ME 225 HS 1

Homework 1
(due at 2:00 pm on April 20, 2009)

Problem 1. Formulate Lyapunov instability using (¢ — J) language as a negation of the

definition of Lyapunov stability. Give a physical /geometric interpretation.
Solution. The Lyapunov definition of stability is given on p. 9 of D&R:

A basic state (flow) U(x,t) is Lyapunov stable if, for any e > 0, there exists some
positive number 6(¢) such that if

Ju(x,0) = U(x,0)|| <4,
then

|lu(x,t) — U(x,t)|| < e

forallt > 0.

The negation of this definition would be the notion of Lyapunov instability which
takes place if either the solution u(x, ) fails to exist (existence was implicitly assumed
in the definition of stability) or if solutions arbitrary close to equilibrium escape a

ball of some positive radius provided that they exist.

Problem 2. Rayleigh-Darcy convection in a porous medium. You are given that two-
dimensional convection in an infinite layer of a Boussinesq fluid in a porous medium

is governed by the following non-dimensional initial-boundary value problem

orT
A¢ = —Ra%, (1&)
or opor opor
E%—%%—%&—AT, (1b)
with the boundary conditions
z2=0:¢=0,T=0, (2a)
z=1:¢=0,T=-1, (2b)

where v is the stream-function, T is the temperature, and Ra is the Rayleigh number.

e Give physical interpretations/assumptions behind derivation of the above equa-

tions and boundary conditions. Hint: start from Darcy’s law.
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e Study spectral stability of the base state 1, = 0, T, = —z and show that it is
unstable for Ra > 472,

Solution. In order to derive (1a) start from Darcy’s law

u= —% (Vp— pgk). (3)

where k is the permeability, ¢ is the porosity, u is the viscosity, and gk is the gravity
component in z-direction. Then, (1a) follows by eliminating the pressure and using
the Boussinesq approximation for the density p. Equation (1b) is just the standard

convection-diffusion equation for the temperature field.

Linearization around the base state v, = 0, T, = —z leads to the following eigenvalue
relation

_ Kk’Ra
~ P
Since the eigenvalues are real, the critical Rayleigh number is given by minimizing

Ro = T )

A — (K*4+n*r%), n=1,2,.... (4)

over k € R, which gives Ra, = 472.

Problem 3. Derivation of the Lorenz equations:
dX

F:U(Y—X% (6&)
dY

—=rX-Y-7ZX b
dz

— = —-bX + XY.

= + (6¢)

e Start from the Rayleigh-Benard system considered in the class, but restrict it to

a two-dimensional infinite layer with free perfectly conducting boundaries

z:O,ﬂ:%:w:T:O (7)
e You are given that there are roll cell of the (approximate) form
u(z, z,t) = V2(k* + k71X (1), C., (8a)
w(z, z,t) = —V2(k* + 1) X (t)C,.S., (8h)
T(w,2,) = =K+ 1)k [V2Y () CS. + Z(1)S2: (8¢)

where S, =sinkx, C, = cosz, C, = coskx, S, =sinz, Sy, = sin2z.
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e Verify that the equation of continuity and the boundary conditions are satisfied.

e Show that the curl of the curl of the momentum equations gives (6a) if appropri-
ate components may be truncated. Similarly, deduce (6b) and (6¢) and provide

the expressions for constants o, r, and b.

Hints. The derivation is quite straightforward. When deriving (6a) show that the

only component of vorticity is
w=0u/dz — w/dr = —V2(k* + 1)*k71 X S,S.. (9)

When deducing (6b) and (6¢), use the fact of linear independence of the functions
cos z and sin z, etc., and make sure that the convective term in the conduction

equation is

u-VT = (B + )% 2XY Sy, +2°22XC,5.0,.). (10)

Problem 4. Demonstrate that the principle of exchange of stabilities applies to the
Rayleigh-Bernard problem.

Solution. See the lectures or §9.1 of D&R. The ‘cleanest’ and more robust approach,
though, would be to work explicitly with the notion of self-adjoint operators, which
always have real eigenvalues. For example, in this particular problem one can rewrite

the linear part of the system

Pr! {88_1; + (u- V)u} = —Vp+ Rpbk + V*u, (11a)
06

o V)= = V%9, (11b)

V-u=0, (11c)

with the boundary conditions at the top and bottom rigid boundaries

2=0,1: #=0,u=0, (12)
as
000 O P P
0 010 O U U
— =1L , 13
al o o1 0 v v (13)
0 0 0 Ry 0 0
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with

L= : 14
-9, 0 V2 Ry (14)

0 0 Ry RyV?

where the symmetry of the linear operator is apparent. Then one has to demon-
strate that it is self-adjoint in the inner product, i.e. (La,b) = (a, Lb) through the

integration by parts.

Problem 5. Explain independence of the marginal stability curve on the Prandtl number

in the Rayleigh-Bernard problem.

Solution. The Prandtl number enters the eigenvalue problem (or, equivalently, the
dispersion relation) as a factor of the eigenvalue, i.e. A/Pr. Since the principle of
exchange of stabilities applies to the Rayleigh-Benard problem, the marginal stability
curve, defined by the condition A = 0, does not depend on the Prandtl number.



