
ME 225 HS 1

Homework 1
(due at 2:00 pm on April 20, 2009)

Problem 1. Formulate Lyapunov instability using (ε− δ) language as a negation of the

definition of Lyapunov stability. Give a physical/geometric interpretation.

Solution. The Lyapunov definition of stability is given on p. 9 of D&R:

A basic state (flow) U(x, t) is Lyapunov stable if, for any ε > 0, there exists some

positive number δ(ε) such that if

‖u(x, 0)−U(x, 0)‖ < δ,

then

‖u(x, t)−U(x, t)‖ < ε

for all t ≥ 0.

The negation of this definition would be the notion of Lyapunov instability which

takes place if either the solution u(x, t) fails to exist (existence was implicitly assumed

in the definition of stability) or if solutions arbitrary close to equilibrium escape a

ball of some positive radius provided that they exist.

Problem 2. Rayleigh-Darcy convection in a porous medium. You are given that two-

dimensional convection in an infinite layer of a Boussinesq fluid in a porous medium

is governed by the following non-dimensional initial-boundary value problem

∆ψ = −Ra∂T
∂x

, (1a)

∂T

∂t
+
∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
= ∆T, (1b)

with the boundary conditions

z = 0 : ψ = 0, T = 0, (2a)

z = 1 : ψ = 0, T = −1, (2b)

where ψ is the stream-function, T is the temperature, and Ra is the Rayleigh number.

• Give physical interpretations/assumptions behind derivation of the above equa-

tions and boundary conditions. Hint: start from Darcy’s law.
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• Study spectral stability of the base state ψb = 0, Tb = −z and show that it is

unstable for Ra > 4π2.

Solution. In order to derive (1a) start from Darcy’s law

u = − k

φµ
(∇p− ρgk) , (3)

where k is the permeability, φ is the porosity, µ is the viscosity, and gk is the gravity

component in z-direction. Then, (1a) follows by eliminating the pressure and using

the Boussinesq approximation for the density ρ. Equation (1b) is just the standard

convection-diffusion equation for the temperature field.

Linearization around the base state ψb = 0, Tb = −z leads to the following eigenvalue

relation

λ =
k2Ra

k2 + n2π2
− (k2 + n2π2), n = 1, 2, . . . . (4)

Since the eigenvalues are real, the critical Rayleigh number is given by minimizing

Ra =
(k2 + π2)2

k2
(5)

over k ∈ R, which gives Rac = 4π2.

Problem 3. Derivation of the Lorenz equations :

dX

dτ
= σ(Y −X), (6a)

dY

dτ
= rX − Y − ZX, (6b)

dZ

dτ
= −bX +XY. (6c)

• Start from the Rayleigh-Benard system considered in the class, but restrict it to

a two-dimensional infinite layer with free perfectly conducting boundaries

z = 0, π :
∂u

∂z
= w = T = 0. (7)

• You are given that there are roll cell of the (approximate) form

u(x, z, t) =
√

2(k2 + 1)k−1X(t)SxCz, (8a)

w(x, z, t) = −
√

2(k2 + 1)X(t)CxSz, (8b)

T (x, z, t) = −(k2 + 1)3k−2
[√

2Y (t)CxSz + Z(t)S2z

]
, (8c)

where Sx = sin kx, Cz = cos z, Cx = cos kx, Sz = sin z, S2z = sin 2z.



ME 225 HS 3

• Verify that the equation of continuity and the boundary conditions are satisfied.

• Show that the curl of the curl of the momentum equations gives (6a) if appropri-

ate components may be truncated. Similarly, deduce (6b) and (6c) and provide

the expressions for constants σ, r, and b.

Hints. The derivation is quite straightforward. When deriving (6a) show that the

only component of vorticity is

ω = ∂u/∂z − ∂w/∂x = −
√

2(k2 + 1)2k−1XSxSz. (9)

When deducing (6b) and (6c), use the fact of linear independence of the functions

cos z and sin z, etc., and make sure that the convective term in the conduction

equation is

u · ∇T = (k2 + 1)4k−2(XY S2z + 23/2ZXCxSzC2z). (10)

Problem 4. Demonstrate that the principle of exchange of stabilities applies to the

Rayleigh-Bernard problem.

Solution. See the lectures or §9.1 of D&R. The ‘cleanest’ and more robust approach,

though, would be to work explicitly with the notion of self-adjoint operators, which

always have real eigenvalues. For example, in this particular problem one can rewrite

the linear part of the system

Pr−1

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+RT θk +∇2u, (11a)

∂θ

∂t
+ (u · ∇)θ − v = ∇2θ, (11b)

∇ · u = 0, (11c)

with the boundary conditions at the top and bottom rigid boundaries

z = 0, 1 : θ = 0, u = 0, (12)

as

∂

∂t


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 RT




p

u

v

θ

 = L


p

u

v

θ

 , (13)
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with

L =


0 −∂x −∂y 0

−∂x ∇2 0 0

−∂y 0 ∇2 RT

0 0 RT RT∇2

 , (14)

where the symmetry of the linear operator is apparent. Then one has to demon-

strate that it is self-adjoint in the inner product, i.e. 〈La,b〉 = 〈a, Lb〉 through the

integration by parts.

Problem 5. Explain independence of the marginal stability curve on the Prandtl number

in the Rayleigh-Bernard problem.

Solution. The Prandtl number enters the eigenvalue problem (or, equivalently, the

dispersion relation) as a factor of the eigenvalue, i.e. λ/Pr. Since the principle of

exchange of stabilities applies to the Rayleigh-Benard problem, the marginal stability

curve, defined by the condition λ = 0, does not depend on the Prandtl number.


