MATH 217 (Fall 2017)
Honors Advanced Calculus, I

Assignment #6

1. Let
\[f : \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto \begin{cases}
 xy\frac{y^2-x^2}{x^2+y^2}, & \text{if } (x,y) \neq (0,0), \\
 0, & \text{otherwise}.
\end{cases} \]

Show that \(f \) is twice partially differentiable everywhere, but that
\[\frac{\partial^2 f}{\partial y \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial y}(0,0). \]

Is \(f \) continuous at \((0,0)\)?

2. Let \(f : \mathbb{R} \to \mathbb{R} \) be twice continuously differentiable, let \(c > 0 \) and \(v \in \mathbb{R}^N \) be arbitrary, and let \(\omega := c \|v\| \). Show that
\[F : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}, \quad (x,t) \mapsto f(x \cdot v - \omega t) \]
solves the wave equation
\[\Delta F - \frac{1}{c^2} \frac{\partial^2 F}{\partial t^2} = 0. \]

3. Determine the Jacobians of
\[\mathbb{R}^3 \to \mathbb{R}^3, \quad (r,\theta,\phi) \mapsto (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta) \]

and
\[\mathbb{R}^3 \to \mathbb{R}^3, \quad (r,\theta,z) \mapsto (r \cos \theta, r \sin \theta, z). \]

4. An \(N \times N \) matrix \(X \) is invertible if there is \(X^{-1} \in M_N(\mathbb{R}) \) such that \(XX^{-1} = X^{-1}X = I_N \) where \(I_N \) denotes the unit matrix.

(a) Show that \(U := \{ X \in M_N(\mathbb{R}) : X \text{ is invertible} \} \) is open. (Hint: \(X \in M_N(\mathbb{R}) \) is invertible if and only if \(\det X \neq 0 \).)

(b) Show that the map
\[f : U \to M_N(\mathbb{R}), \quad X \mapsto X^{-1} \]
is totally differentiable on \(U \), and calculate \(Df(X_0) \) for each \(X_0 \in U \). (Hint: You may use that, by Cramer’s Rule, \(f \) is continuous.)
5. Let
\[p: (\mathbb{R} \setminus \{0\}) \times \mathbb{R} \to \mathbb{R}^2, \quad (r, \theta) \mapsto (r \cos \theta, r \sin \theta) \]
let, \(\emptyset \neq U \subset \mathbb{R}^2 \) be open, and let \(f: U \to \mathbb{R} \) be twice continuously partially differentiable. Show that
\[(\Delta f) \circ p = \frac{\partial^2 (f \circ p)}{\partial r^2} + \frac{1}{r} \frac{\partial (f \circ p)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 (f \circ p)}{\partial \theta^2} \]
on \(p^{-1}(U) \). (Hint: Apply the chain rule twice.)

6. Let \(\emptyset \neq C \subset \mathbb{R}^N \) be open and connected, and let \(f: C \to \mathbb{R} \) be differentiable such that \(\nabla f \equiv 0 \). Show that \(f \) is constant. (Hint: First, treat the case where \(C \) is convex using the chain rule; then, for general \(C \), assume that \(f \) is not constant, let \(x, y \in C \) such that \(f(x) \neq f(y) \), and show that \(\{U, V\} \) with \(U := \{z \in C : f(z) = f(x)\} \) and \(V := \{z \in C : f(z) \neq f(x)\} \) is a disconnection for \(C \).

Due Monday, October 30, 2017, at 10:00 a.m.; no late assignments.