈ ext Ball(E). Fix k ∈ {1, . . . , N}. Let x =

(x1, . . . , xN ), y = (y1, . . . , yN ) ∈ Ball(E) and t ∈ (0, 1) be such that ek = tx+(1−t)y.

Since xk, yk ∈ [−1, 1] and 1 = txk + (1− t)yk, it follows that xk = yk = 1, and since

‖x‖1, ‖y‖1 ≤ 1, this is possible only if xj = yj = 0 for j 6= k, i.e., if x = y = ek.

As x ∈ ext Ball(E) implies −x ∈ Ball(E), this means that

ext Ball(E) ⊃ {εej : ε ∈ {−1, 1}, j = 1, . . . , N}
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Conversely, let x ∈ ext Ball(E), and assume that x /∈ {ε ej : ε ∈ {−1, 1}, j =

1, . . . , N}. Set

m := max{j = 1, . . . , N − 1 : xj+1 6= 0}.

As x /∈ {ε ej : ε ∈ {−1, 1}, j = 1, . . . , N}, there must be j0 ∈ {1, . . . ,m} with

xj0 6= 0, so that

0 <
m∑
j=1

|xj | < 1 and
m+1∑
j=1

|xj | = 1.

Set t :=
∑m

j=1 |xj |, and let

y := t−1(x1, . . . , xm, 0, . . . , 0)

and

z := (1− t)−1(0, . . . , 0︸ ︷︷ ︸
m times

, xm+1, 0, . . . , 0).

It follows that ‖y‖1 = ‖z‖1 = 1, y 6= z, and x = ty + (1 − t)z, which contradicts

x ∈ ext Ball(E).

4. Let E = L1([0, 1]) be equipped with the L1-norm, i.e.,

‖f‖1 :=

∫ 1

0
|f(t)| dt (f ∈ L1([0, 1])).

Claim.

ext Ball(E) = ∅.

Proof. Assume that there is f ∈ ext Ball(E); then, in particular, ‖f‖1 = 1.

By the Intermediate Value Theorem, there is x ∈ (0, 1) such that
∫ x

0 |f(t)| dt = 1
2 .

Define

g : [0, 1]→ F, t 7→

{
2f(t), t ≤ x,

0, t > x,

and

h : [0, 1]→ F, t 7→

{
0, t ≤ x,

2f(t), t > x,

so that f ∈ L1([0, 1]) with ‖f‖1 = ‖g‖1 = 1 and f = 1
2g + 1

2h. This contradicts

f ∈ ext Ball(E).

Our last example shows that the closed unit ball of a normed space need not have

extremal points. Our next theorem will guarantee the existence of extremal points of

non-empty, compact, convex subsets of locally convex spaces.
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Lemma 1.4.2. Let E be a locally convex vector space, let ∅ 6= K ⊂ E be compact and

convex, let φ ∈ E∗, and set M := supx∈K Re〈x, φ〉. Then

Kφ := {x ∈ K : Re〈x, φ〉 = M}

is a non-empty, compact, convex, and extremal subset of K.

Proof. It is straightforward that Kφ is non-empty, convex, and closed in K (and therefore

compact).

Let x, y ∈ K and t ∈ (0, 1) be such that tx+ (1− t)y ∈ Kφ. It follows that

M = tM + (1− t)M

≥ tRe〈x, φ〉+ (t− t) Re〈y, φ〉

= Re〈tx+ (1− t)y, φ〉

= M.

This is possible only if Re〈x, φ〉 = Re〈y, φ〉 = M , i.e., x, y ∈ Kφ.

Theorem 1.4.3 (Krein–Milman Theorem). Let E be a locally convex vector space, and let

∅ 6= K ⊂ E be compact and convex. Then K = conv(ext K); in particular, ext K 6= ∅.

Proof. Let

K := {∅ 6= C ⊂ K : C is compact, convex and extremal in K}.

By Lemma 1.4.2, K 6= ∅.

Fix C0 ∈ K, and let

K0 := {C ∈ K : C ⊂ C0}.,

Let K0 be ordered by set inclusion. We will use Zorn’s Lemma to show that K0 has

minimal elements. Let L0 ⊂ K0 be totally ordered. We claim that
⋂
{C : C ∈ L0} ∈ K0.

Assume first that
⋂
{C : C ∈ L0} = ∅. As K is compact, this means that there are

C1, . . . , Cn ∈ L0 such that C1 ∩ · · · ∩ Cn = ∅. As L0 is totally ordered, we can suppose

without loss of generality that C1 ⊂ · · · ⊂ Cn, so that C1 ∩ · · · ∩ Cn = C1 6= ∅, which is

a contradiction. It follows that
⋂
{C : C ∈ L0} ∈ K0 6= ∅. It is straightforward to check

that
⋂
{C : C ∈ L0} ⊂ C0 is compact, convex, and extremal in K and therefore belongs

to K0. Zorn’s Lemma therefore yields a minimal element Cmin of K0. Let x ∈ Cmin and

assume that there is y ∈ Cmin \ {x}. By the Hahn–Banach Separation Theorem, there is

φ ∈ E∗ with Re〈y, φ〉 < Re〈x, φ〉; in particular, y /∈ (Cmin)φ, so that (Cmin)φ ( Cmin. By

Lemma 1.4.2, (Cmin)φ is an extremal subset of Cmin, and since Cmin is an extremal subset

of K, (Cmin)φ is also an extremal subset of K. This contradicts the minimality of Cmin.
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We conclude that Cmin = {x}, so that x ∈ ext K. In particular, we have C0 ∩ ext K 6= ∅.

As C0 ∈ K is arbitrary, this means that

C ∩ ext K 6= ∅ (C ∈ K) (1.12)

Set K̃ := conv(ext K). Then ∅ 6= K̃ ⊂ K is compact and convex. Assume that there

is x0 ∈ K \ K̃. By Corollary 1.3.9, there are φ ∈ E∗ and c ∈ R such that

Re〈x, φ〉 ≤ c < Re〈x0, φ〉 (x ∈ K̃). (1.13)

By Lemma 1.4.2, Kφ ∈ K, and by (1.13), Kφ∩ext K = ∅, but this contradicts (1.12).

Corollary 1.4.4. Let E be a finite dimensional vector space. Then we have Ball(E) =

conv(ext Ball(E)); in particular, ext Ball(E) 6= ∅.

Lemma 1.4.5. Let E be a topological vector space, and let K1, . . . ,Kn ⊂ E be non-empty,

compact, and convex. Then

conv(K1 ∪ · · · ∪Kn) =


n∑
j=1

tjxj : x1 ∈ K1, . . . , xn ∈ Kn, t1, . . . , tn ≥ 0,
n∑
j=1

tj = 1


(1.14)

is compact; in particular,

conv(K1 ∪ · · · ∪Kn) = conv(K1 ∪ · · · ∪Kn).

Proof. It is straightforward that conv(K1 ∪ · · · ∪Kn) is indeed of the form given in (1.14)

(compare the proof of Proposition 1.2.8).

Let

I := {(t1, . . . , tn) ∈ Rn : t1, . . . , tn ≥ 0, t1 + · · ·+ tn = 1}

Then I is a closed subset of [0, 1]n and therefore compact. Consequently, I×K1×· · ·×Kn ⊂
Rn × En is compact with respect to the product topology. The map

Φ: Rn × En → E, ((t1, . . . , tn), x1, . . . , xn) 7→
n∑
j=1

tjxj

is continuous, so that

Φ(I ×K1 × · · · ×Kn) = conv(K1 ∪ · · · ∪Kn)

is compact. As compact subsets of Hausdorff spaces are always closed, this implies

conv(K1 ∪ · · · ∪Kn) = conv(K1 ∪ · · · ∪Kn).

Theorem 1.4.6. Let E be a locally convex vector space, let ∅ 6= K ⊂ E be compact and

convex, and let S ⊂ K be such that K = convS. Then ext K ⊂ S.
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Proof. Without loss of generality suppose that S is closed.

Assume that there is x0 ∈ (ext K) \ S. Then there is an open, balanced, convex

neighborhood C of 0 such that (x0 + C) ∩ S = ∅. Set

U :=

{
x ∈ E : pC(x) <

1

3

}
;

it follows that (x0 + U) ∩ (S + U) = ∅ and, in particular, x0 /∈ S + U . Since S is closed

in K and therefore compact itself, there are x1, . . . , xn ∈ S such that S ⊂
⋃n
j=1(xj + U).

For j = 1, . . . , n, set

Kj := conv(S ∩ (xj + U)).

It follows that K1, . . . ,Kn are compact with

S ⊂ K1 ∪ · · · ∪Kn ⊂ K,

so that

K = convS = conv(K1 ∪ · · · ∪Kn) = conv(K1 ∪ · · · ∪Kn)

where the last equality is due to Lemma 1.4.5. By (1.14) there are therefore y1 ∈ K1, . . . ,

yn ∈ Kn and t1, . . . , tn ≥ 0 with
∑n

j=1 tj = 1 such that

x0 = t1y1 + · · ·+ tnyn.

As x0 ∈ ext K, there must be some k ∈ {1, . . . , n} such that x0 = yk. It follows that

x0 ∈ Kk ⊂ xk + U ⊂ S + U,

which is a contradiction.
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Chapter 2

Weak and Weak∗ Topologies

2.1 The Weak∗ Topology on the Dual of a Normed Space

Theorem 2.1.1 (Alaoğlu–Bourbaki Theorem). Let E be a normed space. Then Ball(E∗)

is σ(E∗, E) compact.

Proof. For x ∈ E, set

Kx := {λ ∈ F : |λ| ≤ ‖x‖},

so that Kx is compact. Let

K :=
∏
x∈E

Kx

be equipped with the product topology; then K is compact by Tychonoff’s Theorem.

Define

ι : Ball(E∗)→ K, φ 7→ (〈x, φ〉)x∈E ;

it is obvious that ι is injective.

We claim that ι is a homeomorphism onto its range.

Let (φα)α be a net in Ball(E∗) such that φα
σ(E∗,E)−→ φ ∈ Ball(E∗), i.e.,

〈x, φα〉 → 〈x, φ〉 (x ∈ E).

From the definition of the product topology on K, this means that ι(φα)→ ι(φ).

Conversely, let (φα)α be a net in Ball(E∗), and let φ ∈ Ball(E∗) be such that ι(φα)→
ι(φ). By the definition of the product topology on K, this means that

〈x, φα〉 → 〈x, φ〉 (x ∈ E),

i.e., φα
σ(E∗,E)−→ φ.

This proves the claim.
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Given the compactness of K, it is therefore sufficient to show that ι(Ball(E∗)) is closed

in K.

Let (φα)α be a net in Ball(E∗), and let φ ∈ K be such that ι(φα) → φ. By the

definition of K, we have φ : E → F with |φ(x)| ≤ ‖x‖. We need to show that φ is linear.

Let x, y ∈ E, let λ ∈ F, and note that

φ(x+ y) = lim
α
〈x+ y, φα〉 = lim

α
(〈x, φα〉+ 〈y, φα〉) = φ(x) + φ(y)

and

φ(λx) = lim
α
〈λx, φα〉 = λ lim

α
〈x, φα〉 = λφ(x).

This proves the linearity of φ, i.e., φ ∈ ι(Ball(E∗)).

Of course, the Alaoğlu–Bourbaki Theorem remains true if we replace Ball(E∗) by

Ballr(E
∗) for any r > 0. This implies the following:

Corollary 2.1.2. Let E be a normed space, and let ∅ 6= K ⊂ E∗. Then the following are

equivalent:

(i) K is σ(E∗, E) compact;

(ii) K is norm bounded and σ(E∗, E) closed.

Proof. (i) =⇒ (ii): For x ∈ E, the σ(E∗, E) compactness of K yields supφ∈K |〈x, φ〉| <∞.

The Uniform Boundedness Principle entails that K is norm bounded. Also, as σ(E∗, E)

is a Hausdorff topology, the σ(E∗, E) compactness of K entails that K is σ(E∗, E) closed.

(ii) =⇒ (i): As K is norm bounded, there is r > 0 such that K ⊂ Ballr(E
∗). By the

Alaoğlu–Bourbaki Theorem, Ballr(E
∗) is σ(E∗, E) compact, and so is its σ(E∗, E) closed

subset K.

Corollary 2.1.3. The following are equivalent for a normed space E:

(i) dimE <∞;

(ii) σ(E∗, E) and the norm topology coincide.

Corollary 2.1.4. There is no normed space E such that E∗ = L1([0, 1])

Proof. Assume that there is such a space E. Then Ball(E∗) is σ(E∗, E) compact by

the Alaoğlu–Bourbaki Theorem and therefore has extremal points by the Krein–Milman

Theorem. However, we previously saw that ext Ball(L1([0, 1])) = ∅.

Proposition 2.1.5. . The following are equivalent for a Banach space E:

(i) E is reflexive;
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(ii) E∗ is reflexive;

(iii) σ(E∗, E) = σ(E∗, E∗∗);

(iv) Ball(E) is σ(E,E∗) compact.

Proof. (i) =⇒ (iii) is obvious because in this case E∗∗ = E.

(iv) =⇒ (i): As σ(E∗∗, E∗)|E = σ(E,E∗), the σ(E,E∗) compactness of Ball(E) implies

that Ball(E) is also σ(E∗∗, E∗) compact and therefore, in particular, σ(E∗∗, E∗) closed in

E∗∗, i.e.,

Ball(E)
σ(E∗∗,E∗)

= Ball(E).

On the other hand, Goldstine’s Theorem asserts that

Ball(E)
σ(E∗∗,E∗)

= Ball(E∗∗).

This means that E∗∗ = E.

(iii) =⇒ (ii): By the Alaoğlu–Bourbaki Theorem, Ball(E∗) is σ(E∗, E) compact and

thus σ(E∗, E∗∗) compact. As in the proof of (iv) =⇒ (i), we see that E∗ is reflexive.

(ii) =⇒ (i): Clearly, Ball(E) is norm closed in E∗∗ and therefore σ(E∗∗, E∗∗∗) closed.

As E∗∗∗ = E∗, this means that Ball(E) is σ(E∗∗, E) closed in E∗∗. As the in proof of (iv)

=⇒ (i), Goldstine’s Theorem yields E∗∗ = E.

Finally, (i) =⇒ (iv) is obvious.

Corollary 2.1.6. Let E be a reflexive Banach space, and let F be a closed subspace of

E. Then F and E/F are reflexive.

Proof. First, note that Ball(F ) is σ(E,E∗) closed in E and thus σ(E,E∗) compact. By

the Hahn–Banach Theorem, σ(E,E∗)|F = σ(F, F ∗). Consequently Ball(F ) is σ(F, F ∗) is

compact, and F is reflexive by Proposition 2.1.5.

To prove the reflexivity, of E/F , note that (E/F )∗ is isometrically isomorphic to the

subspace F ◦ of E∗. As E is reflexive, so is E∗ by Proposition 2.1.5, and so is its subspace

F ◦ by the foregoing. Consequently, (E/F )∗ is reflexive as is E/F .

Definition 2.1.7. Let E be a normed space. A sequence (xn)∞n=1 in E is called a weak

Cauchy sequence if (〈xn, φ〉)∞n=1 is a Cauchy sequence for each φ ∈ E∗. If every weak

Cauchy sequence in E converges weakly in E, i.e., with respect to σ(E,E∗), we call E

weakly sequentially complete.

Corollary 2.1.8. Let E be a reflexive Banach space. Then E is weakly sequentially

complete.
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Proof. Let (xn)∞n=1 be a weak Cauchy sequence in E. In particular, (〈xn, φ〉)∞n=1 is bounded

for each x ∈ E. By the Uniform Boundedness Principle, this means that (xn)∞n=1 is

norm bounded in E and therefore contained in some closed ball centered at 0. As this

ball is σ(E,E∗) compact, there are x ∈ E and a subnet (xnα)α of (xn)∞n=1 such that

xnα
σ(E,E∗)−→ x. For each φ ∈ E∗, the sequence (〈xn, φ〉)∞n=1 is a Cauchy sequence in F and

therefore convergent. It follows that

lim
n→∞

〈xn, φ〉 = lim
α
〈xnα , φ〉 = 〈x, φ〉 (φ ∈ E∗),

i.e., xn
σ(E,E∗)−→ x.

Corollary 2.1.9. Let E be a reflexive Banach space, and let F be a closed subspace of

E. Then, for each x ∈ E, there is y ∈ F such that ‖x+ y‖ = ‖x+ F‖.

Proof. For each n ∈ N, let yn ∈ F be such that

‖x+ yn‖ ≤ ‖x+ F‖+
1

n
,

so that

‖yn‖ ≤ ‖x‖+ ‖x+ yn‖ ≤ 2‖x‖+
1

n
.

It follows that (yn)∞n=1 is bounded. Let (ynα)α be a subset of (yn)∞n=1 that converges to

some y ∈ E with respect to σ(E,E∗). By the Hahn–Banach Theorem, there is φ ∈ E∗

with ‖φ‖ = 1 and 〈x+ y, φ〉 = ‖x+ y‖. It follows that

‖x+ y‖ = 〈x+ y, φ〉

= lim
α
〈x+ ynα , φ〉

≤ lim sup
α
‖x+ ynα‖

≤ lim sup
α
‖x+ F‖+

1

nα

= ‖x+ F‖.

The reversed inequality holds trivially.

Our next goal is to prove the Krein–Šmulian Theorem:

Theorem 2.1.10 (Krein–Šmulian Theorem). Let E be a Banach space, and let ∅ 6= C ⊂
E∗ be convex. Then the following are equivalent:

(i) C is σ(E∗, E) closed;

(ii) Ballr(E
∗) ∩ C is σ(E∗, E) closed for each r > 0.
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As Ballr(E
∗) is σ(E∗, E) compact by the Alaoğlu–Bourbaki Theorem, (i) =⇒ (ii) is

clear.

To prove (ii) =⇒ (i), we first prove two Lemmas.

Lemma 2.1.11. Let E be a normed space, let r > 0. Then⋂
{F ◦ : F is a finite subset of Ballr−1(E)} = Ballr(E

∗). (2.1)

Proof. It is straightforward that Ballr(E
∗) is contained in the left hand side of (2.1)

For the converse inclusion, let φ ∈ E∗ be such that ‖φ‖ > r. Then there is x ∈ Ball(E)

with |〈x, φ〉| > r, so that |〈r−1x, φ〉| > 1, i.e., φ /∈ {r−1x}◦.

Lemma 2.1.12. Let E be a Banach space, let ∅ 6= C ⊂ E∗ be convex such that Ballr(E
∗)∩

C is σ(E∗, E) closed for each r > 0, and suppose that Ball(E∗) ∩ C = ∅. Then there is

x ∈ E such that

Re〈x, φ〉 ≥ 1 (φ ∈ C).

Proof. Inductively, we define a sequence F0, F1, F2, . . . of finite subsets of E such that

(a) nFn ⊂ Ball(E), and

(b) Balln(E∗) ∩
⋂n−1
k=1 F

◦
k ∩ C = ∅

for all n ∈ N0.

Set F0 = {0}.
Suppose that F0, F1, . . . , Fn−1 have already been chosen satsifying (a) and (b). Set

Q := Balln+1(E∗) ∩
n−1⋂
k=1

F ◦k ∩ C,

so that Q is σ(E∗, E) compact. Assume that Q ∩ F ◦ 6= ∅ for each finite subset F of

Balln−1(E). By Lemma 2.1.11, this means that

∅ 6= Balln(E∗) ∩Q = Balln(E∗) ∩
n−1⋂
k=1

F ◦k ∩ C,

which contradicts (b). It follows that there is a finite subset Fn of Balln−1(E) with

Q ∩ F ◦n = ∅.

It is clear that C ∩
⋂∞
n=1 F

◦
n = ∅. As Fn ⊂ Balln−1(E) for n ∈ N, we can ar-

range the elements of
⋃∞
n=1 Fn as a sequence (xn)∞n=1 with limn→∞ xn = 0; in particular,

limn→∞〈xn, φ〉 = 0 for each φ ∈ E∗.
Define

T : E∗ → c0, φ 7→ (〈xn, φ〉)∞n=1.
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Then T is linear and bounded, and TC is a convex subset of c0. By the construction of

F1, F2, . . ., it is clear that

‖Tφ‖ = sup
n∈N
|〈xn, φ〉| > 1 (φ ∈ C),

i.e.,

TC ∩ Ball(c0) = ∅.

The non-empty subsets TC and ball(c0) of c0 are both convex with ball(c0) being

open. By Proposition 1.3.6, there are therefore find f ∈ `1 = c∗0 and c ∈ R such that

Re〈α, f〉 < c ≤ Re〈Tφ, f〉 (α ∈ ball(c0), φ ∈ C).

With f = (fn)∞n=1, this means that

Re

∞∑
n=1

αnfn < c ≤ Re

∞∑
n=1

〈xn, φ〉fn

for all α = (αn)∞n=1 ∈ c0 with ‖α‖∞ < 1. Without loss of generality, suppose that

‖f‖1 = 1. Let α ∈ ball(c0), an let λ ∈ F with |λ| = 1 be such that λ〈α, f〉 = |〈α, f〉|. It

follows that

|〈α, f〉| = λ〈α, f〉 = 〈λα, f〉 = Re〈λα, f〉 ≤ Re
∞∑
n=1

〈xn, φ〉fn (φ ∈ C)

and, consequently,

1 = ‖f‖1 = sup
α∈ball(c0)

|〈α, f〉| ≤ Re
∞∑
n=1

〈xn, φ〉fn (φ ∈ C).

Letting x :=
∑∞

n=1 fnxn completes the proof.

Proof of the Krein–Šmulian Theorem. As we stated before, only (ii) =⇒ (i) needs proof.

Let ∅ 6= C ⊂ E∗ be convex such that Ballr(E
∗) ∩ C is σ(E∗, E) closed for all r > 0.

We claim that C is norm closed. Let (φn)∞n=1 be a norm convergent sequence in C.

Then (φn)∞n=1 is bounded, and therefore there is r > 0 with φn ∈ Ballr(E
∗) ∩ C for all

n ∈ N. As Ballr(E
∗) ∩ C is σ(E∗, E) closed it is also norm close, so that limn→∞ φn ∈

Ballr(E
∗) ∩ C ⊂ C. This proves that C is indeed norm closed.

Let φ0 ∈ E∗ \ C. As C is norm closed, there is r > 0 such that

{φ ∈ E∗ : ‖φ− φ0‖ ≤ r} ∩ C = ∅,

i.e.,

Ball(E∗) ∩ r−1(C − φ0) == ∅.

By Lemma 2.1.12—with r−1(C − φ0) en lieu of C, there is x ∈ E such that

Re〈x, φ〉 ≥ 1 (φ ∈ r−1(C − φ0)),

so that, in particular, 0 /∈ r−1(C − φ0)
σ(E∗,E)

and therefore φ0 /∈ C
σ(E∗,E)

.
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Corollary 2.1.13. Let E be a Banach space. Then a subspace F of E∗ is σ(E∗, E) closed

if and only if Ball(F ) is σ(E∗, E) closed.

2.2 Weak Compactness in Banach Spaces

We call a subset of a Banach space weakly compact it is compact in the weak topology.

Definition 2.2.1. Let E be a Banach space. Then S ⊂ E is called relatively weakly

compact if S
σ(E,E∗)

is weakly compact.

Lemma 2.2.2. Let E be a Banach space. Then the following are equivalent for S ⊂ E:

(i) S is relatively weakly compact;

(ii) S is bounded such that S
σ(E∗∗,E∗) ⊂ E.

Proof. (i) =⇒ (ii): Without loss of generality, suppose that S is weakly compact. As

supx∈S |〈x, φ〉| < ∞ for all φ ∈ S, the Uniform Boundedness Principle implies that

supx∈S ‖x‖ < ∞. Since S is σ(E,E∗) compact and σ(E∗∗, E∗)|E = σ(E,E∗), it is also

σ(E∗∗, E∗) compact and therefore σ(E∗∗, E∗) closed.

(ii) =⇒ (i): Choose r > 0 such that S ⊂ Ballr(E). By the Alaoğlu–Burbaki Theorem,

S
σ(E∗∗,E∗)

is σ(E∗∗, E∗) compact. Since S
σ(E∗∗,E∗) ⊂ E and σ(E∗∗, E∗)|E = σ(E,E∗),

this means that S
σ(E,E∗)

is σ(E,E∗) compact.

Theorem 2.2.3 (Eberlein–Šmulian Theorem). Let E be a Banach space. Then the fol-

lowing are equivalent for S ⊂ E:

(i) S is relatively weakly compact;

(ii) every sequence in S has a weakly convergent subsequence.

Proof. (i) =⇒ (ii): Let (xn)∞n=1 be a sequence in S, and set F := lin{xn : n ∈ N}, so that

F is a separable subspace of E. Let F0 := {ym : m ∈ N} be a dense subset of F . For

each m ∈ N, find φm ∈ E∗ be such that ‖φm‖ = 1 and 〈ym, φm〉 = ‖ym‖. It follows that

x = 0 if x ∈ F and 〈x, φm〉 = 0 for all m ∈ N. Using a diagonal argument, we can find

a subsequence (xnk)∞k=1 of (xn)∞n=1 such that (〈xnk , φm〉)∞k=1 converges for each m ∈ N.

Without loss of generality, suppose that (〈xn, φm〉)∞n=1 converges for each m ∈ N.

Since S is relatively weakly compact, there are x ∈ S σ(E,E∗)
and a subnet (xnα)α of

(xn)∞n=1 such that xnα
σ(E,E∗)−→ x. It follows that

〈x, φm〉 = lim
α
〈xnα , φm〉 = lim

n→∞
〈xn, φm〉 (m ∈ N). (2.2)

We claim that 〈xn, φ〉 → 〈x, φ〉 for all φ ∈ E∗. Assume towards a contradiction that

there is φ0 ∈ E∗ such that 〈xn, φ0〉 6→ 〈x, φ0〉. Pick a subsequence (xnk)∞k=1 of (xn)∞n=1
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such that (〈xnk , φ0〉)∞k=1 converges to some λ0 ∈ F \ {〈x, φ0〉}. Since S is relatively weakly

compact, there are x̃ ∈ S σ(E,E∗)
and a subnet (xnkβ )β of (xnk)∞k=1 such that xnkβ

σ(E,E∗)−→ x̃,

so that

〈x̃, φm〉 = lim
β
〈xnkβ , φm〉 = lim

n→∞
〈xn, φm〉 (m ∈ N). (2.3)

Combined, (2.2) and (2.3) yield 〈x, φm〉 = 〈x̃, φm〉 for all m ∈ N. Since x, x̃ ∈ F , this

means that x = x̃, which contradicts 〈x, φ0〉 6= 〈x̃, φ0〉.
(ii) =⇒ (i): Assume that S is not relatively compact.

If supx∈S ‖x‖ = ∞, the Uniform Boundedness Principle, implies the existence of φ ∈
E∗ such that supx∈S |〈x, φ〉| =∞. Choose (xn)∞n=1 in S such that |〈xn, φ〉| ≥ n for n ∈ N.

Then (〈xn, φ〉)∞n=1 has no bounded subsequence and, consequently, (xn)∞n=1 has no weakly

convergent subsequence.

We can therefore suppose that S is bounded. In this case, Lemma 2.2.2 yields X ∈
S
σ(E∗∗,E∗) \ E. Let θ := dist(X,E) > 0.

We shall inductively construct sequences (xn)∞n=1 in S and (φn)∞n=1 in E∗ with the

following properties:

‖φn‖ = 1 (n ∈ N), (2.4)

Re〈φn, X〉 >
3

4
θ (n ∈ N), (2.5)

|〈xk, φn〉| <
1

4
θ (n ∈ N, k = 1, . . . , n− 1), (2.6)

and

Re〈xk, φn〉 >
3

4
θ (n, k ∈ N, k ≥ n). (2.7)

We claim that (xn)∞n=1 does not have a weakly convergent subsequence.

Assume towards a contradiction that there are x ∈ E and a subsequence (xnk)∞k=1 of

(xn)∞n=1 such that xnk
σ(E,E∗)−→ x; in particular,

x ∈ conv{xnk : k ∈ N}σ(E,E∗)
= conv{xnk : k ∈ N}‖·‖.

This means that there are k1, . . . , kν ∈ N and t1, . . . , tν ≥ 0 with t1 + · · · + tν = 1 such

that ∥∥∥∥∥∥
ν∑
j=1

tjxnkj − x

∥∥∥∥∥∥ < 1

4
θ. (2.8)

For n > maxj=1,...,ν nkj , (2.6) implies∣∣∣∣∣∣
〈

ν∑
j=1

tjxnkj , φn

〉∣∣∣∣∣∣ < 1

4
θ. (2.9)
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Together (2.8) and (2.9) imply that |〈x, φn〉| < 1
2θ for sufficiently large n. This, however,

contradicts (2.7)

We complete the proof with the construction of the sequences (xn)∞n=1 and (φn)∞n=1.

As ‖X‖ ≥ θ, there is φ1 ∈ E∗ with ‖φ1‖ = 1 and |〈φ1, X〉| > 3
4θ. Multiplying φ1 with

a suitable scalar of modulus 1 yields (2.5). As X ∈ S σ(E∗∗,E∗)
, there is x1 ∈ S such that

|〈φ1, X〉 − 〈x1, φ1〉| < Re〈φ1, X〉 −
3

4
θ.

It follows that

Re〈x1, φ1〉 = Re〈φ1, X〉 − Re(〈φ1, X〉 − 〈x1, φ1〉)︸ ︷︷ ︸
<Re〈φ1,X〉− 3

4
θ

>
3

4
θ,

so that (2.7) is satisfies.

Suppose that x1, . . . , xn ∈ S and φ1, . . . , φn ∈ E∗ have been constructed such that

(2.4), (2.5), (2.6), and (2.7) are satisfied. As θ is the norm of the coset X +E in E∗∗/E,

the Hahn–Banach Theorem yields Φ ∈ E∗∗∗ with Φ|E ≡ 0, ‖Φ‖ = 1 and Re〈X,Φ〉 > 3
4θ.

Using Goldstine’s Theorem, we obtain φn+1 ∈ E∗ such that (2.4), (2.5), and (2.6) hold. Set

ε := minj=1,...,n+1

(
Re〈X,φj〉 − 3

4θ
)

and choose xn+1 ∈ S such that |〈φj , X〉−〈xn+1, φj〉| <
ε for j = 1, . . . , n+ 1. This guarantees that (2.7) holds as well.

Corollary 2.2.4. Let E be a Banach space. Then S ⊂ E is relatively weakly compact if

and only if F ∩ F is relatively weakly compact for each separable subspace F of E.

Theorem 2.2.5. Let E be a Banach space, and let K ⊂ E be weakly compact. Then

convK is weakly compact.

Proof. Suppose first that E is separable.

Let K be equipped with the relative topology inherited from σ(E,E∗) turning into

a compact Hausdorff space. The dual space of C(K) can be identified with the space

M(K) of all finite, regular, signed or complex measure on the Borel σ-algebra of K. For

µ ∈M(K), define Fµ ∈ E∗∗ by letting

〈λ, Fµ〉 :=

∫
K
〈x, φ〉 dµ(x) (φ ∈ E∗).

We claim that Fµ is weak∗ continuous. We will prove that kerFµ is σ(E∗, E) closed. By

the Aloğlu–Bourbaki Theorem, it is enough to show that Ball(E∗∗)∩kerFµ is weak∗-closed,

and we will do this by showing that Fµ|Ball(E∗∗) is continuous. As E is separable, σ(E∗, E)

is metrizable on all norm bounded subsets of E∗. We may therefore use sequences to prove

the continuity of Fµ|Ball(E∗). Let (φn)∞n=1 be a sequence in Ball(E∗), and let φ ∈ Ball(E∗)
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be such that φn
σ(E∗,E)−→ φ, i.e., in particular, 〈x, φn〉 → 〈x, φ〉 for all x ∈ K. The Dominated

Convergence Theorem, yields that

〈φn, Fµ〉 =

∫
K
〈x, φn〉 dµ(x)→

∫
K
〈x, φ〉 dµ(x) = 〈φn, Fµ〉.

It follows that Fµ is weak∗ continuous. Consequently, there is a unique xµ ∈ E such that

〈φ, Fµ〉 = 〈xµ, φ〉 (φ ∈ E∗).

Define

T : M(K)→ E, µ 7→ xµ;

it is clear that T is linear and bounded. We claim that T is σ(M(K), C(K))-σ(E,E∗)

continuous. To see this, let (µα)α be a net in M(K) such that µα
σ(M(K),C(K))−→ 0, and let

φ ∈ E∗. We obtain that

〈Tµα, φ〉 =

∫
K
〈x, φ〉 dµα(x)→ 0,

which proves the claim. Let M+
1 (K) denote the probability measures in M(K). By

the Alaoğlu–Bourbaki Theorem, M+
1 (K) is σ(M(K), C(K)) compact, and it is obviously

convex. We conclude that T (M+
1 (K)) ⊂ E is weakly compact and convex. For x ∈ K, let

δx ∈M(K) denote the corresponding Dirac measure. We observe that 〈Tδx, φ〉 = 〈x, φ for

all x ∈ K and φ ∈ E∗, so that Tδx = x for all x ∈ K. This means that K ⊂ T (M+
1 (K))

and, consequently, convK ⊂ T (M+
1 (K)). This proves the case for separable E.

Let now E be arbitrary, and let (xn)∞n=1 be a sequence in convK. For each n ∈ N, there

is a finite set Fn ⊂ K such that xn ∈ convFn. Set F :=
⋃∞
n=1 Fn and E0 := linF . Then

E0 is a separable Banach space, and K0 := E0 ∩K is weakly compact. By construction

(xn)∞n=1 is contained in convK0. AsK0 is relatively weakly compact, in E0 and therefore in

in E, this means by the Eberlein–Šmulian Theorem that (xn)∞n=1 has a weakly convergent

subsequence. As (xn)∞n=1 is an arbitrary sequence in convK, this means—again by the

Eberlein–Šmulian Theorem—that convK is relatively weakly compact.

2.3 Weakly Compact Operators

Definition 2.3.1. Let E and F be Banach spaces. A linear operator T : E → F is called

weakly compact if T (Ball(E)) is relatively weakly compact in F .

Remarks. 1. Weakly compact operators are necessarily bounded, and compact opera-

tors are necessarily weakly compact.

2. If E or F are reflexive, then every bounded linear operator from E to F is weakly

compact
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3. idE is weakly compact if and only if E is reflexive.

4. Linear combinations of weakly compact operators are again weakly compact.

Proposition 2.3.2. Let E, F , and G be Banach spaces, and let T : E → F and S : F → G

be bounded, linear operators. Then ST is weakly compact if one of T or S is weakly

compact.

Proof. Suppose that T is weakly compact. Then T (Ball(E))
σ(F,F ∗)

is weakly compact.

As S is σ(F, F ∗)-σ(G,G∗) continuous, this means that S
(
T (Ball(E))

σ(F,E∗)
)

is σ(G,G∗)

compact, so that (ST )(Ball(E)) is relatively weakly compact.

Suppose now that S is weakly compact. Choose r > 0 such that T (Ball(E)) ⊂ Ball(F ).

Then S(Ballr(F )) is relatively weakly compact as is (ST )(Ball(E)).

Corollary 2.3.3. Let E and F be Banach spaces, and let T : E → F be a bounded linear

operator such that there are a reflexive Banach space R and bounded linear operators

B : E → R and A : R→ F with T = AB. Then T is weakly compact.

Our main goal in this section is to prove that the sufficient condition for the weak

compactness of a bounded linear operator in Corollary 2.3.3 is also necessary: every weakly

compact operator between Banach spaces factors through a reflexive Banach space.

We proceed by first proving a few lemmas.

Lemma 2.3.4. Let E be a Banach space, let ∅ 6= W ⊂ E be bounded and absolutely

convex, let n ∈ N, and set

Un := 2nW + ball2−n(E)

and pn := pUn. Then pn is a norm on E that is equivalent to the given norm.

Proof. Clearly, Un is an open, convex, and balanced subset of E, so that pn is well defined

and then, of course, a seminorm.

As W is bounded, so is Un. Chose C > supx∈Un ‖x‖. Let x ∈ E be such that pn(x) < 1,

i.e., x ∈ Un. It follows that ‖x‖ < C, and we conclude that

‖x‖ ≤ C pn(x) (x ∈ E).

In particular, pn is a norm.

On the other hand, if ‖x‖ < 1, then 2−nx ∈ ball2−n(E) ⊂ Un, so that pn(2−nx) < 1

and therefore pn(x) < 2n. It follows that

pn(x) ≤ 2n‖x‖ (x ∈ E),

which completes the proof.
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Lemma 2.3.5. Let ((En, pn))∞n=1 be a sequence of Banach spaces, and define their `2-sum

as

`2-

∞⊕
n=1

(En, pn) :=

{
(xn)∞n=1 : xn ∈ En for n ∈ N and

∞∑
n=1

pn(xn)2 <∞

}
.

For (xn)∞n=1 ∈ `2-
⊕∞

n=1(En, pn), set

|||(xn)∞n=1||| :=

( ∞∑
n=1

pn(xn)2

) 1
2

.

Then
(
`2-
⊕∞

n=1(En, pn), ||| · |||
)

is a Banach space.

Proof. This is very much routine—just adapt the proof that `2 is a Banach space—, and

we omit it.

Lemma 2.3.6. In the setting of Lemma 2.3.4, define

R :=

{
x ∈ E :

∞∑
n=1

pn(x)2 <∞

}
,

and set

|||x||| :=

( ∞∑
n=1

pn(x)2

) 1
2

.

Then:

(i) (R, ||| · |||) is a Banach space;

(ii) the inclusion map J : R→ E is continuous;

(iii) J∗∗ : R∗∗ → E∗∗ is injective and satisfies (J∗∗)−1(E) = R;

(iv) W ⊂ ball(R);

(v) R is reflexive if and only if W is relatively weakly compact in E.

Proof. (i): It is routine to see that ||| · ||| defines a norm on R. Consider

ι : R→ `2-

∞⊕
n=1

(E, pn), x 7→ (x, x, . . .).

Then ι is a linear isometry such that

ι(R) =

{
(xn)∞n=1 ∈ `2-

∞⊕
n=1

(E, pn) : x1 = x2 = · · ·

}
. (2.10)
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By Lemma 2.3.5, `2-
⊕∞

n=1(E, pn) is a Banach space, and clearly, the right hand side of

(2.10) is a closed subspace of it and therefore itself a Banach space. As ι is an isometry,

this means that (R, ||| · |||) is a Banach space.

(ii): The projection P1 : `2-
⊕∞

n=1(E, pn)→ E onto the first coordinate is continuous,

as is, consequently, J = P1 ◦ ι.
(iii): Consider

ι∗∗ : R∗∗ →

(
`2-

∞⊕
n=1

(E, pn)

)∗∗
= `2-

∞⊕
n=1

(E, pn)∗∗.

As ι is an isometry, so is ι∗∗ and therefore injective. Note that

ι∗∗(R∗∗) =

{
(Xn)∞n=1 ∈ `2-

∞⊕
n=1

(E, pn)∗∗ : X1 = X2 = · · ·

}
As P ∗∗1 is just the projection onto the first coordinate of `2-

⊕∞
n=1(E, pn)∗∗, this means

that P ∗∗1 |ι∗∗(R∗∗) is injective as is, consequently, J∗∗ := P ∗∗1 ◦ ι∗∗.
Let X ∈ (J∗∗)−1(E), i.e.,

ι∗∗(X) ∈

{
(Xn)∞n=1 ∈ `2-

∞⊕
n=1

(E, pn)∗∗ : X1 = X2 = · · · ∈ E

}

=

{
(xn)∞n=1 ∈ `2-

∞⊕
n=1

(E, pn) : x1 = x2 = · · ·

}
= ι(R).

As ι∗∗ is injective, this means that there is x ∈ R such that ι(x) = ι∗∗(X) and therefore

x = X. This yields (J∗∗)−1(E) ⊂ R; the reversed inclusion is obvious.

(iv): Let x ∈W . For each n ∈ N, then have 2nx ∈ Un and therefore pn(2nx) < 1, i.e.,

pn(x) < 2−n, so that
∞∑
n=1

pn(x)2 <
∞∑
n=1

1

4n
< 1,

i.e., x ∈ ball(R).

(v): Suppose that R is reflexive. Then Ball(R) is weakly compact in R and, conse-

quently, J(Ball(R)) is weakly compact in E. By (iv), we have W
σ(E,E∗) ⊂ J(Ball(R)), so

that W is relatively weakly compact in E.

For the converse, we first claim that

J∗∗(Ball(R∗∗) = J(Ball(R))
σ(E∗∗,E)

. (2.11)

To see this, let X ∈ J∗∗(Ball(R∗∗). By Goldstine’s Theorem, there is a net (xα)α in

Ball(R) with xα
σ(R∗∗,R∗)−→ X. It follows that

J∗∗X = J∗∗(σ(R∗∗, R∗)- lim
α
Jxα) = σ(E∗∗, E∗)- lim

α
Jxα ∈ J(Ball(R))

σ(E∗∗,E)
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As J∗∗(Ball(R∗∗)) is σ(E∗∗, E) compact, the reversed inclusion also follows.

Now, suppose that W is relatively weakly compact in E. As ball(R) ⊂ Un for each

n ∈ N, it is clear that

J(Ball(R)) ⊂ 2nW
σ(E∗∗,E)

+ Ball2−n(E∗∗) (n ∈ N) (2.12)

The right hand side of (2.11) is σ(E∗∗, E∗) compact, and from (2.11), we conclude that

J∗∗(Ball(R∗∗)) ⊂ 2nW
σ(E∗∗,E)

+ Ball2−n(E∗∗) (n ∈ N)

as well. It follows that

J∗∗(Ball(R∗∗)) ⊂
∞⋂
n=1

(
2nW

σ(E∗∗,E)
+ Ball2−n(E∗∗)

)
⊂
∞⋂
n=1

(E + Ball2−n(E∗∗)), because W
σ(E∗∗,E) ⊂ E by Lemma 2.2.2,

= E,

so that J∗∗R∗∗ ⊂ E. From (iii), we conclude that R∗∗ = R.

We can now prove:

Theorem 2.3.7. Let E and F be Banach spaces. Then the following are equivalent for

a linear map T : E → F :

(i) T is weakly compact;

(ii) there are a reflexive Banach R and bounded linear operators B : E → R and A : R→
F with T = AB.

Proof. (ii) =⇒ (i) was observed in Corollary 2.3.3.

(i) =⇒ (ii): Set W := T (Ball(E)), and construct a Banach space R—from F this

time—as in Lemma 2.3.6. As W is relatively weakly compact, R is reflexive by Lemma

2.3.6(v). Let A : R → F be the inclusion map—denoted by J in Lemma 2.3.6. Let

x ∈ Ball(E), so that 2nTx ∈ 2nW ⊂ Un and, consequently, 2npn(Tx) = p(2nTx) < 1, i.e.,

pn(x) < 2−n for all n ∈ N. It follows that

|||Tx|||2 =
∞∑
n=1

pn(x)2 <
∞∑
n=1

1

4n
,

so that the linear operator

B : E → R, x 7→ Tx

is bounded. It is clear by construction that T = AB.
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Schauder’s Theorem asserts that the adjoint of a compact operator is also compact.

With the help of Theorem 2.3.7, it is almost effortless to prove analog for weakly compact

operators:

Corollary 2.3.8 (Gantmacher’s Theorem). Let E and F be Banach spaces, and let T :

E → F be a bounded linear operator. Then T is weakly compact if and only if T ∗ : F ∗ → E∗

is weakly compact.

Proof. Suppose that T is weakly compact, and let R, A and a B be as in the Theorem

2.3.7(ii). It follows that T ∗ = B∗A∗. As R∗ is also reflexive, this proves the weak

compactness of T ∗.

Suppose that T ∗ is weakly compact. By the foregoing, this means that T ∗∗ is weakly

compact, as is therefore T = T ∗∗|E .

Lemma 2.3.9. Let E be a Banach space. Then the following are equivalent for ∅ 6= W ⊂
E:

(i) W is relatively weakly compact;

(ii) for each ε > 0 there is a relatively compact Wε ⊂ E such that W ⊂Wε + Ballε(E).

Proof. (i) =⇒ (ii) is trivial.

(ii) =⇒ (i): It is clear that W has to be bounded. We will use Lemma 2.2.2 to prove

that W
σ(E∗∗,E∗) ⊂ E. First note that Wε

σ(E∗∗,E∗) ⊂ E is σ(E∗∗, E∗) compact for each

ε > 0, so that Wε
σ(E∗∗,E∗)

+ Ballε(E
∗∗) is σ(E∗∗, E∗) compact. We conclude that

W
σ(E∗∗,E∗) ⊂Wε

σ(E∗∗,E∗)
+ Ballε(E

∗∗) (ε > 0),

i.e.,

W
σ(E∗∗,E∗) ⊂

⋂
ε>0

(
Wε

σ(E∗∗,E∗)
+ Ballε(E

∗∗)
)
⊂
⋂
ε>0

(E + Ballε(E
∗∗)) ⊂ E,

so that W is relatively weakly compact.

Theorem 2.3.10. Let E and F be a Banach spaces, let (Tn)∞n=1 be a sequence of weakly

compact operators from E to F , and let T : E → F be a bounded linear operator such that

‖Tn − T‖ → 0. Then T is weakly compact.

Proof. Let ε > 0, and choose n ∈ N such that ‖Tn − T‖ ≤ ε. It follows that

T (Ball(E)) ⊂ Tn(Ball(E)) + (T − Tn)(Ball(E)) ⊂ Tn(Ball(E)) + Ballε(E).

As Tn(Ball(E)) is relatively weakly compact, and since ε > 0 is arbitrary, this means that

T (Ball(E)) is relatively weakly compact by Lemma 2.3.9.
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Chapter 3

Bases in Banach Spaces

3.1 Schauder Bases

Definition 3.1.1. Let E be a Banach space. A sequence (xn)∞n=1 in E is called a Schauder

basis—or short: basis—for E if, for each x ∈ E, there is a unique sequence (λn)∞n=1 in F
such that x =

∑∞
n=1 λnxn.

Remarks. 1. By x =
∑∞

n=1 λnxn, we mean x = limN→∞
∑N

n=1 λnxn; in particular, we

do not suppose absolute convergence.

2. The notion of a (Schauder) basis in a Banach space must not be confused with

that of a basis in the context of linear algebra, i.e., a maximal linearly independent

family of vectors in a vector space, which necessarily spans the whole space. To

avoid confusion, we shall refer to such a basis as a Hamel basis. It is not difficult

to see that a Banach space E contains a sequence that is both a Schauder and a

Hamel basis if and only if dimE <∞.

3. It was an open problem for several decades whether or not any separable, infinite-

dimensional Banach space had a basis. A counterexample was eventually constructed

by the Swedish mathematician Per Enflo in 1972.

Example. Let E = c0 or E = `p with p ∈ [1, p). Then the canonical unit vectors e1, e2, . . .,

i.e.,

en(k) =

{
1, k = n,

0, otherwise,
(n, k ∈ N)

form a basis for E.

Proposition 3.1.2. Let E be a Banach space, and let (xn)∞n=1 be basis for E. For N ∈ N
and x =

∑∞
n=1 λnxn ∈ E, define

PNx :=
N∑
n=1

λnxn.
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Then P1, P2, . . . are continuous projections such that supN∈N ‖PN‖ <∞.

Proof. For x =
∑∞

n=1 λnxn ∈ E, the sequence
(∑N

n=1 λnxn

)∞
N=1

converges and therefore

is bounded. It follows that

|||x||| := sup
N∈N

∥∥∥∥∥
N∑
n=1

λnxn

∥∥∥∥∥ = sup
N∈N
‖PNx‖ <∞.

Obviously, ||| · ||| is a norm on E with

|||x||| ≥ lim
N→∞

∥∥∥∥∥
N∑
n=1

λnxn

∥∥∥∥∥ = ‖x‖ (x ∈ E). (3.1)

We claim that (E, ||| · |||) is a Banach space.

To see this, let (yk)
∞
k=1 be a Cauchy sequence in (E, |||·|||). From the definition of |||·|||,

it is clear that (PNyk)
∞
k=1 is a Cauchy sequence in (E, ‖ ·‖) for each N ∈ N. Consequently,

for each N ∈ N, there is zN ∈ E such that ‖PNyk − zN‖
k→∞−→ 0. Let ε > 0, and let kε ∈ N

be such that |||yk − yl||| < ε for all k, l ≥ kε. For all N ∈ N and all k ≥ kε, we obtain

‖PNyk − zN‖ = lim
l→∞
‖PNyk − PNyl‖ ≤ lim sup

l→∞
|||yk − yl||| ≤ ε.

It follows that

sup
N∈N
‖PNyk − zN‖

k→∞−→ 0.

Let ε > 0, and fix kε ∈ N such that supN∈N ‖PNykε − zN‖ < ε
3 . As ykε = limN→∞ PNykε ,

there is Nε ∈ N such that ‖PNykε − PMykε‖ < ε
3 for all N,M ≥ Nε. For N,M ≥ Nε, this

yields

‖zN − zM‖ ≤ ‖zN − PNykε‖+ PNykε − PMykε‖+ ‖PMykε − zM‖ <
ε

3
+
ε

3
+
ε

3
= ε,

i.e., (zN )∞N=1 is a Cauchy sequence in (E, ‖ · ‖) and therefore has a limit, say z. Let

N,M ∈ N. As dimPME < ∞, the restriction of PN to PME is continuous. It follows

that

PNzM = P

(
lim
k→∞

PMyk

)
= lim

k→∞
PNPMyk

= lim
k→∞

Pmin{N,M}yk

= zmin{N,M}.

Therefore, there is a sequence (µn)∞n=1 in F such that zN =
∑N

n=1 µnxn for N ∈ N, so that

z =
∑∞

n=1 µnxn and therefore PNz = zN for N ∈ N. We conclude that

|||yk − z||| = sup
N∈N
‖PNyk − PNz‖ = sup

N∈N
‖PNyk − zN‖

k→∞−→ 0,
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i.e., z is the limit of (yk)
∞
k=1 in (E, ||| · |||).

In view of (3.1), the Inverse Mapping Theorem yields that ‖·‖ and |||·||| are equivalent,

i.e., there is a constant C > 0 such that

|||x||| = sup
N∈N
‖PNx‖ ≤ C‖x‖ (x ∈ E).

In view of this, it is clear that P1, P2, . . . are continuous with supN∈N ‖PN‖ <∞.

The projections P1, P2, . . . are called the basic projections of (xn)∞n=1, and the supre-

mum supN∈N ‖PN‖ is called its basic constant.

Our next proposition complements Proposition 3.1.2:

Proposition 3.1.3. Let E be a Banach space, and let (Pn)∞n=1 be a sequence of bounded

projections on E with the following properties:

(a) x = limn→∞ Pnx for all x ∈ E;

(b) PnPm = Pmin{n,m} for all n,m ∈ N;

(c) dimPnE = n for n ∈ N.

Then any sequence (xn)∞n=1 in E \ {0} with x1 ∈ P1E and xn ∈ PnE ∩ kerPn−1 for n ≥ 2

is a basis for E.

Proof. Let (xn)∞n=1 be a sequence as described; it is immediate that x1, x2, . . . are linearly

independent.

Let x ∈ E. For each n ∈ N, (c) yields unique λ
(n)
1 , . . . , λ

(n)
n ∈ F such that Pnx =∑n

k=1 λ
(n)
k xk. For m ≥ n, we have by (b)

n∑
k=1

λ
(n)
k xk = Pnx = PnPmx = Pn

(
m∑
k=1

λ
(m)
k xk

)
=

n∑
k=1

λ
(m)
k xk,

so that λ
(n)
k = λ

(m)
k for k = 1, . . . , n. Consequently, there is a sequence (λn)∞n=1 in F such

that Pnx =
∑n

k=1 λkxk. From (a), we conclude that

x = lim
n→∞

Pnx = lim
n→∞

n∑
k=1

λkxk =

∞∑
n=1

λnxn.

Let λ1, λ2, . . . ∈ F be such that
∑∞

n=1 λnxn = 0. It follows that

0 = Pn0 =

n∑
k=1

λkxk (n ∈ N).

As x1, x2, . . . are linearly independent, this means that λ1 = λ2 = · · · = 0. This proves

the uniqueness part in the definition of a Schauder basis.
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We will now use Proposition 3.1.3 to show that certain well known Banach spaces do

have a basis.

Examples. 1. Consider the space C([0, 1]).

Let (tn)∞n=1 be a sequence in [0, 1] such that: t1 = 0, t2 = 1, tn 6= tm for n 6= m,

and {tn : n ∈ N} = [0, 1]. For n ∈ N and f ∈ C([0, 1]), define Pnf := f(0) if n = 1

and Pnf for n ≥ 2 as the piecewise linear map with nodes t1, . . . , tn and values f(tj)

at tj for j = 1, . . . , n. It is immediate that P1, P2, . . . : C([0, 1]) → C([0, 1]) form a

sequence of contractive projections satisfying Proposition 3.1.3(b) and (c). We will

show that (Pn)∞n=1 satisfies Proposition 3.1.3(a) as well.

Let f ∈ C([0, 1]), and let ε > 0. By the uniform continuity of f , there is δ > 0

such that |f(s) − f(t)| < ε
2 for all s, t ∈ [0, 1] with |s − t| < δ. Let 0 = s0 <

s1 < · · · < sm = 1 be a partition such that maxj=1,...,m sj − sj−1 < δ
2 . Choose

nε ≥ 2 so large that (sj−1, sj) ∩ {t1, . . . , tnε} 6= ∅ for each j = 1, . . . ,m, and let

n ≥ nε. Let t′1 < . . . < t′n be a rearrangement of t1, . . . , tn according to size. Let

t ∈ [0, 1]. If t ∈ {t1, . . . , tn}, it is clear that (Pnf)(t) = f(t), so suppose that

t /∈ {t1, . . . , tn}. Choose k ∈ {2, . . . , n} such that t ∈ (t′k−1, t
′
k). Assume that

t′k− t′k−1 ≥ δ. As maxj=1,...,m sj−sj−1 <
δ
2 , this means that there is j0 ∈ {1, . . . ,m}

with (sj0−1, sj0) ⊂ (t′k−1, t
′
k) and thus (sj0−1, sj0)∩{t1, . . . , n} = ∅, which contradicts

the choice of nε. It follows t′k − t′k−1 < δ and therefore |f(t′k) − f(t′k−1)| < ε
2 ; as

t ∈ (t′k−1, t
′
k), we also have |t′k−1 − t| < δ and therefore |f(t′k−1)− f(t)| < ε

2 as well.

We conclude that

|(Pnf)(t)− f(t)| =

∣∣∣∣∣f(t′k−1) +
t− t′k−1

t′k − t′k−1

(f(t′k)− f(t′k−1))− f(t)

∣∣∣∣∣
≤ |f(t′k−1)− f(t)|︸ ︷︷ ︸

< ε
2

+

∣∣∣∣∣ t− t′k−1

t′k − t′k−1

∣∣∣∣∣︸ ︷︷ ︸
<1

|f(t′k)− f(t′k−1)|︸ ︷︷ ︸
< ε

2

< ε.

As t ∈ [0, 1] was arbitrary, this means that ‖Pnf − f‖∞ ≤ ε.

All in all, the sequence (Pn)∞n=1 satisfies Proposition 3.1.3(a), (b), and (c), so that

C([0, 1]) has a basis.

2. We now consider the spaces Lp([0, 1]) with p ∈ [1,∞).

Define h0, h1, h2, . . . : [0, 1]→ F as follows. Set h0 :≡ 1. For n ∈ N, there are unique

j ∈ N0 and k ∈ {0, 1, . . . , 2j − 1} such that n = 2j + k; define

hn(t) :=


1, t ∈ [k2−j , (2k + 1)2−j−1),

−1, t ∈ [(2k + 1)2−j−1, (k + 1)2−j),

0, otherwise.
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For example, if n = 1, then j = k = 0 and

h1(t) =


1, t ∈

[
0, 1

2

)
,

−1, t ∈
[

1
2 , 1
)
,

0, t = 1,

if n = 2, then j = 1, k = 0, and

h2(t) =


1, t ∈

[
0, 1

4

)
,

−1, t ∈
[

1
4 ,

1
2

)
,

0, t ∈
[

1
2 , 1
]
,

and, if n = 3, then j = 1, k = 1, and

h3(t) =


1, t ∈

[
1
2 ,

3
4

)
,

−1, t ∈
[

3
4 , 1
)
,

0, t ∈
[
0, 1

2

)
∪ {1}.

For n ∈ N, let j ∈ N0 and k ∈ {0, 1, . . . , 2j − 1} be such that n = 2j + k, set

Sn := {(ν2−j−1, (ν + 1)2−j−1) : ν = 0, 1, . . . 2k + 1}

∪ {(ν2−j , (ν + 1)2−j) : ν = k + 1, . . . , 2j − 1},

and define Fn to consist of those functions on [0, 1] that are constant on the intervals

in Sn. As there are n+ 1 intervals contained in in Sn, it is clear that dimFn = n+ 1

if Fn is viewed as a subspace of Lp([0, 1]) (so that functions are identified if they

coincide outside a set of measure zero). It is obvious that h0, h1, . . . , hn ∈ Fn,

and since h0, h1, h2, . . . are obviously linearly independent, this means that Fn =

lin{h0, h1, . . . , hn}.

For f ∈ Lp([0, 1]) define P0f :=
∫

[0,1] f , and for n ∈ N, set

Pnf :=
∑
I∈Sn

1

|I|

(∫
I
f

)
χI ,

so that ‖Pnf‖p ≤ ‖f‖p if p = 1 and

‖Pnf‖pp =
∑
I∈Sn

1

|I|p

∣∣∣∣∫
I
f

∣∣∣∣p |I|
=
∑
I∈Sn

|I|1−p
∣∣∣∣∫
I
f

∣∣∣∣p
≤
∑
I∈Sn

|I|1−p|I|
p
q

∫
I
|f |p, by Hölder’s Inequality with

1

p
+

1

q
= 1,

=
∑
I∈Sn

∫
I

∫
I
|f |p

= ‖f‖pp.
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if p > 1. All in all P0, P1, P2, . . . : L
p([0, 1]) → Lp([0, 1]) are contractive projections

with P0L
p([0, 1]) = F1, PnL

p([0, 1]) = Fn for n ∈ N, and

PnPm = Pmin{n,m} (n,m ∈ N0),

i.e., satisfying Proposition 3.1.3(b) and (c).

Let f ∈ Lp([0, 1]), and let ε > 0. It is not difficult to show that
⋃∞
n=1 Fn is norm

dense in Lp([0, 1]). Choose nε ∈ N and g ∈ Fnε such that ‖f − g‖p < ε
2 . For n ≥ nε,

we obtain

‖f − Pnf‖p ≤ ‖f − g‖︸ ︷︷ ︸
< ε

2

+ ‖g − Png‖p︸ ︷︷ ︸
=0

+ ‖Png − Pnf‖p︸ ︷︷ ︸
≤‖g−f‖p< ε

2

< ε.

Consequently, (Pn)∞n=0 satisfies Proposition 3.1.3(a) as well.

From Proposition 3.1.3, it follows that (hn)∞n=0 for Lp([0, 1]).

Definition 3.1.4. A sequence (xn)∞n=1 in a Banach space E is called basic if it is a basis

for lin{xn : n ∈ N}.

Lemma 3.1.5. Let E be an infinite-dimensional Banach space, and let F be a finite

dimensional subspace of E. Then, for each ε > 0, there is x ∈ E with ‖x‖ = 1 such that

‖y‖ ≤ (1 + ε)‖y + λx‖ (y ∈ F, λ ∈ F).

Proof. Without loss of generality, suppose that 0 < ε < 1.

Let y1, . . . , yn ∈ F be unit vectors such that, for each y ∈ F with ‖y‖ = 1, there is

j ∈ {1, . . . , n} such that ‖yj − y‖ < ε
2 . For j = 1, . . . , n, choose φj ∈ E∗ with ‖φj‖ = 1

and 〈yj , φj〉 = 1. As dimE = ∞, there is x ∈ E with ‖x‖ = 1 such that 〈x, φj〉 = 0 for

j = 1, . . . , n. Let y ∈ F be such that ‖y‖ = 1, and let λ ∈ F. Choose j ∈ {1, . . . , n} such

that ‖yj − y‖ < ε
2 . It follows that

‖y + λx‖ ≥ ‖yj − λx‖ − ‖y − yj‖ ≥ |〈yj − λx, φj〉| −
ε

2
= 1− ε

2
≥ 1

1 + ε
.

This proves the claim for y ∈ F with ‖y‖ = 1; division by ‖y‖ proves it for general

non-zero y ∈ F .

Lemma 3.1.6. Let E be a Banach space. Then a sequence (xn)∞n=1 in E \ {0} is a basic

sequence if and only if there is C ≥ 0 such that∥∥∥∥∥
n∑
k=1

λkxk

∥∥∥∥∥ ≤ C
∥∥∥∥∥
m∑
k=1

λkxk

∥∥∥∥∥ (3.2)

for all λ1, λ2, . . . ∈ F and n,m ∈ N with m ≥ n.
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Proof. Suppose that (xn)∞n=1 is basis. Without loss of generality suppose that (xn)∞n=1 is

a Schauder basis for E. Let C ≥ 0 be its basic constant. For λ1, λ2, . . . ∈ F and n,m ∈ N
with m ≥ n, we get ∥∥∥∥∥

n∑
k=1

λkxk

∥∥∥∥∥ ≤
∥∥∥∥∥Pn

(
m∑
k=1

λkxk

)∥∥∥∥∥ ≤ C
∥∥∥∥∥
m∑
k=1

λkxk

∥∥∥∥∥ .
Conversely, suppose that (3.2) holds for all λ1, λ2, . . . ∈ F and n,m ∈ N with m ≥ n.

We claim that x1, x2, . . . are linearly independent. Let m ∈ N and λ1, . . . , λm ∈ F
such that

∑m
k=1 λkxk = 0. Applying (3.1) for n = 1 yields, ‖λ1x1‖ = 0 and thus λ1 = 0;

applying, (3.2) with n = 2 implies ‖λ1x1 + λ2x2‖ = 0 and thus λ2 = 0 because λ1 = 0

already. Continuing in this fashion, we obtain that λ1 = · · · = λm = 0.

For n ∈ N, define

Pn : lin{xn : n ∈ N} → lin{x1, . . . , xn},
<∞∑
k=1

λkxk 7→
n∑
k=1

λkxk;

due to the linear independence of x1, x2, . . ., this is well defined. From (3.2) it follows

that P1, P2, . . . are bounded with supn∈N ‖Pn‖ ≤ C. Therefore, P1, P2, . . . extend to

lin{xn : n ∈ N} as bounded projections. It is straightforward that (Pn)∞n=1 satisfies

Proposition 3.1.3(a), (b), and (c), and Proposition 3.1.3 therefore yields that (xn)∞n=1 is a

basis for lin{xn : n ∈ N}.

Theorem 3.1.7. Let E be an infinite-dimensional Banach space. Then E contains a

basic sequence.

Proof. Let (εn)∞n=1 be a sequence of strictly positive reals such that C :=
∏∞
n=1(1 + εn) <

∞.

Choose x1 ∈ E with ‖x1‖ = 1. Invoking Lemma 3.1.5, we inductively obtain unit

vectors x2, x3, . . . ∈ E such that

‖y‖ ≤ (1 + εn)‖y + λxn+1‖ (n ∈ N, y ∈ lin{x1, . . . , xn}, λ ∈ F).
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Let m > n, and let λ1, . . . , λn ∈ F, and note that∥∥∥∥∥
n∑
k=1

λkxk

∥∥∥∥∥ ≤ (1 + εn)

∥∥∥∥∥
n∑
k=1

λkxk + λn+1xn+1

∥∥∥∥∥
= (1 + εn)

∥∥∥∥∥
n+1∑
k=1

λkxk

∥∥∥∥∥
≤ (1 + εn)(1 + εn+1)

∥∥∥∥∥
n+2∑
k=1

λkxk

∥∥∥∥∥
...

≤ (1 + εn)(1 + εn+1) · · · (1 + εm−1)︸ ︷︷ ︸
≤C

∥∥∥∥∥
m∑
k=1

λkxk

∥∥∥∥∥ .
By Lemma 3.1.6, this means that (xn)∞n=1 is a basic sequence.

If (xn)∞n=1 is a basic sequence in a Banach space E, then refer to its basic constant as

the basic constant of the Schauder basis (xn)∞n=1 of the subspace lin{xn : n ∈ N} of E.

Definition 3.1.8. Let E be a Banach space with Schauder basis (xn)∞n=1. For n ∈ N,

define x∗n : E → F by letting

〈x, x∗n〉 := λn

for x =
∑∞

k=1 λkxk.

The functionals x∗1, x
∗
2, . . . : E → F are called the coefficient functionals of (xn)∞n=1.

Proposition 3.1.9. Let E be a Banach space with Schauder basis (xn)∞n=1 with basic

constant C. Then x∗1, x
∗
2, . . . ∈ E∗ such that supn∈N ‖xn‖‖x∗n‖ ≤ 2C.

Proof. Note that

P1x = 〈x, x∗1〉x1 (x ∈ E)

and

Pnx− Pn−1x = 〈x, x∗n〉xn (x ∈ E)

for n ≥ 2. It follows that

‖x1‖‖x∗1‖ ≤ C

and

‖x∗n‖ = sup{|〈x, x∗n〉| : x ∈ Ball(E)}

=
1

‖xn‖
sup{‖〈x, x∗n〉xn‖ : x ∈ Ball(E)}

=
1

‖xn‖
sup{‖Pnx− Pn−1x‖ : x ∈ Ball(E)}

≤ 2C

‖xn‖
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for n ≥ 2, which proves the claim.

Definition 3.1.10. Let E and F be Banach spaces, and let (xn)∞n=1 and (yn)∞n=1 be basic

sequences in E and F , respectively. Then (xn)∞n=1 and (yn)∞n=1 are called equivalent if∑∞
n=1 λnxn converges if and only if

∑∞
n=1 λnyn converges.

Proposition 3.1.11. Let (xn)∞n=1 be a basic sequence in a Banach space E, and let

(yn)∞n=1 be a sequence in a Banach space F . The the following are equivalent:

(i) (yn)∞n=1 is a basic sequence equivalent to (xn)∞n=1;

(ii) there is an isomorphism T : lin{xn : n ∈ N} → lin{yn : n ∈ N} such that

Txn = yn (n ∈ N); (3.3)

(iii) there are C1, C2 > 0 such that

1

C1

∥∥∥∥∥∥
n∑
j=1

λjxj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

n∑
j=1

λjyj

∥∥∥∥∥∥ ≤ C2

∥∥∥∥∥∥
n∑
j=1

λjxj

∥∥∥∥∥∥ (n ∈ N, λ1, . . . , λn ∈ F).

Proof. (i) =⇒ (ii): Define T : lin{xn : n ∈ N} → lin{yn : n ∈ N} by letting

T

( ∞∑
n=1

λnxn

)
:=

∞∑
n=1

λnyn

for
∑∞

n=1 λnxn ∈ lin{xn : n ∈ N}. Then T is well defined, linear, and bijective and satisfies

(3.3). We show that T is continuous using the Closed Graph Theorem. Let (zk)
∞
k=1 be a

sequence in lin{xn : n ∈ N} such that

zk → 0 and Tzk → z ∈ lin{yn : n ∈ N}.

For all n ∈ N, it follows that

0 = lim
k→∞
〈zk, x∗n〉 = lim

k→∞
〈Tzk, y∗n〉 = 〈z, y∗n〉.

so that z = 0.

(ii) =⇒ (iii): Set C2 := ‖T‖ and C1 := ‖T−1‖.
(iii) =⇒ (i): Let C be the basic constant of (xn)∞n=1. For m ≥ n and λ1, . . . , λm ∈ N,

(ii) yields ∥∥∥∥∥∥
n∑
j=1

λjyj

∥∥∥∥∥∥ ≤ C1C2C

∥∥∥∥∥∥
m∑
j=1

λjyj

∥∥∥∥∥∥ .
By Lemma 3.1.6, this means that (yn)∞n=1 is a basic sequence. Also, (ii) yields that

(
∑n

k=1 λkxk)
∞
n=1 is a Cauchy sequence if and only if (

∑n
k=1 λkyk)

∞
n=1 is, i.e.,

∑∞
n=1 λnxn

converges if and only if
∑∞

n=1 λnyn converges.
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Theorem 3.1.12. Let E be a Banach space, and let (xn)∞n=1 and (yn)∞n=1 be sequences in

E such that:

(a) (xn)∞n=1 is basic;

(b)
∑∞

n=1 ‖x∗n‖‖xn − yn‖ < 1.

Then:

(i) (yn)∞n=1 is a basic sequence equivalent to (xn)∞n=1;

(ii) if lin{xn : n ∈ N} is complemented in E, then so is lin{yn : n ∈ N};

(iii) if (xn)∞n=1 is a Schauder basis for E, then so is (yn)∞n=1.

Proof. To prove (i), use the Hahn–Banach Theorem to extend x∗1, x
∗
2, . . . to all of E,

preserving the norms. Note that

∞∑
n=1

|〈x, x∗n〉|‖xn − yn‖ <∞,

so that

S : E → E, x 7→
∞∑
n=1

〈x, x∗n〉(xn − yn).

is well defined. As

‖Sx‖ =

∥∥∥∥∥
∞∑
n=1

〈x, x∗n〉(xn − yn)

∥∥∥∥∥ ≤ ‖x‖
∞∑
n=1

‖x∗n‖‖xn − yn‖︸ ︷︷ ︸
<1

(x ∈ E),

it is clear that S is bounded with ‖S‖ < 1. Set T := idE − S, and note that

‖x− Tx‖ = ‖Sx‖ ≤ ‖S‖‖x‖ (x ∈ E) (3.4)

and therefore

‖Tx‖ ≥ ‖x‖ − ‖x− Tx‖ ≥ (1− ‖S‖)︸ ︷︷ ︸
>0

‖x‖ (x ∈ E).

This means that T is injective with closed range. We claim that TE = E. Assume that

TE ( E. Choose θ ∈ (‖S‖, 1). By Riesz’ Lemma, there is x ∈ E with ‖x‖ = 1 such that

‖x − y‖ ≥ θ for all y ∈ TE; in particular, ‖x − Tx‖ ≥ θ > ‖S‖, which contradicts (3.4).

Consequently, T : E → E is an isomorphism. As Txn = yn for n ∈ N, it is clear that

T maps lin{xn : n ∈ N} injectively into lin{yn : n ∈ N}. Moreover, since T is bounded

below, T
(
lin{xn : n ∈ N}

)
is closed in lin{yn : n ∈ N}. Consequently, T is an isomorphism

from lin{xn : n ∈ N} onto lin{yn : n ∈ N}.
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For (ii), let F be a closed subspace of E such that

E = lin{xn : n ∈ N} ⊕ F,

and let T : E → E be as in the proof of (i). It follows that

E = TE = T
(
lin{xn : n ∈ N}

)
⊕ TF = lin{yn : n ∈ N} ⊕ TF,

which yields the claim.

Finally, with T as in the proof of (i), we obtain

E = TE = T
(
lin{xn : n ∈ N}

)
= lin{yn : n ∈ N},

so that (iii) holds.

3.2 Bases in Classical Banach Spaces

Definition 3.2.1. Let (xn)∞n=1 be a basic sequence in a Banach space E. A sequence

(yn)∞n=1 in E \ {0} is called a block basic sequence of (xn)∞n=1 if there are λ1, λ2, . . . ∈ F
and 0 = p0 < p1 < p2 < · · · in N0 such that

yn =

pn∑
k=pn−1+1

λkxk (n ∈ N).

Remark. Any block basic sequence (yn)∞n=1 of (xn)∞n=1 is again a basic sequence, with a

basic constant not larger than that of (xn)∞n=1. To see this, let C be the basic constant of

(xn)∞n=1, let m ≥ n, and let µ1, . . . , µm ∈ F. It follows that∥∥∥∥∥
n∑
k=1

µkyk

∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
k=1

µk

pk∑
j=pk−1+1

λjxj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑
k=1

pk∑
j=pk−1+1

µkλjxj

∥∥∥∥∥∥
≤ C

∥∥∥∥∥∥
m∑
k=1

pk∑
j=pk−1+1

µkλjxj

∥∥∥∥∥∥
= C

∥∥∥∥∥
m∑
k=1

µkyk

∥∥∥∥∥ .
Theorem 3.2.2. Let E be a Banach space with Schauder basis (xn)∞n=1, and let F be

an infinite-dimensional closed subspace of E. Then F contains an infinite-dimensional

subspace G with a Schauder basis equivalent to a block basic sequence of (xn)∞n=1.
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Proof. Let C be the basic constant of (xn)∞n=1. Let y1 =
∑∞

n=1 λ
(1)
n xn ∈ F be arbitrary

with ‖y1‖ > 1. Choose p1 ∈ N such that∥∥∥∥∥y1 −
p1∑
n=1

λ(1)
n xn

∥∥∥∥∥ < 1

4C
and

∥∥∥∥∥
p1∑
n=1

λ(1)
n xn

∥∥∥∥∥ ≥ 1,

and set z1 :=
∑p1

n=1 λ
(1)
n xn. As dimF = ∞, the finite-codimensional subspace lin{xn :

n ≥ p1 + 1} has non-zero intersection with F . Let y2 =
∑∞

n=p1+1 λ
(2)
n xn ∈ F be such that

‖y2‖ > 1. Choose p2 > p1 such that∥∥∥∥∥∥y2 −
p2∑

n=p1+1

λ(2)
n xn

∥∥∥∥∥∥ < 1

8C
and

∥∥∥∥∥∥
p2∑

n=p1+1

λ(2)
n xn

∥∥∥∥∥∥ ≥ 1,

and set z2 :=
∑p2

n=p1+1 λ
(2)
n xn. Continuing in this fashion, we obtain sequences (yk)

∞
k=1 of

vectors in F and (zk)
∞
n=1 in E along with λ1, λ2, . . . in F and 0 = p0 < p1 < p2 < · · · in N

such that

zk =

pk∑
n=pk−1+1

λnxn, ‖zk‖ ≥ 1, and ‖yk − zk‖ <
1

2k+1C
(k ∈ N).

It is then clear by construction that (zk)
∞
k=1 is a block basic sequence of (xn)∞n=1 and,

in particular, a basic sequence. Let C ′ be the basic constant of (zk)
∞
k=1. By the remark

following Definition 3.2.1, C ′ ≤ C, so that, by Proposition 3.1.9,

sup
k∈N
‖zk‖‖z∗k‖ ≤ 2C ′ ≤ 2C.

It follows that

∞∑
k=1

‖z∗k‖‖zk − yk‖ ≤
∞∑
k=1

‖zk‖‖z∗k‖‖zk − yk‖ ≤ 2C
∞∑
k=1

‖zk − yk‖ < 2C
∞∑
k=1

1

2k+1C
< 1.

From Theorem 3.1.12, we conclude that (yk)
∞
k=1 is a basic sequence equivalent to (zk)

∞
k=1.

Set G := lin{yk : k ∈ N}.

Proposition 3.2.3. Let E = c0 or E = `p with p ∈ [1,∞), and let (xn)∞n=1 be a block

basic sequence of the standard basis (en)∞n=1 such that

sup
n∈N
‖xn‖ <∞ and inf

n∈N
‖xn‖ > 0

Then (en)∞n=1 and (xn)∞n=1 are equivalent. Moreover, lin{xn : n ∈ N} is complemented in

E.
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Proof. We only treat the case where E = `p with p ∈ [1,∞).

Set C := supn∈N ‖xn‖ and c := infn∈N ‖xn‖.
Let λ1, λ2, . . . in F and 0 = p0 < p1 < p2 < · · · in N0 be such that

xn =

pn∑
k=pn−1+1

λkek (n ∈ N),

so that

‖xn‖pp =

pn∑
k=pn−1+1

|λ|pk (n ∈ N).

Let n ∈ N, let µ1, . . . , µn ∈ F, and note that∥∥∥∥∥
n∑
k=1

µkxk

∥∥∥∥∥
p

p

=
n∑
k=1

pk∑
j=pk−1+1

|µkλj |p =
n∑
k=1

|µk|p pk∑
j=pk−1+1

|λj |p
 =

n∑
k=1

|µk|p‖xn‖pp.

It follows that

cp

∥∥∥∥∥
n∑
k=1

µkek

∥∥∥∥∥
p

p

≤

∥∥∥∥∥
n∑
k=1

µkxk

∥∥∥∥∥
p

p

≤ Cp
∥∥∥∥∥

n∑
k=1

µkek

∥∥∥∥∥
p

p

,

so that (en)∞n=1 and (xn)∞n=1 are equivalent by Proposition 3.1.11.

For the “moreover” part, choose, for each n ∈ N, a norm one functional

φn ∈ lin{e∗pn−1+1, . . . , e
∗
pn} ⊂ (`p)∗

such that 〈xn, φn〉 = ‖xn‖; it follows that

〈xm, φn〉 = 0 (n,m ∈ N, n 6= m).

Let x =
∑∞

n=1 µnen, and note that

|〈x, φn〉|p ≤
pn∑

k=pn−1+1

|µk|p (n ∈ N).

We obtain ∥∥∥∥∥
∞∑
n=1

〈x, φn〉xn

∥∥∥∥∥
p

p

=

∞∑
n=1

pn∑
k=pn−1+1

|〈x, φn〉|p|λk|p

=

∞∑
n=1

|〈x, φn〉|p‖xn‖pp

≤ Cp
∞∑
n=1

|〈φn, x〉|p

≤ Cp
∞∑
n=1

pn∑
k=pn−1+1

|µk|p

= Cp‖x‖pp.
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Consequently,

P : `p → lin{xn : n ∈ N}, x 7→
∞∑
n=1

〈x, φn〉xn

is a bounded projection.

Remark. If (xn)∞n=1 consists of unit vectors, then the isomorphism T : E → lin{xn : n ∈ N}
with Ten = xn for n ∈ N is an isometry and the projection from E onto lin{xn : n ∈ N}
has norm one: this follows from an inspection of the proof of Proposition 3.2.3 shows.

Theorem 3.2.4. Let E = c0 or E = `p with p ∈ [1,∞), and let F be an infinite-

dimensional subspace of E. Then F contains a subspace G which is complemented in E

and isomorphic to E.

Proof. By Theorem 3.2.2, there are a sequence (yn)∞n=1 in F and a block basic sequence

(zn)∞n=1 of (en)∞n=1 such that (yn)∞n=1 is a basic sequence equivalent to (zn)∞n=1. An

inspection of the proof of Theorem 3.2.2 shows that (zn)∞n=1 can be chosen to satisfy

supn∈N ‖zn‖ <∞ and infn∈N ‖zn‖ > 0. Therefore, Proposition 3.2.3 applies.

Corollary 3.2.5. Let p ∈ (1,∞). Then c0 and `1 do not contain an isomorphic copy of

`p.

Proof. We only formulate the proof for c0—for `1, it carries over verbatim.

Assume that there is a closed subspace F of c0 isomorphic to `p. As `p is reflexive, so

is F . By Theorem 3.2.4, F contains a subspace G isomorphic to c0. As F is reflexive, so

are G and—consequently—c0, which is a contradiction.

We introduce some notation, part of which we already encountered earlier (see Lemma

2.3.5).

Given two normed spaces E and F and p ∈ [1,∞], their `p-direct sum E ⊕`p F the

vector space E ⊕ F equipped with the norm ‖ · ‖p given by

• ‖(x, y)‖p := (‖x‖p + ‖y‖p)
1
p for (x, y) ∈ E ⊕ F if p ∈ [1,∞) and

• ‖(x, y)‖p := max{‖x‖, ‖y‖} for (x, y) ∈ E ⊕ F if p =∞.

It is easy to see that E ⊕`p F is again a Banach space if E and F are.

More generally, let E1, E2, . . . be a sequence of normed spaces. For p ∈ [1,∞), we

define their `p-direct sum as

`p-

∞⊕
n=1

En :=

{
(xn)∞n=1 : xn ∈ En for n ∈ N and

∞∑
n=1

‖xn‖p <∞

}
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equipped with the norm

‖(xn)∞n=1‖p :=

( ∞∑
n=1

‖xn‖p
) 1

p
(

(xn)∞n=1 ∈ `p-
∞⊕
n=1

En

)
;

for p =∞, we set

`∞-
∞⊕
n=1

En :=

{
(xn)∞n=1 : xn ∈ En for n ∈ N and sup

n∈N
‖xn‖ <∞

}
equipped with

‖(xn)∞n=1‖∞ := sup
n∈N
‖xn‖

(
(xn)∞n=1 ∈ `∞-

∞⊕
n=1

En

)
.

Furthermore, we define the c0-direct sum of E1, E2, . . . as

c0-

∞⊕
n=1

En :=
{

(xn)∞n=1 : xn ∈ En for n ∈ N and lim
n→∞

‖xn‖ = 0
}

;

it is straightforward that c0-
⊕∞

n=1En is a closed subspace of `∞-
⊕∞

n=1En. It is routinely

verified that, if E1, E2, . . . are all Banach spaces, then so are `p-
⊕∞

n=1En for p ∈ [1,∞]

and c0-
⊕∞

n=1En.

As N× N and (N× {1}) ∪ (N× {2}) have the same cardinality as N, we immediately

obtain isometric isomorphisms

`p ⊕`p `p ∼= `p((N× {1}) ∪ (N× {2})) ∼= `p ∼= `p(N× N) ∼= `p-

∞⊕
n=1

`p

for p ∈ [1,∞] as well as

c0 ⊕`∞ c0
∼= c0

∼= c0-

∞⊕
n=1

c0.

Theorem 3.2.6. Let E = c0 or E = `p with p ∈ [1,∞) and let F be an infinite-

dimensional, complemented subspace of E. Then F is isomorphic to E.

Proof. Let ∼= stand for isomorphism of Banach spaces.

Let E0 be a closed subspace of E such that E = F ⊕E0. By Theorem 3.2.4, there is a

closed subspace G of F that is complemented in E such that G ∼= E. Let F0 be a closed

subspace of F such that F = G⊕ F0. It follows that

E ⊕ F ∼= E ⊕ (G⊕ F0)

∼= (E ⊕G)⊕ F0

∼= (E ⊕ E)⊕ F0

∼= E ⊕ F0

∼= G⊕ F0

∼= F.
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On the other hand, with
⊕∞

n=1E denoting the `p- or c0-direct sum depending on

whether E = c0 or E = `p, we have

E ⊕ F ∼=

( ∞⊕
n=1

E

)
⊕ F

∼=

( ∞⊕
n=1

(F ⊕ E0)

)
⊕ F

∼=

( ∞⊕
n=1

F

)
⊕

( ∞⊕
n=1

E0

)
⊕ F

∼=

( ∞⊕
n=1

F

)
⊕

( ∞⊕
n=1

E0

)

∼=
∞⊕
n=1

(F ⊕ E0)

∼=
∞⊕
n=1

E

∼= E,

so that E ∼= F .

Definition 3.2.7. For n ∈ N, the nth Rademacher function rn is defined through

rn(t) := sgn(sin(2nπt)) (t ∈ [0, 1]).

Remarks. 1. It is obvious that rn ∈ Lp([0, 1]) for all n ∈ N and p ∈ [1,∞] with

‖rn‖p = 1.

2. For m > n, we have

∫ 1

0
rm(t)rn(t) d =

2m−1∑
k=1

∫ k2−m+1

(k−1)2−m+1
rm(t) rn(t)︸ ︷︷ ︸

=const

dt = 0,

so that (rn)∞n=1 is an orthonormal sequence in L2([0, 1]). This means that

∫ 1

0

∣∣∣∣∣
n∑
k=1

λkrk(t)

∣∣∣∣∣
2

dt =
n∑
k=1

|λk|2 (3.5)

for all n ∈ N and λ1, . . . , λn ∈ F. This can be used to embed `2 isometrically into

L2([0, 1]).

We will use Rademacher functions to embed `2 into Lp([0, 1]) for p ∈ [1,∞). The key

is the following:
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Theorem 3.2.8 (Khintchine’s Inequality). For every p ∈ [1,∞), there are Ap, Bp > 0

such that

Ap

(
n∑
k=1

|λk|2
) 1

2

≤

(∫ 1

0

∣∣∣∣∣
n∑
k=1

λkrk(t)

∣∣∣∣∣
p) 1

p

≤ Bp

(
n∑
k=1

|λk|2
) 1

2

for all n ∈ N and λ1, . . . , λn ∈ R.

Proof. As Lr([0, 1]) ⊂ Ls([0, 1]) contractively for r > s, it is sufficient to show the existence

of A1 and of B2m for arbitrary m ∈ N.

Existence of B2m. Let n ∈ N, and let λ1, . . . , λn ∈ R. The Multinomial Theorem

yields

∫ 1

0

∣∣∣∣∣
n∑
k=1

λkrk(t)

∣∣∣∣∣
2m

dt =

∫ 1

0

(
n∑
k=1

λkrk(t)

)2m

dt

=
∑

α1,...,αν∈N0
α1+···+αν=2m
1≤n1<···<nν≤n

(2m)!

α1! · · ·αν !︸ ︷︷ ︸
=:Cα1,...,αν

λα1
n1
· · ·λανnν

∫ 1

0
rn1(t)α1 · · · rnν (t)αν dt

As ∫ 1

0
rn1(t)α1 · · · rnν (t)αν dt =

{
1, α1, . . . , αν are all even,

0, otherwise,

we conclude that∫ 1

0

∣∣∣∣∣
n∑
k=1

λkrk(t)

∣∣∣∣∣
2m

dt =
∑

β1,...,βν∈N0
β1+···+βν=m

1≤n1<···<nν≤n

C2β1,...,2βνλ
2β1
n1
· · ·λ2βν

nν . (3.6)

The set

S :=

{
Cβ1,...,βν
C2β1,...,2βν

: β1, . . . , βν ∈ N0, β1 + · · ·+ βν = m

}
is finite. Set

B2m := (minS)−
1

2m .
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It follows that(
n∑
k=1

|λk|2
)m

=
∑

β1,...,βν∈N0
β1+···+βν=m

1≤n1<···<nν≤n

Cβ1,...,βνλ
2β1
n1
· · ·λ2βν

nν

=
∑

β1,...,βν∈N0
β1+···+βν=m

1≤n1<···<nν≤n

Cβ1,...,βν
C2β1,...,2βν

C2β1,...,2βνλ
2β1
n1
· · ·λ2βν

nν

≥ B−2m
2m

∑
β1,...,βν∈N0
β1+···+βν=m

1≤n1<···<nν≤n

C2β1,...,2βνλ
2β1
n1
· · ·λ2βν

nν

= B−2m
2m

∫ 1

0

∣∣∣∣∣
n∑
k=1

λkrk(t)

∣∣∣∣∣
2m

dt, by (3.6),

and therefore ∣∣∣∣∣
n∑
k=1

λkrk(t)

∣∣∣∣∣
2m

dt

 1
2m

≤ B2m

(
n∑
k=1

|λk|2
) 1

2

.

Existence of A1. Let n ∈ N, let λ1, . . . , λn ∈ R, and set f :=
∑n

k=1 λkrk for the sake

of notational simplicity. We obtain∫ 1

0
|f(t)|2 dt =

∫ 1

0
|f(t)|

2
3 |f(t)|

4
3 dt

≤
(∫ 1

0
|f(t)| dt

) 2
3
(∫ 1

0
|f(t)|4 dt

) 1
3

,

by Hölder’s Inequality with p =
3

2
and q = 3,

≤
(∫ 1

0
|f(t)| dt

) 2
3

B
4
3
4

(
n∑
k=1

|λ|2k

) 2
3

=

(∫ 1

0
|f(t)| dt

) 2
3

B
4
3
4

(∫ 1

0
|f(t)|2 dt

) 2
3

, by (3.5),

so that (∫ 1

0
|f(t)| dt

) 2
3

≥ B−
4
3

4

(∫ 1

0
|f(t)|2 dt

) 1
3

.

Finally, we obtain

∫ 1

0

∣∣∣∣∣
n∑
k=1

λkrk(t)

∣∣∣∣∣ dt =

∫ 1

0
|f(t)| dt ≥ B−2

4

(∫ 1

0
|f(t)|2 dt

) 1
2

= B−2
4

(
n∑
k=1

|λ|2k

) 1
2

.

Set A1 := B−2
4 .
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Theorem 3.2.9. Let p ∈ (1,∞). Then Lp([0, 1]) has a complemented subspace isomorphic

to `2.

Proof. We first deal with the case where F = R.

Define

T : `2 → Lp([0, 1]), (λ1, λ2, . . .) 7→
∞∑
k=1

λnrn.

By Khintchine’s Inequality, T is an isomorphism onto its range. We need to show that

T`2 is complemented in Lp([0, 1]).

Case 1: p ≥ 2.

In this case, Lp([0, 1]) ⊂ L2([0, 1]) holds contractively. By Khintchine’s Inequality, we

have

lin{rn : n ∈ N}L
p([0,1])

= lin{rn : n ∈ N}L
2([0,1])

.

Let P be the orthogonal projection from L2([0, 1]) onto lin{rn : n ∈ N}L
2([0,1])

. Again

from Khintchine’s Inequality, we obtain

‖Pf‖p ≤ Bp‖Pf‖2 ≤ Bp‖f‖2 ≤ Bp‖f‖p (f ∈ Lp([0, 1])),

which proves that P |Lp([0,1]) is a bounded projection onto lin{rn : n ∈ N}L
p([0,1])

.

Case 2: p ∈ (1, 2).

Let q be conjugate to p, i.e., 1
p + 1

q = 1. Then q > 2, and Case 1 yields that there

are a closed subspace F of Lq([0, 1]) isomorphic to `2 and a bounded projection P from

Lq([0, 1]) onto F . Then P ∗F ∗ is a complemented subspace of Lp([0, 1]) isomorphic to `2.

The case where F = C is easily reduced to the real case.

Our next result has a proof reminiscent of that of Theorem 3.2.2.

Theorem 3.2.10 (Bessaga–Pe lczyński Selection Principle). Let E be a Banach space with

a Schauder basis (xn)∞n=1, and let (yn)∞n=1 be a sequence in E such that yn
σ(E,E∗)−→ 0 and

infn∈N ‖yn‖ > 0. Then there is a subsequence of (yn)∞n=1 that is a basic sequence equivalent

to a block basic sequence of (xn)∞n=1.

Proof. Let C be the basic constant of (xn)∞n=1, and set δ := infn∈N ‖yn‖.
For each n ∈ N, there are λ

(n)
1 , λ

(n)
2 , . . . ∈ F such that

yn =

∞∑
k=1

λ
(n)
k xk.

As yn
σ(E,E∗)−→ 0, it is clear that limn→∞ λ

(n)
k = 0 for all k ∈ N.

Let n1 = 1, and choose p1 ∈ N so large that∥∥∥∥∥yn1 −
p1∑
k=1

λ
(n1)
k xk

∥∥∥∥∥ < δ

8C
and

∥∥∥∥∥
p1∑
k=1

λ
(n1)
k xk

∥∥∥∥∥ > δ

2
;
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set z1 :=
∑p1

k=1 λ
(n1)
k xk.

As limn→∞ λ
(n)
k = 0 for k = 1, . . . , p1, we have

lim
n→∞

∥∥∥∥∥
p1∑
k=1

λ
(n)
k xk

∥∥∥∥∥ = 0.

Since infn∈N ‖yn‖ > δ
2 , we can therefore ensure, for sufficiently large n2 > n1, that∥∥∥∥∥

p1∑
k=1

λ
(n2)
k xk

∥∥∥∥∥ < δ

32C
and

∥∥∥∥∥∥
∞∑

k=p1+1

λ
(n2)
k xk

∥∥∥∥∥∥ > δ

2
.

Choose p2 > p1 so large that∥∥∥∥∥∥
∞∑

k=p1+1

λ
(n2)
k xk −

p2∑
k=p1+1

λ
(n2)
k xk

∥∥∥∥∥∥ < δ

32C
and

∥∥∥∥∥∥
p2∑

k=p1+1

λ
(n2)
k xk

∥∥∥∥∥∥ > δ

2

and define z2 :=
∑p2

k=p1+1 λ
(n2)
k xk. It follows that

‖yn2 − z2‖ ≤

∥∥∥∥∥∥yn2 −
∞∑

k=p1+1

λ
(n2)
k xk

∥∥∥∥∥∥+

∥∥∥∥∥∥
∞∑

k=p1+1

λ
(n2)
k xk − z2

∥∥∥∥∥∥ < 2δ

32C
=

δ

16C
.

Continuing in this fashion, we obtain n1 < n2 < · · · and 0 = p0 < p1 < p2 < · · · such

that ∥∥∥∥∥∥ynj −
pj∑

k=pj−1+1

λ
(nj)
k xk

∥∥∥∥∥∥ < δ

2j+2C
and

∥∥∥∥∥∥
pj∑

k=pj−1+1

λ
(nj)
k xk

∥∥∥∥∥∥ > δ

2

for j ∈ N. Letting zj :=
∑pj

k=pj−1+1 λ
(nj)
k xk for j ∈ N, we obtain a block basic sequence

(zj)
∞
j=1 of (xn)∞n=1 such that

‖ynj − zj‖ <
δ

2j+2C
and ‖zj‖ ≥

δ

2
(j ∈ N).

for j = 1, 2, . . .. As (zj)
∞
j=1 is a block basic sequence of (xn)∞n=1, it is itself a basic sequence

with basic constant at most C. Finally, as

∞∑
j=1

‖z∗j ‖‖zj − ynj‖ ≤
2

δ

∞∑
j=1

‖z∗j ‖‖zj‖‖zj − ynj‖

≤ 4C

δ

∞∑
j=1

‖zj − ynj‖, by Proposition 3.1.9,

<
4C

δ

∞∑
j=1

δ

2j+2C

=
4C

δ

δ

4C

= 1,

it follows from Theorem 3.1.12 that (ynj )
∞
j=1 is a basic sequence equivalent to (zj)

∞
j=1.
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Theorem 3.2.11 (Pitt’s Theorem). Let 1 ≤ p < q < ∞. Then every bounded linear

operator from `q to `p is compact.

Proof. Let T : `q → `p be a bounded linear operator, and assume that T is not com-

pact. Then there is a sequence (xn)∞n=1 in Ball(`q) such that (Txn)∞n=1 has no convergent

subsequence. As `q is reflexive, the Eberlein–Šmulian Theorem yields that (xn)∞n=1 has a

weakly convergent subsequence. We can therefore suppose without loss of generality that

there is x ∈ `q such xn
σ(`q ,(`q)∗)−→ x. As (Txn)∞n=1 has no convergent subsequence, we have

infn∈N ‖Txn − Tx‖ > 0. Replacing each xn by xn − x, we therefore obtain a sequence

(xn)∞n=1 in `q such that

xn
σ(`q ,(`q)∗)−→ 0 and inf

n∈N
‖Txn‖ > 0.

This implies that

Tx
σ(`p,(`p)∗)−→ 0 and inf

n∈N
‖xn‖ > 0,

so that we can apply the Bessaga–Pe lczyński Seclection Principle to both (xn)∞n=1 and

(Txn)∞n=1. An iterated application of selection principle yields a subsequence (xnk)∞n=1

such that (xnk)∞k=1 and (Txnk)∞k=1 are equivalent to block basic sequences of the canonical

bases of `q and `p, respectively. Arguing as in the proof of Theorem 3.2.4, we see that

(xnk)∞k=1 and (Txnk)∞k=1 are equivalent to the respective canonical bases of `q and `p.

Let (λ1, λ2, . . .) ∈ `q\`p. Then
∑∞

k=1 λkxk converges, which entails that
∑∞

k=1 λkTxk =

T (
∑∞

k=1 λkxk) converges, which yields (λ1, λ2, . . .) ∈ `p, which is impossible.

Corollary 3.2.12. Let p > 1. Then every bounded linear operator from c0 to `p is

compact.

Proof. Let T : c0 → `p be linear and bounded, and let q > 1 be conjugate to p. Then

T ∗ : `q → `1 is compact by Pitt’s Theorem, as is T by Schauder’s Theorem.

Corollary 3.2.13. Let p, q ∈ [1,∞). Then `p ∼= `q if and only if p = q.

Corollary 3.2.14. Let p ∈ (1,∞). Then Lp([0, 1]) ∼= `p if and only if p = 2.

Proof. Assume that there is an isomorphism T : Lp([0, 1])→ `p. Let F be a complemented

subspace of Lp([0, 1]) isomorphic to `2. Then TF is a complemented subspace of `p

isomorphic to `2. By Theorem 3.2.6, this means that `2 ∼= `p and therefore p = 2.

3.3 Unconditional Bases

Definition 3.3.1. A sequence (xn)∞n=1 in a Banach space E is called boundedly complete

if
∑∞

n=1 λnxn converges whenever supn∈N ‖
∑n

k=1 λkxk‖ <∞ for all λ1, λ2, . . . ∈ F..
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Theorem 3.3.2. Let E be a Banach space with a boundedly complete Schauder basis

(xn)∞n=1. Then E is isomorphic to lin{x∗n : n ∈ N}∗.

Proof. Set F := lin{x∗n : n ∈ N} ⊂ E∗. Then there is a canonical contraction J : E → F ∗.

We claim that J is an isomorphism.

Let P1, P2, . . . be the basic projections of (xn)∞n=1, and let C ≥ 1 be its basic constant.

Let x ∈ E and n ∈ N. Pick φ ∈ E∗ with ‖φ‖ = 1 and 〈Pnx, φ〉 = ‖Pnx‖. Noting that

P ∗nφ ∈ F , we obtain from the definition of J that

〈P ∗nφ, J(Pnx)〉 = 〈Pnx, P ∗nφ〉 = 〈Pnx, φ〉 = ‖Pnx‖,

so that

‖J(Pnx)‖F ∗ ≥
∣∣∣∣〈 P ∗nφ

‖P ∗nφ‖
, J(Pnx)

〉∣∣∣∣ =
‖Pnx‖
‖P ∗nφ‖

≥ 1

C
‖Pnx‖.

Letting n→∞ yields ‖Jx‖F ∗ ≥ 1
C ‖x‖. All in all, J is injective and has closed range.

By Problem 5 on Assignment #3, (x∗n)∞n=1 is a basic sequence in E∗. Let Q1, Q2, . . .

be the corresponding projections on F , and let D be the basic constant of (x∗n)∞n=1. For

φ ∈ F ∗ and n ∈ N, we have∥∥∥∥∥J
(

n∑
k=1

〈x∗k, φ〉xk

)∥∥∥∥∥
F ∗

=

∥∥∥∥∥
n∑
k=1

〈x∗k, φ〉Jxk

∥∥∥∥∥
F ∗

= ‖Q∗nφ‖ ≤ D‖φ‖

and, consequently,∥∥∥∥∥
n∑
k=1

〈x∗k, φ〉xk

∥∥∥∥∥ ≤ C
∥∥∥∥∥J
(

n∑
k=1

〈x∗k, φ〉xk

)∥∥∥∥∥
F ∗

≤ CD‖φ‖.

As (xn)∞n=1 is boundedly complete,
∑∞

k=1〈x∗k, φ〉xk converges to some x ∈ E. We have

Jx = lim
n→∞

J

(
n∑
k=1

〈x∗k, φ〉xk

)
= lim

n→∞

n∑
k=1

〈x∗k, φ〉Jxk = lim
n→∞

Q∗nφ

with convergence in the norm topology. On the other hand

〈y,Q∗nφ〉 = 〈Qny, φ〉 → 〈y, φ〉 (y ∈ F ),

i.e., Q∗nφ
σ(F ∗,F )−→ φ, so that Jx = φ.

Corollary 3.3.3. L1([0, 1]) does not have a boundedly complete Schauder basis.

Theorem 3.3.4. Let E be a Banach space. Then the following are equivalent for a

sequence (xn)∞n=1 in E:

(i)
∑∞

n=1 εnxn converges for any ε1, ε2, . . . ∈ {−1, 1};
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(ii)
∑∞

n=1 λnxn converges for all λ1, λ2, . . . ∈ F with supn∈N |λn| <∞;

(iii) there is a compact linear map T : c0 → E with Ten = xn for n ∈ N;

(iv)
∑∞

n=1 xσ(n) converges for each bijection σ : N→ N;

(v)
∑∞

k=1 xnk converges for any n1 < n2 < · · · in N.

Proof. (iii) =⇒ (ii): Let λ1, λ2, . . . ∈ F with supn∈N |λn| < ∞. Let α1, α2, . . . ∈ F be

such that
∑∞

n=1 |αn| <∞; then the sequence (
∑n

k=1 αkλk)
∞
n=1 is Cauchy. By the duality

(c0)∗ = `1, this means that (
∑n

k=1 λken)∞n=1 is weakly Cauchy in c0. As Ten = xn for n ∈
N, it is clear (

∑n
k=1 λkxn)∞n=1 is weakly Cauchy in E. As T is compact, (

∑n
k=1 λkxn)∞n=1

has a norm convergent subsequence. It follows that (
∑n

k=1 λkxn)∞n=1 is weakly convergent.

As the weak limit of (
∑n

k=1 λkxn)∞n=1 is unique, this means that (
∑n

k=1 λkxn)∞n=1 has only

one norm accumulation point, i.e., converges.

(ii) =⇒ (v): Choose λn = 1 if n ∈ {n1, n2, . . .} and λn = 0 otherwise.

(v) =⇒ (i): Let ε1, ε2, . . . in {−1, 1}. Define n1 < n2 < · · · such that

εn = 1 ⇐⇒ n ∈ {n1, n2, . . .}.

We then have
∞∑
n=1

εnxn = 2

∞∑
k=1

xnk −
∞∑
n=1

xn.

As
∑∞

k=1 xnk and
∑∞

n=1 xn converge, so does
∑∞

n=1 εnxn.

(i) =⇒ (iii): Let c00 denote the space of all finitely supported sequences in c0. Then

we can define a linear map T : c00 → E by letting Ten := xn. We will show that T is

compact and, consequently, extends to all of c0.

Let {−1, 1}N be equipped with the product topology, turning it into a compact Haus-

dorff space. Then the map

{−1, 1}N → E, (ε1, ε2, . . .) 7→
∞∑
n=1

εnxn

is continuous. Therefore, its range, the set {
∑∞

n=1 εnxn : ε1, ε2. . . . ∈ {−1, 1}}, is compact

in E, as is

K := absconv

{ ∞∑
n=1

εnxn : ε1, ε2. . . . ∈ {−1, 1}

}
.

As

Ball(c00) = absconv{(εn)∞n=1 ∈ c00 : εn ∈ {−1, , 0, 1} for n ∈ N},

we see that T maps Ball(c00) into the compact set K and therefore is compact and extends

to all of c0.
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(iii) =⇒ (iv): Let σ : N→ N be a bijection. It induces an invertible isometry Jσ : c0 →
c0 by letting Jσen := eσ(n) for n ∈ N. Then TJσ is compact such that TJσen = xσ(n).

The same argument as for (iii) =⇒ (ii) yields the convergence of
∑∞

n=1 xσ(n).

(iv) =⇒ (v): Assume that (v) does not hold. Then there are ε0 > 0 and sequences

n1 < n2 < · · · in N and 0 = N0 < N1 < N2 < · · · in N0 such that∥∥∥∥∥∥
Nν+1∑

k=Nν+1

xnk

∥∥∥∥∥∥ ≥ ε0 (ν ∈ N0).

Let m1 < m2 < · · · be such that {m1,m2, . . .} = N \ {n1, n2, . . .}. Define a bijection

σ : N→ N via

(1, 2, 3, . . .) 7→ (n1, n2, . . . , nkN1
,m1, nkN1

+1, . . . , nkN2
,m2, nkN2

+1, . . .).

By construction,
∑∞

n=1 xσ(n) does not converge.

Definition 3.3.5. A series
∑∞

n=1 xn in a Banach space E is said to converge uncondi-

tionally if it satisfies the equivalent conditions of Theorem 3.3.4.

Remarks. 1. As in the scalar case, an absolutely convergent series is unconditionally

convergent.

2. Unlike in the scalar case, a unconditionally convergent sequence need not converge

absolutely. Let (en)∞n=1 be the canonical basis of c0. Then

∞∑
n=1

1

σ(n)
eσ(n) =

(
1,

1

2
,
1

3
, . . .

)
∈ c0,

for each bijection σ : N→ N, but
∑∞

n=1

∥∥ 1
nen

∥∥
∞ =

∑∞
n=1

1
n =∞.

Definition 3.3.6. A Schauder basis of a Banach space E is called unconditional if, for

each x ∈ E, the series x =
∑∞

n=1 λnxn converges unconditionally.

Likewise, we call a basic sequence in a Banach space unconditional if it is an uncon-

ditional basis of its closed linear span.

Examples. 1. The standard bases of c0 and `p with p ∈ [1,∞) are unconditional.

2. Let (en)∞n=1 be the standard basis of c0. For n ∈ N, set xn :=
∑n

k=1 ek. We claim

that (xn)∞n=1 is a Schauder basis for c0 that fails to be unconditional.

Let x =
∑∞

n=1 λnen ∈ c0. For n ∈ N, set µn := λn − λn+1, and note that

∞∑
k=n

µk = λn (n ∈ N).
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We obtain

x =
∞∑
n=1

λnen

=
∞∑
n=1

( ∞∑
k=n

µk

)
en

=

∞∑
n=1

µn

n∑
k=1

ek

=

∞∑
n=1

µnxn.

Let µ′1, µ
′
2, . . . ∈ F be such that x =

∑∞
n=1 µ

′
nxn. It follows that

λn =

∞∑
k=n

µ′k (n ∈ N)

and therefore

µ′n = λn − λn+1 = µn (n ∈ N).

All in all, (xn)∞n=1 is a Schauder basis for c0.

Now, the series

∞∑
n=1

(−1)n

n
xn =

( ∞∑
n=1

(−1)n

n
,
∞∑
n=2

(−1)n

n
,
∞∑
n=3

(−1)n

n
, . . .

)
∈ c0

converges whereas
∑∞

n=1(−1)n (−1)n

n xn =
∑∞

n=1
1
nxn doesn’t. So, the basis (xn)∞n=1

is not unconditional.

We state the following without proof:

Proposition 3.3.7. The following are equivalent for a sequence (xn)∞n=1 in a Banach

space E:

(i) (xn)∞n=1 is an unconditional basic sequence;

(ii) there is C > 0 such that, for all m ∈ N, λ1, . . . , λm ∈ F, and ε1, . . . , εm ∈ {−1, 1},
we have ∥∥∥∥∥

m∑
k=1

εkλkxk

∥∥∥∥∥ ≤ C
∥∥∥∥∥
m∑
k=1

λkxk

∥∥∥∥∥ ;

(iii) there is C ′ > 0 such that, for all m ∈ N, λ1, . . . , λm ∈ F, and σ ⊂ {1, . . . ,m}, we

have ∥∥∥∥∥∑
k∈σ

λkxk

∥∥∥∥∥ ≤ C ′
∥∥∥∥∥
m∑
k=1

λkxk

∥∥∥∥∥ .
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Lemma 3.3.8. Let E be a Banach space, let (xn)∞n=1 be an unconditional basic sequence

in E, let C ≥ 0 be as in Proposition 3.3.7(ii), and let λ1, λ2, . . . in F such that
∑∞

n=1 λnxn

converges. Then, for each bounded sequence (µn)∞n=1 in F, the series
∑∞

n=1 µnλnxn con-

verges with ∥∥∥∥∥
∞∑
n=1

µnλnxn

∥∥∥∥∥ ≤ C sup
n∈N
|µn|

∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
Proof. We only prove the case where F = R.

Let m ∈ N. It is enough to show that∥∥∥∥∥
m∑
k=1

µkλkxk

∥∥∥∥∥ ≤ C sup
n∈N
|µn|

∥∥∥∥∥
m∑
k=1

λkxk

∥∥∥∥∥ .
Let φ ∈ E∗ with ‖φ‖ = 1 be such that〈

m∑
k=1

µkλkxk, φ

〉
=

∥∥∥∥∥
m∑
k=1

µkλkxk

∥∥∥∥∥ .
For k = 1, . . . ,m, set

εk :=

{
1, λk〈xk, φ〉 ≥ 0,

−1, λk〈xk, φ〉 < 0.

It follows that ∥∥∥∥∥
m∑
k=1

µkλkxk

∥∥∥∥∥ ≤
m∑
k=1

|µk||λk〈xk, φ〉|

≤ sup
n∈N
|µn|

m∑
k=1

|λk〈xk, φ〉|

= sup
n∈N
|µn|

m∑
k=1

εkλk〈xk, φ〉

= sup
n∈N
|µn|

〈
m∑
k=1

εkλkxk, φ

〉

≤ sup
n∈N
|µn|

∥∥∥∥∥
m∑
k=1

εkλkxk

∥∥∥∥∥
≤ C sup

n∈N
|µn|

∥∥∥∥∥
m∑
k=1

λkxk

∥∥∥∥∥ ,
which completes the proof.

Theorem 3.3.9. Let E be a Banach space with an unconditional Schauder basis that is

not boundedly complete. Then E contains a copy of c0.
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Proof. Let (xn)∞n=1 be an unconditional Schauder basis for E that is not boundedly com-

plete. Consequently, there are λ1, λ2, . . . in F such that∥∥∥∥∥
n∑
k=1

λkxk

∥∥∥∥∥ ≤ 1 (n ∈ N),

but with
∑∞

n=1 λnxn diverging. Then there are ε0 > 0 and p1 < q1 < p2 < q2 < · · · such

that ∥∥∥∥∥∥
qν∑

k=pν

λkxk

∥∥∥∥∥∥ ≥ ε0 (ν ∈ N).

Set yν :=
∑qν

k=pν
λkxk for ν ∈ N. With C ′ > 0 as in Proposition 3.3.7(iii), we obtain∥∥∥∥∥

m∑
ν=1

yν

∥∥∥∥∥ =

∥∥∥∥∥∥
m∑
ν=1

qν∑
k=pν

λkxk

∥∥∥∥∥∥ ≤ C ′
∥∥∥∥∥
qm∑
k=1

λkxk

∥∥∥∥∥ ≤ C ′.
For every bounded sequence (µn)∞n=1 in F, we therefore have by the previous lemma∥∥∥∥∥

m∑
ν=1

µνyν

∥∥∥∥∥ ≤ C sup
n∈N
|µn|

∥∥∥∥∥
m∑
ν=1

yν

∥∥∥∥∥ ≤ CC ′ ≤ sup
n∈N
|µn|.

On the other hand, Proposition 3.3.7(iii) implies that∥∥∥∥∥
m∑
ν=1

µνyν

∥∥∥∥∥ ≥ 1

C ′
‖µνyν‖ ≥

ε0
C ′
|µν | (ν = 1, . . . ,m).

and therefore ∥∥∥∥∥
m∑
ν=1

µνyν

∥∥∥∥∥ ≥ ε0
C ′

max{|µ1|, . . . , |µm|}.

All in all (yν)∞ν=1 is equivalent to the standard basis of c0.

For the proof of the following corollary, we require the fact that L1([0, 1]) is weakly

sequentially complete.

Corollary 3.3.10. L1([0, 1]) does not have an unconditional basis.

Proof. Assume that L1([0, 1]) has an unconditional basis. By Corollary 3.3.3, this basis

cannot be boundedly complete. Therefore, L1([0, 1]) contains a copy of c0. Let (en)∞n=1 be

the standard basis of c0. Then (
∑n

k=1 ek)
∞
n=1 is weakly Cauchy, but not weakly convergent.

As L1([0, 1]) is weakly sequentially complete, this is impossible.
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Chapter 4

Local Structure and Geometry of

Banach Spaces

4.1 Finite-dimensional Structure

Definition 4.1.1. Let E be a normed space. An n-tuple (x1, x
∗
1), . . . , (xn, x

∗
n) in E ×E∗

is called an Auerbach basis for E if:

(a) x1, . . . , xn is a basis for E;

(b) 〈xj , x∗k〉 = δj,k for j, k = 1, . . . , n;

(c) ‖xj‖ = ‖x∗j‖ = 1 for j = 1, . . . , n.

Theorem 4.1.2 (Auerbach’s “Lemma”). Let E be a finite-dimensional normed space.

Then E has an Auerbach basis.

Proof. Set n := dimE, and let x1, . . . , xn be a Hamel basis for E.

Let y1, . . . , yn ∈ Ball(E) with

yk =
n∑
j=1

λk,jxj

and define

v(y1, . . . , yn) := det


λ1,1, . . . , λ1,n

...
. . .

...

λn,1, . . . , λn,n


Then

v : Ball(E)n → F, (y1, . . . , yn) 7→ v(y1, . . . , yn)

is continuous. As Ball(E)n is compact, there is (e1, . . . , en) ∈ Ball(E)n such that

|v(e1, . . . , en)| = sup{|v(y1, . . . , yn)| : y1, . . . , yn ∈ Ball(E)}.
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Assume towards a contradiction that ‖ek‖ < 1 for some k ∈ {1, . . . , n}. Without loss of

generality, suppose that k = 1. As∣∣∣∣∣v
(

1

‖e1‖
e1, e2, . . . , en︸ ︷︷ ︸
∈Ball(E)n

)∣∣∣∣∣ =
1

‖e1‖
|v(e1, . . . , en)| > |v(e1, . . . , en)|,

we obtain a contradiction, so that ‖e1‖ = · · · = ‖en‖ = 1.

Obviously, e1, . . . , en are linearly independent. For k = 1, . . . , n, define e∗k via

e∗k : E → F, x 7→ v(e1, . . . , ek−1, x, ek+1, . . . , en)

v(e1, . . . , en)
.

Then e∗1, . . . , e
∗
n are linear such that 〈ej , e∗k〉 = δj,k for j, k = 1, . . . , n and

|〈x, e∗k〉| =
|v(e1, . . . , ek−1, x, ek+1, . . . , en)|

|v(e1, . . . , en)|
≤ |v(e1, . . . , en)|
|v(e1, . . . , en)|

(x ∈ Ball(E)).

All in all, (e1, e
∗
1), . . . , (en, e

∗
n) is an Auerbach basis for E.

Corollary 4.1.3. Let E be a normed space, and let F be a subspace of E with n :=

dimF <∞. Then there is a projection P from E onto F such that ‖P‖ ≤ n.

Proof. Let (f1, f
∗
1 ), . . . , (fn, f

∗
n) be an Auerbach basis for F . Use the Hahn–Banach The-

orem to extend f∗1 , . . . , f
∗
n to E as norm one functionals. Define

P : E → E, x 7→
n∑
k=1

〈x, f∗k 〉fk.

Then PE ⊂ F and P |F = idF . Moreover,

‖Px‖ ≤
n∑
k=1

|〈x, f∗k 〉|‖fk‖ ≤ n‖x‖

holds.

Given normed spaces E and F , we denote

B(E,F ) := {T : E → F : T is linear and bounded};

if E = F , we simply write B(E) instead of B(E,F ).

Lemma 4.1.4. Let F be a Banach space, then there is a natural isometric isomorphism

from B(`1N , F )∗∗ to B(`1N , F
∗∗).
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Proof. Let e1, . . . , eN be the canonical basis vectors of `1N . Define

B(`1N , F )→ `∞N (F ), T 7→ (Te1, . . . , T eN ). (4.1)

It is ovious that (4.1) is onto and that

‖(Te1, . . . , T eN )‖∞ = max
k=1,...,N

‖Tek‖ ≤ ‖T‖ (T ∈ B(`1N , F ))

We claim that (4.1) is an isometry. Let λ1, . . . , λN ∈ F such that
∑N

k=1 |λk| ≤ 1. For

T ∈ B(`1N , F ), we therefore have

‖(Te1, . . . , T eN )‖∞ ≥ ‖(T (λ1e1), . . . , T (λNeN ))‖∞ = ‖T (λ1, . . . , λN )‖,

i.e.,

‖(Te1, . . . , T eN )‖∞ ≥ ‖T‖.

We therefore obtain the isometrical identifications

B(`1N , F )∗∗ ∼= `∞N (F )∗∗ ∼= `1N (F ∗)∗ ∼= `∞N (F ∗∗) ∼= B(`1N , F
∗∗),

which prove the claim.

Remark. Let T ∈ B(`1N , F )∗∗. Then, by Goldstine’s Theorem, there is a net (Tα)α in

B(`1N , F ) with ‖Tα‖ ≤ ‖T‖ for all indices α and Tα
σ(B(`1N ,F

∗∗),σ(B(`1N ,F )∗)
−→ T . For k =

1, . . . , N , the net (Tαek)α is weak∗ convergent in F ∗∗ and therefore has a limit, say yk ∈
F ∗∗. Consequently, the desired map is

B(`1N , F )∗∗ → B(`1N , F
∗∗), T 7→ (y1, . . . , yN ).

Theorem 4.1.5. Let E and F be Banach spaces with dimE <∞. Then there is a natural

isometric isomorphism between B(E,F )∗∗ and B(E,F ∗∗).

Proof. Let T ∈ B(E,F )∗∗ and use Goldstine’s Theorem to find a net (Tα)α in B(E,F )

with ‖Tα‖ ≤ ‖T‖ for all indices α and Tα
σ(B(E,F ∗∗),B(E,F )∗))−→ T .

Given x ∈ E and φ ∈ F ∗, define ωx,φ ∈ B(E,F )∗ by letting

〈S, ωx,φ〉 := 〈Sx, φ〉 (S ∈ B(E,F )),

so that

〈T, ωx,φ〉 = lim
α
〈Tα, ωx,φ〉 = lim

α
〈Tαx, φ〉.

Consequently, T̂ ∈ B(E,F ∗∗) defined by T̂ x := σ(F ∗∗, F ∗)- limα Tαx for x ∈ E is well

defined and independent of the choice of the net (Tα)α. Define

Θ: B(E,F )∗∗ → B(E,F ∗∗), T 7→ T̂ .
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It is clear that Θ is a linear contraction (and if E = `1N , then Θ is just the map from the

previous lemma).

Let ε ∈ (0, 1), and choose x1, . . . , xN ∈ E of norm one such that, for each x ∈ E with

‖x‖ = 1, there is k ∈ {1, . . . , N} such that ‖x− xk‖ < ε.

Consider

j : E∗ → `∞N , φ 7→ (〈x1, φ〉, . . . , 〈xN , φ〉).

Clearly, j is linear such that

(1− ε)‖φ‖ ≤ ‖jφ‖ ≤ ‖φ‖

For any Banach space G, define

JG : B(E,G)→ B(`1N , G), T 7→ T ◦ j∗.

It follows that

‖JGT‖ = sup{|〈JGTx, φ〉| : x ∈ Ball(`1N ), φ ∈ Ball(G∗)}

= sup{|〈x, jT ∗φ〉| : x ∈ Ball(`1N ), φ ∈ Ball(G∗)}

= sup{‖jT ∗φ‖ : φ ∈ Ball(G∗)}

≥ (1− ε) sup{‖T ∗φ‖ : φ ∈ Ball(G∗)}

= (1− ε)‖T‖.

We therefore obtain a commutative diagram

B(E,F )∗∗
JF
∗∗
- B(`N , F )∗∗

B(E,F ∗∗)

Θ

? JF ∗∗- B(`N , F ∗∗)

?

with the second column being an isometry. It follows that

(1− ε)‖T‖ ≤ ‖ΘT‖ ≤ ‖T‖ (T ∈ B(E,F )∗∗).

As ε ∈ (0, 1) was arbitrary, this means that Θ is an isometry.

Finally, set M := dimE, so that E ∼= `1M , albeit not necessarily isometrically. We

obtain isomorphisms

B(E,F )∗∗ ∼= B(`1M , F )∗∗ ∼= B(`1M , F
∗∗) ∼= B(E,F ∗∗),

which proves that Θ is surjective.
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Lemma 4.1.6 (Helly’s Lemma). Let E be a Banach space, and let Φ be a finite-dimen-

sional subspace of E∗. Then, for each X ∈ E∗∗ and δ > 0, there is x ∈ E such that

‖x‖ ≤ (1 + δ)‖X‖ and

〈x, φ〉 = 〈φ,X〉 (φ ∈ Φ).

Proof. Consider the quotient map π : E → E/Φ◦, and note that dimE/Φ◦ <∞. Consider

π∗∗ : E∗∗ → (E/Φ◦)
∗∗ ∼= E/Φ◦

and note that kerπ∗∗ = Φ◦. It follows that π∗∗ induces an isometric isomorphism of

E∗∗/Φ◦ and E/Φ◦. By the definition of the quotient norm there is therefore, for each

X ∈ E∗∗ and δ > 0, an element x ∈ E with π(x) = π∗∗(X) and ‖x‖ ≤ (1 + δ)‖x‖.

Corollary 4.1.7. Let E and F be Banach spaces with dimE < ∞, and let Φ be a

finite-dimensional subspace of F ∗. Then, for each T ∈ B(E,F ∗∗) and δ > 0, there is

S ∈ B(E,F ) with ‖S‖ ≤ (1 + δ)‖T‖ such that

〈φ, Tx〉 = 〈Sx, φ〉 (x ∈ E, φ ∈ Φ).

Proof. Use the isometric identity B(E,F ∗∗) ∼= B(E,F )∗∗, and apply Helly’s Lemma to

the finite-dimensional subspace of B(E,F )∗ spanned by {ωx,φ : x ∈ E, φ ∈ Φ}.

Theorem 4.1.8 (Principle of Local Reflexivity). Let E be a Banach space, let Φ be a

finite-dimensional subspace of E∗, let F be a finite-dimensional subspace of E∗∗, and let

ε > 0. Then there is an injective linear map τ : F → E such that:

(i) τ |E∩F = idE∩F ;

(ii) ‖τ‖‖τ−1|τ(F )‖ < 1 + ε;

(iii) 〈τ(X), φ〉 = 〈φ,X〉 (X ∈ F, φ ∈ Φ).

Proof. As limδ→0
1+δ
1−3δ = 1, we can fix δ ∈

(
0, 1

3

)
such that

1 + δ

1− 3δ
< 1 + ε.

Also, fix X1, . . . , Xn ∈ F with ‖X1‖ = · · · = ‖Xn‖ = 1 such that, for each X ∈ F with

‖X‖ = 1, there is j ∈ {1, . . . , n} such that ‖X −Xj‖ < δ.

Choose φ1, . . . , φn ∈ E∗ with ‖φ1‖ = · · · = ‖φn‖ = 1 such that

〈φj , Xj〉 ≥ 1− δ (j = 1, . . . , n).

Set Ψ := lin(Φ ∪ {φ1, . . . , φn}). Apply Corollary 4.1.7, with

• E replaced by F ,
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• F replaced by E,

• Φ replaced by Ψ, and

• T being the canonical embedding F ↪→ E∗∗.

The corollary, then yields τ ∈ B(F,E) with ‖τ‖ ≤ 1− δ such that

〈τ(X), φ〉 = 〈φ,X〉 (X ∈ F, φ ∈ Ψ).

This means, in particular, that τ satisfies (iii).

Suppose that (i) is wrong, i.e., there is x ∈ E ∩ F such that τ(x) 6= x. Then, by the

choice of X1, . . . , Xn ∈ F , there is j ∈ {1, . . . , n} such that∥∥∥∥ τ(x)− x
‖τ(x)− x‖

−Xj

∥∥∥∥ < δ.

This implies

1− δ ≤ 〈φj , Xj〉 =

∣∣∣∣〈φj , τ(x)− x
‖τ(x)− x‖

−Xj

〉∣∣∣∣ < δ,

so that δ > 1
2 . This contradicts the choice of δ. So, τ satisfies (i) as well.

Let X ∈ F with ‖X‖ = 1, and choose j ∈ {1, . . . , n} such that ‖X − Xj‖ < δ. It

follows that

‖τ(Xj)‖ ≤ ‖τ(X)‖+ ‖τ(X −Xj)‖ ≤ ‖τ(X)‖+ (1 + δ)δ ≤ ‖τ(X)‖+ 2δ.

On the other hand,

‖τ(Xj)‖ ≥ |〈τ(Xj), φj〉| = |〈φj , Xj〉| ≥ 1− δ,

so that

‖τ(X)‖ ≥ ‖τ(Xj)‖ − 2δ ≥ 1− 3δ. (4.2)

This means that τ is bounded below and therefore injective. Morever, (4.2) yields imme-

diately that ‖τ−1|τ(F )‖ ≤ 1
1−3δ . As ‖τ‖ ≤ 1 + δ, the choice of δ yields that

‖τ‖‖τ−1|τ(F )‖ ≤
1 + δ

1− 3δ
< 1 + ε.

This proves (ii).

4.2 Ultraproducts

Definition 4.2.1. Let I be a set. A filter over I is a subset F of P(I) such that:

(a) ∅ /∈ F ;
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(b) if F ∈ F and S ⊂ I with F ⊂ S, then S ∈ F ;

(c) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F .

Example. Let X be a topological space, and let x ∈ X. Then

Nx := {N ⊂ X : N is a neighborhood of x}

is a filter over X; it is called the neighborhood filter of x.

Remark. Let I be a set. Then a filter basis over I is a subset S of P(I) such that (a) ∅ /∈ S
and (b), for all S1, S2 ∈ S, there is S3 ∈ S with S3 ⊂ S1 ∩ S2. If S is a filter basis, then

F := {F ⊂ I : there is S ∈ S such that S ⊂ F}

is a filter and, in fact, the smallest filter containing S. We call F the filter generated by

S.

Examples. 1. Let I be a directed set with the order being denoted by �. For i ∈ I, set

Si := {j ∈ I : i � j}.

Let i1, i2 ∈ I. As I is directed, there is i3 ∈ I such that i1 � i3 and i2 � i3, so that

Si3 ⊂ Si1 ∩ Si2 . This means that {Si : i ∈ I} is a filter basis over I. The filter F� it

generates is called the order filter over I.

2. Let N be a equipped with its natural order ≤. Then it is easy to see that

F≤ = {F ⊂ N : N \ F is finite}.

This filter is also called the Fréchet filter over N.

Definition 4.2.2. Let I be a set. A filter U over I is called an ultrafilter if there is no

filter F over I such that U ( F .

Example. Let i ∈ I. Then

Ui := {S ⊂ I : i ∈ S}

is an ultrafilter over I. Ultrafilters of this form are called fixed ; all other ultrafilters are

called free.

Proposition 4.2.3. Let I be a set, and let F be a filter over I. Then there is an ultrafilter

U over I such that F ⊂ U .

Proof. Zorn’s Lemma.

Proposition 4.2.4. Let I be a set, and let U be a filter over I. Then the following are

equivalent:

79



(i) U is an ultrafilter;

(ii) for each S ⊂ I, either S ∈ U or I \ S ∈ U .

Proof. (i) =⇒ (ii): Let S ⊂ I be such that S /∈ U . Set

F := {T ⊂ I : there is U ∈ U such that (I \ S) ∩ U ⊂ T}.

It is clear that U ⊂ F and that I \ S ∈ F .

We claim that F is a filter. Obviously, F is closed under taking supersets and finite

intersections. Assume that ∅ ∈ F . Then there is U ∈ U such that (I \ S) ∩ U = ∅, i.e.,

U ⊂ S. But this means that S ∈ U , which is a contradiction. All in all, F is a filter, so

that F = U and therefore I \ S ∈ U .

(ii) =⇒ (i): Assume that U is not an ultrafilter. Then, by Proposition 4.2.3, there is

an ultrafilter V over I such that U ( V. Let S ∈ V \ U . Then I \ S ∈ U ⊂ V, so that

∅ = S ∩ (I \ S) ∈ V, which is a contradiction.

Corollary 4.2.5. Let I be a set, let U be an ultrafilter over I, and let S1, . . . , Sn ⊂ I be

such that S1 ∪ · · · ∪ Sn = I. Then there is j ∈ {1, . . . , n} such that Sj ∈ U .

Proof. Assume otherwise, i.e., Sj /∈ U for j = 1, . . . , n. By Proposition 4.2.4, this means

that I \ Sj ∈ U for j = 1, . . . , n. It follows that

U 3
n⋂
j=1

(I \ Sj) = I \
n⋃
j=1

Sj = ∅,

which is a contradiction.

Definition 4.2.6. Let X be a topological space, let I be a set, and let F be a filter

over I. Then a family (xi)i∈I in X is said to converge to x ∈ X along F—in symbols:

x = limi→F xi—if {i ∈ I : xi ∈ N} ∈ F for each N ∈ Nx.

Remark. Let I be directed. Then (xi)i∈I is a net, and we can speak of x = limi xi. On the

other hand, there is the order filter F� over I, so that we can speak of x = limi→F� xi as

well.

Suppose that x = limi xi, and let N ∈ Nx. Then there is iN ∈ I such that xi ∈ N
for all i ∈ I with iN � i. As SiN = {i ∈ I : iN � i} lies in F�, so is its superset

{i ∈ I : xi ∈ N}. It follows that x = limi→F� xi.

Conversely, suppose that x = limi→F� xi. Let N ∈ Nx, so that F := {i ∈ I : xi ∈
N} ∈ F�. By the definition of F�, this means that there is i0 ∈ I such that Si0 ⊂ F , i.e.,

xi ∈ N for all i ∈ I with i0 � i. It follows that x = limi xi.

All in all,

x = lim
i
xi ⇐⇒ x = lim

i→F�
xi.
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Theorem 4.2.7. Let K be a compact topological space, let I be a set, let (xi)i∈I be a

family in K, and let U be an ultrafilter over I. Then limi→U xi exists in K.

Proof. Assume otherwise. Then, for each x ∈ K, there is Nx ∈ Nx such that {i ∈ I : xi ∈
Nx} /∈ U . For each x ∈ K, there is an open set Ux ⊂ K with x ∈ Ux ⊂ Nx. For each

x ∈ K, set

Sx := {i ∈ I : xi ∈ Ux},

so that Sx ⊂ {i ∈ I : xi ∈ Nx} /∈ U .

As K is compact, there are x1, . . . , xn ∈ K such that K = Ux1 ∪ · · · ∪ Uxn . It follows

that I = Sx1 ∪ · · · ∪ Sxn . By Corollary 4.2.5, this means that there is j ∈ {1, . . . , n} with

Sxj ∈ U , which is a contradiction.

Given a family of Banach spaces (Ei)i∈I, we had defined

`∞-
⊕
i∈I

Ei =

{
(xi)i∈I : xi ∈ Ei for i ∈ I and sup

i∈I
‖xi‖ <∞

}
.

Definition 4.2.8. Let (Ei)i∈I be a family of Banach spaces, and let U be an ultrafilter

over I. Set

NU :=

{
(xi)i∈I ∈ `∞-

⊕
i∈I

Ei : lim
i→U
‖xi‖ = 0

}
.

Then the quotient space

(Ei)U := `∞-
⊕
i∈I

Ei

/
NU

is called the ultraproduct of (Ei)i∈I with respect to U . If Ei = E for i ∈ I, we call (E)U

an ultrapower of E.

Remark. Given (xi)i∈I ∈ `∞-
⊕

i∈IEi, we write (xi)U for its equivalence class in (Ei)U .

Proposition 4.2.9. Let (Ei)i∈I be a family of Banach spaces, and let U be an ultrafilter

over I. Then:

(i) NU is a closed subspace of `∞-
⊕

i∈IEi;

(ii) for each (xi)i∈I ∈ `∞-
⊕

i∈IEi, we have

‖(xi)U‖ = lim
i→U
‖xi‖.

Proof. Define

p : `∞-
⊕
i∈I

Ei → [0,∞), (xi)i∈I 7→ lim
i→U
‖xi‖.
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Then p is a seminorm on `∞-
⊕

i∈IEi with

p((xi)i∈I) ≤ sup
i∈I
‖xi‖

(
(xi)i∈I ∈ `∞-

⊕
i∈I

Ei

)
and ker p = NU .

As p is, in particular, continuous, this proves (i).

Obviously, p drops to a norm—likewise denoted by p—on (Ei)U such that

p((xi)U ) ≤ ‖(xi)U‖ ((xi)U ∈ (Ei)U ). (4.3)

To see that the inequality (4.3) can be reversed, let (xi)U , and set r := p((xi)U ). Let

ε > 0. Then

Uε := {i ∈ I : |‖xi‖ − r| < ε} ∈ U .

Define (yi)i∈I by letting

yi :=

{
0, i ∈ Uε,
−xi, otherwise.

Then (yi)i∈I ∈ NU such that

sup
i∈I
‖xi + yi‖ = sup

i∈Uε
≤ r + ε,

so that ‖(xi)U‖ ≤ r + ε and therefore ‖(xi)U‖ ≤ r.

Theorem 4.2.10. Let (Ei)i∈I be a family of Banach spaces, and let U be an ultrafilter

over I. Then:

(i) if each Ei is a Hilbert space, then (Ei)U is a Hilbert space;

(ii) if each Ei is of the form Lp(Xi,Si, µi) for some measure space (Xi,Si, µ) and p ∈
[1,∞) independent of i, then there is a measure space (X,S, µ) such that (Ei)U ∼=
Lp(X,S, µ) holds isometrically;

(iii) if each Ei is of the form C(Ki) for some compact Hausdorff space Ki, then there is

a compact Hausdorff space K such that (Ei)U ∼= C(K) holds isometrically.

Proof. (of (i) only). Define

〈·|·〉 : (Ei)U × (Ei)U 7→ F, ((ξi)U , (ηi)U )→ lim
i→U
〈ξi|ηi〉.

Then 〈·|·〉 is an inner product on (Ei)U such that

‖(ξi)U‖2 = lim
i→U
‖ξi‖2 = lim

i→U
〈ξi|ξi〉2 = 〈(ξi)U |(ξi)U 〉 ((ξi)U ∈ (Ei)U ).

This proves that (Ei)U is a Hilbert space.
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Remarks. 1. The proof of (ii) requires the fact that the Lp-spaces for p ∈ [1,∞)

can be axiomatically characterized in the category of Banach lattices (Kakutani–

Bohnenblust–Nakano Theorem). It can be shown that these axioms are inherited

by ultraproducts, which then yields (ii).

2. The proof of (iii), requires that C(K)-spaces are precisely the unital commutative C∗-

algebras (commutative Gelfand–Naimark Theorem). As the ultraproduct of unital

commutative C∗-algebras is again a unital commutative C∗-algebra, this yields (iii).

Given an Banach space E, there is a canonical embedding of E into any ultrapower

(E)U : this is obvious. The following is less straightforward:

Theorem 4.2.11. Let E be a Banach space. Then there are an index set I, an ultrafilter

U over I, and a linear isometry J : E∗∗ → (E)U , which extends the canonical embedding

of E into (E)U . Moreover, there is a norm one projection from (E)U onto JE∗∗.

Proof. Let I consist of all triples i = (Fi,Φi, εi), where

• Fi is a finite-dimensional subspace of E∗∗,

• Φi is a finite-dimensional subspace of E∗, and

• 0 < εi ≤ 1.

For each i ∈ I, the Principle of Local Reflexivity yields an injective, linear map τi : Fi → E

such that

(A) τi|E∩Fi = idE∩Fi ,

(B) ‖τi‖‖τ−1
i |τi(Fi)‖ < 1 + εi, and

(C) 〈τi(X), φ〉 = 〈φ,X〉 for X ∈ Fi and φ ∈ Φi.

Define

J̃ : E∗∗ → `∞-
⊕
i∈I

E, X 7→ (xi)i∈I

where

xi :=

{
τi(X), X ∈ Fi,

0, otherwise
(i ∈ I).

Note that J̃ need not be linear.

Turn I into a directed set by defining for i, j ∈ I that

i � j :⇐⇒ Fi ⊂ Fj , Φi ⊂ Φj , and εi ≥ εj .
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Let U be an ultrafilter over I such that F� ⊂ U , let πU : `∞-
⊕

i∈IE → (E)U be the

quotient map, and set J := πU ◦ J̃ . Then J is linear, is an isometry by (B), and extends

the canonical embedding of E into (E)U by (A).

Define

Q : (E)U → E∗∗, (xi)U 7→ σ(E∗∗, E∗)- lim
i→U

xi.

This is well defined by Theorem 4.2.7 because Ball(E∗∗) is σ(E∗∗, E∗)-compact by the

Alaoğlu–Bourbaki Theorem. Clearly, Q is a contraction, and from (C), it follows that

QJ = idE∗∗ . Set P := JQ. Then P is a norm one projection onto JE∗∗.

Definition 4.2.12. Let E and F be Banach spaces, and let C ≥ 1. We say that E and

F are C-isomorphic if there is an isomorphism T : E → F such that ‖T‖‖T−1‖ ≤ C. In

this case, we call T a C-isomorphism.

Definition 4.2.13. Let E and F be Banach spaces, and let C ≥ 1. We say that F is

C-representable in E if, for each finite-dimensional subspace X and each ε > 0, there is a

finite-dimensional subspace Y of E that is (C + ε)-isomorphic to X.

Example. By the Local Reflexivity Principle, E∗∗ is 1-representable in E for each Banach

space E.

Proposition 4.2.14. Let E be a Banach space, let I be a set, and let U be an ultrafilter

over I. Then (E)U is 1-representable in E.

Proof. Let X be a finite-dimensional subspace of (E)U , and let ε > 0. Let x1, . . . , xn be

a basis of X consisting of unit vectors. For k = 1, . . . , n, there are therefore (xk,i)i∈I ∈
`∞-

⊕
i∈IE with (xk,i)U = xk.

For i ∈ I, define linear Ti : X → E by letting Tixk = xk,i for k = 1, . . . , n. We claim

that there is i ∈ I such that

(1 + ε)−1‖x‖ ≤ ‖Tix‖ ≤ (1 + ε)‖x‖ (x ∈ X). (4.4)

Let

x = λ1x1 + · · ·+ λnxn, (4.5)

and note that

lim
i→U
‖Tix‖ = lim

i→U

∥∥∥∥∥
n∑
k=1

λkxk,i

∥∥∥∥∥ =

∥∥∥∥∥
(

n∑
k=1

λkxk,i

)
U

∥∥∥∥∥ = ‖x‖.

Therefore, there is, for each x ∈ X, a set Ux ∈ U such that(
1 +

ε

2

)−1
‖x‖ ≤ ‖Tix‖ ≤

(
1 +

ε

2

)
‖x‖ (i ∈ Ux)
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Now, X ∼= `1n—even though not necessarily isometrically—, so that there is C ≥ 0 such

that
∑n

k=1 |λk| ≤ C‖x‖ if x is as in (4.5). With M := supk=1,...,n
j∈I

‖xk,j‖, we obtain

‖Tix‖ =

∥∥∥∥∥
n∑
k=1

λkxk,i

∥∥∥∥∥ ≤
(

max
k=1,...,n

‖xk,i‖
) n∑
k=1

|λk| ≤ CM‖x‖ (x ∈ X, i ∈ I).

Set

δ :=
ε

CM(1 + ε)(2 + ε)
.

Let y1, . . . , ym ∈ X with ‖y1‖ = · · · = ‖ym‖ = 1 be such that, for each y ∈ X with

‖y‖ = 1, there is k ∈ {1, . . . ,m} with ‖y − yk‖ < δ. Set U :=
⋂m
k=1 Uyk , and note that

U ∈ U . Let i ∈ U , and let y ∈ X with ‖y‖ = 1. Choose k ∈ {1, . . . ,m} with ‖y− yk‖ < δ.

Note that

‖Tiy‖ ≤ ‖Ti(y − yk)‖+ ‖Tiyk‖ ≤ CMδ +
(

1 +
ε

2

)
=

ε

(1 + ε)(2 + ε)︸ ︷︷ ︸
≤ ε

2

+1 +
ε

2
≤ 1 + ε

and

‖Tiy‖ ≥ ‖Tiyk‖ − ‖Ti(y − yk)‖ ≥
(

1 +
ε

2

)−1
− CMδ

=
2

2 + ε
− ε

(1 + ε)(2 + ε)
=

2 + 2ε

(1 + ε)(2 + ε)
− ε

(1 + ε)(2 + ε)

=
2 + ε

(1 + ε)(2 + ε)
= (1 + ε)−1.

As (4.4) is homogeneous in x, this means that (4.4) holds for any i ∈ U .

Let i ∈ U , and set Y := TiX. Then (4.4) implies that Ti : X → Y is an isomorphism

satisfying ‖Ti‖‖T−1
i ‖ ≤ 1 + ε.

Theorem 4.2.15. Let E and F be Banach spaces, and let C ≥ 1. Then the following are

equivalent:

(i) F is C-representable in E;

(ii) there is an ultrafilter U over some index set I such that F is C-isomorphic to a

subspace of (E)U .

Proof. (ii) =⇒ (i): Let X be a finite-dimensional subspace of F , and let T : F → (E)U

be a C-isomorphism onto its range. Let ε > 0. By Proposition 4.2.14, there are a finite-

dimensional subspace Y of E and a
(
1 + ε

C

)
-isomorphism S : TX → Y . Consequently,

ST : X → Y is a (C + ε)-isomorphism.

(i) =⇒ (ii): Let I consist of all pairs i = (Xi, εi), where
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• Xi is a finite-dimensional subspace of F

• 0 < εi ≤ 1.

For every i = (Xi, εi) ∈ I, there is an injective, linear Ti : Xi → E such that ‖Ti‖ ≤ C + εi

and ‖T−1
i |TXi‖ ≤ 1. Define

T̃ : F → `∞-
⊕
i∈I

E, x 7→

{
Tix, x ∈ Xi,

0, otherwise.

Turn I into a directed set by defining

(Xi, εi) � (Xj , εj) :⇐⇒ X1 ⊂ X2, ε1 ≥ ε2,

and let U be an ultrafilter over I with F� ⊂ U . Let πU : `∞-
⊕

i∈IE → (E)U be the

quotient map, and set T := πU ◦ T̃ . Then T : F → (E)U is linear such that

‖x‖ ≤ ‖Tx‖ ≤ C‖x‖ (x ∈ F )

i.e., is a C-isomorphism onto its range.

Corollary 4.2.16. Let C ≥ 1, and let E be a Banach space that is C-representable in a

Hilbert space. Then E is isomorphic to a Hilbert space. If C = 1, then E even is a Hilbert

space.

Corollary 4.2.17. Let C ≥ 1, let p ∈ [1,∞), and let E be a Banach space that is

C-representable in an Lp-space. Then E is C-isomorphic to a subspace of an Lp-space.

Proposition 4.2.18. Let (Ei)i∈I and (Fi)i∈I be families of Banach spaces, and let U be

an ultrafilter over I. Then Θ: (B(Ei, Fi))U → B((Ei)U , (Fi)U ) defined via

Θ((Ti)U )(xi)U := (Tixi)U ((Ti)U ∈ (B(Ei, Fi))U , (xi)U ∈ (Ei)U )

is an isometry.

Proof. Let (xi)i∈I ∈ `∞-
⊕

i∈IEi, and let (Ti)i∈I ∈ `∞-
⊕

i∈I B(Ei, Fi). It follows that

(Tixi)i∈I ∈ `∞-
⊕

i∈I Fi such that

‖Tixi‖ ≤ ‖Ti‖‖xi‖ (i ∈ I).

Consequently, Θ is well defined and a contraction.

To see that Θ is an isometry, let (Ti)i∈I ∈ `∞-
⊕

i∈I B(Ei, Fi), and let ε > 0. For each

i ∈ I, there is xi ∈ Ball(Ei) such that ‖Tixi‖ ≥ ‖Ti‖ − ε. Then (xi)U ∈ Ball((Ei)U ) and

‖Θ((Ti)U )‖ ≥ ‖Θ((Ti)U )(xi)U‖

= ‖(Tixi)U‖

= lim
i→U
‖Tixi‖

≥ lim
i→U

(‖Ti‖ − ε)

= ‖(Ti)U‖ − ε.

86



As ε > 0 was arbitrary, this means that ‖Θ((Ti)U )‖ = ‖(Ti)U‖.

Corollary 4.2.19. Let (Ei)i∈I be a family of Banach spaces, and let U be an ultrafilter

over I. Then there is a canonical isometry from (E∗i )U into (Ei)
∗
U .

Proof. Apply the previous proposition to the case where Fi = F for i ∈ I, and note that

(F)U = F.

Proposition 4.2.20. Let (Ei)i∈I be a family of Banach spaces, and let U be an ultrafilter

over I such that (Ei)U is reflexive. Then (E∗i )U ∼= (Ei)
∗
U holds canonically.

Proof. Let Θ: (E∗i )U → (Ei)
∗
U denote the canonical isometry, i.e.,

〈(xi)U ,Θ((φi)U )〉 = lim
i→U
〈xi, φi〉 ((φi)U ∈ (E∗i )U , (xi)U ∈ (Ei)U ).

We claim that Ball(Θ(E∗i )U ) is σ((Ei)
∗
U , (Ei)U )-dense in Ball((Ei)

∗
U ). Assume otherwise.

Then there is ψ ∈ Ball((Ei)
∗
U ) with ψ /∈ Ball(Θ(E∗i )U )

σ((Ei)
∗
U ,(Ei)U )

. By the Hahn–Banach

Separation Theorem, there is (xi)U ∈ (Ei)U and c ∈ R such that

sup
(φi)U∈Ball((E∗i )U )

lim
i→U

Re 〈xi, φi〉 ≤ c < Re 〈(xi)U , ψ〉.

For i ∈ I choose φi ∈ Ball(E∗i ) such that 〈xi, φi〉 = ‖xi‖. It follows that

‖(xi)U‖ = lim
i→U
‖xi‖ = lim

i→U
Re 〈xi, φi〉 ≤ c < Re 〈(xi)U , ψ〉 ≤ ‖(xi)U‖,

which is a contradiction.

Now, (Ei)U is reflexive. Consequently, Ball(Θ(E∗i )U ) is weakly dense in Ball((Ei)
∗
U )

and therefore norm dense, i.e., all of Ball((Ei)
∗
U ).

For our final result on duality of ultraproducts, we need a theorem we won’t prove as

well as yet another definition.

Theorem 4.2.21 (James’ Theorem). The following are equivalent for a Banach space E:

(i) E is reflexive;

(ii) for every φ ∈ E∗, there is x ∈ E with ‖x‖ = 1 such that 〈x, φ〉 = ‖φ‖.

Definition 4.2.22. An ultrafilter U is called countably incomplete if there are U1, U2, . . . ∈
U with U1 ⊃ U2 ⊃ · · · such that

⋂∞
n=1 Un = ∅.

Theorem 4.2.23. Let (Ei)i∈I be a family of Banach spaces, and let U be a countably

incomplete ultrafilter over I. Then the following are equivalent:

(i) (Ei)U is reflexive;
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(ii) (E∗i )U ∼= (Ei)
∗
U .

Proof. (i) =⇒ (ii) is clear in view of Proposition 4.2.20.

(ii) =⇒ (i): Let φ ∈ (Ei)
∗
U , and let (φi)U ∈ (E∗i )U be such that φ = Θ((φi)U ). Let

U1 ⊃ U2 ⊃ · · · be sets in U such that
⋂∞
n=1 Un = ∅. For each i ∈ I, there is a unique

ni ∈ N such that i ∈ Uni \ Uni+1. Let x ∈ Ei with ‖xi‖ = 1, and 〈xi, φi〉 ≥ ‖φi‖ − 1
ni

. Set

x = (xi)U .

We claim that limi→U
1
ni

= 0. To see this, let ε > 0, and note that{
i ∈ I :

1

ni
< ε

}
⊃ Ub 1

ε
c+1 ∈ U .

It follows that

〈x, φ〉 = lim
i→U
〈xi, φi〉 ≥ lim

i→U
‖φi‖ −

1

ni
= ‖φ‖ ≥ 〈x, φ〉.

From James’ Theorem, we conclude that (Ei)U is reflexive.

4.3 Uniform Convexity

All Banach spaces in this section are over R.

Definition 4.3.1. Let E be a Banach space. For each ε ∈ (0, 2], the modulus of convexity

of E at ε is defined as

δE(ε) := inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ Ball(E), ‖x− y‖ ≥ ε
}

Remark. It is straightforward to see that

δE(ε) = inf{δF (ε) : F is a a two-dimensional subspace of E}.

Proposition 4.3.2. Let E be a Banach space, and let ε ∈ (0, 2]. Then

δE(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
.

Proof. Let x, y ∈ Ball(E) such that ‖x− y‖ ≥ ε, and consider

f : [0, 1]→ R, t 7→ ‖tx+ (1− t)y − (ty + (1− t)x)‖.

Then f(0) = f(1) = ‖x − y‖ ≥ ε whereas f
(

1
2

)
= 0. The Intermediate Value Theorem

yields t0 ∈ [0, 1] such that f(t0) = ε. Set x′ := t0x + (1 − t0)y and y′ := t0y + (1 − t0)x.

It follows that x′, y′ ∈ Ball(E), x′+y′

2 = x+y
2 , and ‖x′ − y′‖ = ε. It is therefore enough to

show that

sup{‖x+ y‖ : x, y ∈ Ball(E), ‖x− y‖ = ε}

= sup{‖x+ y‖ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε}.
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Without loss of generality, suppose that dimE ≤ 2. Let x0, y0 ∈ Ball(E) be such that

‖x0 + y0‖ = sup{‖x+ y‖ : x, y ∈ Ball(E), ‖x− y‖ = ε}.

Assume that x0, y0 ∈ ball(E). Set δ := 1
2 min{1− ‖x0‖, 1− ‖y0‖}, and let

x̃0 := x0 + δ(x0 + y0) and ỹ0 := y0 + δ(x0 + y0).

It follows that x̃0, ỹ0 ∈ Ball(E) and ‖x̃0 − ỹ0‖ = ‖x0 − y0‖ = ε. However,

‖x̃0 + ỹ0‖ = (1 + 2δ)‖x0 + y0‖ > ‖x0 + y0‖,

which is a contradiction. It therefore follows that ‖x0‖ = 1 or ‖y0‖ = 1.

Assume that x0 ∈ ball(E), so that necessarily ‖y0‖ = 1. Let φ ∈ E∗ be such that

‖φ‖ = 1 and 〈x0 − y0, φ〉 = ‖x0 − y0‖, and set

S := {x ∈ E : ‖x− y0‖ = ε},

so that

sup{〈x− y0, φ〉 : x ∈ S} = ε = ‖x0 − y0‖.

Let x ∈ Ball(E) ∩ S. Then

〈x, φ〉 − 〈y0, φ〉 = 〈x− y0, φ〉 ≤ ‖x− y0‖ ≤ ‖x0 − y0‖ = 〈x0, φ〉 − 〈y0, φ〉.

As x0 ∈ ball(E), this means that φ has a local maximum at x0 on S. A geometric

inspection

��
��
��
��

����

y
0

x
0

Figure 4.1: Geometric inspection of φ

yields that 〈· − y, φ〉 even has a global maximum at x0 on S, i.e.,

〈x0 − y0, φ〉 = sup
x∈S
〈x− y0, φ〉 = ‖x0 − y0‖.
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It follows that

‖y0‖ ≤
1

2
(‖y0 − x0‖+ ‖y0 + x0‖)

=
1

2
(〈x0 − y0, φ〉+ 〈x0 + y0, φ〉)

= 〈x0, φ〉

≤ ‖x0‖

< 1,

which is a contradiction.

Similarly, we deal with the case where y0 ∈ ball(E).

Remarks. 1. Let x, y ∈ E be such that ‖x‖ = ‖y‖ = 1 and ‖x− y‖ = ε. It follows that∥∥∥∥x+ y

2

∥∥∥∥ =

∥∥∥∥x+
y − x

2

∥∥∥∥ ≥ ‖x‖ − ∥∥∥∥y − x2

∥∥∥∥ = 1− ε

2
,

so that

δE(ε) ≤ ε

2
.

2. Let H be a Hilbert space, and let ε ∈ (0, 2]. For ξ, η ∈ H with ‖ξ‖ = ‖η‖ = 1 and

‖ξ − η‖ = ε, we obtain∥∥∥∥ξ + η

2

∥∥∥∥ =

√〈
ξ + η

2
,
ξ + η

2

〉

=

√
1

2
‖ξ‖2 +

1

2
‖η‖2 −

∥∥∥∥ξ − η2

∥∥∥∥2

=

√
1− ε2

4
,

so that

δH(ε) = 1−
√

1− ε2

4
> 0.

Definition 4.3.3. A Banach space E is called uniformly convex if δE(ε) > 0 for all

ε ∈ (0, 2].

Examples. 1. Every Hilbert space is uniformly convex.

2. `12 and `∞2 are not uniformly convex.

`12: Let x = (1, 0) and y = (0, 1). Then

‖x− y‖1 = 2 and

∥∥∥∥x+ y

2

∥∥∥∥
1

= 1.

`∞2 : Let x = (1,−1) and y = (1, 1). Then

‖x− y‖∞ = 2 and

∥∥∥∥x+ y

2

∥∥∥∥
∞

= 1.
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3. Every Banach space containing isometric copies of `12 and `∞2 is not uniformly convex.

4. Let (Ei)i∈I be a family of Banach spaces, let U be an ultrafilter over I, and suppose

that limi→U δEi(ε) > 0 for all ε ∈ (0, 2]. Then (Ei)U is uniformly convex.

Proof. Let ε ∈ (0, 2]. Let (xi)U , (yi)U be such that

‖(xi)U‖ = lim
i→U
‖xi‖ = 1, ‖(yi)U‖ = lim

i→U
‖yi‖ = 1,

and ‖(xi − yi)U‖ = lim
i→U
‖xi − yi‖ = ε.

Replacing xi with xi
‖xi‖ and yi with yi

‖yi‖ , we can suppose that ‖xi‖ = ‖yi‖ = 1 for

all i ∈ I. Set

U :=
{
i ∈ I : ‖xi − yi‖ ≥

ε

2

}
.

Then U ∈ U , and for all i ∈ U , we have

1−
∥∥∥∥xi + yi

2

∥∥∥∥ ≥ δEi ( ε2) ,
so that

1−
∥∥∥∥(xi)U + (yi)U

2

∥∥∥∥ = lim
i→U

(
1−

∥∥∥∥xi + yi
2

∥∥∥∥) ≥ lim
i→U

δEi

( ε
2

)
> 0.

It follows that δ(Ei)U (ε) ≥ limi→U δEi
(
ε
2

)
> 0.

As a consequence, if E is uniformly convex, then so is (E)U for every ultrafilter U .

Definition 4.3.4. A Banach space E is called superreflexive if (E)U is reflexive for every

ultrafilter U .

Theorem 4.3.5. Let E be a uniformly convex Banach space. Then E is superreflexive.

Proof. It is sufficient to show that E is reflexive.

Let X ∈ E∗∗, and suppose that ‖X‖ = 1. By Goldstine’s Theorem, there is a net

(xα)α in Ball(E) such that xα
σ(E∗∗,E∗)−→ X. It follows that xα + xβ

σ(E∗∗,E∗)−→ 2X, and

therefore ‖xα + xβ‖ → 2.

Let ε ∈ (0, 2], and choose αε such that

1−
∥∥∥∥xα + xβ

2

∥∥∥∥ < δE(ε)

for all indices α and β with αε � α, β. It follows that ‖xα − xβ‖ < ε for all such α and β,

i.e., (xα) is a Cauchy net in E and therefore convergent. Set x := limα xα. It follows that

xα
σ(E∗∗,E∗)−→ x and therefore X = x ∈ E.
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Lemma 4.3.6. Let p ∈ (1,∞), and let ε > 0. Then there is δ̃(ε) > 0 such that∣∣∣∣ t+ s

2

∣∣∣∣p < (1− δ̃(ε)
) |t|p + |s|p

2

for all s, t ∈ R with |s− t| ≥ ε max{|t|, |s|}.

Proof. Assume otherwise. Then, for each n ∈ N, there are sn, tn ∈ R with

|sn − tn| ≥ ε max{|tn|, |sn|} and
|tn|p + |sn|p

2

(
1− 1

n

)
≤
∣∣∣∣ tn + sn

2

∣∣∣∣p
Replacing sn and tn by sn

max{|sn|,|tn|} and tn
max{|sn|,|tn|} , respectively, we can suppose without

loss of generality that |sn|, |tn| ≤ 1 for n ∈ N. Let (snk)∞k=1 and (tnk)∞k=1 be convergent

subsequences of (sn)∞n=1 and (tn)∞n=1, respectively, and let s := limk→∞ snk and t :=

limk→∞ tnk . It follows that4

|s− t| ≥ ε and
|t|p + |s|p

2
≤
∣∣∣∣ t+ s

2

∣∣∣∣p .
Consider

f : R→ R, x 7→ |x|p.

Then f is convex, so that∣∣∣∣ t+ s

2

∣∣∣∣p = f

(
t

2
+
s

2

)
≤ 1

2
f(t) +

1

2
f(s) =

|t|p + |s|p

2

and therefore
|t|p + |s|p

2
=

∣∣∣∣ t+ s

2

∣∣∣∣p .
Now, f is strictly convex because p > 1. It follows that s = t, which is a contradiction.

Theorem 4.3.7. Let p ∈ (1,∞), and let (X,S, µ) be a measure space. Then Lp(X,S, µ)

is uniformly convex.

Proof. Let ε ∈ (0, 2], and let δ := δ̃
(
ε4
− 1
p

)
with the notation from Lemma 4.3.6.

Let f, g ∈ Lp(X,S, µ) with ‖f‖p, ‖g‖p ≤ 1 and ‖f − g‖p ≥ ε. Set

Y := {x ∈ X : εp(|f(x)|p + |g(x)|p) ≤ 4|f(x)− g(x)|p}.

It follows that ∫
Y c
|f − g|p ≤ εp

4

∫
Y c
|f |p + |g|p ≤ εp

4

∫
X
|f |p + |g|p ≤ εp

2
.

As
∫
X |f − g|

p ≥ εp, this yields
∫
Y |f − g|

p ≥ εp

2 and therefore

max

{∫
Y
|f |p,

∫
Y
|g|p
}
≥ 1

2

∫
Y
|f − g|p ≥ εp

2p+1
.
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We obtain ∫
X

|f |p + |g|p

2
−
∣∣∣∣f + g

2

∣∣∣∣p ≥ ∫
Y

|f |p + |g|p

2
−
∣∣∣∣f + g

2

∣∣∣∣p
≥
∫
Y
δ
|f |p + |g|p

2
, by Lemma 4.3.6,

≥ δ

2
max

{∫
Y
|f |p,

∫
Y
|g|p
}

≥ δεp

2p+2
.

We conclude that∫
X

∣∣∣∣f + g

2

∣∣∣∣p =

∫
X

|f |p + |g|p

2
+

∫
X

(∣∣∣∣f + g

2

∣∣∣∣p − |f |p + |g|p

2

)
≤
∫
X

|f |p + |g|p

2
− δεp

2p+2
.

and therefore ∥∥∥∥f + g

2

∥∥∥∥
p

≤
(

1− δ εp

2p+2

) 1
p

,

i.e.,

δLp(X,S,µ)(ε) ≥ 1−
(

1− δ εp

2p+2

) 1
p

> 0,

which completes the proof.

Proposition 4.3.8. The following are equivalent for a Banach space E:

(i) E is uniformly convex;

(ii) if (xn)∞n=1 and (yn)∞n=1 are sequences in E with (xn)∞n=1 bounded and

lim
n→∞

(2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2) = 0,

then limn→∞ ‖xn − yn‖ = 0;

(iii) if (xn)∞n=1 and (yn)∞n=1 are sequences in Ball(E) with limn→∞ ‖xn + yn‖ = 2, then

limn→∞ ‖xn − yn‖ = 0.

Proof. (i) =⇒ (iii): Let ε ∈ (0, 2]. Let nε ∈ N be such that

1−
∥∥∥∥xn + yn

2

∥∥∥∥ < δE(ε) (n ≥ nε).

It follows that ‖xn − yn‖ < ε for all n ≥ nε.
(iii) =⇒ (i): Assume that there is ε ∈ (0, 2] such that δE(ε) = 0. For each n ∈ N, there

are are therefore xn, yn ∈ Ball(E) such that 1−
∥∥xn+yn

2

∥∥ < 1
n , i.e.,

2 ≤ ‖xn + yn‖+
2

n
≤ 2 +

2

n
(n ∈ N),

93



but also

‖xn − yn‖ ≥ ε.

It follows that limn→∞ ‖xn + yn‖ = 2 whereas ‖xn − yn‖ 6→ 0.

(ii) =⇒ (iii): As ‖xn + yn‖ → 2, we have ‖xn‖ → 1 and ‖yn‖ → 1, so that

2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2 → 0

and therefore ‖xn − yn‖ → 0.

(iii) =⇒ (ii): We have

2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2 ≥ 2‖xn‖2 + 2‖yn‖2 − (‖xn‖2 + ‖yn‖2)

= ‖xn‖2 − 2‖xn‖‖yn‖+ ‖yn‖2

= (‖xn‖ − ‖yn‖)2,

so that

|‖xn‖ − ‖yn‖| → 0.

Assume towards a contradiction that ‖xn − yn‖ 6→ 0. We can suppose without loss of

generality that there is ε0 > 0 such that ‖xn−yn‖ ≥ ε0 for all n ∈ N. We can also suppose

that r := limn→∞ ‖xn‖ = limn→∞ ‖yn‖ > 0 exists. We obtain

0 = lim
n→∞

(
2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2

)
= 4r2 − lim

n→∞
‖xn + yn‖2,

i.e., limn→∞ ‖xn + yn‖ = 2r and therefore∥∥∥∥ xn
‖xn‖

+
yn
‖yn‖

∥∥∥∥→ 2.

By (iii), this means ∥∥∥∥ xn
‖xn‖

− yn
‖yn‖

∥∥∥∥→ 0

which entails ‖xn − yn‖ → 0.

4.4 Differentiability of Norms

Definition 4.4.1. Let E be a Banach space, let U ⊂ E be open, let f : U → R, and let

x0 ∈ U . We say that f is Gâteaux differentiable at x0 ∈ U if there is φ ∈ E∗ such that

lim
t→0
t6=0

f(x0 + th)− f(x0)

t
= 〈h, φ〉

for every h ∈ E. We say that f is Fréchet differentiable at x0 if this limit is uniform in

h ∈ E such that ‖h‖ = 1. We call φ the Gâteaux (Fréchet) derivative of of f at x0 and

set f ′(x0) = φ. We say that f is Gâteaux (Fréchet) differentiable on U if it is so at each

point of U .
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Examples. 1. The norm

‖ · ‖ : E → [0,∞), x 7→ ‖x‖

is not Gâteaux differentiable at 0 because

‖0 + th‖ − ‖0‖
t

=
|t|
t
‖h‖

for all t 6= 0 and ‖h‖ = 1.

2. ‖·‖ is Gâteaux (Fréchet) differentiable at each x ∈ E\{0} if and only if it is Gâteaux

(Fréchet) differentiable at each x ∈ E with ‖x‖ = 1.

3. Suppose that ‖ · ‖ is Gâteaux differentiable at x ∈ E with ‖x‖ = 1. Let h ∈ E with

‖h‖ = 1 and note that ∣∣∣∣‖x+ th‖ − ‖x‖
t

∣∣∣∣ ≤ ‖th‖|t| = 1,

so that ‖‖x‖′‖ ≤ 1. On the other hand, we have for 0 < |t| < 1 that

‖x+ tx‖ − ‖x‖
t

=
(1 + t)‖x‖ − ‖x‖

t
=
t‖x‖
t

= ‖x‖ = 1.

It follows that

〈x, ‖x‖′〉 = lim
t→0
t6=0

‖x+ tx‖ − ‖x‖
t

= 1,

so that ‖‖x‖′‖ = 1.

Lemma 4.4.2. Let E be a Banach space, let U ⊂ E be open and convex, and let f : U → R
be convex and continuous at x0 ∈ U . Then f is Gâteaux differentiable at x0 if and only if

lim
t→0
t6=0

f(x0 + th) + f(x0 − th)− 2f(x0)

t
= 0

for all h ∈ E, and f is Fréchet differentiable at x0 if this limit is uniform in h ∈ E with

‖h‖ = 1.

Proof. We only prove the claim for the Gâteaux differentiability of f ; the claim for Fréchet

differentiability follows analogously.

Suppose that f is Gâteaux differentiable at x0. Then

f(x0 + th) + f(x0 − th)− 2f(x0)

t
=
f(x0 + th)− f(x0)

t
− f(x0 − th)− f(x0)

−t
→ 〈h, f ′(x0)〉 − 〈h, f ′(x0)〉

= 0.
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For the converse define φ+, φ− : E → R via

φ+(h) := lim t ↓ 0
f(x0 + th)− f(x0)

t

and φ+(h) := lim t ↑ 0
f(x0 + th)− f(x0)

t
(h ∈ E);

these limits exist because f is convex. It is easy to see that φ+ ≥ φ−, φ+ is subadditive,

φ− is superadditive, and both φ+ and φ− are positively homogeneous. As

lim
t→0
t6=0

f(x0 + th) + f(x0 − th)− 2f(x0)

t
= 0,

we have φ+ = φ−; in particular, φ := φ+ = φ− is linear. We need to show that φ

is bounded. As f is continuous at x0, there are δ, C > 0 such that f(y) ≤ C for all

y ∈ x0 + δ Ball(E), so that

f(x+ th)− f(x)

t
≤ f(x+ δh)− f(x)

δ
≤ C − f(x)

δ
(h ∈ E, ‖h‖ = 1).

It follows that

〈h, φ(x0)〉 ≤ C − f(x)

δ
(h ∈ E, ‖h‖ = 1),

which completes the proof.

Theorem 4.4.3. Let E be a Banach space, and let x ∈ E with ‖x‖ = 1. Then:

(A) The following are equivalent:

(i) ‖ · ‖ is differentiable at x;

(ii) for any two sequences (φn)∞n=1 and (ψn)∞n=1 in the unit sphere of E∗ with

limn→∞〈x, φn〉 = limn→∞〈x, ψn〉 = 1, we have limn→∞ ‖φn − ψn‖ = 0;

(iii) every sequence (φn)∞n=1 in the unit sphere of E∗ with limn→∞〈x, φn〉 = 1 is

norm convergent.

(B) The following are equivalent:

(i) ‖ · ‖ is Gâteaux differentiable at x;

(ii) for any two sequences (φn)∞n=1 and (ψn)∞n=1 in the unit sphere of E∗ with

limn→∞〈x, φn〉 = limn→∞〈x, ψn〉 = 1, we have φn − ψn
σ(E∗,E)−→ 0;

(iii) there is a unique φ in the unit sphere of E∗ with 〈x, φ〉 = 1.

Proof. (A) (i) =⇒ (ii): Let ε > 0. Then there is δ > 0 such that

‖x+ h‖+ ‖x− h‖ ≤ 2 + ε‖h‖ (h ∈ Ballδ(E)).
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Let (φn)∞n=1 and (ψn)∞n=1 be norm one sequences in E∗ with

lim
n→∞

〈x, φn〉 = lim
n→∞

〈x, ψn〉 = 1.

Choose nε ∈ N such that

max{|〈x, φn〉 − 1|, |〈x, ψn〉 − 1|} < εδ (n ≥ nε).

Let h ∈ Ballδ(E). It follows that

〈h, φn − ψn〉 = 〈x+ h, φn〉+ 〈x− h, ψn〉 − 〈x, φn〉 − 〈x, ψn〉

≤ ‖x+ h‖+ ‖x− h‖ − 〈x, φn〉 − 〈x, ψn〉

≤ 2− 〈x, φn〉 − 〈x, ψn〉+ ε‖h‖

≤ |1− 〈x, φn〉|+ |1− 〈x, ψn〉|+ ε‖h‖

≤ 3εδ (n ≥ nε).

We conclude that

‖φn − ψn‖ = sup
h∈Ball(E)

〈h, φn − ψn〉

= sup
h∈Ballδ(E)

〈h, φn − ψn〉
δ

≤ 3ε (n ≥ nε),

so that ‖φn − ψn‖ → 0.

(A) (ii) =⇒ (iii): Choose φ ∈ E∗ with ‖φ‖ = 1 such that 〈x, φ〉 = ‖x‖, so that

lim
n→∞

〈x, φn〉 = 1 = 〈x, φ〉,

which implies ‖φn − φ‖ → 0.

(A) (iii) =⇒ (ii): Let (φn)∞n=1 and (ψn)∞n=1 be sequences in the unit sphere of E∗ with

limn→∞〈x, φn〉 = limn→∞〈x, ψn〉 = 1. Define (φ̃n)∞n=1 by letting

φ̃n :=

{
φn

2
, n even,

ψn+1
2
, n odd.

It follows that limn→∞

〈
x, φ̃n

〉
= 1. Therefore there is φ̃ ∈ E∗ with ‖φ̃‖ = 1 with∥∥∥φ̃n − φ̃∥∥∥→ 0, so that φ̃ = limn→∞ φn = limn→∞ ψn and therefore ‖φn − ψn‖ → 0.

(A) =⇒ (i): Assume that ‖ · ‖ not Fréchet differentiable at x. This means that there

is an ε0 > 0 such that, for all n ∈ N, there is hn ∈ E with ‖hn‖ ≤ 1
n with

‖x+ hn‖+ ‖x− hn‖ ≥ 2 + ε0‖hn‖.
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For n ∈ N, choose φn, ψn ∈ E∗ with ‖φn‖ = ‖ψn‖ = 1 and

〈x+ hn, φ〉 = ‖x+ hn‖ and 〈x− hn, ψn〉 = ‖x− hn‖ (n ∈ N).

It follows that

〈x, φn〉 = 〈x+ hn, φn〉 − 〈hn, φn〉 = ‖x+ hn‖ − 〈hn, φn〉 → 1

and—similarly—〈x, ψn〉 → 1. On the other hand, we have

〈hn, φn − ψn〉 = 〈x+ hn, φn〉+ 〈x− hn, ψn〉 − 〈x, φn + ψn〉

≥ ‖x+ hn‖+ ‖x− hn‖ − 2

≥ ε0‖hn‖ (n ∈ N),

so that ‖φn − ψn‖ ≥ ε0 for all n ∈ N, which is a contradiction.

(B) (i) ⇐⇒ (ii) is proven as for (A).

(B) (iii) =⇒ (ii): Assume that (ii) is false. Then there are sequences (φn)∞n=1 and

(ψn)∞n=1 in the unit sphere of E∗ as well as y ∈ E and ε0 > 0 such that 〈x, φn〉 → 1,

〈x, ψn〉 → 1, and |〈y, φn〉 − 〈y, ψn〉| ≥ ε0 for all n ∈ N. Let φ and ψ be σ(E∗, E)-

accumulation points of (φn)∞n=1 and (ψn)∞n=1, respectively, so that 〈x, φ〉 = 〈x, ψ〉 = 1,

therefore ‖φ‖ = ‖ψ‖ = 1, and consequently φ = ψ whereas 〈y, φ〉 6= 〈y, ψ〉, which is a

contradiction.

(B) (ii) =⇒ (iii): Let φ, ψ ∈ E∗ be any norm one functionals such that 〈x, φ〉 =

〈x, ψ〉 = 1. For n ∈ N, set φn := φ and ψn := ψ, so that—trivially—limn→∞〈x, φn〉 =

limn→∞〈x, ψn〉 = 1 and therefore φn − ψn
σ(E∗,E)−→ 0, so that φ = ψ.

Corollary 4.4.4. Let E be a Banach space such that the norm of E∗ is differentiable on

E∗ \ {0}. Then E is reflexive.

Proof. Let φ ∈ E∗ with ‖φ‖ = 1. For n ∈ N, choose xn ∈ E with ‖xn‖ = 1 such that

〈xn, φ〉 → ‖φ‖ = 1. Then (xn)∞n=1 is norm convergent to some x ∈ E with ‖x‖ = 1 and

〈x, φ〉 = 1. By Theorem 4.2.21, this means that E is reflexive.

Definition 4.4.5. Let E be a Banach space, and let τ > 0. Then the modulus of

smoothness of E at τ is defined as

ρE(τ) := sup

{
‖x+ τh‖+ ‖x− τh‖ − 2

2
: x ∈ E, ‖x‖ = ‖h‖ = 1

}
.

We call E uniformly smooth if limτ↓0
ρE(τ)
τ = 0.

We record the following without proof:

Proposition 4.4.6. The following are equivalent for a Banach space E:
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(i) E is uniformly smooth;

(ii) the limit

lim
t→0

‖x+ th‖ − ‖x‖
t

exits uniformly in x, h ∈ E with ‖x‖ = ‖h‖ = 1;

(iii) ‖ · ‖ is Fréchet differentiable on E \ {0}, and

∂ Ball(E)→ E∗, x 7→ ‖x‖′

is uniformly continuous.

Lemma 4.4.7. Let E be a Banach space, and let τ > 0. Then

ρE∗(τ) = sup
{
τ
ε

2
− δE(ε) : ε ∈ (0, 2]

}
.

Proof. Let ε ∈ (0, 2], and let τ > 0. Let x, y ∈ E be with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.
Choose φ, ψ ∈ E∗ with ‖φ‖ = ‖ψ‖ = 1 such that

〈x+ y, φ〉 = ‖x+ y‖ and 〈x− y, φ〉 = ‖x− y‖.

It follows that

2 ρE∗(τ) ≥ ‖φ+ τψ‖+ ‖φ− τψ‖ − 2

≥ 〈x, φ+ τψ〉+ 〈x, φ− τψ, y〉 − 2

= 〈x+ y, φ〉+ τ 〈x− y, ψ〉 − 2

= ‖x+ y‖+ τ‖x− y‖ − 2,

so that

1−
∥∥∥∥x+ y

2

∥∥∥∥ ≥ τ ε2 − ρE∗(τ).

and therefore

δE(ε) + ρE∗(τ) ≥ τ ε
2
.

We conclude that

ρE∗(τ) ≥ sup
{
τ
ε

2
− δE(ε) : ε ∈ (0, 2]

}
.

For the reversed inequality, let τ > 0, and let φ, ψ ∈ E∗ with ‖φ‖ = ‖ψ‖ = 1. Let

θ > 0 and choose x, y ∈ E with ‖x‖ = ‖y‖ = 1 such that

〈x, φ+ τψ〉 ≥ ‖φ+ τψ‖ − θ and 〈y, φ− τψ〉 ≥ ‖φ− τψ‖ − θ.
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We obtain

1

2
(‖φ+ τψ‖+ ‖φ− τψ‖ − 2) ≤ 1

2
(〈x, φ+ τψ〉+ 〈y, φ− τψ〉 − 2) + θ

=
1

2
(〈x+ y, φ〉 − 2) +

τ

2
〈x− y, ψ〉+ θ

≤
(∥∥∥∥x+ y

2

∥∥∥∥− 1

)
+
τ

2
‖x− y‖+ θ

≤ −δE(‖x− y‖) +
τ

2
‖x− y‖+ θ

≤ sup
{
τ
ε

2
− δE(ε) : ε ∈ (0, 2]

}
+ θ

and, all in all,

ρE∗(τ) ≤ sup
{
τ
ε

2
− δE(ε) : ε ∈ (0, 2]

}
,

which completes the proof.

Theorem 4.4.8. The following are equivalent for a Banach space E:

(i) E is uniformly convex;

(ii) E∗ is uniformly smooth.

Proof. (i) =⇒ (ii): Let ε ∈ (0, 2]. Then δE(ε′) ≥ δE(ε) > 0 for each ε′ ∈ [ε, 2].

Let τ ∈ (0, δE(ε). For all ε′ ∈ [ε, 2], we have

ε′

2
− δE(ε′)

τ
≤ ε′

2
− δE(ε)

τ
≤ ε′

2
− 1 ≤ 0

By Lemma 4.4.7, this means that

ρE∗(τ)

τ
= sup

{
ε′

2
− δE(ε′)

τ
: ε′ ∈ (0, 2]

}
= sup

{
ε′

2
− δE(ε′)

τ
: ε′ ∈ (0, ε)

}
≤ ε

2
,

so that limτ↓0
ρE∗ (τ)
τ = 0.

(ii) =⇒ (i): Assume towards a contradiction that E is not uniformly convex, i.e., there

is ε0 ∈ (0, 2] such that δE(ε0) = 0. Let τ > 0. Then

ρE∗(τ) = sup
{
τ
ε

2
− δE(ε) : ε ∈ (0, 2]

}
≥ τε0

2

and therefore
ρE∗(τ)

τ
≥ ε0

2
> 0,

which contradicts limτ↓0
ρE(τ)
τ = 0.

Example. Let p ∈ (1,∞) then Lp(X,S, µ) is uniformly smooth for each measure space

(X,S, µ).
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Chapter 5

Tensor Products of Banach spaces

5.1 The Algebraic Tensor Product

The tensor product E1⊗E2 of two linear spaces E1 and E2 is a universal linearizer: every

bilinear map from E1 × E2 factors uniquely through E1 ⊗ E2.

We give the formal definition of a—we still have to justify that we may speak of

the—tensor product of linear spaces for an arbitrary finite number of spaces:

Definition 5.1.1. Let E1, . . . , En be linear spaces. A tensor product of E1, . . . , En is a

pair (T , τ) where T is a linear space and τ : E1 × · · · × En → T is an n-linear map with

the following (universal) property: for each linear space F , and for each n-linear map

V : E1 × · · · × En → F , there is a unique linear map Ṽ : T → F such that V = Ṽ ◦ τ .

It is clear that a tensor product (T , τ) of E1, . . . , En is not unique: if T ′ is another

linear space, and if θ : T ′ → T is an isomorphism of linear spaces, then (T ′, θ◦τ) is another

tensor product of E1, . . . , En. We call tensor products arising from one another in this

fashion isomorphic: Given two tensor products (T1, τ1) and (T2, τ2), an isomorphism of

(T1, τ1) and (T2, τ2) is an isomorpism θ : T1 → T2 of linear spaces such that τ2 = θ ◦ τ1.

The best we can thus hope for is uniqueness up to isomorphism, which is indeed what we

have:

Proposition 5.1.2. Let E1, . . . , En be linear spaces, and let (T1, τ1) and (T2, τ2) be tensor

products of E1, . . . , En. Then there is a unique isomorphism of (T1, τ1) and (T2, τ2).

Proof. Abstract nonsense.

We may thus speak of the tensor product of n—in most situations: two—linear spaces.

From now on, we shall also use the standard notation for tensor products: Given linear

spaces E1, . . . , En and their tensor product (T , τ), we write E1 ⊗ · · · ⊗ En for T .
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Furthermore, we define

x1 ⊗ · · · ⊗ xn := τ(x1, . . . , xn) (x1 ∈ E1, . . . , xn ∈ En). (5.1)

Elements of E1 ⊗ · · · ⊗ En are called tensors, and elements of the form (5.1) are called

elementary tensors. Not every tensor is an elementary tensor: the set of all elementary

tensors is (except in trivial cases) not a linear space. Hence, the tensor product must

contain at least all linear combinations of elementary tensors. As the following proposition

shows, these are all there is:

Proposition 5.1.3. Let E1, . . . , En be linear spaces, and let x ∈ E1⊗ · · ·En. Then there

is m ∈ N, and for each j = 1, . . . , n there are x
(1)
j , . . . , x

(m)
j ∈ Ej such that

x =

m∑
k=1

x
(k)
1 ⊗ · · · ⊗ x

(k)
n . (5.2)

Proof. Let F be the set of all tensors of the form (5.2), and define

V : E1 × · · · × En → F, (x1, . . . , xn) 7→ x1 ⊗ · · · ⊗ xn.

It is routinely seen that F is a linear space, and that V is n-linear. From the defining

property of E1 ⊗ · · · ⊗ En, there is a unique linear map Ṽ : E1 ⊗ · · · ⊗ En → F such that

Ṽ (x1 ⊗ · · · ⊗ xn) = V (x1, . . . , xn) (x1 ∈ E1, . . . , xn ∈ En).

It follows that Ṽ is the identity on F and—via a simple Hamel basis argument—on

E1 ⊗ · · · ⊗ En.

Remarks. 1. Let E be a linear space. Then E×F 3 (x, λ) 7→ λx induces an isomorphism

of E ⊗ F and E.

2. Show that the tensor product is associative: if E1, E2, and E3 are linear spaces,

then

E1 ⊗ E2 ⊗ E3
∼= E1 ⊗ (E2 ⊗ E3) ∼= (E1 ⊗ E2)⊗ E3

through canonical isomorphisms.

3. Let E1, F1, . . . , En, Fn be linear spaces and let Tj : Ej → Fj be linear for j = 1, . . . , n.

Then there is a unique linear map T1⊗· · ·⊗Tn : E1⊗· · ·⊗En → F1⊗· · ·⊗Fn such

that

(T1 ⊗ · · · ⊗ Tn)(x1 ⊗ · · · ⊗ xn) = T1x1 ⊗ · · · ⊗ Tnxn (x1 ∈ E1, . . . , xn ∈ En).

So far we have dealt with tensor products without bothering to ask if they exist at all.

Luckily, they do:
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Theorem 5.1.4. Let E1, . . . , En be linear spaces. Then their tensor product E1⊗· · ·⊗En
exists.

Proof. For convenience, we switch back to the notation of Definition 5.1.1.

Let T̃ be the linear space of all maps from the set E1 × · · · × En to F with finite

support. For (x1, . . . , xn) ∈ E1× · · ·×En define δ(x1,...,xn), the point mass at (x1, . . . , xn),

through

δ(x1,...,xn)(y1, . . . , yn) :=

{
1, if (y1, . . . , yn) = (x1, . . . , xn),

0, otherwise.

Also define

τ̃ : E1 × · · · × En → T̃ , (x1, . . . , xn)→ δ(x1,...,xn).

Note that τ̃ is not an n-linear map: in order to “make it linear”, we have to factor out a

certain subspace. Let T̃0 be the subspace of T̃ spanned by all elements of the form

λ δ(x1,...,xj ,...,xn) + µ δ(x1,...,yj ,...,yn) − δ(x1,...,λxj+µyj ,...,xn)

(λ, µ ∈ F, x1, y1 ∈ E1, . . . , xj , yj ∈ Ej , . . . , xn, yn ∈ En) (5.3)

where j ranges from 1 to n. Define T := T̃ /T̃0, let π : T̃ → T be the quotient map, and

set τ := π ◦ τ̃ . From the definition of T̃0, it follows that τ is n-linear.

We claim that (T , τ) is a tensor product. To prove this, let F be another linear space,

and let V : E1×· · ·×En → F be an n-linear map. Define a linear map V̄ : T̃ → F through

V̄ (δ(x1,...,xn)) = V (x1, . . . , xn) (x1 ∈ E1, . . . , xn ∈ En).

Then V satisfies V = V̄ ◦ τ̃ ; since every element of T̃ is a finite linear combination of point

masses, V is uniquely determined by this property. Define

Ṽ (x+ T̃0) := V̄ (x) (x ∈ T̃ ). (5.4)

It is clear that V = Ṽ ◦ τ—once we have established that Ṽ is well defined. However,

since V = V̄ ◦ τ̃ , and since V is n-linear, it is easily, albeit tediously verified (nevertheless,

do it) that V̄ vanishes on tensors of the form (5.3) and thus on all of T̃0, which shows that

Ṽ is indeed well defined.

Finally, suppose that W̃ : T → F is another linear map satisfying φ = W̃ ◦ τ . Then W̃

and V̄ are necessarily related in the same way as Ṽ and V̄ are in (5.4). Since V̄ , however,

is uniquely determined through V = V̄ ◦ τ̃ , this establishes Ṽ = W̃ .

The construction of E1⊗· · ·⊗En is not very illuminating, and we won’t come back to

it anymore; actually, it is needed only to establish once and for all that tensor products

of linear spaces exist. Whenever we work with tensor products, however, we shall either

use their defining property or Proposition 5.1.3.

For use in the next section, we require the following lemma:
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Lemma 5.1.5. Let m ∈ N, let E1, . . . , En be linear spaces, and, for j = 1, . . . , n, let

x
(1)
j , . . . , x

(m)
j ∈ Ej be such that

m∑
k=1

x
(k)
1 ⊗ · · · ⊗ x

(k)
n = 0. (5.5)

Then, if x
(1)
n , . . . , x

(m)
n are linearly independent, we have

x
(k)
1 ⊗ · · · ⊗ x

(k)
n−1 = 0 (k = 1, . . . ,m).

Proof. Suppose that there is k0 ∈ {1, . . . ,m} such that x
(k0)
1 ⊗ · · · ⊗ x(k0)

n−1 6= 0. Define a

linear map φ : En → F via a Hamel basis argument such that〈
x(k0)
n , φ

〉
= 1 and

〈
x(k)
n , φ

〉
= 0 (k 6= k0).

Then

E1 × · · · ×En−1 ×En → E1 ⊗ · · · ⊗En−1, (x1, · · · , xn−1, xn) 7→ 〈xn, φ〉(x1 ⊗ · · · ⊗ xn−1)

is an n-linear map and therefore induces a linear map ψ : E1 ⊗ · · · ⊗ En−1 ⊗ En →
E1 ⊗ · · · ⊗ En−1 such that〈

m∑
k=1

x
(k)
1 ⊗ · · · ⊗ x

(k)
n , ψ

〉
= x

(k0)
1 ⊗ · · · ⊗ x(k0)

n−1 6= 0

contradicting (5.5).

5.2 The Injective Tensor Product

Suppose that E1, . . . , En are Banach spaces. Then their tensor product E1 ⊗ · · · ⊗ En
exists by Theorem 5.1.4. Except in rather trivial cases, however, there is no need for

E1 ⊗ · · · ⊗ En to be a Banach space.

The first problem is to define a norm on E1 ⊗ · · · ⊗ En. Once we have found a

suitable norm, we can obtain a Banach space tensor product of E1, . . . , En by completing

E1⊗· · ·⊗En with respect to this norm. Of course, one can define norms on E1⊗· · ·⊗En
as one pleases via elementary Hamel basis arguments. However, very few norms obtained

in this fashion will yield a useful notion of a Banach space tensor product. In order to

obtain Banach space tensor products we can work with, we have to require at least one

property for the norm on E1 ⊗ · · · ⊗ En:

Definition 5.2.1. Let E1, . . . , En be Banach spaces. A norm ‖ · ‖ on E1 ⊗ · · · ⊗ En is

called a cross norm if

‖x1 ⊗ · · · ⊗ xn‖ = ‖x1‖ · · · ‖xn‖ (x1 ∈ E1, . . . , xn ∈ En).
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Two questions arise naturally in connection with Definition 5.2.1:

1. Is there a cross norm on E1 ⊗ · · · ⊗ En?

2. Is there more than one cross norm on E1 ⊗ · · · ⊗ En?

We deal with the first question first. Let E1, . . . , En be Banach spaces with dual

spaces E∗1 , . . . , E
∗
n, and let φj ∈ E∗j for j = 1, . . . , n. As F ⊗ · · · ⊗ F ∼= F, the linear map

φ1 ⊗ · · · ⊗ φn is a linear functional on E1 ⊗ · · · ⊗ En.

Definition 5.2.2. Let E1, . . . , En be Banach spaces with dual spaces E∗1 , . . . , E
∗
n. Then

we define for x ∈ E1 ⊗ · · · ⊗ En

‖x‖ε := sup{|〈x, φ1 ⊗ · · · ⊗ φn〉| : φj ∈ Ball(E∗j ) for j = 1, . . . , n}.

We call ‖ · ‖ε the injective norm on E1 ⊗ · · · ⊗ En.

Although we have just called ‖ ·‖ε the injective norm, this is just a name tag: we don’t

know yet if it is a norm at all. It is not difficult, however, to show this (and even more):

Proposition 5.2.3. Let E1, . . . , En be Banach spaces. Then ‖ · ‖ε is a cross norm on

E1 ⊗ · · · ⊗ En.

Proof. It is clear from the definition that

‖x1 ⊗ · · · ⊗ xn‖ε ≤ ‖x1‖ · · · ‖xn‖ (x1 ∈ E1, . . . , xn ∈ En).

This also implies, by Proposition 5.1.3, that the supremum in Definition 5.2.2 is always

finite. Let xj ∈ Ej for j = 1, . . . , n. By the Hahn–Banach Theorem, there are φj ∈ E∗j
with ‖φj‖ = 1 and 〈xj , φj〉 = ‖xj‖ for j = 1, . . . , n, so that

‖x1 ⊗ · · · ⊗ xn‖ε ≥ |〈x1 ⊗ · · · ⊗ xn, φ1 ⊗ · · · ⊗ φn〉| = ‖x1‖ · · · ‖xn‖.

All that remains to be shown, is thus that ‖ · ‖ε is a norm.

It is easy to see that ‖ · ‖ε is a seminorm on E1 ⊗ · · · ⊗ En. What has to be shown is

therefore that ‖x‖ε = 0 implies x = 0 for all x ∈ E1⊗ · · · ⊗En. We proceed by induction

on n. Let x ∈ E1 ⊗ · · · ⊗ En \ {0}. By Proposition 5.1.3, there is m ∈ N, and for each

j = 1, . . . , n there are x
(1)
j , . . . , x

(m)
j ∈ Ej such that

x =

m∑
k=1

x
(k)
1 ⊗ · · · ⊗ x

(k)
n .

We may suppose that x
(1)
n , . . . , x

(m)
n are linearly independent. By Lemma 5.1.5, this means

that there is k0 ∈ {1, . . . ,m} such that x
(k0)
1 ⊗· · ·⊗x(k0)

n−1 6= 0. By the induction hypothesis,

we have ∥∥∥x(k0)
1 ⊗ · · · ⊗ x(k0)

n−1

∥∥∥
ε
6= 0.
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Use the Hahn–Banach Theorem to find φ ∈ Ball(E∗n) such that〈
x(k0)
n , φ

〉
> 0 and

〈
x(k)
n , φ

〉
= 0 (k 6= k0).

We conclude that

‖x‖ε ≥ ‖(id⊗ φ)(x)‖ε =
〈
x(k0)
n , φ

〉∥∥∥x(k0)
1 ⊗ · · · ⊗ x(k0)

n−1

∥∥∥
ε
> 0,

which completes the proof.

Definition 5.2.4. Let E1, . . . , En be Banach spaces. Then their injective tensor product

E1⊗̌ · · · ⊗̌En is the completion of E1 ⊗ · · · ⊗ En with respect to ‖ · ‖ε.

Remarks. 1. There is an associative law for the injective tensor product (with isometric

isomorphisms).

2. Let E1, F1, . . . , En, Fn be Banach spaces, and let Tj ∈ B(Ej , Fj). Then T1⊗· · ·⊗Tn
is continuous with respect to the injective norms on E1⊗· · ·⊗En and F1⊗· · ·⊗Fn,

respectively, and satisfies

‖T1 ⊗ · · · ⊗ Tn‖ = ‖T1‖ · · · ‖Tn‖.

Towards the end of our discussion of the injective tensor product, we give a concrete

description of the injective tensor product in a particular case.

Let Ω be a set, and let E be a linear space. For f ∈ FΩ and x ∈ E, we define fx ∈ EΩ

through

(fx)(ω) := f(ω)x (ω ∈ Ω).

Theorem 5.2.5. Let Ω be a locally compact Hausdorff space, and let E be a Banach

space. Then the bilinear map

C0(Ω)× E → C0(Ω, E), (f, x) 7→ fx (5.6)

induces an isometric isomorphism C0(Ω)⊗̌E ∼= C0(Ω, E).

Proof. We only treat the case where Ω is compact. (The general case can be deduced

from it by passing to the one-point-compactification of Ω.)

From the defining property of the algebraic tensor product C(Ω) ⊗ E, it follows that

(5.6) extends to a linear map from C(Ω)⊗ E into C(Ω, E).
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Let f1, . . . , fn ∈ C0(Ω) and x1, . . . , xn ∈ E; then∥∥∥∥∥∥
n∑
j=1

fnxj

∥∥∥∥∥∥
C0(Ω,E)

= sup


∥∥∥∥∥∥

n∑
j=1

fj(ω)xj

∥∥∥∥∥∥ : ω ∈ Ω


= sup


∣∣∣∣∣∣
n∑
j=1

fj(ω)〈xj , φ〉

∣∣∣∣∣∣ : ω ∈ Ω, φ ∈ Ball(E∗)


= sup


∥∥∥∥∥∥(id⊗ φ)

 n∑
j=1

fj ⊗ xj

∥∥∥∥∥∥ : φ ∈ Ball(E∗)


=

∥∥∥∥∥∥
n∑
j=1

fj ⊗ xj

∥∥∥∥∥∥
ε

.

Therefore, (5.6) is an isometry and thus injective with closed range. It remains to be

shown that it has dense range as well.

Let f ∈ C(Ω, E), and ε > 0. Being the continuous image of a compact space, K :=

f(Ω) ⊂ E is compact. We may therefore find x1, . . . , xn ∈ E such that

K ⊂ ballε(x1, E) ∪ · · · ∪ ballε(xn, E).

Let Uj := f−1(ballε(xj , E)) for j = 1, . . . , n. Choose f1, . . . , fn ∈ C(Ω) with f1, . . . , fn ≥ 0

such that

f1 + · · ·+ fn ≡ 1 and supp(fj) ⊂ Uj (j = 1, . . . , n).

For ω ∈ Ω, we then have

‖f(ω)− (f1x1 + · · ·+ fnxn)(ω)‖ ≤
n∑
j=1

fj(ω)‖f(ω)− xj‖. (5.7)

It easy to see that the right hand side of (5.7) is less than ε. This completes the proof.

Corollary 5.2.6. Let Ω1 and Ω2 be locally compact Hausdorff spaces. Then there is a

canonical isometric isomorphism C0(Ω1)⊗̌C0(Ω2) ∼= C0(Ω1 × Ω2).

There is a connection between the injective tensor product and finite-rank operators

between Banach spaces. For any two Banach spaces E and F , we denote by F(E,F ) the

bounded finite-rank operators from E to F .

Definition 5.2.7. Let E and F be Banach spaces, let φ1, . . . , φn ∈ E∗, and let

x1, . . . , xn ∈ F . Then T :=
∑n

j=1 φj � xj ∈ F(E,F ) is defined through

Tx =
n∑
j=1

〈x, φj〉xj (x ∈ E).
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It is clear that every finite rank operator arises in this fashion.

Proposition 5.2.8. Let E and F be Banach spaces. Then the linear map

E∗ ⊗ F → B(E,F ), φ⊗ x 7→ φ� x

is an isometry with respect to the injective norm on E∗ ⊗ F onto F(E,F ).

Proof. For φ1, . . . , φn ∈ E∗ and x1, . . . , xn ∈ F , let T :=
∑n

j=1 φj�xj and x :=
∑n

j=1 φj⊗
xj . Then

‖T‖ = ‖T ∗∗‖

= sup{‖T ∗∗X‖ : X ∈ Ball(E∗∗)}

= sup{|〈φ, T ∗∗X〉| : φ ∈ Ball(F ∗), X ∈ Ball(E∗∗)}

= sup


∣∣∣∣∣∣
n∑
j=1

〈φj , X〉〈xj , φ〉

∣∣∣∣∣∣ : φ ∈ Ball(F ∗), X ∈ Ball(E∗∗)


= sup{|〈x, φ⊗X〉| : φ ∈ Ball(F ∗), X ∈ Ball(E∗∗)}

= ‖x‖ε.

This completes the proof.

5.3 The Projective Tensor Product

The injective tensor product of Banach spaces has a major drawback: it is not character-

ized by the obvious functional analytic analogue of the definining (universal) property of

the algebraic tensor product.

As we shall now see, there is a cross norm such that the corresponding tensor product

of Banach spaces has the desired properties.

Definition 5.3.1. Let E1, . . . , En be Banach spaces. Then we define, for x ∈ E1⊗· · ·⊗En,

‖x‖π := inf

{
m∑
k=1

∥∥∥x(k)
1

∥∥∥ · · · ∥∥∥x(k)
n

∥∥∥ : x =

m∑
k=1

x
(k)
1 ⊗ · · · ⊗ x

(k)
n

}
.

We call ‖ · ‖π the projective norm on E1 ⊗ · · · ⊗ En.

Proposition 5.3.2. Let E1, . . . , En be Banach spaces. Then ‖ · ‖π is a cross norm on

E1 ⊗ · · · ⊗ En such that

‖x‖ ≤ ‖x‖π (x ∈ E1 ⊗ · · · ⊗ En),

for any cross norm ‖ · ‖ on E1 ⊗ · · · ⊗ En.
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Proof. It is immediate that ‖ · ‖ is a seminorm on E1 ⊗ · · · ⊗ En satisfying

‖x1 ⊗ · · · ⊗ xn‖π ≤ ‖x1‖ · · · ‖xn‖ (x1 ∈ E1, . . . , xn ∈ En).

Let x ∈ E1 ⊗ · · · ⊗ En. For j = 1, . . . , n choose x
(1)
j , . . . , x

(m)
j ∈ Ej such that x =∑m

k=1 x
(k)
1 ⊗ · · · ⊗ x

(k)
n . For any cross norm ‖ · ‖, we have

‖x‖ ≤
m∑
k=1

∥∥∥x(k)
1

∥∥∥ · · · ∥∥∥x(k)
n

∥∥∥ . (5.8)

As ‖x‖π is the infimum over all possible expressions occurring as right hand sides of (5.8),

we obtain ‖x‖ ≤ ‖x‖π. In the special case where ‖ · ‖ = ‖ · ‖ε, we obtain ‖ · ‖ε ≤ ‖ · ‖π,

which establishes that ‖ · ‖π is a norm, and

‖x1‖ · · · ‖xn‖ = ‖x1 ⊗ · · · ⊗ xn‖ε ≤ ‖x1 ⊗ · · · ⊗ xn‖π (x1 ∈ E1, . . . , xn ∈ En),

so that ‖ · ‖π is a cross norm.

Definition 5.3.3. Let E1, . . . , En be Banach spaces. Then their projective tensor product

E1⊗̂ · · · ⊗̂En is the completion of E1 ⊗ · · · ⊗ En with respect to ‖ · ‖π.

Remarks. 1. The projective tensor product of Banach spaces satisfies the following

universal property: Let E1, . . . , En be Banach spaces. Then for every Banach space

F , and for every bounded n-linear map V : E1 × · · · × En → F , there is a unique

Ṽ ∈ B(E1⊗̂ · · · ⊗̂En;F ) with ‖Ṽ ‖ = ‖V ‖ such that

V (x1, . . . , xn) = Ṽ (x1 ⊗ · · · ⊗ xn) (x1 ∈ E1, . . . , xn ∈ En).

2. Let E1, . . . , En be Banach spaces, and let E1⊗̃ · · · ⊗̃En be the completion of E1 ⊗
· · ·⊗En with respect to some cross norm. Then the identity on E1⊗· · ·⊗En extends

to a contraction from E1⊗̂ · · · ⊗̂En to E1⊗̃ · · · ⊗̃En.

3. The projective tensor product is associative.

4. Let E1, F1, . . . , En, Fn be Banach spaces, and let Tj ∈ B(Ej , Fj). Then T1⊗· · ·⊗Tn
is continuous with respect to the projective norms on E1⊗· · ·⊗En and F1⊗· · ·⊗Fn,

respectively, and satisfies

‖T1 ⊗ · · · ⊗ Tn‖ = ‖T1‖ · · · ‖Tn‖.

There is a useful analogue of Proposition 5.1.3 for the projective tensor product:
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Proposition 5.3.4. Let E1, . . . , En be Banach spaces, and let x ∈ E1⊗̂ · · · ⊗̂En. Then

there are sequences
(
x

(k)
j

)∞
k=1

in Ej for j = 1, . . . , n such that

∞∑
k=1

∥∥∥x(k)
1

∥∥∥ · · · ∥∥∥x(k)
n

∥∥∥ <∞ (5.9)

and

x =
∞∑
k=1

x
(k)
1 ⊗ · · · ⊗ x

(k)
n (5.10)

Moreover, ‖x‖π is the infimum over all infinite series (5.9) such that(5.10) is satisfied.

Proof. For each x ∈ E1⊗̂ · · · ⊗̂En having a series representation as in (5.10), let ‖x‖π̃
be the infimum over all infinite series (5.9) such that (5.10) holds. It is easy to see that

‖ · ‖π̃|E1⊗···⊗En is a cross norm such that the resulting completion of E1 ⊗ · · · ⊗En enjoys

the same universal property as the projective tensor product. It follows that ‖·‖π̃ = ‖·‖π.

Let F be the subspace of E1⊗̂ · · · ⊗̂En consisting of all x having a series representation

as in (5.10). It is not difficult to see that (F, ‖ · ‖π̃) is a Banach space. It follows that

F = E1⊗̂ · · · ⊗̂En.

There is an analogue of Theorem 5.2.5 for the projective tensor product. For a mea-

sure space (Ω,S, µ) and a Banach space E, let L1(Ω,S, µ;E) denote the space of all

(equivalence classes of) µ-integrable functions on Ω with values in E.

Theorem 5.3.5. Let (Ω,S, µ) be a measure space, and let E be a Banach space. Then

the bilinear map

L1(Ω,S, µ)× E → L1(Ω,S, µ;E), (f, x) 7→ fx (5.11)

induces an isometric isomorphism of L1(Ω,S, µ)⊗̂E and L1(Ω,S, µ;E).

Proof. It follows immediately from the universal property of the projective tensor product,

that (5.11) induces a contraction from L1(Ω,S, µ)⊗̂E into L1(Ω,S, µ;E). From the

definition of L1(Ω,S, µ;E), it is clear that this contraction has dense range; it remains to

be shown that it is also an isometry.

For f1, . . . , fn ∈ L1(Ω,S, µ) and x1, . . . , xn ∈ E, let f =
∑n

j=1 fjxj and x =
∑n

j=1 fj⊗
xj . We claim that ‖f‖1 = ‖x‖π. A simple density argument shows that we may confine

ourselves to the case where f1, . . . , fn are step functions. Furthermore, we may suppose

without loss of generality that there are mutually disjoint Ω1, . . . ,Ωn ∈ S with µ(Ωj) <∞
for j = 1, . . . , n such that fj = χΩj for j = 1, . . . , n. It follows that

‖f‖1 =

∫
Ω
‖f‖ dµ =

n∑
j=1

‖fjxj‖1 =
n∑
j=1

µ(Ωj)‖xj‖ =
n∑
j=1

‖fj‖1‖x‖ ≥ ‖x‖π,

which completes the proof.
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We conclude with a result on the dual space of a projective tensor product:

Proposition 5.3.6. Let E and F be Banach spaces. Then there is a unique isometric

isomorphism between Θ: B(E,F ∗)→ (E⊗̂F )∗ given by

〈x⊗ y,Θ(T )〉 := 〈y, Tx〉 (x ∈ E, y ∈ F, T ∈ B(E,F ∗)).

Proof. It is clear that Θ is well defined and injective. A moment’s thought reveals that it

is also surjective and an isometry.

5.4 The Hilbert Space Tensor Product

Let H1 and H2 be Hilbert spaces. When is H1⊗̂H2 a Hilbert space (or H1⊗̌H2)? The

answer is: hardly ever (even if we are willing to put up with merely topological, but

not isometric isomorphism). If we want a tensor product of Hilbert spaces to again be a

Hilbert space, we need a different construction.

Proposition 5.4.1. Let H1, . . . ,Hn be Hilbert spaces. Then:

(i) there is a unique positive definite, sesquilinear form on H1 ⊗ · · · ⊗ Hn such that

〈ξ1 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηn〉 := 〈ξ1, η1〉 · · · 〈ξn, ηn〉 (ξ1, η1 ∈ H1, . . . , ξn, ηn ∈ Hn);

(ii) the norm on H1 ⊗ · · · ⊗ Hn induced by the scalar product from (i) is a cross norm.

Definition 5.4.2. Let H1, . . . ,Hn be Hilbert spaces, and let 〈·, ·〉 be as in Proposition

5.4.1. Then the Hilbert space tensor product H1⊗̄ · · · ⊗̄Hn of H1, . . . ,Hn is the completion

of H1 ⊗ · · · ⊗ Hn with respect to the norm induced by 〈·, ·〉.

Remark. Let (Ω,S, µ) be a measure space, and let H be a Hilbert space. Then the bilinear

map

L2(Ω,S, µ)× H→ L2(Ω,S, µ;H), (f, ξ) 7→ fξ

induces an isometric isomorphism of L2(Ω,S, µ)⊗̄H and L2(Ω,S, µ;H).
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