On the crown forming instability in the drop splash problem

Rouslan Krechetnikov1 and George M. Homsy2

1University of Alberta
2University of California at Santa Barbara
The motivation

Figure: the famous milk crown of Edgerton & Killian (1954).

Original question†: “Why there are exactly 24 spikes in the above photo?”
General question: “What is the nature of the crown forming instability?”

Outline

- A bit of history
- Problem set-up
- *Milk* as an experimental material
- Experimental results:
 - Crown formation picture
 - Regularity types of the crown
 - Instability mechanism
 - Bifurcation phenomena
 - Milk vs. water
- Conclusions
A bit of history: existing theories
A bit of history: existing theories

- The Rayleigh-Taylor instability (Allen, 1974).

Deceleration of an interface
A bit of history: existing theories

- The Rayleigh-Taylor instability (Allen, 1974).
- The Plateau-Rayleigh instability (Fullana & Zaleski 1999, Roisman et al. 2006).

Disintegration of a retracting rim
A bit of history: existing theories

- The Rayleigh-Taylor instability (Allen, 1974).
- The Plateau-Rayleigh instability (Fullana & Zaleski 1999, Roisman et al. 2006).
- Another Rayleigh-Taylor instability (Thoroddsen & Sakakibara 1998).

Deceleration of the lower drop surface
A bit of history: existing theories

- The Rayleigh-Taylor instability (Allen, 1974).
- The Plateau-Rayleigh instability (Fullana & Zaleski 1999, Roisman et al. 2006).
- Another Rayleigh-Taylor instability (Thoroddsen & Sakakibara 1998).
- The Kelvin-Helmholtz instability (Yoon et al. 2007).
A bit of history: existing theories

- The Rayleigh-Taylor instability (Allen, 1974).
- The Plateau-Rayleigh instability (Fullana & Zaleski 1999, Roisman et al. 2006).
- Another Rayleigh-Taylor instability (Thoroddsen & Sakakibara 1998).
- The Kelvin-Helmholtz instability (Yoon et al. 2007).

Question: which one is relevant?
Problem set-up

Governing parameters:

\[We_{\text{drop}} = \frac{\text{inertia}}{\text{surface tension}} \approx (0.6 - 14) \times 10^2 \]

\[Oh = \frac{\text{viscosity}}{\text{surface tension}} \approx (0.15 - 0.41) \times 10^{-2} \]

\[\alpha = \frac{\text{drop inertia}}{\text{film inertia}} \approx 0.1 - 10.0 \]

or \[We_{\text{film}} = \alpha^{-1} We_{\text{drop}} \]

Experimental set-up:

Working fluids: water and milk
Milk as an *experimental* material

Comparison of two milks; release height is 16.51 cm.
Experimental results: crown formation

From ejecta to crown; time interval \(t = 1610 \mu s \).

Three key elements of the drop splash.

APS DFD, November 18-20, 2007 – p.7
Experimental results: crown regularity

Three modes of a crown formation

Early stages

Late stages
Experimental results: instability type

Kinematics; peak values $a \sim 10^5 \text{m/s}^2$, $v \sim 10 \text{m/s}$

Displacement†

Conclusion: this is the Richtmyer-Meshkov instability

$^\dagger t^* = \sqrt{d^3 \rho/\sigma}$, $v^* = \sqrt{2gH}$.
Experimental results: bifurcations

Transitions between three regularity types

Intermittency phenomena

Frustration

APS DFD, November 18-20, 2007 – p.10
Experimental results: milk vs. water

Effects of surfactants (SDS) and viscosity

Milk crown

Water crown

SDS crown

Glycerol crown

APS DFD, November 18-20, 2007 – p.11
Conclusions

Through experimental study we were able to gain new insights into the nature of the instability responsible for the crown spike formation. In particular,
Conclusions

Through experimental study we were able to gain new insights into the nature of the instability responsible for the crown spike formation. In particular,

- There are three major *regularity* types of crowns – axisymmetric, regular (including frustrated), and irregular (possibly chaotic) – and the corresponding *bifurcation* phenomena;
Conclusions

Through experimental study we were able to gain new insights into the nature of the instability responsible for the crown spike formation. In particular,

- There are three major *regularity* types of crowns – axisymmetric, regular (including frustrated), and irregular (possibly chaotic) – and the corresponding *bifurcation* phenomena;

- The crown spike distribution is controlled by the very early stages of ejecta formation through the *Richtmyer-Meshkov* instability mechanism.
Conclusions

Through experimental study we were able to gain new insights into the nature of the instability responsible for the crown spike formation. In particular,

- There are three major regularity types of crowns – axisymmetric, regular (including frustrated), and irregular (possibly chaotic) – and the corresponding bifurcation phenomena;

- The crown spike distribution is controlled by the very early stages of ejecta formation through the Richtmyer-Meshkov instability mechanism.

- The reasons which make the milk crown so distinctive are pointed out.