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Thermodynamics of chemical Marangoni-
driven engines

Rouslan Krechetnikov

The goal of this paper is to perform a general thermodynamic study of Marangoni-driven engines in

which chemical energy is directly transformed into mechanical motion. Given that this topic has not

been discussed before, we will explore here the most basic and fundamental aspects of the phenomena

at work, which leads to a number of interesting observations typical of controversies in classical

thermodynamics. Starting with a discussion of a few key motivating examples of chemical Marangoni-

driven phenomena – tears of wine, an oscillating pendant droplet, ‘‘beating’’ oil lens, and traveling waves

in a circular container – and contrasting homogeneous versus inhomogeneous thermodynamic systems

we naturally arrive at alternative ways of storing and generating energy with the help of inhomogeneities

in the bulk and surface properties of the working media. Of particular interest here are systems with

interfaces – hence, in this context we discuss the nature and efficiency of the corresponding thermo-

dynamic cycles leading to work done as a result of a non-uniform distribution of surface tension, which

is in turn induced by a non-uniform surface active substance (surfactant) distribution, for both soluble

and insoluble surfactants. Based on the relevant physical parameters of the working medium we can

also evaluate the isothermality, i.e. temperature variations, dissipative losses, energy output and

efficiency, entropy generation, and the period of such cycles in real processes. The role of singularity

formation at the interface for the existence of such thermodynamic cycles is unraveled as well. Finally

the discussion is concluded with a few ideas for potential applications of Marangoni-driven engines.

1 Introduction
1.1 Motivation for non-Carnot cycle motors

The first law of thermodynamics is a statement of conservation
of energy, e.g. for a closed system the change of the internal
energy dU equals to the sum of the heat dQ received by the
system and the work dW done on it:

dU = dQ + dW, (1)

but this law does not say anything about the direction of these
processes – this is taken care of by the second law of thermo-
dynamics, namely that the total entropy S of an isolated system
at a given temperature T cannot decrease

dS � dQ
T
: (2)

The basic laws (1) and (2) are at the foundation of our under-
standing of the efficiency of heat engines as homogeneous
thermodynamic systems, i.e. systems with the thermodynamic
properties (pressure, temperature, etc.) uniform throughout the

system extent. The Carnot cycle tells us that the maximum
achievable coefficient of energy transduction should be (T2 � T1)/
T2, where T1 and T2 are the absolute temperatures of the cold and
hot heat reservoirs, respectively. Therefore, a large coefficient of
energy transduction requires a high heat of combustion or a large
heat source.

On the other hand, all motor organs and organelles in living
organisms work through the conversion of chemical energy
directly into mechanical energy under almost isothermal condi-
tions apparently with extraordinarily high efficiency and without
producing harmful products.1 This implies that biological
motors operate through some mechanisms other than the
Carnot cycle, and the induced motion is observed under non-
equilibrium conditions, for example involving chemical
inhomogeneity. Development of such a chemical engine, which
works under (almost) isothermal conditions, is an important
step in creating novel chemical motors or artificial actuators
which are capable of self-movement, in understanding and
creating biological functions,2 as well as in providing new ideas
on alternative autonomous energy sources for small-scale
devices.3 Inspiring examples include a crawling cell pushing
its way through pores, while constantly changing its shape to
adapt to a complex environment, and vesicles – closed surfaces
of lipid bilayers – exhibiting an amazing variety of shapes,
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between which transformations can be induced by changing
the osmotic conditions.4–6 According to the modern view, the
biological cell membrane is also a more or less fluid lipid
bilayer in which proteins, including enzymatically active ones,
are submerged and are often free to move.7–9 The energy
transformation in these biological motors is based on the
dissipation of the chemical energy in adenosine triphosphate
converted to adenosine diphosphate to drive molecular
machinery; these highly efficient direct energy conversion
processes take place within living organisms1 such as amoeba
pseudopod formation,10 chloroplast movements,11 swelling of
mitochondria, and muscle contraction,12 to name a few.

A fluid dynamics analogy where energy can be generated at the
interface is a surfactant-laden system. It is known that below a
saturation interfacial concentration for a given surfactant – near the
critical micelle concentration (CMC)13,14 – surface tension s
decreases with the bulk surfactant concentration C: ds/dC o 0.
Common surfactants, such as sodium dodecyl sulfate (SDS), can
typically reduce the surface tension by approximately half of the
clean interface value when the CMC is achieved15 and, in the case of
chemical reactions producing surfactant at the interface16 – such as
that between acid and alkali at the water–oil interface – may lead to
ultra-low values of interfacial tension on the order of 0.1 mN m�1,
i.e. the surface tension changes two orders of magnitude. Such
changes may occur both in time and space.

Dynamic, that is varying in time, surface tension (DST)† is
an important driving property as it governs many important
industrial and biological processes.17–20 One biological process
where the control of DST is essential is in the lung, where
phospholipids are the main surface active ingredients: DST is
necessary for effective functioning of the alveoli – understand-
ing these processes led to the pulmonary surfactant replace-
ment therapy,21 where surfactant is responsible for lowering
surface tension on expiration and preventing lung collapse, and
to a treatment of dry-eye condition. In industry, DST is, of
course, important in various emulsifiers and foaming agents.
In fact, whenever surfactants are used, DST is a key effect: for
example, in the photographic industry the formulation of thin
gelatin films requires high flow velocities, and hence DST
needs to be monitored during the fabrication process to pre-
vent film deformation and irregularities. It is also of impor-
tance in agrochemicals where fast wettability of plant leaves is
instrumental for easy spreading of pesticides. Not to mention
that DST plays a crucial part in older technologies such as
production of metal, paper and textiles as well.

From the point of view of variation in space, the surfactants’
fundamental property of being an additional degree of control
over fluid motion led to a growing number of engineering and
bioengineering applications such as:
� non-mechanical means to pump and position fluids in

microfluidic devices (e.g. flow cytometry, rapid DNA screening);22

� enhanced oil recovery, in which surfactants have been used
to effectively lower the interfacial tension between oil and water
and enable mobilization of trapped oil through the reservoir;
� manufacturing integrated circuits and data storage for

informational technologies, in which the coating processes are
crucial.

At the fundamental level, numerous examples already exist in
which Marangoni flows induced by spatial gradients in surfactant
concentration at interfaces can be exploited in practice. These
include the motion of droplets in the presence of externally imposed
surfactant concentration gradients,23 mixing of droplets having
different values of surface tension,24 spreading of surfactants,25

and stabilization of emulsions by self-induced Marangoni effects
which represent the basic example of the passive role surfactants
may play, cf. Fig. 1, and of the nature of Marangoni-driven flow, for
that matter. Also, surfactant-induced surface tension gradients
proved to be responsible for the film thickening effect in coating
on wires and plates.26–28

While Marangoni stresses can be created by temperature
gradients,29 imposing electric fields30–32 and, as mentioned above,
by passive addition of the surfactants,23–25 all of these methods
have shortcomings. For example, an imposed temperature gradient
could be damaging to sensitive samples; moreover, such an
approach for generating flow requires fabrication and control
systems capable of establishing precise temperature gradients.
Among the drawbacks of the electrochemical method to create
Marangoni flows are (a) hostility of the solution needed for such
applications, (b) reliance on imposed electric fields, which requires
careful placement and control of electrodes to create and maintain
the flow, and (c) necessity to remove surfactant from the surface
either by diffusion into the bulk or oxidation using excess chemical
constituents. Finally, surfactants simply added to a system gener-
ally play a passive role: established gradients are the result of other
imposed conditions such as an external flow sweeping surfactants
along the interface. Thus, on their own, surfactants usually do not
tend to spontaneously create Marangoni-driven motion.

Fig. 1 When two water droplets containing a water soluble surfactant
approach each other in an oil, an interfacial tension gradient is created by
the bulk flow. (a) The oil trapped between the two droplets flows outwards
sweeping the surfactant molecules toward the periphery of the separating
film. Since the concentration of the surfactant molecules in the middle
portions of the interfaces is lower in comparison with their concentration
in the peripheral regions, an interfacial tension gradient is created. (b) This
concentration gradient drives fluid – the so-called Marangoni flow – back
to the center thus preventing the drops from merging and hence stabiliz-
ing the emulsion.

† A freshly formed interface of a surfactant solution has a surface tension s very
close to that of the solvent s0. Over a period of time, s will decay to the
equilibrium value, seq, and this period of time can range from milliseconds to
days depending on the surfactant type and concentration.

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 4931--4950 | 4933

To overcome the shortcomings of the above methods used to
induce Marangoni gradients, chemical reactions that produce
surfactants at the interface can be exploited, which is the focus
of the present work. The key distinction of this method from
the aforementioned approaches is its autonomy, i.e. no depen-
dence on external intrusion or electric/temperature fields.

1.2 Paper outline

In Section 2 we will begin by reviewing the key experimental
observations which serve as a motivation for the present study
of self-driven systems with direct conversion of chemical to
mechanical energy. Here we focus on the general understanding
of how Marangoni phenomena may mediate energy conversion
and their subsequent usage. While the fundamental reason for
self-sustained motion is a hydro-chemical Marangoni instability,
which needs to be studied separately in each particular case,33,34

instead we are going to focus on general thermodynamic aspects
of the Marangoni phenomena. In Section 3 we review standard
homogeneous thermodynamic systems and then extend the
analysis to homogeneous chemical engines with some new
results proved herein. This sets the stage for the analysis of
inhomogeneous systems. With an idea to disentangle the com-
plexity of self-driving Marangoni phenomena both at the energy
and mechanistic levels, in Section 4 we first analyze the energy
storage and the general dynamics of inhomogeneous systems in
contrast to homogeneous ones. The goal here is also to understand
the role of interfacial singularities in sustaining such motions. Then
in Section 5 we address in detail the fundamental thermodynamic
aspects – energy and entropy generation, thermal efficiency, and the
extent of isothermality – of Marangoni-driven engines. Motivated
by the practical questions on the feasible system geometries and
physical conditions for the most efficient operation of self-
sustained motions, in Section 6 we conclude the discussion with
some ideas for potential engineering implementations.

2 Observations of Marangoni
self-driven motions

Recent observations of fluid motions induced by the direct
conversion of chemical-to-mechanical energy via chemical
reactions at interfaces have renewed interest in this area and
provided a hope for finding new ways to generate mechanical
motion. The feasibility of engineering Marangoni-driven
motors stems from a number of examples found both in nature
and laboratory, some of which are familiar to a wide audience –
water walkers35 and camphor scrapings36,37 – while others –
such as the violent and erratic interfacial pulsations and
localized eruptions of liquid–liquid interfaces38–41 – have
remained undeservedly forgotten. The classical example of
self-induced fluid motions arising due to variations of inter-
facial tension is the self-propulsion of a small camphor scrap-
ing at an air/water interface, studied by Van der Mensbrugghe36

and Rayleigh37 more than a century ago. Although a formal
treatment of the solutal interfacial instability relevant to self-motion
of camphor scrapings was given by Sterling and Scriven,34 this

problem remains poorly understood from a quantitative standpoint
in particular due to the lack of a complete thermodynamic picture.
In recent decades, there has been a revival of interest in these types
of problems,42–46 which include self-induced motions of an aqueous
droplet of the Belousov–Zhabotinsky reaction medium in an oil
phase47 and of an alcohol (pentanol) drop in an aqueous phase,48

spontaneous oscillations of interfacial tension induced by a surfac-
tant transfer through a liquid interface,49,50 spatio-temporal periodic
interfacial deformations due to chemo-Marangoni convection
induced by in situ production of surfactant at the interface between
hexane and alkaline solution,51 various modes of motion (pulsation,
rotation, etc.) of dissolving drops of dichloromethane,52,53 and
reactive droplets on a glass plate.54,55 In particular, Dupeyrat and
Nakache42 found a quasi-periodic variation of the electrical potential
and interfacial tension in an oil/water system, where a cationic
surfactant was dissolved in the aqueous phase, and also reported
macroscopic self-agitation at the oil/water interface. In this phenom-
enon, the chemical energy stored in the non-equilibrium of the
solute concentrations between the oil and water phases is directly
converted to macroscopic motion under, what was believed, iso-
thermal conditions. To provide context for the present study, we will
review a few examples of Marangoni effects inducing fluid motion in
a self-sustained fashion as opposed to the passively acting
surfactant-laden systems discussed in Section 1.

First, the phenomenon of ‘‘tears of wine’’56–58 – the formation
and motion of drops of wine (and also other spirits) on the internal
walls of a glass – has been observed since the early history of
mankind, and its first description appears in the Bible. In lieu of
the myths associated with the formation of the ‘‘tears’’, a clear
explanation can be given with surface tension gradients arising due
to evaporation of alcohol from the mixture with water in the thin
part of the meniscus where wine wets the glass surface – this in
turn generates a gradient in surface tension and drives the fluid
upward leading to formation of tears of wine, cf. Fig. 2.

The contact line (meniscus) plays a crucial role in another
classical phenomenon reminiscent of the earlier mentioned
self-motion of camphor scrapings – a self-propulsion of water

Fig. 2 Since water has a much higher surface tension than ethanol, a
mixture of these liquids, such as wine, has a lower surface tension than that
of pure water. (a) Mechanism: when alcohol evaporates from the thinner
region of the meniscus, a surface tension gradient is generated, and the
liquid climbs the glass wall spontaneously, forming a film and then, thanks
to gravity, tears (b). The gradient is maintained by continuous evaporation
of alcohol from the film, so that more liquid is dragged up.
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drops containing cationic surfactants after they are placed in an oil
phase (nitrobenzene solution of iodine and potassium iodide),44 cf.
Fig. 3. The self-motion was observed to continue for 30–60 min
until all the chemicals (‘‘nutrients’’) are ‘‘digested’’.

Similar to the motion of camphor scrapings but without
propulsion, quasi-periodic radial pulsations of an oil lens
containing a water-insoluble surfactant (Tergitol) atop a water layer
were observed,59,60 cf. Fig. 4. The phenomenon was attributed61 to a
combination of partial emulsification at the edge of the lens and
transport/evaporation of surfactant at the liquid–liquid interface
resulting in a time-dependent spreading and can be related to other
observations of spreading/contracting lens62 involving chemical

reactions. Only a limited range of surfactant concentrations (4–
25%) was explored because of the sporadic nature of oscillations
outside of this range.

In a very different geometry, Marangoni-induced wave patterns
and surface oscillations (both regular and aperiodic) were
observed47,63 in annular containers, cf. Fig. 5. Two immiscible
liquids of different density containing reagents – water with the
trimethyl stearyl ammonium chloride surfactant (TSAC) and nitro-
benzene with iodine – were initially stratified and quiescent prior to
the initiation of spontaneous sustained waves lasting on the order
of 10 minutes. As noted first by Kai et al.63 and later by other
authors,64 the change in contact angle plays the crucial role in wave
generation, cf. Fig. 5.

As a stand-alone example, several studies have revealed
unusual phenomena associated with the production of surfactant
at immiscible liquid–liquid (e.g. oil–water) interfaces. These include,
cf. Fig. 6, the discovered65,66 self-oscillation of a pendant drop and
chemical-reaction-driven tip-streaming, in which micron sized dro-
plets are produced from the tip of a millimeter scale drop when it
assumes a conical shape. Self-sustained oscillations of the pendant
drop were observed to accompany this behavior lasting on the order
of 20 minutes or longer. The surfactant, which is a driving agent
here, was produced at the interface via chemical reaction between
reagents – alkali (NaOH) in the water and linoleic acid in the oil
phases. There are other phenomena reminiscent of this self-induced
tip-streaming including droplet emission in dissolving drops of
dichloromethane,52 ejection of surfactant-coated oil droplets from
surfactant-laden sessile oil lens placed on a water surface,61 and
fission of an alcohol (pentanol) drop in an aqueous phase.48

All the aforementioned studies were primarily observational as
the authors did not attempt to control the spatial production of
surfactants or variations in surface tension, unlike in the case of the
externally imposed electric, temperature, and concentration fields.
Nevertheless, the above described experiments on the spontaneous
and sustained motion of fluid interfaces resulting from chemical
reactions are the most promising starting points to further the
study of direct conversion of chemical energy into mechanical

Fig. 3 (a) Amoeba-like motions in an oil/water system (top view): the oil
phase is a nitrobenzene solution of iodine and potassium iodide and the
aqueous phase contains a cationic surfactant. (b) Mechanism: inversion of
the contact angle y induced by a sudden increase in tension sow between
the oil and water phases is essential for producing marked acceleration
in the self-motion of the oil droplet based on Young’s equation sws = sos +
sow cos y.

Fig. 4 (a) Oscillating liquid lens (side view). (b) Mechanism: (i) adsorption
of the oil-soluble surfactant onto the lens-water interface reduces sow and
evaporation of surfactant from the water surface increases swa, causing
the lens to expand; (ii) differential adsorption generates a radial surface
tension gradient Dsow that drives a circulation in the outer annulus of the
lens. The lower surface of the lens becomes unstable to a series of radially
propagating waves that sweep surfactant onto the water surface, reducing
swa and causing the lens to contract due to Young’s equation: e.g. the net
force balance at the triple point projected on the horizontal axis gives
swa + soa cos a + swo cos b = 0, where a is the contact angle between air
and oil and b between water and oil. Evaporation reduces the Tergitol
concentration on the water surface thereby reinitializing the system.

Fig. 5 (a) Rotating chemical waves in an annular container (side view).
(b) Mechanism: (i) adsorption of TSAC bilayer on the glass surface;
(ii) upward motion of contact line with desorption of outer leaflet, which
leads to the change in contact angle; (iii) desorption of the remaining TSAC
monolayer due to chemical reaction with the oil soluble anion, which
results in downward motion of contact line back to its initial position.
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motion at the fundamental level. The common features shared by
the systems considered in Fig. 2–6 are: operation under almost
isothermal conditions (which has not been quantified experi-
mentally, however), the inhomogeneous character (i.e. non-
uniform distribution of surfactant concentration and hence surface
tension), and interfacial singularities, obvious and less obvious
ones: (a) cone-tip/cusp singularity of pendant drop in Fig. 6 and
spontaneous emulsification in Fig. 4, and (b) contact line singular-
ity in Fig. 2, 3 and 5. The most apparent singularity is tip-streaming
in Fig. 6, which exhibits itself as a cone-tip or cusp from a
macroscopic prospective, though the contact line singularity is
known to have a multiscale nature as well. In both cases the
singularities are responsible for the removal/transport of surfactant
from the interface. In the oscillating pendant drop case the
surfactant is removed by tip-streaming and in all other cases either
evaporation or sorption occurs near the contact line, which leads to
the change of the contact angle and thus propulsion, cf. Fig. 3–5, or
transport of the bulk fluid dragged by Marangoni stresses – the
latter effect is present in all systems, but plays the key role in the
phenomena shown in Fig. 2, 5 and 6. All these observations
motivate the corresponding questions on their fundamental nature
and role in sustaining macroscopic motion. Finally, as will be
argued in Section 6, symmetries – such as in the oscillating lens –
and asymmetries – such as in the pendant drop – present in all
these examples enable their use, if properly harnessed, as engines
in a number of applications.

3 Homogeneous systems

To set the stage, let us first consider homogeneous systems, i.e.
systems with uniform thermodynamic properties (temperature
T, pressure p, etc.). First, we will briefly review the classical

Carnot cycle (Section 3.1) and then translate the analysis onto
homogeneous chemical systems (Section 3.2).

3.1 Heat engines

As we know from classical thermodynamics, the basic idea of a heat
engine is during one cycle to receive the heat Q2 from the hot
reservoir, to give the heat Q1 to the cold reservoir, and to perform
the work �W, where negative sign accounts for the convention in
the first law (1) that W represents the work done on the system.

In cyclic processes, cf. Fig. 7, the internal energy of the
system does not change, DU ¼

Þ
dU ¼ 0. Hence, integrating

the first law (1) one obtains 0 ¼
Þ
dQþ dW ¼ Q2 �Q1 þW , so

that the work done by the system is �W = Q2 � Q1, i.e. Q1 is the
heat wasted, and hence the engine efficiency is

Z ¼ �W
Q2
¼ 1�Q1

Q2
� 1: (3)

The total entropy change must be zero due to reversibility of the
Carnot cycle:‡

Q1

T1
�Q2

T2
¼ 0: (4)

An infinite number of such infinitesimal Carnot cycles can be
used to represent a general cyclic process with T changing
arbitrarily, cf. Fig. 7b – in this case adiabats cancel each other,
which brings us to the Carnot theorem.

Theorem 1 - Carnot’s theorem. The efficiency of any reversible
heat engine operating between heat reservoirs with temperatures
T1 and T2 is equal to the efficiency of Carnot engine:

Z ¼ 1� T1

T2
: (5)

Under more realistic assumptions about heat transfer than
typically made in reversible thermodynamics, endoreversible
thermodynamics67 shows that one has to give up the condition
of an infinitesimal temperature gradient required to achieve the
Carnot efficiency with the resulting infinitesimally small power.
Instead, the engine operates at the temperatures T1

0 and T2
0

while in contact with cold T1 and hot T2 reservoirs, respectively.
Thus, realizing that any transfer of heat between two bodies at
differing temperatures is irreversible67 and that non-

Fig. 7 Thermal Carnot cycles for standard (a) and general (b) homoge-
neous systems.

Fig. 6 (a) A pendant drop driven by Marangoni effects at the water–oil
interface (side view). (b) Mechanism: when interfacial surfactant concentration
G reaches a critical value Gc, its magnitude is suddenly reduced by DG in the
process of tip-streaming. Once triggered, the following sequence of repeating
events takes place: (i) sweeping surfactant towards the tip of a pendant drop,
which facilitates the tearing up of the interface; (ii) tip-streaming, which
removes surfactant from the drop and thus increases interfacial tension;
(iii) drop relaxation back to a round shape due to the increased interfacial
tension at its tip with the newly created surfactant concentration gradient
between the base and the tip of the drop driving Marangoni flow.

‡ Because T and S are state variables, they are the same at the end of a cycle, but
dQ can be non-zero because TdS is not a full differential.
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infinitesimal power is sought, by optimizing power over the
actual engine temperatures T1

0 and T2
0 one gets instead the

efficiency:

Zendo � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
; (6)

which is obviously lower than the Carnot efficiency.

3.2 Chemical engines

One can translate the above analysis to homogeneous chemical
engines with the first law (1) now written as

dU = dQ + dW + mdN, (7)

where the last term stands for an increase of internal energy
due to adding dN particles of chemical potential m (for simpli-
city a single-component system is considered).

First, taking for clarity of exposition T = const so that dQ is a
perfect differential dQ = TdS = d(TS) and hence dQ = 0 over the
cycle, and recalling that for reversible processes dQ = TdS and
dW= �pdV we can see the direct analogy between the chemical
potential m in chemical engines and the temperature T in heat
engines, and the same for the number of particles N versus
entropy S. This consideration brings us to the cycle in Fig. 8, in
which chemical energy dR a 0 is supplied when m = const and
there is no chemical energy exchange, dR = 0, on ‘adiabats’.§
Another way to think about the cycle in Fig. 8 is that, first, m2 is
supplied and then spontaneously (irreversibly) converted into
m1 and removed from the system in the same way as heat is
removed from the heat engine: this is, of course, not surprising
as both heat and chemicals are transported by the same
mechanisms, e.g. diffusion – in the former case it is called
Fourier’s law and in the latter Fick’s law. Such a change in the
chemical potential can be achieved in a number of ways.¶
Proceeding as in Section 3.1, we find that the work done by
the system is �W = R2 � R1, so that the efficiency is

Z ¼ �W
R2
¼ 1� R1

R2
� 1: (8)

If we treat the ‘‘high’’ and ‘‘low’’ chemical energy reservoirs as a huge
‘‘adiabatic’’ body, then the increase in the total number of particles is

R1

m1
� R2

m2
; (9)

but it must be zero for a cyclic process, which leads us to the analog
of the Carnot theorem for a general chemical cycle in Fig. 8b.

Theorem 2 - chemical Carnot’s theorem. The efficiency of
any reversible chemical engine operating between chemical
reservoirs with potentials m1 and m2 is equal to the efficiency
of chemical Carnot engine:

Z ¼ 1� m1
m2
: (10)

Applying the same reasoning as for thermal endoreversible
engines,67 i.e. assuming that the real chemical engine has the
chemical potentials m1 o m1

0 and m2
0 o m2, which according to

Fick’s law of diffusion guarantee that the chemical transport is
not infinitesimally slow, and then optimizing the power output
over possible values of m1

0 and m2
0, one arrives at the efficiency

Zendo � 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
similar to the efficiency of endoreversible

heat engines (6).
If T a 0 and not constant, then there could be heat

generated during the chemical cycle since TdS is no longer a
full differential (so that its integration over the cycle gives a
non-zero area). Note that instead of (p,V) variables in the
expansion work, one can apply the same analysis for the work
done by surface tension, i.e. dW = sdA in the (s,A) plane with the
obvious modification of (7). Thus the two basic cases correspond
to the work done by the bulk and by the interface, respectively:
� Bulk only: from 0 ¼

Þ
ðdW þ dQþ dRÞ we find �W = Q2 �

Q1 + R2 � R1, which gives the efficiency

Z ¼ �W
R2 þQ2

¼ 1� R1 þQ1

R2 þQ2
; (11)

i.e. the input now is a combination of chemical and heat
energies R2 + Q2, where Q2 is the heat generated by a chemical
reaction and thus contributes to the work done by the bulk
dW = �pdV.
� Interface only: the heat Q2 generated by a chemical

reaction does not contribute much to the (non-expansion) work
done by surface tension dW = sdA and hence can be neglected
as a useful input

Z ¼ �W
R2
¼ 1� R1

R2
�Q2 �Q1

R2
; (12)

in which case Q2 contributes to losses. Hence, the advantage of
isothermal reactions is that TdS becomes a full differential and,
since entropy S is a state variable,

Þ
TdS ¼ 0, so that (Q2 � Q1)/

R2 vanishes in (12) and the expression reduces to (8).
If the work is done by both bulk and interface, then for

T = const (and hence dQ = 0 over the cycle) the most useful work
(in terms of displacement) is done by the surface tension sdA,
so the bulk is passive here as dV E 0. To prove the latter point,
let us consider a liquid drop as a working body and determine
the interfacial displacement in the case when all the work done

Fig. 8 Chemical Carnot cycles for standard (a) and general (b) homo-
geneous systems.

§ We keep the term ‘‘adiabatic’’’ since its meaning, based on Greek origin, is
‘‘impassable’’, i.e. in this case impassable to chemical energy flow.
¶ For example, higher concentration of molecules corresponds to their higher
chemical potential, which is why they migrate to the area of lower concentration,
where their chemical potential lowers; e.g. the chemical potential for a non-ionic
surfactant as a function of bulk surfactant concentration C is m = m(0) + kBT ln C.
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by surface tension forces goes to the volume change DV of the
drop of volume V0:

DV
V0
� �Dp

K
; (13)

where the bulk modulus of water at moderate pressure is
K = 2.2 � 109 Pa and from the capillary forces balance Dp E
2Ds/R0, which gives for Ds = 0.1 N m�1:

DR � �2
3

Ds
K
¼ 10�10 m ¼ 1 Å; (14)

a value too small for all practical purposes unless one wants to
displace atoms.

4 Inhomogeneous systems: cycles

Despite its robustness, the analysis in the previous section does not
apply to the phenomena of interest here, i.e. Marangoni-driven
engines. The goal of the present section is to prove this point and to
develop a quantitative framework for understanding this new class
of systems.

Before considering interfacial phenomena, let us appeal to a
more familiar ‘pressure–volume’ paradigm. For an inhomogeneous
extended system the pressure p(x) varies from point to point x, so
that the internal energy reads

U ¼ TS �
ð
V

pðxÞdVx; (15)

instead of U = TS � pV for homogeneous systems. The first
question is how to understand the corresponding thermodynamic
cycles. Plots in the ( p,V)-plane seem to be no longer relevant as, for
example, the average pressure h pi could be constant thus resulting
in no work done in the context of the ( p,V)-diagram of Fig. 7 if the
system is treated as homogeneous with the p-axis being simply h pi.
However, it is clear that an inhomogeneous pressure distribution
with the same average should result in non-zero energy storage,
which if properly harnessed can be used to perform work. In the
same way, for the interfacial system8

U ¼ TS þ
ð
A

sðxÞdAx; (16)

the diagram in the (s,A) plane with s understood as the average
(over the entire system) value hsi would result in zero work done if
hsi = const even if the interfacial area A experiences non-negligible
variation since the integral

Ð
hsidA is zero over the cycle.

To develop intuition about energy storage in such inhomo-
geneous systems, let us first appeal to a basic mechanical
example – a longitudinally distorted elastica, cf. Fig. 9. If the
longitudinal distortion of an elastica is described by a function
x(x,t), then the left edge of a segment Dx at some time instant t
is displaced from its undisturbed position through distance
x(x,t) and the right edge through distance x(x + Dx,t) as shown

in Fig. 9. The elastic force F(x,t) of interaction between adjoining
segments of the stretched elastica consists of a constant tension
T (which could be present when the elastica is not distorted yet)
and an additional part related to a non-uniform distortion.
According to Hook’s law,

Fðx; tÞ � T þ SY
xðxþ DxÞ � xðxÞ

Dx0

� T þ ðSY þ TÞ@xðx; tÞ
@x

;

(17)

where Y is Young’s modulus of the elastica material, S the cross-
sectional area of the elastica, and we took into account that the
equilibrium length Dx0 of the segment is related to the deformed
one Dx via Dx = Dx0(1 + T/SY). Hence, the net force DF exerted on
the segment Dx by its neighbors becomes

DFðx; tÞ � ðSY þ TÞ @xðxþ Dx; tÞ
@x

� @xðx; tÞ
@x

� �

� ðSY þ TÞ@
2xðx; tÞ
@x2

Dx;

(18)

The work done by this external longitudinal force while the
segment Dx moves to its new position x(x,t) is

DW ¼ �1
2
ðSY þ TÞx@

2xðx; tÞ
@x2

Dx: (19)

The total potential energy of the deformation created by this
work over the entire elastica becomes after integration by parts

Epot ¼
1

2
ðSY þ TÞ

ðb
a

@xðx; tÞ
@x

� �2

dx; (20)

where we considered the endpoints a and b of the elastica fixed.
Hence, even if the elastica is initially under zero tension, T = 0,
the potential energy is non-zero. As we will show below, a similar
argument can be applied to the energy storage by a fluid due to
bulk compressibility (Sections 4.1 and 4.2) and then by the fluid
interface due to its compressibility (stretchability) even if the
bulk flow is incompressible (Section 4.3).

4.1 Pressure-gradient driven two-degree of freedom system

Let us consider a simple two-degree of freedom system as a first
approximation of an infinite-dimensional distributed one – two
ideal gases of equal amounts and at an equal temperature T0

separated by an insulating divider and contained in a thermally
insulated cylinder – as shown in Fig. 10. Despite its simplicity, this

Fig. 9 Longitudinally distorted elastica: displacement and deformation of
an elastica segment Dx caused by a longitudinal wave x(x,t) at some time
instant t and the forces F(x,t) and F(x + Dx,t) exerted on the edges of the
segment.

8 It is important to contrast the sign difference between +sA and �pV in the
expression (15) – both represent the work done on the system: in the latter if dV o
0 the work is positive, while in the former one needs to increase the area dA 4 0
to increase the energy of the system.
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system will be instrumental for understanding inhomogeneous
systems in terms of thermodynamic cycles. Clearly, p1/p2 = V2/V1 as
follows from the ideal gas equation of state, pV = mRT, where R
is the gas constant. Intuitively, the smaller the ratio V1/V2, the
more energy one can extract from this piston-cylinder system by
harnessing the moving divider to a work performing mechanism.

Assuming, for simplicity, that the process is fast and hence can
be approximated as adiabatic (similar to how sound wavepacket
propagation through air is fast enough so that no appreciable heat
exchange takes place68), we immediately conclude that equilibrium
thermodynamics only allows us to determine the final pressure,
which must equilibrate in both chambers to

p ¼ p1V1 þ p2V2

V1 þ V2
: (21)

The above equation is the consequence of the total internal energy
conservation U1 + U2 = U1

0 + U2
0, i.e. before and after the divider is

released, since the work performed by one gas on the other is
converted into the internal energy change of each gas; here we also
took into account that the internal energy of the ideal gas is a
function of temperature only, U = cVT = ( pV)/(g� 1), where g = cp/cV.
The final position of the divider cannot be found in the framework
of equilibrium thermodynamics.69 The only other conclusion one
can make is that the thermally insulated amounts of gas will have
their temperature changed to unequal values and both entropies
increased, DS1,2 4 0, thus indicating irreversibility of the process
(the potential energy of the compressed gas in the left chamber
went into both configurational and dissipative work).

Even in the case of a quasi-static process (i.e. infinitely slow,
which can be achieved by taking the divider infinitely heavy), so
that pVg = const in each chamber, neglecting the heat capacities
of the container and the divider, we readily find that the volume
V1 occupied by the left gas changes to V1

0 determined by

V1

V1
0 ¼

V1

V2

1þ V1

V2

� �1
g�1

1þ V1

V2

; (22)

and V2
0 follows from the volume conservation, V1 + V2 = V1

0 +
V2
0. Since there is no heat exchange with surroundings, the

work done is equal to the internal energy change

DUi = micV(Ti
0 � T0), (23)

where Ti
0/T0 = (Vi/Vi

0)g�1. From the resulting expression one can
clearly see that the resulting temperature distribution becomes
non-uniform, i.e. both gases acquire different temperatures despite
the same initial temperature and reversibility of the quasi-static
process (only configurational work is performed in this case).

Most importantly, this system gives an idea how to understand a
thermodynamic cycle of a many degree of freedom system, including
infinite-dimensional, in the (p,V)-space: namely, each fluid parcel
(i.e. infinitely small element70 compared to the volume of the system
under consideration, but large compared to the distance between
the molecules) has its own cycle as that in Fig. 7, which may produce
either positive or negative total work – the superposition of all these
cycles (an infinite number of them, in fact, for an extended system)
gives the resulting work done by the entire system consisting of an
infinite number of such parcels. Fig. 11 illustrates a motor with three
parcels.

Thus, the key conclusions from the finite-degree of freedom
systems are that inhomogeneities generate inhomogeneities, e.g.
an initially non-uniform pressure may lead to a non-uniform
temperature distribution, and that the way to represent thermo-
dynamic cycles of distributed systems in the ( p,V)-coordinates is
by treating each fluid parcel as having its own cycle.

4.2 Pressure-gradient driven infinite-dimensional system

Next let us consider a simple example of an infinite-dimensional
(distributed) system, in which energy is stored by a non-uniform
distribution of pressure inside the system volume. While pressure
itself gives rise to a force pdA as in the example considered in
Section 4.1 above, the pressure gradient is also a force as can be
seen from the momentum equation of fluid motion, namely
acceleration of a unit mass is du/dt B �r�1rp. Hence, the
elementary force acting on an elementary volume dV is dF =rpdV,
and thus its work over an elementary directed path ds is

dF�ds = dpdV. (24)

To proceed with further calculation we need to assume certain
equation of state, e.g. pdV = p0dV0 = const, which is an ideal gas
law applied to an elementary fluid parcel of initial size dV0

under constant temperature. From the fundamental thermo-
dynamic relationship we find that under constant temperature
dU � TdS = d(U � TS) = dF = �pdV, i.e. the elementary
Helmholtz free energy dF of a fluid parcel is preserved during
a parcel deformation. The Helmholtz free energy F naturally
appears here as a thermodynamic potential minimized under

Fig. 10 A gas-piston system of two ideal gases of masses m1 and m2.
(a) Initial state at t = 0 with uniform temperature T0. (b) Final state with
p1
0 = p2

0 and T1
0 a T2

0 settles after some oscillations of the divider due to
elasticity of the ideal gas.

Fig. 11 A thermodynamic cycle for a three-degree of freedom system.
The total work done is Wtotal = W1 + W2 � W12 � W3.
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constant temperature and volume. However, we can talk about
thermodynamic properties of a fluid parcel only since the entire
system is not in thermodynamic equilibrium, e.g. due to
pressure changing from parcel to parcel. With such an under-
standing of the equation of state, an elementary work done on
the initially homogeneous system at pressure p0 is then

dW ¼
ð
dF � ds ¼

ðp
p0

dpdV ¼ p0dV0

ðp
p0

dp

p
; (25)

which is positive if dp 4 0 since here dV stands for the parcel
volume, which cannot become negative. The total work W ¼Ð
dW performed on the system is

W ¼
ð
V

pdV

ðp
p0

dp

p
¼
ð
V

pðxÞ ln pðxÞ
p0

dVx; (26)

where we used the equation of state dV0 = (p/p0)dV in order to
integrate over the final volume V with the goal to evaluate the
stored energy distribution due to the pressure non-uniformities
in the final state. The argument x in (26) indicates the dependence
of pressure on the location x inside the volume V. Since for an ideal
gas under constant temperature the change in the internal energy
is zero, dU = 0, which is because the internal energy of an ideal gas
is a function of temperature only, then from (1) all the work must
be compensated by the heat, dW = �dQ. The latter means that
S B �W and hence, from the expression (26), it follows that the
entropy is a sum of p(x)ln(p(x)/p0) over all elementary volumes,
which is Shannon’s entropy71 – a generalization of Boltzmann’s
formula for entropy to the case when microstates do not have equal
probability. That is, the meaning of (26) is the computation of
all possible permutations over all possible elementary volume
deformations modulo the identical ones.

Obviously, the work (26) done by the pressure gradient
forces is different from that done by the pressure force

Ð
pdV

on a homogeneous system, i.e. in which p is the same every-
where and dV means the change in the total volume of the
system. In (26), since p0 is the initial uniform distribution in
our case, it is impossible to have p/p0 4 e pointwise everywhere
if the total volume of the system stayed unchanged as in the
example discussed in Section 4.1 – hence it is impossible to
overperform

Ð
pdV , which is the available expansion energy if

the work is done in an isentropic expansion as discussed below.
In this respect, one may also ask what is the difference between the
work done (26) from the functional

Ð
pðxÞdVx in (15), where the

index x shows that pressure depends on a point x in the volume?
During a reversible isentropic process dS = 0, the latter functional
representing the work of pressure forces is converted into internal
energy based on the first law (1): dU = TdS � pdV = �pdV, which
means that the process is adiabatic, in contrast to the condition of
the isothermality assumed in the derivation of (26). Eqn (26), when
applied to an ideal gas as we observed above, implies that all the
work is converted instead into heat as the internal energy does not
vary under constant temperature. Of course, one may also consider
the functional

Ð
pðxÞdVx as interpreted in an irreversible process,

say, free expansion where the work done dW is zero, but the integralÐ
pdV is not; also, while the heat generated is zero dQ = 0, there is

certainly an increase in entropy. In the case of an ideal gas, the
internal energy change dU = 0, which means that the temperature T
does not change, but because dU = TdS � pdV is still valid since it
relates the state variables, then apparently

Ð
pdV is converted into

the increase of the entropy T
Ð
dS.

4.3 Surface tension-gradient driven system

Now, turning our attention to systems with interfaces, we note
that the internal energy of the interface Us is given by the
fundamental thermodynamic relationship72

dUs ¼ TdSs þ sdAþ
X
i

midN
s
i ; (27)

where Ss and Ns are interfacial entropy and number of particles/
molecules, respectively. Applying Euler’s homogeneous func-
tion theorem to (27) we find the corresponding Euler’s integral

Us ¼ TSs þ sAþ
X
i

miN
s
i : (28)

Generalizing this functional to a distributed system with a
surface tension variation s(x) along the interface we get

Us ¼ TSs þ
ð
A

sðxÞdAþ
X
i

miN
s
i ; (29)

i.e. eqn (16) with the presence of several chemical components
taken into account. The question now is how this spatial
inhomogeneity of s(x) affects the energy that can be extracted
from a system. For example, it is clear that if one starts with a
spherical drop uniformly covered with a surfactant, it takes
work to redistribute surfactant non-uniformly along the drop
surface.

To address this question, consider the dynamic boundary
condition at the interface (without surface viscosities)

T�n = rs�(Iss) = 2Hsn + rss, (30)

where Tij = �pdij + tij is the complete stress tensor, s the
arclength, rs surface gradient, tij viscous stress tensor, n the
normal vector, Is surface idemfactor, and H = �rs�n/2 the mean
curvature. After a projection of (30) onto the tangent vector t we
get the balance of viscous and Marangoni stresses:

t�s�n = �t�rss = qss, (31)

i.e. without the bulk viscosity, so that s = 0, the Marangoni
stresses cannot be physically present70 – this observation will
be crucial later on. To determine an elementary force acting on
the elementary oriented area dA = ndA of the interface, cf.
Fig. 12, recall that the stress-tensor is defined as tij = dFj/dAi, so
that the force becomes dFi = sij�dAj = tij�njdA = (rss)idA, and
hence the work done to modify the element dA0 into dA with the
surface surfactant concentration changing from G0 to G over an
elementary path ds = tds is**

dW ¼ �
ð
dF � ds ¼ �

ð
dsdA: (32)

** Clearly, if dA0 = dA and hence G0 = G provided GdA = G0dA0, then there is no
surface tension gradient and thus the work done dW = 0.
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Expression (32) in contrast to (25) has a negative sign because
this is the work done against Marangoni stresses†† if the
interface is locally shrunk, i.e. when surfactant concentration
G is locally increased, dG 4 0, so that surface tension s
decreases, ds o 0, and hence acts against the interface
shrinkage; note that dA 4 0 as a given surface element cannot
shrink to a negative value. If GdA = G0dA0 is a local con-
servation‡‡ of the surfactant surface concentration G for a
surface element (in the integral form

Ð
AGdA) valid for insoluble

monolayer or when the interface deformations are much faster
compared to the sorption kinetic time scales, then

dW ¼ �G0dA0

ðG
G0

s0ðGÞ dG
G
; (33)

where s0(G) = ds/dG and we used the assumed surfactant
amount conservation dA0 = (G/G0)dA. For example, if the sur-
face tension is a linear function of concentration, s = s0 � KG
with K 4 0, then (33) gives

dWðxÞ ¼ KGðxÞ lnGðxÞ
G0

dAðxÞ; (34)

where we assigned an index x to each elementary area dA(x) as it
is stretched differently at different locations x. Formula (34) was
formally derived earlier by Schwartz and Roy,73 but without
further insights into its meaning and out of the context of
thermodynamics, which will be addressed in Section 5.1. Similar
to the interpretation of formula (26) in terms of Shannon’s
entropy, one can apply the analogous argument to (34) – in the
case of the linear surface equation of state the elementary work
(33) is just a computation of permutations of all possible
deformations of elementary surface elements modulo the iden-
tical ones thus leading to (34) and for the general equation of
state it modifies the distribution of probability with the weight
s0(G), cf. eqn (33). Note that in the derivation of the work (32) we
took into account only the work done against Marangoni stres-
ses, but not the work of creating inhomogeneities in chemical
energy – the last term in (27) – which is justified by the assumed
surfactant mass conservation so that dNs = 0. In general, how-
ever, the expression for the work required for creating inhomo-
geneities should account for variations of both surface tension
and chemical potential along the interface.

The total amount of work done on the system is found after
summing up over all elementary transformed areas dA’s, i.e.

after integration over the final state area A, which gives the total
energy of a particular surfactant configuration:

W ¼
ð
dW ¼ �

ð
A

G
ðG
G0

s0ð~GÞd
~G

~G
dA; (35)

or the work (stored energy) density per unit area

dW
dA
¼ �G

ðG
G0

s0ð~GÞd
~G

~G
: (36)

For example, if the interface is shrunk everywhere, then G4 G0,
but since s0(G) o 0, dW/dA is positive. Note that the work done
in (35) is path-independent in the sense that it does not depend
on the manner in which the surfactant distribution was
achieved – this is due to the fact that the reactive force is a
gradient of a potential function (surface tension), but expres-
sion (36) depends on the material behavior s0(G); in fact, W 4 0
as the standard interfacial material behavior obeys s0(G) r 0. In
this sense, in the general formula (35) there is dependence on
the gradient of the concentration G, even though it is implicit,
as opposed to the interpretation of Schwartz and Roy.73

It is straightforward to show that (35) is always non-negative
under the constraint that the total amount of surfactant is conserved,
i.e.

Ð
AGdA ¼ const. First, one can consider the case of constant

s0(G), which reduces the problem to variational one with a con-
straint, e.g. for simplicity when the area A is an interval of length l

Iðf Þ ¼
ðl
0

f ln f dx;
1

l

ðl
0

f dx ¼ 1: (37)

The minimum I( f ) = 0 is achieved at f = 1 and the corresponding
Lagrange multiplier l = l. For all other distributions of f, I( f ) 4 0.
Next, noting that s0(G) is sign-definite, one can majorize the integral
in (35) and thus prove that W Z 0 for general material behavior
s(G). From (37) it is clear that f behaves as a probability distribution
function on the unit interval x/l A [0,1].

In summary, as opposed to moving a block along a surface
against the friction force, in which case the work spent on
pushing does not lead to energy storage, in the case of Mar-
angoni stress despite its inevitable coupling to the bulk shear
and thus bulk dissipation (31), not all work against Marangoni
stresses is converted into kinetic energy of dragged fluid and
viscous dissipation at the same rate as the work is performed,
which allows for energy storage and subsequent release. This is
similar to compressing an elastica as discussed at the begin-
ning of this section, which also has some dissipation in the
process of deformation, but nevertheless stores some energy.
From a practical point of view, if the elastica remains the same
length as its undeformed state, then such a potential energy is
usually considered useless unless the resulting longitudinal
waves propagating in the string74 are harnessed to be converted
into non-expansion work (e.g. shaft work, stirring, etc.) and
eventually into heat. In our case, however, the boundary con-
dition (31) coupling viscous and Marangoni stresses allows for
energy extraction from the inhomogeneity in surface tension,
which can be used, for example, for stirring, as the bulk fluid is
dragged by Marangoni gradients at the interface.

Fig. 12 On the stress-tensor definition.

†† A good analogy would be the work of pushing a block of weight mg along a
surface against friction forces mmg: dW = �F�ds = mmgds, where F = �mmg as this
force must, at least, balance the friction force.
‡‡ Note that versus this local conservation law, the global one for uniform
distribution of surfactant would state GA = const, which in turn implies that
when either the area or concentration changes (uniformly), then dA = �AdG/G.
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4.4 Thin film

As a particular case of application of (35), let us consider a thin
film with a non-uniform distribution of an insoluble surfactant,
cf. Fig. 13.

The corresponding initial-boundary value problem for the
plane-parallel case (no vertical velocity component and no free
surface deformation) reads

@u

@x
þ @v
@y
¼ 0; (38a)

@u

@t
þ u

@u

@x

/

¼ � 1

r
@p

@x

/

þ m
r

@2u

@x2

/

þ @
2u

@y2

0
@

1
A; (38b)

@G
@t
þ @

@x
Gusð Þ ¼ D

@2G
@x2

; (38c)

y = 0: u = 0, (38d)

y ¼ h: m
@us
@y
¼ ds

dG
@G
@x
; (38e)

where the latter boundary condition corresponds to (31) with
the force component being dFx and the oriented area dAy, cf.
Fig. 12 and 13, so that tyx = dFx/dAy = mdu/dy. In (38b) we crossed
out the vanishing terms: velocity u is no longer a function of x
thanks to the continuity eqn (38a) – if ux a 0, then there would
be a non-zero vertical velocity component; also there is no
externally imposed pressure gradient px = 0. It is easy to see that
the above system admits the following exact solution for the
surfactant concentration and the fluid velocity, respectively:

Gðt; xÞ ¼ �s
0

m
a2htþ G0ðxÞ; uðyÞ ¼ s0

m
ay; (39)

where we denoted s0 	 ds/dG and G0(x) =ax is the initial
surfactant concentration distribution. Clearly, the flow is dri-
ven by the concentration gradient, i.e. if a = 0 then there is no
induced fluid motion. Multiplying (38b) by u and integrating
across the film we find the rate of fluid kinetic energy change
(dropping the factor m/r) for the steady-state (fully developed)
velocity profile (39)ðh

0

u
@2u

@y2
dy ¼ u

@u

@y

����
h

0|fflffl{zfflffl}
energy input

�
ðh
0

@u

@y

� �2

|fflfflfflfflffl{zfflfflfflfflffl}
dissipation

dy ¼ 0; (40)

where both energy input and dissipation are equal to (s0a/m)2h
and thus cancel each other, i.e. the energy input due to the

surfactant concentration G(x) gradient is balanced by viscous
dissipation. As it was mentioned above, the presence of dis-
sipation is unavoidable in Marangoni-driven systems, which
can be seen from eqn (31) – existence of Marangoni stresses
implies the presence of viscosity.

4.5 Effects of surfactant solubility

To account for the effect of surfactant solubility, for transparency
let us again consider a film of thickness h, which is being
manipulated to achieve a non-uniform distribution of surfactant
and hence capable of delivering energy. Local mass balance in
this case reads

(Ch + G)dA = (C0h + G0)dA0, (41)

where C is the bulk concentration. For the purpose of our
analysis and the points to be made it is sufficient to limit
ourselves to Henry’s equilibrium isotherm, i.e. G = KHC. First
consider the case when the film thickness does not change in
the process, which leads to

(h/KH + 1)GdA = (h/KH + 1)G0dA0, (42)

but because the factor (h/KH + 1) stays constant, this case is
reduced to that already considered in Section 4.4, i.e. when the
surfactant is treated as insoluble, GdA = G0dA0. Therefore, it
is more interesting to treat the case of variable film thickness,
e.g. when due to fluid incompressibility the film volume is
conserved, which implies that dV = hdA = const. In this case the
local surfactant conservation law reads

CdV + GdA = C0dV0 + G0dA0. (43)

Hence, one can decompose the work into two integrals – the
first over the interface Ws, which has already been considered
(35), and the second over the bulk Wb following the same
procedure as in deriving (35):

Wb ¼ �
ð
V

C

ðC
C0

s0ðCÞdC
C

dV ; (44)

where now we consider surface tension as a function of the
bulk concentration (in any case C and G are related by the
Henry isotherm). Since s0(C) o 0, the work Wb is positive,
which suggests energy storage in the bulk. Physically, this is
straightforward to appreciate: let the redistribution of surfac-
tant in a non-uniform concentration state happens slowly
enough (or the film to be thin enough for the processes of
diffusion and sorption to happen fast) so that the equilibration
between the bulk and surface concentrations is achieved, but
fast enough to avoid the bulk diffusion along the film extent
bringing the entire system to a uniform equilibrium at each
location along the film, cf. Fig. 14a. Then, when the film is
released to perform work it happens on a time scale faster than
that required for achieving an equilibrium between the bulk and
surface concentrations – in this case, the first part of the work is
initially performed by the surfactant at the interface alone
(Fig. 14a) and then, once the bulk concentration exchanges with
the interface (Fig. 14b) producing a new non-uniformity of the

Fig. 13 Marangoni effects in a thin film.
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surface concentration (Fig. 14c), it leads to an extra work Wb

performed.
Finally, it is worth commenting on the case when time-

dependence of the surfactant kinetics is comparable to the
engine operation time scale. Let us consider the case of the
non-equilibrium Henry isotherm, which will be sufficient for
our purposes:

dG
dt
¼ kaCðtÞ � kdGðtÞ; (45)

where ka and kd are the adsorption and desorption coefficients,
respectively. Obviously, in this case GdA a G0dA0 and, because
of the time-dependence, it makes sense to focus on the power
production – from (32) we find:

P ¼ dW
dt
¼ �

ð
A

s0ðGÞdG
dt

dA

¼ �
ð
A

s0ðGÞ kaCðtÞ � kdGðtÞ
	 


dA;

(46)

or simply power density per unit area

dP
dA
¼ �s0ðGÞ kaCðtÞ � kdGðtÞ

	 

; (47)

which by comparing with the work density (36) in the time-
independent case suggests that the first term in (47) – adsorption
of surfactant from the bulk to the interface in step 2 of Fig. 14b –
contributes to increasing power (recall that s0(G) r 0), while the
last one – desorption of surfactant from the interface to the bulk –
decreases the delivered power.

4.6 Period of a Marangoni-driven cycle

Appealing again to the case of a thin film of thickness h with a
non-uniform distribution of an insoluble surfactant (or when
sorption is slow) over an area of size l as shown in Fig. 13, we
can estimate the period of a Marangoni-driven cycle. The
balance of Marangoni and viscous stresses (31) gives

Ds
l

 m

u

h
; (48)

so that the time it takes to redistribute surfactant uniformly is

Dt 
 l

u

 m

Ds
l2

h
: (49)

For a drop, l B h, so that one gets t B lm/Ds. After this time, the
non-uniform surface tension distribution should be restored,
as it happens in the pendant drop phenomena in Fig. 6, which
repeats the cycle.

4.7 The role of singularity

Singularities at a macroscopic level are crucial for reinitializing the
Marangoni cycle. For example, singularity formation is instrumen-
tal in the chemical-reaction driven pendant drop75 shown in
Fig. 6 – tip-streaming allows for removal of surfactant from the
interface giving space for production of a ‘fresh’ surfactant and
hence a concentration gradient. In fact, as known from experi-
mental observations, among the regimes of interfacial mechanical
motion are violent and erratic pulsations,38–41 all of which indicate
intermittent formation of interfacial singularities.

With reference to Fig. 6 one can make a few further
observations. First, should the concentration be the same along
the interface, the chemical potential near the tip of the drop
must be significantly larger because of the general curvature-
dependence of the chemical potential governed by the Gibbs–
Thomson equation76 – hence one would expect motion from
the tip (region of high m) towards the base of the drop. However,
in the dynamic situation the concentration near the tip due to
tip-streaming is lower compared to that near the base of the drop
where the fluid is not moving, which reconciles the fact that the
direction of fluid motion is observed from the drop base (region of
higher concentration and thus higher chemical potential) towards
the tip (region of lower concentration and thus lower chemical
potential). However, because the chemical potential is a function of
both concentration and curvature, one would expect that due to
these two competing factors there should be a critical value of the
tip radius of curvature at which the process would stop.

Finally, in terms of thermodynamic cycles for distributed
systems, cf. Fig. 11, it is only one parcel which is being highly
deformed and torn up – hence its corresponding cycle is not
closed as at some point in time it is no longer part of the
system, cf. Fig. 15. This is how a singularity exhibits itself in
standard thermodynamic terms.

Fig. 14 On the Marangoni flow in a soluble surfactant-laden film. (a) Step 1:
interfacial concentration induced Marangoni flow. (b) Step 2: excess bulk
surfactant is supplied to the interface. (c) Step 3: final G-induced Marangoni
flow.

Fig. 15 A cartoon on how an interfacial singularity is reflected on a
thermodynamic cycle for a three-degree of freedom system. A cycle of
one of the fluid parcels is ruptured due to removal of the working fluid
from the system.
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5 Inhomogeneous systems:
thermodynamics
5.1 Irreversibility of interfacial systems

To get a better insight into the meaning of formula (35) let us
compare it with what the standard thermodynamic cycle for
homogeneous systems would predict, which of course requires
that the surfactant concentration is either uniformly distributed
or considered in an averaged sense so that one has a global
conservation law AG = const 	 A0G0 – the change in the surface
energy es for small variation in the area and hence concentration
dG = G � G0 reads

des ¼ AsðGÞ � A0s G0ð Þ ¼ A0s0
dG
G

G0
s0
0

s0
� 1

� �
; (50)

which is negative as s0
0 	 s0(G0) o 0, i.e. the energy decreases if

the interface is compressed and thus the concentration is
increased, dG 4 0. This, from a first glance, counterintuitive
result is, however, expectable since both A0 and G0 are larger
than their final values A and G, but certainly contradicts (35), i.e.
the fact that energy can be extracted if the interface is contracted
as predicted by the analysis of the system when treated as
inhomogeneous one.

First, the negative sign of (50) suggests that, according to the
principle of minimum energy, the interface can shrink to zero
area on its own, but in practice this is impossible because the
volume enclosed by the interface cannot be compressed indefinitely
plus there are effects of external forces such as gravity, which prevent
liquids from assuming the minimal spherical shape.

Second, to make the contrast of (50) with what formula (35)
would predict more transparent, consider the case when both
the initial and final states have a uniform surfactant distribu-
tion (otherwise (35) should be integrated over A(x) and dG(x)),
e.g. when s0(G) = �K = const:

W ¼ KG ln
G
G0

A; (51)

which is positive if the final concentration G is higher than the
initial one G0, i.e. if the final area A o A0 even if the initial G0

and final G surface concentrations are both uniform – notably
this is in contrast to (50) obtained without accounting for the
physics of Marangoni effects, which act in the process leading
from an initial to a final state. One could argue that one can get
from such an initial to final state quasi-statically so that at each
infinitesimal step G = const. However, obviously this is impossible
as it would require in the process of interface shrinking to control
each of the surfactant molecules individually to make sure that they
are equidistant from each other – similar to Maxwell’s demon77 it
would require a non-zero work to be done.

Finally, note that since (50) corresponds to the term sdA in
the energy balance (27) and does not account for the work done
against Marangoni stresses (32), then eqn (27) also does not
account for the physics of energy storage/production on surface
tension inhomogeneities. Basically, elementary work (32) in a
distributed system is not part of (27) for a homogeneous system –
the latter is written for the change of the entire system, while the

former is for its elementary part. Hence one cannot simply add
(32) to (27).

To see this from another point of view, let us consider the
process in which half of a flat interface of constant area is being
stretched by dA, while the other half is being shrunk by the
same amount �dA, cf. Fig. 16 – overall the process conserves
the total area and should be called isochric in analogy with the
isochoric, i.e. constant-volume, process.§§ Assuming that the
surfactant is uniformly distributed in the process, the change
in the surface energy in this case, e.g. for the right half, is

ders ¼ sðGþ dGÞðA� dAÞ � sðGÞA

¼ sGðGÞGdAþ sGGðGÞG2 ðdAÞ2
2A

þ h:o:t:;

(52)

where we took into account that

dG
G
¼ dA

A
þ dA

A

� �2

þ . . . (53)

The surface energy change del
s for the left half follows from the

change of signs, dA - �dA and dG - �dG in (52):

ders ¼ sðGþ dGÞðA� dAÞ � sðGÞA

¼ sGðGÞGdAþ sGGðGÞG2 ðdAÞ2
2A

þ h:o:t:

(54)

Clearly, as opposed to the clean interface case when s = const,
the energies der

s and del
s are not balanced, i.e. there is a positive

energy produced:

des ¼ dels þ ders ¼ sGGðGÞG2 ðdAÞ2
A

; (55)

so that sGG is an indicator of an irreversibility here. Indeed, if
the process of stretching the interface and then shrinking it
back is not done quasistatically, then similar to the process
of compressing–decompressing ideal gas (regardless if the
process is adiabatic78 or isothermal79) the irreversibility is
inevitable: the heat generated in the process of shrinking, cf.
Section 5.2, is irreversibly lost to the bulk and surroundings. In
fact such an irreversible behavior should not be surprising¶¶ as
the surfactant laden interface behaves as a 2D ideal gas with the
equation of state for the surface pressure80 p 	 s(G = 0)� s(G) =
RTG – hence the argument developed for the ideal gas in
Section 4.1 applies here as well; deviations of the interface

Fig. 16 On asymmetry and irreversibility of interfacial changes.

§§ The term ‘‘isochoric’’’ is derived from Greek isos meaning equal and choros

meaning space – in analogy one can construct ‘‘isocric’’ from chros meaning
surface of a body.
¶¶ Mathematically, this asymmetry follows from the second order
differential being positive definite for any function f (G):

f ðGþ dGÞ ¼ f ðGÞ � f 0ðGÞdGþ f 00
ðdGÞ2
2
þ . . . (56)
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from the ideal gas law for elevated surfactant concentrations
only make the irreversibility worse by increasing dissipation.
The same observation of irreversibility can be made about the
temperature dependence of surface tension: as known from
Kelvin’s calculations (see Section 5.2), when stretching the
interface its temperature drops and when shrinking the inter-
face its temperature increases, but in the process of first
stretching and then shrinking by the same amount there will
be irreversible changes in the system.

5.2 Surface entropy

As follows from (28), when d(sA) o 0, dU can still increase due
to an increase in the chemical potential m and the heat genera-
tion resulting from the increase in temperature in the process
shrinking (since the work of Kelvin81 it is known that a soap
film should cool down if being stretched) and in the increase in
entropy as per the following considerations.

When Kelvin considered the heat absorbed by a stretching soap
film, he appealed to a Carnot cycle-type of analysis,82,83 cf. Appendix
A, but in the case when surface tension is a function of temperature
only, s(T). In reality, however, soap films cannot exist without a
surfactant and hence surface tension must be considered as a
function of two variables s(T,G), temperature T and surface concen-
tration G. Despite the ‘foolproof’ nature of the Carnot-type analysis,82

it proves to be misleading (cf. Appendix A) and, if one wants to get
the correct result, too cumbersome compared to the state variables
analysis to be performed below.

Having in mind a process under constant temperature T and
constant external parameters, for a system of two phases and a
flat interface between them it is natural to appeal to the
Helmholtz free energy F: its total value and elementary change
are respectively given by

F = �PV + mN + sA, (57a)

dF = �PdV � SdT + mdN + sdA, (57b)

where we added a new extensive parameter – surface area A –
into consideration (in addition to N,V,T); the free energies of
each phase are:

Fa = �PVa + mNa, Fb = �PVb + mNb. (58)

The interfacial free energy should then be

Fs = F � Fa � Fb = sA + mNs. (59)

To obtain the surface entropy, we derive a surface Gibbs–
Duhem equation. Using dF from (57b) and writing

dFa = �SadT � PdVa + mdNa, (60a)

dFb = �SbdT � PdVb + mdNb, (60b)

we have

dFs = �SsdT + mdNs + sdA. (61)

Now taking a full differential of (59) and comparing with (61),
we get the surface Gibbs–Duhem equation:

0 = �SsdT � Ads � Nsdm. (62)

Dividing the latter expression by the interfacial area A we get a
formula for the surface entropy per unit area ss = Ss/A:

ssdT = �ds � Gdm, (63)

that is

ss ¼
dSs

dA
¼ �@s

@T
� G

@m
@T

: (64)

The above expression has an extra (last) term compared to
Kelvin’s result81 ss = �qs/qT, which is due to the presence of an
adsorbed substance (surfactant) and the variation of the
chemical potential with temperature. Note that in (64) while
the derivative sT is negative, mT is generally positive as known
from experimental measurements,84 which means that the heat
effects represented by both terms are competing, i.e. if the
interface is being stretched (dA 4 0):
� dQ1 = �TsTdA 4 0, so that this heat is absorbed by the

interface due to the first effect in (64);
� dQ2 = �TGmTdA o 0, so that this heat is released by the

interface due to the second effect in (64), which makes sense as the
interfacial entropy must lower, dSs o 0, as G decreases and hence
the number of available microstates is reduced and the chemical
potential at the interface should decrease with decreasing G.

Given (64), the entropy density gradient along the interface
becomes

rsss ¼ �
@2s
@T@G

þ G
@2m
@T@G

þ @m
@T

� �
rsG; (65)

which must indicate that the surface entropy is higher where G
is higher as a simple consequence of the fact that the surfactant
concentration G increases and hence does the number of
available microstates per unit area.88 Therefore sTG + GmTG +
mT o 0. In the context of our discussion the important implica-
tion of (64) is that the interfacial entropy density ss increases
when work is performed to compress the interface (and thus to
increase the surfactant surface concentration G).

5.3 Isothermality

Isothermality of interfacial engines is directly related to the
heat generated or absorbed at the interface due to: interface
stretching/shrinking, chemical reactions at the interface, and
adsorption of surfactant to and from the bulk (which itself is an
example of a chemical reaction at the interface).

While the heat generation due to interface stretching was
addressed in Section 5.2, the heat generation due to a chemical
reaction at the interface depends on its nature. For example, if
the surfactant is produced by a chemical reaction – so-called
saponification – this contributes to the energy balance: such a
reaction is usually of an endothermic type, meaning that it
absorbs heat from the surroundings, which is why saponifica-
tion reactions are often used in fire extinguishers. Therefore,
with an idea to get a general useful expression, we will instead

88 This observation should not be confused with the fact that for a given amount
of substance the entropy of vapor is higher than that of liquid and the entropy of
liquid is higher than that of solid.
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focus on adsorption as a particular case of interfacial chemical
reactions, so that the heat can be calculated as a function of
surface material behavior (s,m).

The non-expansion work done to adsorb an amount dG of
surfactant to the interface of constant area A follows from the
expression for the interfacial internal energy (28):

dW ¼ d sAþ mNs½ � ¼ @s
@G
þ mþ G

@m
@G

� �
AdG: (66)

Naturally, surface entropy in this process is increasing dss 4 0
as the number of microstates in increasing, which allows us to
determine the amount of heat to be released by the interface to
surroundings in order to maintain constant temperature:

dQ ¼ TdSs ¼ TAdss

¼ � @2s
@T@G

þ @m
@G
þ G

@2m
@T@G

� �
TAdG:

(67)

Since dss 4 0, from (67) it follows that dQ 4 0 for dG4 0, i.e. the
process of adsorption leads to heat generation. This observation
is also consistent with the fact that normally in the process of
adsorption the surfactant goes spontaneously (dW o 0) from the
high chemical potential region (bulk) to the lower chemical
potential region (interface) – this difference in chemical poten-
tials is released as heat. Altogether, the first law (1) suggests that
in order to maintain the internal surface energy Us = const (and
temperature T = const if the surfactant concentration is dilute so
that it can be considered as a 2D ideal gas, cf. Section 5.1) while
increasing the entropy, heat must be released.

Another source of heat generation is due to viscous dissipation
inevitable when Marangoni stresses operate based on (31). Assuming
that all this viscous dissipation is converted into heat, let us estimate
the temperature increase. If the variation of surface concentration
DG occurs over the distance l, the parameter a defined in Section 4.4
can be estimated as a = DG/l and from (40) we find that over the
characteristic time of the Marangoni-driven cycle (49) the change in
the bulk internal energy:

DU ¼ m
r

Ds
DG

DG
ml

� �2

hDt ¼ Ds
r
¼ cpDT ; (68)

so that per unit mass DU [J kg�1] = Ds/(rh). This result applies to
other geometries as well, e.g. for a drop l B h would be its diameter.
Then, say, for water as a working medium – under constant pressure
the increase in internal energy is DU = (cp � aTpV)DT, where in the
second term aT is the coefficient of thermal expansion (under
constant pressure, accordingly). For systems of the sizes we are
interested in, this term can be neglected and hence from (68) DT =
Ds/(rcp) = O(10�2) K, where we used the value of specific heat
capacity cp = 4.2 J (g K)�1 under room temperature of 20 1C.
Regardless of the nature of the interfacial chemical reaction such
a temperature increase is negligible and for most environmental
conditions is diffused away to surroundings, which justifies the idea
that Marangoni-driven engines are almost isothermal for most
practical purposes.

Finally, since the interface has its own entropy, one can define an
effective ‘‘thermal’’ interface of (time-dependent) thickness equal to

the thermal diffusion length, which is according to the Fourier law is



ffiffiffiffiffi
kt
p

, where k is the thermal diffusion coefficient. If this length is
small compared to the extension of the bulk of the fluid, then one
can speak of the different bulk Tb and interfacial Ts temperatures.
It is not unusual to speak of the interfacial properties separate
from that of the bulk. For example, when soap film is being
stretched, it absorbs heat from surroundings because of the
processes happening at the interface, but not in the bulk. One
can say that the temperature of the interface is being dropped in
the process of stretching, while this is not what is happening in
the bulk; of course, the temperature in the bulk of the soap film
will also (eventually) drop because of the heat exchange between
the interface and the bulk. If the heat is generated or lost (as in
the case of stretching soap film which requires heat to be
absorbed from surroundings in order to maintain constant
temperature or in the case of chemical reaction at the interface),
then it takes l2/k time to diffuse over the system of extent l.

5.4 Energy output and efficiency

Using the definition (3) of thermal efficiency Z = Wout/Qin and
the first law of thermodynamics (1), where the work consists of
the work done by pressure forces and non-expansion (ne) work,
dW = �PdV + dWne, we can focus on a constant pressure
process, thus naturally bringing us to the enthalpy H:

dH = dQ + dWne, (69)

which for reversible processes, i.e. when dQ = TdS, gives dH �
TdS = �dWne. The left hand-side of this expression is the Gibbs
free energy, dG = dH � TdS = mdN under constant temperature
processes. Hence, dWne = �dG.

Since the heat input is dQin = �dH, then

Z ¼ dG

dH
¼ dH � TdS

dH
: (70)

Note that the enthalpy change for any reaction that releases energy
is negative, while the entropy change can be both negative and
positive. If dS 4 0, the reaction will absorb additional heat from
the surroundings, so that dQin = �dH + TdS and therefore

Z = 1 for dS 4 0 and Z o 1 for dS o 0. (71)

Thus, the ideal efficiency Z = 1 is theoretically achievable for such
systems. Since G = miNi, the work is done either by the change of
the chemical potential mi or the number of particles Ni or both.
Hence, at least theoretically, the efficiency can be close to 1.

It is also useful to look at the energy output from the point of
view of a chemical potential, which is the basic measure of the
chemical energy in the system. If we use the equation m = m(0) +
RT ln C for the chemical potential of a non-ionic surfactant and
the equilibrium Henry isotherm G = KHC, then the work density
relationship (36) under the assumption that s0 = sG = �K =
const gives the following density of stored energy

dW
dA
¼ KKH

m� mð0Þ

RT
e
m�mð0Þ
RT ; (72)

which is positive and thus consistent with (36); here we used
the fact that G|m=m(0) = KH. The expression (72), which is positive
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in view of s0 o 0, suggests that the higher the deviation of the
chemical potential from its reference state m(0) due to (local)
compression of the interface (so that the surfactant concen-
tration increases), the higher the work density.

It is also interesting to relate this observation to the mono-
layer compressibility85 defined in terms of the surface chemical
potential m and the molecular area a:

bs 	 �
1

a

@a

@p

� �
T

¼ �@a
@m

����
T

; (73)

where the slope qa/qm is clearly negative and thus the compres-
sibility coefficient is positive: the more compactly situated the
molecules (smaller a) are the higher is their chemical potential m.
From (73) it follows that the lower the compressibility, i.e. less
steep the graph of a(m), the smaller the change in a for the same
increment in chemical potential Dm or, conversely, for the same
Da there will be higher Dm for lower bs. Thus, in order to achieve
higher chemical potential m for the same decrease in the
molecular area Da o 0, it is better to have a lower monolayer
compressibility coefficient bs.

5.5 On the material behavior r(T,C)

In Section 4.3 we encountered the second derivative sGG and in
Sections 5.2 and 5.3 we inevitably arrived at the mixed deriva-
tive sTG, the sign of which affects the thermodynamic response
of a liquid interface. Hence, it is natural to appeal to the
stability of matter via deducing appropriate thermodynamic
inequalities.84 Since we are interested in variations of G (or,
equivalently, the surfactant amount Ns) and T under constant
volume V and area A, i.e. the process is both isochoric and
isochric, it is natural to consider the Helmholtz free energy
F = Fb + Fs with the appropriate surface and bulk parts:

Fb = Ub � TSb = �pV, (74a)

Fs = Us � TSs = mNs + sA, (74b)

having the corresponding differentials

dFb = �SbdT � pdV, (75a)

dFs = mdNs + sdA � SsdT. (75b)

Calculating the variation of the total free energy F:

dF ¼ @F

@T
dT þ @F

@Ns
dNs

þ 1

2

@2F

@T2
dT2 þ 2

@2F

@T@Ns
dTdNs þ

@2F

@Ns
2
dNs

2

� �
þ . . . ;

(76)

and taking into account that

@F

@T
¼ �S ¼ �Sb � Ss;

@F

@Ns
¼ m; (77)

we find that a small deviation from an equilibrium, at which F
is minimized, obeys:

@2F

@T2
dT2 þ 2

@2F

@T@Ns
dTdNs þ

@2F

@Ns
2
dNs

2 4 0: (78)

In the case when m = const we conclude that

@2s
@T2

dT2 þ 2
@2s
@T@G

dTdGþ @
2s
@G2

dG2 4 0; (79)

whose positive definiteness in turn implies

sTTsGG � (sTG)2 4 0, (80)

i.e. sTT and sGG must have the same sign, while sTG can assume
any sign.

If, however, the chemical potential m is not constant, but a
function of both temperature T and concentration G, instead of
the condition (80) we get

(sTT + GmTT)(sGG + 2mG + GmGG) � (sTG + GmTG + mT)2 4 0,
(81)

If m is a linear function of the temperature T, then, as one of the
two options, there must be sTT 4 0 and sGG 4 �2mG � GmGG,
where it is known that mG o 0. Hence, there is a possibility for
both sTT and sGG to have different signs.

6 Conclusions and applications

In the presented work we started by drawing a parallel between
homogeneous heat engines and chemical ones with the corres-
ponding efficiency computed for both Carnot-type (10) and
endoreversible cycles. However, as was demonstrated next,
standard thermodynamic cycles are not able to explain the
operation of systems, in which energy is stored on inhomo-
geneities. Proper modification of the thermodynamic cycle
approach for distributed systems was offered, which allowed
us to understand the role of singularities in thermodynamic
terms as well, and to estimate the period of Marangoni-driven
cycles (49). The corresponding energy storage was computed
both in 3D for pressure gradient-driven systems (26) and in 2D
for interfacial surface tension gradient-driven systems (35).
A connection to Shannon entropy was established. A thin film
example was used to highlight the mechanism of energy
storage and dissipation, for both insoluble and soluble surfac-
tants. In the latter case the effect of kinetics was explored with
the finding that part of energy (44) can be stored in the bulk
as well.

Next, a detailed thermodynamic study of surface tension
gradient-driven systems was performed. In particular, intrinsic
irreversibility of interfacial processes in systems with surface
tension dependent on both temperature and surfactant concen-
tration s(T,G) was analyzed. Naturally, the expression for sur-
face entropy (64) was found in the general case of s(T,G), which
corrected the classical Kelvin’s formula. Isothermality of
Marangoni-driven engines has been evaluated quantitatively
with the contributing factors due to dissipation and adsorp-
tion. Since second derivatives of s(T,G) naturally appear in all
these analyses, the material behavior s(T,G) was explored from
the point of view of thermodynamic inequalities (80) and (81).
The discussion is concluded with estimates of the energy
efficiency (71) and density (72) of such engines.
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Just to provide a general context for the presented study, it is
worthwhile to look at the causes and consequences. Though forces
(such as temperature gradient) and flows (such as the heat flow) are
coupled, the possible coupling is restricted by a general symmetry
principle. This principle, attributed to Curie and Prigogine,86 states
that macroscopic causes always have fewer or equal symmetries than
the effects they produce, i.e. that vectorial variables cannot be
coupled to scalar variables in isotropic systems in the framework
of linear coupling. However, such fluxes can be interrelated at the
system interfaces (which are not isotropic) by the boundary condi-
tions. Since chemical energy is a function of concentration of
reagents, which are scalars, then to transduce chemical energy to
motion either isotropy or linearity must be broken. Clearly, non-
linearity may come into our problem from the interfacial conditions
(31). However, in our case, all processes can be deemed linear as
demonstrated with the help of the thin film example in Section 4.4,
i.e. there is no need for a nonlinear equation of state or nonlinear
boundary conditions. Instead, the mere presence of an interface
breaks the assumption of isotropy made by Curie and Prigogine.

In conclusion, if one can identify geometries relevant for the
useful conversion of chemical energy into mechanical energy, they
can be exploited to perform a number of functions such as
pumping, propulsion, and mixing currently accomplished with
complex machinery and active control. While the key motivating
experiments discussed in Section 2 provide fundamental insights
into the conversion of chemical-to-mechanical energy, it will be
most useful if there is a practical application for the harnessed
energy. We propose the following basic prototypes that can utilize
the introduced fundamental ideas (chemical waves, tip-streaming,
and oscillating lenses) discussed in Section 2.
� Tip-streaming: noting that the external fluid is set into

motion due to Marangoni stresses, cf. Fig. 6, their entraining
effect can be used as a type of ‘‘pump’’. To be functional, this
pump must be connected to a network of channels and tubes
for supply and discharge. The application will involve embed-
ding the basic setup in Fig. 6 with a monolithic fluidic structure
in Fig. 17a: the capillary is replaced by a short channel segment
and the cuvette of liquid by a T-shaped set of channels.
� Chemical waves: the rotation of chemical waves in the

annular container, sketched in Fig. 5, lends itself to the transfer
of rotational motion through a paddle-like device, cf. Fig. 17b.
The application would be to power a generator or a mechanical
drive train, for example.
� Oscillating liquid lens: no use for these oscillating liquid lenses

has been offered before, but their motion may be utilized to
transport the supporting liquid, e.g. water in the case of oil lenses.
The ‘‘beating’’ motion of oil lens is reminiscent of a flexible
membrane operating as a displacement pump. The coupling of
oscillating lenses with appropriate channel geometry, similar to the
asymmetrical structure of a valveless nozzle-diffuser pump,87 may
result in pumping of the liquid supporting the lens, cf. Fig. 17c.
Namely, same as the deflection of a membrane or diaphragm is used
to pull and push fluid into and out of a reservoir in the nozzle-
diffuser pump, the oscillating lens with its spread and recoil action
can be the basis for an oscillating lens ‘‘pump’’. The nozzle and
diffuser act as flow rectifying elements, essentially passive valves, due

to the variable resistance to flow that these parts possess depending
upon the direction of fluid motion. A major advantage of a valveless
nozzle-diffuser pump is the minimized number of moving mechan-
ical parts which results in less wear, fatigue, and chances of
blocking. Such a design would eliminate the fabrication and assem-
bly of membranes and other mechanical components typically
found in such devices. Fig. 17c shows a basic schematic of the
pump, where the open arrows indicate the net motion of the fluid.

Therefore, potential applications of Marangoni-driven
phenomena may range from fluidic operations in various devices,
e.g. pumping and mixing, to engines. Even though the size of such
devices is on the order of centimeters and less, if they find many
applications or can be integrated in multiple device platforms the
cumulative energy savings may be substantial. Moreover, in
certain situations devices powered by chemical Marangoni effects
may represent the only alternative due to inability to use other
energy sources, e.g. when temperature gradients or electric fields
may be destructive to the local environment.

Appendix
A On Kelvin’s derivation

Same as assumed by Kelvin81,83 we will consider a process in
the cycle, shown in Fig. 18, during which the bulk does not
perform any work. To determine the work done by the interface
during this cycle let us consider two paths on which the
interface performs work:

1� 2:sðT þ dT ;Gþ dGÞðAþ dAÞ � sðT þ dT ;GÞA

¼ sðT ;GÞ þ @s
@T

dT þ @2s
@T2

ðdTÞ2
2

� �
dA

þ @s
@G

dGþ @
2s
@G2

ðdGÞ2
2
þ @2s
@T@G

dGdT
� �

A

þ @s
@G

dGþ @
2s
@G2

ðdGÞ2
2
þ @2s
@T@G

dGdT
� �

dA;

(82)

Fig. 17 Examples of applications of the Marangoni phenomena: (a) fluidic
network, (b) paddle motor, (c) pump.
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3� 4:sðT ;GÞA� sðT ;Gþ dGÞðAþ dAÞ

¼ �sðT ;GÞdA� @s
@G

dGþ @
2s
@G2

ðdGÞ2
2

� �
A

� @s
@G

dGþ @
2s
@G2

ðdGÞ2
2

� �
dAþ h:o:t:;

(83)

which altogether yield

dW ¼ @s
@T
� G

@2s
@T@G

� �
dTdA; (84)

here we took into account the (insoluble) surfactant amount
conservation, AG = const:

dG
G
¼ �dA

A
þ dA

A

� �2

þ . . . (85)

The interface absorbs the amount of heat dQ0 at the tempera-
ture T0 = T + dT and gives up dQ at the temperature T. On the
paths 2–3 and 4–1 the interface does not perform any work,
dW = 0, since the area stays constant. Conservation of energy
requires that dW = dQ0 – dQ or, since for this cyclic transforma-
tion the amount of entropy received on the path 2–3 and
rejected on the path 4–1 must be equal dQ/T = dQ0/T0,

dW ¼ dT

T
dQ: (86)

Setting dQ/T = dSs, where Ss is the surface entropy, we have from
(84) and (86):

dSs ¼ �
@s
@T
� G

@2s
@T@G

� �
dA; (87)

from which the surface entropy density per unit area follows

ss ¼
dSs

dA
¼ �@s

@T
þ G

@2s
@T@G

; (88)

clearly being different from (64) in the last term. The reasons
for this discrepancy are that (a) the work done by the interface
should also involve chemical potential changes and (b) the heat
supplied on path 2–3 to drop the temperature need not be
equal to that on path 4–1. The above derivation worked for

Kelvin only because he neglected the adsorbed surfactant (and
hence chemical potential), without which, ironically, a soap
film cannot exist.
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