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The goal of this work is to introduce a coherent theory of the counter-intuitive phenomena of
dynamical destabilization under the action of dissipation. While the existence of one class of
dissipation-induced instabilities was known to Sir Thomson (Lord Kelvin), until recently it has
not been realized that there is another major type of these phenomena hinted by one of Merkin’s
theorems; in fact, these two cases exhaust all the generic possibilities. The theory grounded on the
Thomson-Tait-Chetayev and Merkin theorems and on the geometric understanding introduced in
this paper leads to the conclusion that ubiquitous dissipation is one of the paramount mecha-
nisms by which instabilities develop in Nature. Along with a historical review, we put the main
theoretical achievements in a general context, thus unifying the current knowledge in this area
and the multitude of relevant physical problems scattered over a vast literature. This general
view also highlights the striking connection to various areas of mathematics. To appeal to the
reader’s intuition and experience, we provide a large number of motivating examples. The paper
contains some new unpublished results and insights, and finally, open questions are formulated to
provide an impetus for future studies. While this review focuses on the finite-dimensional case,
where the theory is relatively complete, a brief discussion of the current state of knowledge in the
infinite-dimensional case, typified by partial differential equations, is also given.
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I. INTRODUCTION

The counter-intuitive concept of a dissipation-induced
instability, though coined just recently in the work of
Bloch et al. (1994), takes its genesis from the classi-
cal Treatise on Natural Philosophy of Thomson & Tait
(1879), whose results had been proved only in the 1950s
by Chetayev (1961) and advanced by Merkin (1997). The
growing number of physical examples and applications
in the literature, some of which will be discussed in this
work, demonstrates the need for a unified understand-
ing of this apparently universal route to instabilities in
various physical systems. The primary goal of this re-
view is to introduce the reader to these classical results
which, when seen from the right perspective, constitute
a beautiful theory capable of explaining a variety of ob-
served instabilities in simple terms. At the same time,
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this theory has a non-trivial impact on the modern ap-
proach to mechanics including dynamical systems theory
and geometry. Providing this link is another objective of
our article, which should also serve the purpose of intro-
ducing the reader to more recent results in this field as
well as to many gaps in our understanding. We will try
to balance clarity with technicalities to capture the inter-
est of both the applied and more mathematically-inclined
readers. Therefore, we first formulate the main ideas in
plain terms and then supply some technical discussion to
engage the mathematical reader. In particular, on the ab-
stract level (say, in the Hamiltonian setting) the subject
of this paper is the study of the effect of non-conservative
perturbations on the dynamics determined by the Hamil-
tonian, a map H : T ∗Q → R from the phase space of
a mechanical system, namely, a cotangent bundle T ∗Q,
to a linear space, the real numbers R. Often we will be
considering the special case of mechanical systems in the
presence of symmetries, which determine, in the absence
of non-conservative perturbations, additional conserved
quantities J taking values in a linear space of dimension
m, so that the relevant object is the energy-momentum
map H × J : T ∗Q → R × Rm. The non-conservative
nature of perturbations is understood as resulting in dy-
namics whose time evolution satisfies dtH 6= 0 in general.

A. Two key examples

For the purpose of introducing the reader to the phys-
ical essence of the subject matter, we would like first to
discuss two key physical examples – the Lagrange top and
the rotating shaft shown in Figs. 1(a) and 1(b) respec-
tively – which will be analyzed further in Sec. 2 and used
throughout the text. These two examples also serve the
purpose of highlighting the Thomson-Tait-Chetayev and
Merkin theories and their synthesis suggests a general de-
finition of dissipation-induced instability that we intro-
duce below. While the formal statement of theorems will
be given in Sec. 2, here we state the corollaries of these
theories in physical terms, which are well within the stan-
dard theoretical mechanics course, e.g. Goldstein (1956),
relevant to our discussion. We start with a corollary of
the Thomson-Tait-Chetayev theorems, which states that
if a system with an unstable potential energy1 is stabilized
with gyroscopic forces, then this stability is lost after the
addition of arbitrarily small dissipation. The importance
of this property in many physical and engineering ap-
plications should not be underestimated: the destabiliz-
ing effect of dissipation needs to be compensated in var-
ious gyroscopic devices by applying accelerating forces.
To illustrate the above corollary of the Thomson-Tait-
Chetayev theory and to appeal to the reader’s intuition,

1 While the term “unstable potential energy” is intuitively trans-
parent, its precise meaning will be clear from the subsequent
discussion.

we consider the following simple two degree of freedom
example.

Example (Lagrange top). The linearized dynamics
of a Lagrange top (shown in Fig. 1(a)) has the form

q̈1 + gq̇2 − dq̇1 + c1q1 = 0,
q̈2 − gq̇1 − dq̇2 + c2q2 = 0,

(1.1)

where q = (q1, q2)
2 represents a linearized perturbation,

and g, d, c1 and c2 are real constants. The origin of
(1.1) can be explained using the standard Euler angles

α = q1, β = q2, and where φ̇ = ω is the angular velocity
of rotation around the axis of symmetry of the top in
the first approximation. Then, in view of axisymmetry,
the potentials are c1 = c2 = −Pl/Jx and the gyroscopic
coefficient is g = ωJz/Jx, where P is the gravitational
force applied at the center of mass, located at distance l
from the point of support, and Jx and Jz are moments
of inertia of the top in the trihedral xyz coordinate sys-
tem fixed to the top. For details, the reader may consult
Merkin (1997). System (1.1) has an unstable equilib-
rium at the origin if g = 0 and ci < 0, i = 1, 2, but
can be stabilized by the addition of gyroscopic forces3 if
|g| > √−c1 +

√−c2. As easy to see directly by a spec-
tral analysis, the addition of arbitrarily small dissipative
forces, d > 0, i.e. a symmetric term proportional to the
velocity q̇, destabilizes the ordinary equilibrium. �

The system (1.1) accounts for the dynamics of the per-
turbation q, so that in this approximation the stability
of ordinary equilibrium q = 0 can be ascertained. Note
that the physical system actually has a relative equi-
librium4 (that is, the top is in steady rotation about
its vertical axis), due to which a gyroscopic force ap-
pears in (1.1). Therefore, the model (1.1) accounts for
an instability of the top, which develops due to dissi-
pative forces when the relative equilibrium is not main-
tained by an external source of energy. It is clear that
dissipation in this case leads to the total energy decay
(that is, the top slows down and eventually falls), as
well as to the decrease of the energy of the perturba-
tion H = 1

2

[
q̇21 + q̇22

]
+ 1

2

[
c1q

2
1 + c2q

2
2

]
(that is, Ḣ < 0).

This peculiar effect of dissipation is made possible, in this
case, by an unstable potential energy, ci < 0, i = 1, 2:
while the perturbation grows, the sum H of its kinetic
and potential energies decreases.

As has been recently understood, the above situation
that is accounted by the Thomson-Tait-Chetayev theory,

2 In examples with a few degrees of freedom we will be abusing
the general index notation qi for configuration space coordinates
to avoid double indices.

3 In the stability analysis of two-dimensional linear systems it is
convenient to consider the complexified version in terms of q1 +
iq2.

4 While the definition of relative equilibrium will be given in Sec.
V, until then it can be understood informally as the situation
where the shape of the object under scrutiny does not change in
time while the object as a whole is rotating.
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FIG. 1 Two key examples.

does not exhaust all the possibilities for the dissipation-
induced instability phenomena (Krechetnikov & Mars-
den, 2006). Many studies in the earlier part of the 20th
century demonstrated that dissipative forces, i.e. those
that are proportional to velocities and having the form
Dq̇ with D being a symmetric matrix, are not the only
physically important ones of a non-conservative type (in
the usual sense that the work done can be path depen-
dent). Another physically significant and widespread
class of non-conservative forces includes so-called posi-
tional forces, which are proportional to displacements
and the associated matrices are skew-symmetric. Fol-
lower forces, appearing for example in the problem of
buckling, are a particular case of positional forces. Their
theoretical basis was established by Merkin (1974, 1997),
who proved a number of fundamental properties for the
effects of these forces. To clarify the immediate and sub-
sequent discussions, we just refer to one of them, which
states that the introduction of non-conservative linear
forces into a system with a stable potential and with equal
frequencies destroys the stability regardless of the form of
the nonlinear terms. The equal frequencies can come
about, for instance because of a system symmetry. To
illustrate this theorem, consider the following example.

Example (rotating shaft). The system

q̈1 + p q2 + c q1 = 0,
q̈2 − p q1 + c q2 = 0,

(1.2)

describes, amongst other systems, the linearized dynam-
ics of a perturbation z of a rotating shaft (Kapitsa, 1939)
shown in Fig. 1(b). While the origin of (1.2) will be
discussed in detail in Sec. III.B.1, we note that the po-
sitional force, i.e. the term ±p qi, is proportional to ω2,
where ω is the rotation rate of the shaft as indicated
in Fig. 1(b). The corresponding characteristic equation
shows that the addition of non-zero non-conservative po-
sitional forces (that is, p 6= 0) to a system with a stable
potential energy makes it unstable. The origin of the
skew-symmetric positional forces lies in the friction be-
tween the rotating shaft and the hydrodynamic media
that fills the space between shell and shaft, and in the
asymmetry of the gap when the shaft is displaced from
the axis of symmetry (Kapitsa, 1939). �

By analogy to example (1.1), system (1.2) accounts

for the evolution of a perturbation q, which measures
the departure from equilibrium. The equilibrium corre-
sponds to a relative equilibrium of a rotating shaft, i.e.
a uniformly rotating state with angular velocity ω, due
to which the positional forces appear, as will be seen in
Sec. III.B.1. It is notable that, in contrast to (1.1) the
energy of the disturbance eventually grows. Despite this,
the positional forces in this case are dissipative, since the
total energy of the physical system decays under their ac-
tion, i.e., if one stops maintaining the relative equilibria
by discontinuing the application of an external source of
energy, the shaft will stop rotating. However, it should
be kept in mind that not all positional forces are dissi-
pative, as can be seen in the example of an instability of
an elastic bar with a follower force (Nikolai, 1939), even
though the linearized dynamics of perturbation is given
by the same equations (1.2). This differentiation of posi-
tional forces into dissipative and non-dissipative depends
on whether or not the particular physical system is closed
or open. Concluding the discussion of (1.2) we note that,
in contrast to the case (1.1), the model (1.2) accounts for
an instability of the rotating shaft whether the relative
equilibrium is maintained or not.

B. Definition of dissipation-induced instability

The common features of the above two examples are
that the instability develops due to withdrawal of energy
from the basic state (that is, the relative equilibrium)
and the total energy of the whole physical system would
decay, if the relative equilibrium is not maintained, while
the energy of the perturbation may grow. Motivated by
all these physical considerations, we introduce the follow-
ing physical definition of dissipative forces.

Definition 1. A set of non-conservative forces acting
on a mechanical system with a relative equilibrium is
called dissipative if under the action of these forces and
in the absence of the forces which work against these
non-conservative forces in order to maintain the (rela-
tive) equilibrium, the total mechanical energy of the whole
physical system decreases.

This allows us to define a generalized notion of
dissipation-induced instability:

Definition 2. A conservative system with a spec-
trally stable (relative) equilibrium is said to suffer from
dissipation-induced instability if the introduction of
dissipative forces destabilizes this equilibrium in the Lya-
punov sense.

From a physical standpoint, dissipation-induced insta-
bilities are interesting when definition 2 is used in a
stronger form, namely when stability of a conservative
system holds not only in the spectral sense, but also in
the Lyapunov sense, which would correspond to a strong
version of definition 2. There is a number of known ex-
amples of this kind in finite dimensions, and we have been
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able to establish this type of dissipation-induced instabil-
ity in an infinite-dimensional example, namely the baro-
clinic instability (see Sec. VII for further discussion).

Now we can reconcile the preceding discussion of
dissipation-induced instabilities with the first law of ther-
modynamics. Figure 2 depicts a hierarchy of mathemat-
ical descriptions of the same physical phenomena, but
with different degrees of detail, which are related to the
interaction of a physical system with surrounding sys-
tems. Assume that we have a description of the La-

S
1

S
2

S
3

FIG. 2 On the definition of dissipation-induced instabilities.

grange top as an isolated (closed) system at the level S2,
which includes the full dynamical description of the rigid
body and its interaction with a supporting point and air
through friction (say, we place the experimental setup
– Lagrange top spinning on a substrate – in a thermo-
stat, which isolates the system from the ambient environ-
ment). If H stands for the mechanical energy, Q for all
other non-mechanical contributions to the energy (chem-
ical, thermal, etc.), then the total energy, U = H + Q,
is conserved based on our assumption that the system is
isolated. We have distinguished the mechanical energy
here, since for the present discussion we will be focussing
on instability in a mechanical sense. Next, since we are
concerned with the stability question, we can decompose
the dynamics into a basic state, which is the relative equi-
librium in this case, and a perturbation, which is a de-
parture of the dynamics from the basic state. Therefore,
the energy evolution obeys:

S2 : dU2 = 0, dQ2 > 0, dHtotal
2 < 0 (1.3)

with dHperturb.
2 < 0, dHb. state

2 < 0,

where all the indexes are self-explanatory and the total
mechanical energy is a sum of the mechanical energies of

perturbation and basic stateHtotal
2 = Hperturb.

2 +Hb. state
2

with Hb. state
2 determined by the dynamics in the absence

of perturbation and Hperturb.
2 = Htotal

2 −Hb. state
2 . Now

one can restrict the consideration to the subsystem S1 ⊂
S2 which is, obviously, not closed, and which accounts
for the evolution of a disturbance only. Naturally, in this

case we get S1 : dHtotal
1 = dHperturb.

1 < 0. On the other
hand, in the case of a rotating shaft at the analogous level
of description S2, when the system is considered closed,

we get

S2 : dU2 = 0, dQ2 > 0, dHtotal
2 < 0 (1.4)

with dHperturb.
2 > 0, dHb. state

2 < 0,

where one can notice a change in the sign of dHperturb.
2

compared to the Lagrange top case (1.3), since the energy
of the disturbance grows. The above two key cases – La-
grange top and rotating shaft – evidently span all the pos-
sibilities. The picture does not change even if we refine
the description by going to the next level, S3, and so on.
At this stage note that we have at our disposal only two
categories of systems, Hamiltonian, dH = 0, and dissi-
pative, dH < 0. Therefore, all the instabilities can be di-
vided into two classes: (1) which are accounted for by the
Hamiltonian description, and (2) which are due to dissi-
pation. Since our vocabulary contains only two words,
namely “Hamiltonian” and “dissipative”, then there are
no other options for the natural occurrence of instabili-
ties. Thus, the instabilities are intrinsically either Hamil-
tonian or dissipation-induced.

Having the above clarification of the physical meaning
and occurrence of dissipation-induced instabilities, it is
worth mentioning the distinction between our definition
2 and the term dissipative instability used for example by
Casti et al. (1998) in the problem of gravitational insta-
bility of interpenetrating galaxies. Two interpenetrating
galaxies always experience Jeans instability, i.e there is
always a band of wavenumbers k in which a linear pertur-
bation ei(ωt−kx) of frequency Re(ω) grows with the rate
−Im(ω). This is analogous to the case of two stationary
galaxies, which is always unstable since the dispersion
relation is ω2 = k2 − 1 and thus there is no bifurcation
parameter controlling the transition from the stable to
unstable case. An introduction of dissipation, which may
be due to collisions, simply increases the band of unsta-
ble wavenumbers, and thus suggests the term dissipative
instability (Casti et al., 1998), which probably should be
named dissipation-enhanced instability. Thus, the system
is unstable in both the conservative and dissipative cases
and therefore is not a system with a dissipation-induced
instability in our sense.

Concluding this introduction, we could not resist men-
tioning one of the famous examples – Explorer I shown
in Fig. 3 – of dissipation-induced instabilities, the lack
of theoretical understanding of which has led to a tech-
nological failure. Explorer I, launched in January 1958
shortly after Russian Sputniks were launched in October
and November 1957, was long and narrow like a pencil. It
was supposed to rotate around its own centerline (which
is the axis of minimum moment of inertia), but definitely
was not supposed to rotate end over end (like a windmill
blade), which would correspond to the axis with maxi-
mum moment of inertia. However, once Explorer I made
just one earth orbit, it flipped over and from then on it
windmilled. This instability was caused by a flexing of its
antennae, which dissipated a small amount of rotational
energy. The amazing part of this story is that Standford
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FIG. 3 Explorer I (courtesy of JPL, NASA).

University astronomer Ronald Bracewell tracked the first
Sputnik and determined that it was spinning in its maxi-
mum moment of inertia mode, which was also consistent
with the way galaxies behave. However, security con-
cerns of the Jet Propulsion Laboratory did not let him
to talk to engineers and the Explorer I was launched as
is. The warning of Bracewell appeared in the open lit-
erature (Bracewell & Garriot, 1958) only seven months
after the launch.

C. Outline

Having introduced the reader to the subject matter
from intuitive and historical prospectives, we proceed
with the presentation of the paper as follows. Section
II deals with the basic theoretical framework; the reader
is introduced to the Hamiltonian and Lagrangian setup in
the context of classical mechanics in Sec. II.B, and other
basic concepts such as the classification of forces in Sec.
II.A, and various stability notions in Sec. II.C. Section
III is devoted to the classical results in this field, namely
those due to Thomson, Tait and Chetayev in Sec. III.A,
and due to Merkin in Sec. III.B. Based on these results,
we develop a geometrical understanding of dissipation-
induced instabilities in phase space through the notions
of the second variation δ2H of the HamiltonianH and the
elementary phase space volume behavior in Sec. III.C. In
the conclusion of Sec. III.D, we introduce the most fun-
damental classification of dissipation-induced instabili-
ties motivated by geometrical considerations. Both, the
Thomson-Tait-Chetayev and Merkin theories in Sec. III
are illustrated with many physical examples. In section
IV we discuss the manifestation of dissipation-induced in-
stabilities in a spectral space. After reminding the reader
of the classical results on Hamiltonian bifurcations in Sec.
IV.A, we proceed with the discussion of the movement of
eigenvalues due to dissipative effects in Sec. IV.B, and
the connection to singularity theory in Sec. IV.C.

While the presentation up to this point has been on
dissipation-induced instabilities of ordinary equilibria, in
section V the case of relative equilibria is discussed. At
this point we introduce the geometric concepts necessary
for the discussion of relative equilibria in Sec. V, and con-
trol of dissipation-induced instabilities in Sec. VI. We

begin section V by introducing the concept of relative
equilibria in Sec. V.A, and then discuss the methodol-
ogy of dealing with relative equilibria through the reduc-
tion procedure in Sec. V.B, and the energy-momentum-
method in Sec. V.C. In view of the importance of con-
trolling dissipation-induced instabilities in various engi-
neering applications, we devote section VI to this subject,
and address both the classical and geometric approaches
in Sec. VI.A and Sec. VI.B, respectively. The paper con-
cludes in Sec. VII with a discussion of our recent under-
standing of dissipation-induced instabilities in infinite-
dimensional systems, as well as the most troublesome
issues, such as the function-theoretical questions involv-
ing the compatibility of existence and stability in Secs.
VII.B-VII.C. The central physical example in this sec-
tion is the baroclinic instability, discussed in Sec. VII.A.

II. THEORETICAL FRAMEWORK

The examples of the Lagrange top and rotating shaft
discussed in the introduction were analyzed using the
linearizations (1.1) and (1.2) respectively. In this sec-
tion we present a system in a general form, to which
the Thomson-Tait-Chetayev and Merkin theories are ap-
plicable. Though these theories apply to many other sit-
uations (such as non-holonomic systems, etc.), for illus-
tration and for the purpose of introducing the necessary
definitions, we appeal to the classical way of arriving at
the general formulation from first principles.

A. Euler-Lagrange equations and classification of forces

The mathematical formulation we consider throughout
this paper will be the linearization of the Euler-Lagrange

equations for a Lagrangian L with generalized forces Q̃,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Q̃i, (2.1)

the classical mechanics derivation of which is provided
below in the context of a system of particles for the
reader’s convenience.

Classical Derivation. Consider a mechanical system
of N particles of masses mν and with positions given by
vectors rν in R3, for example, under the action of active
forces Fν and of d geometric constraints fα(t, rv) = 0,
ν = 1, . . . , N , α = 1, . . . , d. The latter implies that the
system under consideration is holonomic, since there are
no non-integrable kinematic constraints f(t, rv, ṙv) = 0,
ν = 1, . . . , N imposed. Because of the presence of the
constraints there are reaction forces, Rν , so that New-
ton’s second law reads mνwν = Fν + Rν , where wν are
accelerations. In the case of ideal constraints, i.e. when
the work Rνδr

ν (Einstein summation rule is assumed)
on virtual displacements δrν vanishes, we arrive at the
D’Alembert principle

(Fν −mνwν) δrν = 0. (2.2)
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In view of the constraints on the dynamics, the number of
independent degrees of freedom is 3N −d = n (for three-
dimensional physical space), and therefore one can intro-
duce n independent generalized coordinates: q1, . . . , qn,
by making a transformation rν = rν(t, q1, . . . , qn). As
a result, (2.2) can be simplified since the work of active

forces is δA = Fνδr
ν = Qiδq

i, where Qi = Fν
∂rν

∂qi are

generalized forces, while the work of the inertia forces is
δAI = −mνwνδr

ν = −Ziδq
i, Zi = d

dt
∂T
∂q̇i − ∂T

∂qi , where

T = 1
2mν ṙ

ν2 is the kinetic energy of the system. Com-
bining the last two equations with (2.2) yields the La-
grangian equations of the second kind

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Qi, (2.3)

since the variations δqi are independent. Concluding, the
equations (2.3) are valid for holonomic systems with ideal
constraints. Further we restrict ourselves to holonomic
systems with stationary constraints, i.e. scleronomic,
versus rheonomic (with time-dependent constraints). In
this case the kinetic energy expression simplifies to the
quadratic form T = 1

2aik q̇
iq̇k with det aik 6= 0. Decom-

posing further the generalized forces Qi, which can be
nonlinear, into potential and non-potential parts Qi =

− ∂Π
∂qi + Q̃i, we arrive at the Euler-Lagrange equations

(2.1).
Based on the energy, E = T + Π (kinetic plus poten-

tial), and the rate of change of energy equation d
dtE =

Q̃iq̇
i, Thomson & Tait (1879) further classify the non-

potential forces Q̃i into gyroscopic, Q̃iq̇
i = 0, dissipative,

Q̃iq̇
i ≤ 0, and accelerating, Q̃iq̇

i ≥ 0. The dissipative
forces, after Chetayev (1961), are distinguished into com-

plete and partial dissipation if the power Q̃iq̇
i is negative

definite or simply definite respectively.
While the above definitions are generally valid for non-

linear forces, the most familiar definitions correspond to
the linear case, where a further clarification is possible.
Linear gyroscopic forces have a skew-symmetric struc-

ture: Q̃i = γik q̇
k, where γik = −γki, versus dissipa-

tive forces, which have a symmetric form: Q̃i = −bikq̇k,
where bik = bki and thus can also be expressed in terms
of the Rayleigh dissipative function, R = 1

2bik q̇
iq̇k, as

Q̃i = ∂
∂q̇iR. In accordance with Chetayev’s definition, if

R is a positive definite quadratic form, then the dissipa-
tion is complete. Physically, these forces are due to the
motion in a resisting medium, etc., when the resistance
depends only on the speed of motion. Special kinds of
forces, not evident from Thomson and Chetayev’s classi-
fication, are so-called non-conservative positional forces,
which change the energy of the system, but depend on the

coordinates only: Q̃i = −pikq
k, where pik = −pki. These

forces are also called circular (Ziegler, 1953), pseudo-
gyroscopic, forces of radial correction or limited damping,
and are more common than is usually supposed (Ziegler,
1953). Physically, positional forces occur in elastic sys-
tems subject to the forces whose line of action is always

tangential to the elastic axis (Herrman, 1967; Langthjem
& Sugiyama, 2000; Nikolai, 1939), in the motion of elastic
bodies in a viscous medium (Bolotin, 1963), rotor insta-
bility in a hydrodynamic medium (Kapitsa, 1939), and
many other systems. This classification of linear forces
is ultimately important in studying the linear stability
of various systems and allows one to identify the nature
of various terms in the linearized dynamics and directly
apply the theoretical results of the next section.

While the classical definitions by Thomson & Tait
(1879) and Chetayev (1961) cover the case of gen-
eral nonlinear gyroscopic, dissipative, and accelerating
forces, they do not reveal the definition of general non-
conservative positional forces. However, as suggested by
Merkin (1974), the property of orthogonality of a posi-

tional force Q̃ and the radius-vector q in the linear case,
namely pikq

kqi = 05, can be extended to the nonlin-

ear case, namely i.e. Q̃iq
i = 0, in order to define the

nonlinear non-conservative positional forces Q̃i. While
the general classification of the physical nature of forces

Q̃i(q, q̇), in the case of general dependence on positions q
and velocities q̇, is not available, the decomposability of

particular dependencies, Q̃i(q) or Q̃i(q̇) into physically
meaningful skew- and symmetric components has been
explored in (Merkin, 1974).

B. General linear formulation

Decomposition of the Lagrange equations (2.1) into
their linearization at the equilibrium, and into the re-
maining nonlinear terms yields

M q̈ + Sq̇
gyroscopic

+ Dq̇
dissip.

+ Cq
potential

+ Pq
non−cons.

= N, (2.4)

where M,D,C are symmetric, while S, P are skew-
symmetric matrices, and N is a nonlinear part. This
formulation can be simplified using the classical matrix
analysis theorem, which states that if the square matri-
ces M and C are both symmetric and M is also sign
definite, then there exists a nonsingular matrix Λ such
that ΛTMΛ = I, ΛTCΛ = C0. Here I is the identity
matrix and C0 is a diagonal matrix with each element of
diag C0 = {c1, . . . , cn} called a stability coefficient fol-
lowing Poincaré. This is a particular case of the stan-
dard technique for diagonalization of pencils of matrices
or quadratic forms (Gantmacher, 1977). This linear al-
gebra theorem implies, in particular, that there exists a
linear change of variables, q → θ such that T = 1

2aik q̇
iq̇k

simplifies to T = 1
2

∑
i (θ̇i)2, and Π = 1

2cikq
iqk re-

duces to Π = 1
2

∑
i λi(θ

i)2, with λi being the stability
coefficients. The resulting system in new variables is
θ̈i + λiθ

i = nonlinear terms. The number of negative

5 which holds because of the skew-symmetry of pik
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λi’s is called the degree of instability. Applying this the-
orem to our system (2.4), i.e. q → Λq, we end up with a
simpler version of (2.4), where M = id, matrix C ≡ C0 is
diagonal now with no zero elements and we keep the orig-
inal notations for the other matrices, and under the per-
formed transformation they retain their symmetry and
skew-symmetry properties. System of the form (2.4) are
sometimes called Chetayev systems (Bloch et al., 1994,
2004) and, as we will see in Sec. V, they also represent a
normal form for a simple mechanical system6 linearized
about a relative equilibrium modulo an abelian symme-
try group.

Even though the system (2.4) is non-conservative, with
the following definition of the Hamiltonian

H = 1
2p

Tp + 1
2q

TC0q, p = q̇, (2.5)

the system can be recast into a symplectic-metriplectic
form. With z = (q,p) the equations (2.4) can be written
as

ż = (J + G)Hz, (2.6)

where the operatiors J and G are given by

J =

[
0 id

−id −S

]
, G =

[
0 0

−PC−1
0 −D

]
, (2.7)

where the matrix J is skew-symmetric and is called a
Poisson operator, while the matrix G in the absence
of non-conservative positional forces is symmetric and
called a metriplectic operator in view of its similarity
to metric tensor (Morrison, 1986). In the presence of
non-conservative positional forces, the matrix G need be
neither symmetric nor skew-symmetric. One can regard
J and G as determining the geometry of phase space.
The operator J comes from symplectic geometry and is
(1) non-singular, (2) skew-symmetric, and (3) obeys the
Jacobi relation.

Consider the case when (2.6) is a canonical Hamil-
tonian system, i.e.

ż = JHz, J
T = −J, J =

[
0 id

−id 0

]
. (2.8)

SinceH(z) = 1
2z

TAz with AT = A, as follows from (2.5),
where A can be time-dependent, the system (2.8) may be
written ż = Az where A = JA. Because the system is
Hamiltonian, the initial conditions z0 is transformed into
a solution z(t) by a symplectic map z(t) = Φ(t, t0) z0, i.e.

6 We distinguish between simple mechanical systems, for which
the Hamiltonian is separable H = T + Π, and natural mechan-

ical systems, when it might be non-separable, e.g. when terms
of gyroscopic type are present. In the text we consider both
types depending on the context. Note that Arnold (1978, 1993)
adopted a different definition for natural (Lagrangian) mechan-
ical systems, namely L = T − Π with T being 1

2
〈q̇, q̇〉, where

〈·, ·〉 is the Riemannian metric.

by the state transition matrix Φ(t, t0), which is a solution

of Φ̇ = AΦ. Hence, if the solution is stable then all eigen-
values of Φ lie on the unit circle. We recall that because
Φ is symplectic, if λ is an eigenvalue of Φ, then so are 1/λ,
λ, 1/λ, i.e. all eigenvalues are symmetric with respect to
the real axis and unit circle (Poincaré-Lyapunov lemma).
It is easy to prove (Arnold, 1978) that for Φ to be stable
it is sufficient that all eigenvalues lie on a unit circle and
are simple. Therefore, the necessary condition (but not
sufficient) for instability to occur is a collision of eigen-
values on unit circle. To isolate the conditions when the
collision does not provoke instability (Daleckii & Krein,
1974), the definition of an eigenvalue sign is needed. An
eigenvalue λ, such that |λ| = 1, λ2 6= 1, is called positive
(negative) if [Φξ, ξ] > 0 (< 0) for every eigenvector ξ of
the real Φ-invariant plane σ corresponding to the eigen-
values λ and λ. According to this definition, collision
of two eigenvalues with identical signs on the unit cir-
cle does not provoke instability (Arnold & Avez, 1968;
Daleckii & Krein, 1974).

When studying linear stability, we deal with the lin-
earization operator L = JD2

zH(0), which is infinitesi-
mally symplectic. This has the consequence: if λ is
an eigenvalue of L, then so is −λ. Therefore, a neces-
sary condition for the equilibrium to be stable is that
Re spec(L) = 0.

Note that (2.8) remains Hamiltonian even if gyroscopic
forces are added: the effect of the gyroscopic forces can
be represented via a non-canonical Poisson bracket, in
which a sum on repeated indices is understood:

{F,H} = FqiHpi
− Fpi

Hqi − SijFpi
Hpj

. (2.9)

Gyroscopic forces can provide an exchange of energy
among the modes, and thus can significantly alter the
behavior of the system; for example, they can stabilize
an equilibrium with a non-zero degree of instability.

The fundamental classical stability theorems
(Chetayev, 1961; Merkin, 1997; Thomson & Tait,
1879), some of which will be discussed in this review,
can be deduced either by appealing to spectral properties
of the dynamical system (2.4) or by appealing to the
geometrical properties of (2.6). In particular, a linear
stability analysis of (2.6) amounts to the eigenvalue
analysis of (J + G)Hzz. In view of the simplicity of
the symplectic operator in the Hamiltonian case, the
stability of the system naturally can be inferred from
the second variation of the Hamiltonian, that is the
Hessian matrix of the second derivatives Hzz, though
in a non-trivial way as discussed in the next subsection
and in section V.C.

C. On the notions of stability

To conclude this section, we discuss various notions
of (in)stability used throughout the paper. In the gen-
eral discussion we refer to the system (2.6), and in the
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stability analysis to an equilibrium point ze of that sys-
tem which satisfies (J + G) ∂H

∂z
(ze) = 0. The nonlinear

(Lyapunov) stability of ze is defined as follows.

Definition 3. The equilibrium point ze is Lyapunov sta-
ble if, for all ǫ > 0, there is a δ(ǫ) > 0 such that if

‖z(0) − ze‖ < δ, (2.10)

then

‖z(t) − ze‖ < ǫ, (2.11)

for all t > 0. If δ can also be chosen such that if ‖z(0)−
ze‖ < δ then lim

t→∞
z(t) = ze, the equilibrium is called

asymptotically stable.

If the equation (2.6) is linear, then the stability is re-
ferred to as linear stability . If the stability of a lin-
ear system with the operator (J + G) ∂H

∂z
is investigated

through its spectral properties, i.e. by analyzing the
eigenmodes z = ẑ eλt, then stability characteristics are
understood according to the notion of spectral stabil-
ity : the origin is spectrally stable if there are no eigen-
values λ with Re λ > 0. While for practical purposes
the most relevant definition is the Lyapunov’s one which
guarantees nonlinear stability, in reality one often ends
up demonstrating weaker versions of stability, namely
linear and spectral stability. Therefore, it is very im-
portant to appreciate the interrelation of them, at least
with the help of examples. First of all the linear and
nonlinear stability definitions do not imply each other:
system with potential V (q) = q4/4 demonstrates nonlin-
ear stability, but linearization around the origin, ṗ = 0 &
q̇ = p, produces a solution growing linearly in time, i.e.
it is linearly unstable. However, this example is spec-
trally stable; thus, spectral stability does not imply even
linear stability, however the converse is true. Another
example, by Cherry (1925), given below in a different
context proves that linear stability does not imply non-
linear stability. A similar example is discussed by Pollard
(1966), and Siegel & Moser (1971). Before going into fur-
ther discussion, we need the classical stability theorems
in the conservative case. The oldest result goes back to
Lagrange (1788):

Theorem 1. (Lagrange, 1788) If the Hamiltonian is
separable, i.e. H = 1

2p
T Ip + V (q), and qe is a local

strict minimum of V (q), then the equilibrium point (pe =
0,qe) is stable.

The converse is not true, as demonstrated by the fol-
lowing example due to Wintner (1947). Consider the C∞

potential

V (q) =

{
e−q−2 cos q−1

q 6= 0,
0 q = 0,

(2.12)

from which it follows that the equilibrium qe = 0 is sta-
ble, but the origin is not a local minimum in view of wild

oscillations. Despite this example, additional conditions
(apart from the absence of a minimum of V (q)) allow one
to formulate a converse to the Lagrange-Dirichlet theo-
rem, cf. Rumyantsev & Sosnitskii (1994) and references
therein. The Lagrange theorem was proved by Dirich-
let (1846) based on the definition of nonlinear stability
and with the help of level sets of the energy functional
which imposes restrictions on the behavior of trajecto-
ries in phase space. These pure geometric considerations
served the impetus for Lyapunov’s direct method (based
on Lyapunov functions) and also has lead to the general-
ization of Lagrange theorem to the case when the Hamil-
tonian is not separable. The latter major result is now
known as the Lagrange-Dirichlet theorem.

Theorem 2. (Dirichlet, 1846) If the second variation
(Hessian) of the Hamiltonian, i.e. Hzz with z = (q,p), is
definite at the equilibrium point ze, then the equilibrium
point is stable.

FIG. 4 System with stable potential.

In the separable case it is easy to establish the con-
nection between definiteness of the second variation of
H(q,p) and the existence of a local minimum of V (q),
as depicted in Figs. 4 and 5. As an illustration of the
Lagrange-Dirichlet principle, we refer to Fig. 4, where a
trajectory of a stable two-dimensional system

q̈1 + c1q1 = 0,

q̈2 + c2q2 = 0,

with ci > 0, is projected onto the potential energy sur-
face, V (q1, q2) = 1

2

(
c1q

2
1 + c2q

2
2

)
. It should be noted that

the Dirichlet theorem is not necessary, as illustrated by
the linear part of the example due to Cherry (1925). Con-
sider the Hamiltonian of two coupled oscillators

H =
1

2
ω2(p

2
2 + q22) − 1

2
ω1(p

2
1 + q21), (2.13)

from which one can observe that the Hamiltonian pro-
duces two stable oscillators, but its second variation is
indefinite.

III. MAIN CLASSICAL RESULTS AND THEIR

GEOMETRY

A. Thomson-Tait-Chetayev theory

Here we will discuss two of the theorems by Thom-
son, Tait, and Chetaev, which are directly pertinent to
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dissipation-induced instabilities. Instability in this sec-
tion is understood in the Lyapunov sense; however, in
some instances, we prove spectral instability, which im-
plies (and gives sharper results than) Lyapunov instabil-
ity and will be the subject of further discussion in Sec.
IV.B.

Theorem 3. (Thomson-Tait-Chetayev). If the sys-
tem q̈ + C0q = 0 has nonzero degree of instability, then
the equilibrium remains unstable after the addition of gy-
roscopic and dissipative forces with complete dissipation

(that is, Q̃iq̇
i is negative definite).

Proof. The presence of non-zero degree of instability im-
plies that the potential energy Π will assume negative
values in the vicinity of an equilibrium point. The en-
ergy balance,

dE

dt
= Q̃iq̇

i, E = T + Π, (3.1)

where Q̃i are dissipative forces with complete dissipa-
tion, implies that we can use the function V = −E on
the manifold K(q 6= 0, q̇ = 0) in Krasovsky’s theorem

of instability7 (Krasovskii, 1963). Indeed, V̇ = 0 on K

and V̇ > 0 outside the manifold, because the dissipation

is complete, i.e. Q̃iq̇
i < 0 for q̇ 6= 0. Since in the vicinity

of the origin, Π < 0, V is positive when q̇ = 0. The
manifold K does not contain whole trajectories, since for
q̇ = 0 and q 6= 0 the Lagrange equations (2.3) reduce to
∂Π
∂qk

∣∣∣
q 6=0

= 0, which is impossible for an isolated equilib-

rium. Therefore, the application of Krasovsky’s theorem
leads to instability.

This theorem implies that if a non-zero degree of insta-
bility equilibrium is stabilized with gyroscopic forces as
in Fig. 5(a), then the stability is destroyed by an intro-
duction of arbitrarily small dissipative forces. This result
is illustrated in Fig. 5(c) for the following system

q̈1 + gq̇2 + dq̇1 + c1q1 = 0,

q̈2 − gq̇1 + dq̇2 + c2q2 = 0,

7 Krasovsky’s theorem states the following “If for a system d

dt
x =

X(x) one can find a function V such that its derivative V̇ satis-
fies two conditions, (1) V̇ > 0 outside K, and (2) V̇ = 0 on K,
where K is a manifold of points not containing whole trajectories
for 0 ≤ t < ∞, and also if in any vicinity of the origin one can
find points at which V > 0, then the origin is unstable.” This
theorem is a generalization of Lyapunov’s theorem on instabil-
ity. Indeed, Lyapunov’s version requires existence of a function
V : D → R, defined on the domain D containing the equilibrium
point x = 0, such that both V and V̇ assume the same sign in
the vicinity of x = 0. That is, one can regard V as a counterpart
of the standard Lyapunov function used in stability theorems
(Khalil, 2001). Krasovsky’s theorem relaxes Lyapunov’s condi-
tions on V , as is seen from the formulation of the theorem. A
similar relaxation of the conditions on the Lyapunov function in
the stability theorems is given in LaSalle’s invariance principle
(Khalil, 2001).

which has the equilibrium (q, q̇) = (0,0). If ci < 0,
i = 1, 2, it has even degree of instability equal to 2. This
equilibrium point can be spectrally stabilized in the ab-
sence of dissipation, d = 0, by adding gyroscopic forces
provided that |g| > √−c1 +

√−c2. The addition of a dis-
sipative force, d > 0, destabilizes the system regardless
of its stability under the action of gyroscopic forces.

(a)Gyroscopic stabilization:
even degree of instability.

(b)Gyroscopic failure: odd
degree of instability.

(c)Dissipative destabilization
of gyroscopically stable

system

(d)Non-conservative
positional destabilization of
potentially stable system.

FIG. 5 Projection of dynamics onto potential energy surface.

The dynamics of this example can be interpreted, for
instance, using the basic theory of the gyroscope, as that
of the linearized equations of a Lagrange top, which is
familiar to those who have spun a toy top or a ball on
their fingertip. Even when the top is deflected from the
unstable (vertical) equilibrium position and is thus under
the action of destabilizing forces, a fast enough rotation
makes it move in a direction perpendicular to the desta-
bilizing force and to precess.

However, if the degree of instability is odd, as in Fig.
5(b), then the mechanism described above for gyroscopic
stabilization does not work – gyroscopic stabilization is
prohibited by another theorem:

Theorem 4. (Thomson-Tait-Chetayev). If the sys-
tem q̈ + C0q = 0 has an odd degree of instability, then
gyroscopic stabilization of the equilibrium is impossible.

Proof. Here we consider system (2.4), when only poten-
tial and gyroscopic forces are present,

q̈ + Sq̇ + C0q = 0, (3.2)

so that the spectral stability analysis leads to the char-
acteristic equation,

∣∣∣∣∣∣∣∣∣

λ2 + c1 g12λ . . . g1nλ
g21λ λ2 + c2 . . . g2nλ

...
...

...
gn1λ gn2λ . . . λ2 + cn

∣∣∣∣∣∣∣∣∣

= 0, (3.3)
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where gij are the entries of the gyroscopic matrix S, ci
are the stability coefficients, and λ’s are the eigenvalues.
Obviously, the determinant is a polynomial of the form,

λ2n + . . .+ a2n = 0, (3.4)

where the last term is constant, i.e. independent of λ,
and equals to the product of diagonal elements of the po-
tential matrix C0, a2n = c1 ·. . .·cn, that is independent of
gyroscopic forces. Note, that this product a2n is non-zero
since the equilibrium is isolated and negative since the de-
gree of instability is odd by assumption of the theorem.
Therefore, the function Det(λ) = λ2n + . . .+ a2n has two
limiting values, Det(0) = a2n < 0 and Det(λ) → +∞.
As a result, Det(λ) crosses λ-axis at the point where λ
has positive real part, and thus the characteristic equa-
tion has at least one eigenvalue with positive real part.
This yields instability according to Lyapunov’s theorem
on stability in the first approximation regardless of the
presence and amplitude of gyroscopic forces.

Theorem 4 provides a necessary condition for stability
and a sufficient condition for instability in the frame-
work of spectral approach; sharper conditions for gyro-
scopic stabilization are discussed, for example, by Merkin
(1974) and Hryniv et al. (2000). A geometric interpreta-
tion of theorem 4 is suggested by the Lagrange-Dirichlet
criterion (Theorem 2), namely by looking at the second
variation of the Hamiltonian, which in this case is simply
(2.5) and results in

δ2H =

(
C0 0
0 id

)
. (3.5)

Apparently this second variation is indefinite and thus
does not guarantee the stability of this system, but does
not disprove it either since the Lagrange-Dirichlet cri-
terion is not necessary. However, it shows that the en-
ergy surface has a saddle point. Now, the advantage of
separability of the Hamiltonian in this case (i.e. it is
simply kinetic plus potential energy) allows one to use
the converse to the Lagrange criterion which provides a
sharp result on the instability: if the second variation
is non-degenerate but indefinite, then one has spectral
and hence Lyapunov instability. Lastly, we note that the
determinant of the second variation, δ2H , is simply the
term a2n in the characteristic polynomial thus establish-
ing a natural link to the spectral proof of theorem 4.

It is also interesting to understand the effect of gyro-
scopic stabilization from an energetic and thus geometric
point of view. The discussion below refers to a wide
class of systems, but for illustrative purposes and in or-
der to establish a connection to the subsequent sections
we would like to treat again one of key examples, namely
the Lagrange top problem (1.1), but with a different em-
phasis,

ẍ+ 2gẏ + c1x = 0, (3.6a)

ÿ − 2gẋ+ c2y = 0. (3.6b)

While the stability of this system can be studied by the
spectral method as was done above, here we would like to
introduce the notion of the amended potential to account
for the effect of gyroscopic forces. The energy of this
system is obviously

E =
1

2

[
ẋ2 + ẏ2

]
+

1

2

[
c1x

2 + c2y
2
]
, (3.7)

since the gyroscopic forces do no work, and the La-
grangian is given by

L =
1

2

[
ẋ2 + ẏ2

]
− 1

2

[
c1x

2 + c2y
2
]
+ g [ẋy − ẏx] . (3.8)

Effectively, the Lagrangian has the structure of a ro-
tating system with angular velocity ω = gk since
1
2 (ẋ + ω × x)

2
naturally leads to the kinetic energy and

gyroscopic terms in (3.8). Also, to understand the ori-
gin of the term ẋ + ω × x, consider the transformation
from the inertial frame x′ to a rotating frame x and this
will recover ẋ′ = ẋ + ω × x. We will observe this be-
havior in the restricted three-body problem as well as in
the Kepler problem later. Two different physical systems
– a planar oscillator on a rotating plate and a charged
spherical pendulum in a magnetic field – are discussed
in Bloch et al. (2004). With this Lagrangian, momenta
are px = ẋ + gy, py = ẏ − gx, and the corresponding

Hamiltonian H = E ◦ (FL)
−1

is given by

H =
1

2

[
p2

x + p2
y

]
+ g [pyx− pxy]

+
g2

2

[
x2 + y2

]
+

1

2

[
c1x

2 + c2y
2
]
, (3.9)

where FL : TQ → T ∗Q is a Legendre transform from
qi, q̇j to qi, pj . First consider the symmetric case, c1 =
c2 = c and we are interested in the unstable potential
energy, c < 0. Let q = (x, y), p = (px, py). It is clear
that the second variation δ2H = Hzz, where z = (q,p) ∈
T ∗Q, is indefinite:

Hzz =




c+ g2 0 0 g
0 c+ g2 −g 0
0 −g 1 0
g 0 0 1


 . (3.10)

This can also be seen more easily from the simple for-
mula (3.7) for E in terms of (q, q̇) ∈ TQ (the defi-
niteness of δ2H does not depend on the choice of vari-
ables). Therefore, should one use the Lagrange-Dirichlet
criterion, which is valid for general non-separable Hamil-
tonian, one cannot draw a conclusion concerning the sta-
bility of this system (the criterion guarantees stability
only if the second variation is definite, but if it is indef-
inite the system could be stable or unstable). However,
from a spectral analysis we know that the system is sta-
ble, provided that |g| > √−c. This interesting behavior
follows from the existence of a conserved quantity, which
can easily be found from the Noether theorem as a con-
sequence of S1 symmetry,

J = pxy − pyx = ẋy − ẏx+ g(x2 + y2) = const, (3.11)
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which has a meaning of a conservation of an angular mo-
mentum. In this symmetric case, the natural treatment
can be done in the polar coordinates, x = r cosφ and
y = r sinφ, so that the conserved quantities are

E =
1

2

(
ṙ2 + r2φ̇2

)
+
c

2
r2, J = (g − φ̇)r2 = µ. (3.12)

Obviously, in these coordinates φ is a cyclic variable, i.e.
natural mechanical system reduces to simple mechanical
system, and eliminating φ̇ yields

E =
1

2

{
ṙ2 + r2

(
g − µ

r2

)2
}

+
c

2
r2, (3.13)

and the part dependent on coordinates only, Vµ = c
2r

2 +
r2

2

(
g − µ

r2

)2
, can be regarded as an effective (amended)

potential. In particular, if µ = 0, then Vµ = c+g2

2 r2,
which coincides with the potential part of the Hamil-
tonian (3.9) for c1 = c2 = c, and on the basis of the
Lagrange-Dirichlet criteria guarantees stability if g >√−c, which is consistent with the results of the spectral
analysis. This illustrates the basic idea of exploiting sym-
metries in analyzing the stability, and a more general the-
ory – the energy-momentum method – will be discussed
in section V.C. Note also that the same conclusions can
be drawn by reformulating the problem as a constrained
one with Lagrange multiplier Hµ = H + λ (J − µ). We
refer the reader to the illuminating discussion in the ap-
pendix to Wang et al. (1991).

In the non-symmetric case, i.e. when c1 6= c2, there are
no continuous symmetry and corresponding conservation
law. However, we know that the spectral stability analy-
sis yields the condition |g| > (

√−c1 +
√−c2)/2, while a

naive identification of the effective potential from (3.9)

as g2

2

[
x2 + y2

]
+ 1

2

[
c1x

2 + c2y
2
]

suggests the condition

|g| > max
i

√−ci, which is not as sharp as the spectral

one. Therefore, the problem of defining the effective po-
tential for non-symmetric systems is not resolved yet, but
its use is quite apparent.

With the above understanding, the physical interpre-
tation of theorem 4 becomes simple. Having again the
Lagrange top in mind, but when the potential function
surface is as in Fig. 5(b), then the gyroscopic force
changes its direction passing from the concave to the
convex part of the potential function, which leads to a
change of the angular momentum, namely its component
about the vertical axis. Finally, it is interesting to note
that there are “exceptions” to theorem 4, as illustrated
by the following example.

Example (Stability of a disk rolling along a
straight line). Consider a perfectly circular disk of mass
m and radius a rolling along the Ox1 axis with angular
velocity φ̇ = Ω, as in Fig. 6; this motion is a relative equi-
librium. Because of the circular symmetry of the disk,
the moment of inertia in the rotating Gxyz-coordinate
system is given by I = (Ix, Iy , Iz) = (A,B,C), where

B = A. We are interested in the first order perturba-
tions of the Euler angles (θ, ψ, φ),

θ =
π

2
+ θ′, ψ = ψ′, φ̇ = Ω ≃ const, (3.14)

where θ′ is a deflection of the disk from its vertical plane,
and ψ′ is a deflection from its straight trajectory along
Ox1 axis. This produces a simplified system

θ̈′ +
C +ma2

A+ma2
Ωψ̇′ − mga

A+ma2
θ′ = 0, (3.15a)

ψ̈′ − C

A
Ωθ̇′ = 0, (3.15b)

which apparently has an unstable potential energy and
one negative stability coefficient (one degree of instabil-
ity), but the gyroscopic force can stabilize the motion
provided

Ω2 ≥ A

C

mga

C +ma2
.

Even though the equilibrium solution – the disk rolling

FIG. 6 Geometric set-up. Gxyz is “frozen” in the disk. Gz is
perpendicular to the disk plane. GN is a line of nodes (cross-
section of planes x1Gy1 and xOy), which is parallel to the
surface of contact. Line HN ′ is tangent to the disk at point
H .

with a constant speed Ω · a – is a relative equilibrium,
the resulting linearized equations are accounted for by
an operator with constant coefficients and thus the classi-
cal analysis should be readily applicable. The gyroscopic
stabilization of an equilibrium in systems with odd de-
gree of instability seems to be impossible in view of the
Thomson-Tait-Chetayev theorem 4 on the necessary con-
dition for gyroscopic stabilization. However, the example
of rolling disk does not contradict this theorem: the gy-
roscopic stabilization is possible in this case in view of
criticality, i.e. when at least one of the stability coeffi-
cients is zero, which is not accounted for by the classical
theorems. �

1. Application 1: Radiation induced instability

As an application of the Thomson-Tait-Chetayev re-
sult (Theorem 3), we consider the work of Hagerty et al.
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(1999, 2003), in which radiation induced instability is dis-
cussed. We show here that this type of instability can be
accounted for using Theorem 3.

The physical set-up is modelled by a finite-dimensional
system – for example, a two-degree of freedom gyroscopic
systems analogous to the Lagrange top without dissipa-
tion (1.1) – coupled to an infinite-dimensional one, such

as the wave equation ∂2w
∂t2 −c2 ∂2w

∂ξ2 = 0, that is responsible

for a process of wave radiation. Coupling of this type is
important in various physical systems: for the origin of
this model we refer to Soffer & Weinstein (1999). The
resulting governing system has the form

ẍ+ gẏ + αx = γ
t∫
0

[x(s) + y(s)] ds,

ÿ − gẋ+ βy = γ
t∫
0

[x(s) + y(s)] ds,

(3.16)

where the definitions on the left hand side are the same
as in (1.1) and the right hand side describes the effects of
radiation through the wave propagation process, whose
form originates from the coupling γ

∫
R
χ(ξ)w(ξ, t)dξ to

the finite-dimensional dynamics with the distribution
χ(ξ). The work of Hagerty et al. (1999) establishes the
Lyapunov instability of this system which is caused by
the presence of radiation even when the mechanical part
(i.e. the left-hand side) of (3.16) is spectrally stable, say
gyroscopically stabilized.

The proof in Hagerty et al. (1999) is based on differ-
entiation of the above system followed by a direct analy-
sis. On the other hand, in our approach, we introduce

another variable, z =
∫ t

0 [x(s) + y(s)] ds, so that the pre-
ceding system reads

φ̈+Gφ̇+ Cφ = 0, φ = [x, y, z]
T
, (3.17)

where G and C are given by

G =




0 −g 0
g 0 0
−1 −1 0


 , C =



α 0 −γ
0 β −γ
0 0 0


 .

Introducing the change of variables, φ′ = Aφ, where A is
such that ACA−1 is diagonal, we arrive at

φ̈′ + G̃φ̇′ + C̃φ′ = 0, C̃ =



α 0 0
0 β 0
0 0 0


 ,

where

G̃ =




γ
α

γ
α − g γ2

α2 + γ
β

(
γ
α − g

)

γ
β + g γ

β
γ2

β2 + γ
α

(
γ
β + g

)

−1 −1 − γ
α − γ

β


 ,

where the new matrix G̃ has non-degenerate symmet-
ric (dissipative) and anti-symmetric (gyroscopic) parts.

Therefore, if the system with G̃ = 0 is unstable, then

adding arbitrary gyroscopic and dissipative forces leaves
it unstable in accordance with Theorem 3. Note that
even though the classical Thomson-Tait-Chetayev the-
ory was developed for non-critical case (i.e., all the sta-
bility coefficients are non-zero), its physical implications
are wider and in many situations, including this one, an
examination of the proofs shows that the theorems are
still true and yield correct predictions.

2. Application 2: The Levitron

The invention of a levitating magnetic object by Harri-
gan (1983) overcame the taboo imposed by the Earnshaw
theorem8 (Earnshaw, 1842) and received some resonance
in the literature (Berry, 1996; Simon et al., 1997). How-
ever, a closer look at this problem reveals that Harrigan
had a very strong intuitive reasons that are, in fact, sup-
ported by the Thomson-Tait-Chetayev theory. As dis-
cussed in Sec. 2, this theory allows the possibility of gyro-
scopic stabilization of an unstable system (with nonzero
degree of instability), a fact that is used in numerous en-
gineering applications (such as a monorail car, etc.). It
is curious that despite the existence of this classical the-
ory, the explanation of stabilization in the literature was
based on an approximate adiabatic invariants theory (cf.
Berry (1996) and Simon et al. (1997)). As discussed be-
low, a simpler explanation of the stability of the Levitron
can be based on the Thomson-Tait-Chetayev theory.

base magnet
x

y

z
B

µ

ω

top

FIG. 7 Schematics of the Levitron.

The dynamics of a point magnetic dipole of strength

8 This theorem states that a collection of point charges cannot be
maintained in an equilibrium configuration solely by the electro-
static interaction of the charges. In general this theorem applies
to static forces F(x), which are functions of position – gravita-
tion, electrostatic and magnetostatic. Note that these fields are
always divergenceless, div F = 0. The proof of the theorem is
a simple consequence of Gauss theorem. Indeed, at a point of
equilibrium the force is zero, and id the equilibrium is stable the
force must point in towards the point of equilibrium on some
small sphere around the point. However, by Gauss’ theorem,R

F(x)dS =
R

div FdV , the integral of the radial component of
the force over the surface must be equal to the integral of the
divergence of the force over the volume inside which is zero.
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µ and mass M in an axisymmetric magnetic field B, as
shown in Fig. 7, is governed by torque and force balance
(angular and linear momenta respectively) as follows,

dtµ =
µ

Iω
µ × B,

Md2
t r = ∇ (µ ·B) −Mgẑ.

The magnetic field can be represented in the neighbor-
hood of its axis of symmetry by means of a Taylor series
expansion

Bz = B0 + Sz +Kz2 − 1
2Kr

2 + . . . ,

Br = − 1
2Sr −Krz + . . . .

With the following non-dimensionalization,

µ → aµ, r → αr, t→ γt;

a

α
=
ωp

ω

µ2M

I
, γ =

√
M

Iω
, ω1 = γ

a

α

S

2M
, ω2 = γωp,

the linearized equations for z = [x, y, µx, µy]
T

written
in component form become:

d2z

dt2
−




0 0 0 −ω1

ω2

0 0 ω1

ω2

0

0 −ω1

ω2

0 0
ω1

ω2

0 0 0




dz

dt

−




1 +
ω2

1

ω2

2

0 0 0

0 1 +
ω2

1

ω2

2

0 0

−ω1 0 −ω2
2 0

0 −ω1 0 −ω2
2


 z = 0.

It is obvious that the degree of instability of this system
is even, so that one can expect stabilization for certain
ratio of frequencies ω1 and ω2, since the stabilization is
achieved only at certain amplitude of gyroscopic force.

The dissipative effects in a spinning top are known to
be crucial since they determine the finite lifetime of a
stable levitation (Simon et al., 1997). However, those ef-
fects are, in general, very complicated due to the top’s
finite size, conductivity, magnetization, interaction with
air, etc. As shown in Krechetnikov & Marsden (2006),
eddy currents introduce both types of non-conservative
forces, i.e., dissipative and positional. The presence of
both types of non-conservative forces implies that the
Levitron will always be unstable (though the character-
istic time of instability can be large) unless these dissi-
pative effects are compensated with external pumping of
energy, as is often done in gyroscopic systems (Merkin,
1997).

3. A few more applications

Concluding the discussion of the Thomson-Tait-
Chetayev theory, we would like to mention a couple of

other interesting physical phenomena where effects of dis-
sipation play the crucial role. In the first one – the inver-
sion of a tippe-top shown in Fig. 8 – the role of dissipa-
tion was the subject of a long debate until Cohen (1977)
established the contention of the earlier works in 1950’s
that it is the sliding frictional forces acting at the point of
contact between the top and the plane of support which
are responsible for the inversion. The main difficulty of

ω ω

FIG. 8 Inversion of a tippe-top.

accounting for dissipation in this problem was that the
usual Coulomb law leads to nonlinear term, which disap-
pears in the linearized equations used to study the insta-
bility, until O’Brien & Synge (1953) suggested to use a
viscous friction linear in the sliding velocity. The relative
complexity of this problem has led to various numerical
studies aiming to prove the destabilizing effect of dissipa-
tion, such as Cohen (1977), Kane & Levinson (1978) and
Or (1994). The history of this problem is well-discussed
in these references and in Ebenfeld & Scheck (1995).

However, speaking of the most fundamental cause
for (linear) instability, one can use the Thomson-Tait-
Chetayev argument and avoid lengthy computations. To
achieve this we will omit bulky equations, but rather pro-
vide more insightful analysis applicable in many other
situations. In particular, we refer to the linearized equa-
tions of motion given in Or (1994) (equations (11) in that
reference), which in the absence of friction after some al-
gebra take the form

q̈ + (S +D) q̇ + (C + P )q = 0. (3.18)

Even though the problem is non-holonomic (in the ab-
sence of dissipation) and thus non-Hamiltonian, the en-
ergy is conserved, and therefore both the non-linear and
linearized equations are conservative. It is notable, that
it appears that (3.18) contains dissipative and positional
forces. However, because of the conservative nature of
these equations, there should exist a linear transforma-
tion q → Tq̃ such that system (3.18) transforms into
(2.4) without non-conservative forces,

¨̃q + T−1 (S +D)T ˙̃q + T−1 (C + P )Tq̃ = 0, (3.19)

where T−1 (C + P )T is made diagonal. Since
the linearized dynamics is conservative, the term
T−1 (S +D)T should be necessarily skew-symmetric
(gyroscopic). Therefore, the addition of sliding friction

should lead to terms symmetric in ˙̃q and produce instabil-
ity in accordance with Thomson-Tait-Chetayev theorem
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3, thus explaining the dissipation-induced instability of a
tippe-top.

Nowadays, the problem of stability of a tippe-top is
well-understood globally as well, after the work of Eben-
feld & Scheck (1995). Namely, they demonstrated that
the only asymptotic solutions, to which the spinning
tippe-top could tend if they are found to be stable, are
(i) rotational, when the top rotates about a vertical axis
through a fixed point on the plane, (ii) tumbling, when
the motion of the spinning top rolls over the plane with-
out sliding, and (iii) spinning with sliding over the plane
of support. Those solutions are also proved to be the
limit sets of the solution for general problem and arbi-
trary initial conditions. Ebenfeld and Scheck also es-
tablished the conditions for which each of the constant
energy solution in the limit set is stable, so that there ex-
ists only one trajectory tending to this solution as t→ ∞
for arbitrary initial conditions. Another problem, which
is often related to the tippe-top, – namely, the rattle-
back (Walker, 1979) – does not seem to have the same
profound effect of dissipation (Borisov & Mamaev, 2003).

Another fascinating physical system – the skipping
stones (cf. Fig. 9) – also illustrates theorem 3. However,

FIG. 9 Skipping stone.

besides the oversimplified phenomenological theory (Boc-
quet, 2003), there is no adequate (even approximate
finite-dimensional) description of this problem, which
would allow one to understand its physics better. It is
notable that skipping stones (cf. Fig. 9) require an initial
spin Ω for gyroscopic stabilization (Bocquet, 2003) and
their interaction with the underlying fluid leads to dis-
sipation. Therefore an approximate, finite-dimensional,
description should fit the universal picture introduced in
this work. In particular, the known fact of gyroscopic
stabilization and presence of dissipation in this problem
allows one to conclude that the skipping stone will always
be unstable in accordance with experience and theorem
3; as in the Levitron, depending on the details of the
particular situation, the characteristic time of instability
can be large.

To illustrate the fact that dissipation-induced instabil-
ities are encountered from microscopic to astronomical
scales, we would like to appeal to the classical (planar)
circular restricted three-body problem following the work
of Murray (1994). This problem concerns the motion of
a test particle moving under the gravitational effect of
two masses m1 and m2, which in turn move in circular
orbits about their common center of mass and are not
influenced by the motion of the particle. The motion

is considered in a coordinate system rotating about the
common center of mass with the same frequency as the
two masses so that both of them lie on the x-axis with co-
ordinates (−µ2, 0) and (µ1, 0), where µi = mi/(m1+m2).
The resulting equations of motion (Murray, 1994) are

ẍ− 2ẏ =
∂U

∂x
+ Fx, (3.20a)

ÿ + 2ẋ =
∂U

∂y
+ Fy, (3.20b)

where

U =
µ1

r1
+
µ2

r2
+

1

2

[
x2 + y2

]
, (3.21)

with r21 = (x+ µ2)
2
+ y2, r22 = (x− µ1)

2
+ y2. In the ab-

sence of drag, F = 0, system (3.20) possesses one integral
of motion, namely the Jacobi integral C = 2U − ẋ2 − ẏ2,
which naturally defines the zero velocity curves some of
which are shown in Fig. 10.

L3 L1 L2

L4

L5

µ1
µ

2

x

y

FIG. 10 Restricted three-body problem: critical zero velocity
curves and Lagrangian equilibrium points.

Figure 10 also indicates the location of the five La-
grangian equilibrium points, three collinear ones L1−3

and two triangular L4−5. From the classical stability
analysis it is known that the L4 and L5 points are spec-
trally stable provided µ1µ2 < 1/27, while the remain-
ing points are unstable. The presence of drag in gen-
eral changes the location of the equilibrium points, but
of course does not make the stability analysis mean-
ingless. In the case of simple nebular drag when the
force is proportional to the velocity of the particle in
the rotating frame, F = k (ẋ, ẏ), the locations of the
equilibrium points are not affected and, as clearly fol-
lows from the Thomson-Tait-Chetayev theorem 3, the
stability of triangular equilibrium points L4 and L5 is
destroyed. The same conclusion applies to more realistic
drag forces, including radially dependent inertial drag
forces, F = k (ẋ, ẏ) rn, and Poynting-Robertson light
drag, which is caused by the non-isotropic re-emission
of radiation absorbed by the test particle.

B. Merkin theory

The counterpart of the Thomson-Tait-Chetayev theo-
rem 3 for non-conservative positional forces is the follow-
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ing.

Theorem 5. (Merkin). The introduction of non-
conservative positional forces (that is, the skew-
symmetric matrix P in (2.4) is non-zero) into a stable
purely potential system, q̈+C0q = 0, with equal frequen-
cies destroys the stability of the equilibrium regardless of
the form of the nonlinear terms.

Proof. Consider the following system,

q̈ + Cq + Pq = F (q), C = cE, PT = −P. (3.22)

The potential part, C, is a diagonal matrix with equal
eigenvalues, c, and non-conservative part, P , is an skew-
symmetric matrix. From the corresponding characteris-
tic equation, det[E(λ2 + c) + P ] = 0, we see that λ2 + c
is imaginary, so that λ is unstable. It is notable that
the second variation of the Hamiltonian (when P ≡ 0) is
positive definite at the origin, δ2H = cn, where n is the
system dimension.

For the history and other important results we refer to
Merkin (1974, 1997), Zajac (1964), Agafonov (2002), and
Seyranian & Mailybaev (2003). To illustrate theorem
5, consider system (1.2). A study of the corresponding
characteristic equation shows that the addition of non-
zero, non-conservative, positional forces (that is, p 6= 0)
to a stable system (that is, with zero degree of instability)
with equal frequencies makes it unstable, as shown in Fig.
5(d). Note that the second variation of the Hamiltonian
of the original system is positive definite at the origin.

1. Application 1: Rotating shafts

ω

q

O O0

1

q2

θ

e

v

v’

"

FIG. 11 Rotating shaft geometry (Kapitsa, 1939).

As a classical illustration of dissipation-induced insta-
bility due to positional forces we consider the problem
of rotating shaft, discussed in the introduction and orig-
inally treated by Kapitsa (1939). Since the dissipative
nature of these forces should be clear from the physical
setup, we consider the dynamics of the perturbation only.
Let the rotor is rotating with an angular velocity ω in the
ring housing with the space between them filled with a

hydrodynamic medium, as depicted in Fig. 11. If the ro-
tor center O0 coincides with the housing center O, then
the friction induces a breaking moment only since the gas
velocity has the same profile along the uniform gap. Now,
consider the case when the center is displaced by a small
amount OO0 = q1 to the right along the q1-axis. Since
the clearance becomes narrower in the direction of dis-
placement, we have v′′ > v′ as shown in Fig. 11, which
leads to different frictional forces on the right and left
sides of the rotor surface. Indeed, since the difference be-
tween the peripheral velocity of the rotor and the medium
is larger on the right side then the friction on that side is
larger than on the left side thus inducing a resultant force
in q2-direction. Quantitatively, this can be explained as
follows. If the clearance between the rotor and the ring
is e0 when their centers coincide, then assuming that the
clearance is much smaller than the rotor radius R in the
first approximation we get e = e0 − q1 cos θ. Next, if the
average velocity of the medium is Rω/2 and taking into
account that the volume of the medium moving through
any cross-section remains constant, we arrive at the sim-
ple relation ve = Rωe0/2.

Using these facts, we can compute the frictional force
dS (per unit length in the third dimension) acting a pe-
ripheral surface element Rdθ. Assuming that it is pro-
portional to the square of the relative velocity9 (Rω − v)

2

and projecting the force onto the q2-axis and integrating
over θ we get

Sq2
= −κρ

∫ 2π

0

(Rω − v)
2
cos θ dθ ∼ q1. (3.23)

Similarly, we can deduce Sq1
∼ −q2 and writing

down Newton’s second law with the appropriate non-
dimensionalization we recover system (1.2). It is notable
that breaking of symmetry of the problem (by displac-
ing the rotor from its center position) skew-symmetric
positional forces appear. While in this case it is obvi-
ous that should one treat the rotating shaft as a closed
system (not only the dynamics of perturbation, but also
the dynamics of the basic state – relative equilibrium),
these forces would lead to energy dissipation. This is dif-
ferent from the example considered next, when the same
linear system (1.2) accounts for the influence of the fol-
lower force, which is the force from the external and thus
pumps the energy into a system.

2. Application 2: Secondary instability

In this section we continue the discussion of the simul-
taneous appearance of both types of non-conservative ef-
fects and demonstrate their combined effect, which leads

9 However, in reality the friction law is a general function of ve-
locity and other variables, so that one can expect the presence
of the usual velocity-dependent dissipative forces as well.
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FIG. 12 Schematics of cantilever – elastic bar.

to a secondary dissipation-induced instability phenom-
enon, the appearance of which was discovered by Ziegler
(1952) in the context of elastic systems. Here we con-
sider a system of this type, namely two identical bars of
length l and mass m, and torsional springs of stiffness c0,
as shown in Fig. 12. For simplicity, the two-bar system is
restricted to a plane and not subjected to a gravity field.
The moment of inertia of the first bar with respect to the
point of attachment O is J1 and of the second bar with
respect to its center of mass is J2. With these definitions,
the kinetic and potential energies of the system for small
deflections φ1,2 (linearization) are

T = 1
2

(
a11φ̇

2
1 + 2a12φ̇1φ̇2 + a22φ̇

2
2

)
,

Π = 1
2c0φ

2
1 + 1

2c0 (φ2 − φ1)
2
,

where a11 = J1+ml2, a12 = 1
2ml

2, a22 = J2+ 1
4ml

2. The
resulting Euler-Lagrange equations for angles φ1 and φ2

are:
[
a11 a12

a12 a22

] [
φ̈1

φ̈2

]
+

[
c11 c12
c12 c22

] [
φ1

φ2

]
(3.24)

+

[
0 p
−p 0

] [
φ1

φ2

]
= 0,

where a11 = 4
3ml

2, a12 = 1
2ml

2, and a22 = 1
3ml

2; c11 =

2c0 −Fl, c12 = 1
2Fl− c0, c22 = c0, and p = 1

2Fl. System
(3.24) can be reduced to form (2.4) as discussed in Sec.
II.B. Note, that the follower force contributes to both
the positional P and potential C matrices, and thus the
situation is slightly more general than the one accounted
by Merkin’s theorem. The eigenvalue analysis of (3.24)
leads to a quartic equation for λ, of the form aλ4 + bλ2 +
c = 0; this shows that the solution is stable if λ2 < 0,
that is

b > 0, b2 − 4ac > 0, (3.25)

which yields F < 6
5

(
3 −

√
20
3

)
c0

l . The stability breaks

when the magnitude of the follower force exceeds this
value and thus the second inequality in (3.25) changes
its sign. This model was studied by Nikolai (1939) as an
approximation for the effects occurring due to the outflow
of combustion gases in jet engines.

Apparently, in addition to the positional (follower)
force F there are regular dissipative forces, so that one
can introduce a regular dissipation into the previous ex-
ample (3.24) and study the effect of two non-conservative
forces as in (2.4), which appear in (2.4) through matrices
P (positional forces) and D (regular dissipation). The
origin of D can be due to hydrodynamic friction inside
the bar-tubes through which there is a flow of liquid and
the ejection of which creates a follower force similar to
that in a jet engine. Suppose for simplicity that the dis-
sipation matrix D is diagonal with equal diagonal entries
of magnitude ǫ, and the magnitude of the follower force
is slightly below its critical value; that is, the system is
close to buckling.

Performing an asymptotic study of the eigenvalue

problem φ = φ̂ eλt for (3.24), and writing λ ≃ λ0 + ǫλ1

for the eigenvalues, where λ0 is the eigenvalue of problem
(3.24) without regular dissipation (the stable configura-
tion), it is straightforward to show that

λ1 = −c0 + e1 + (a11 + a22)λ
2
0

2 (b+ 2aλ2
0)

, e1 = 2c0 − Fl ;

that is, under assumptions of stability of the non-
dissipative system (3.25) and in the case when both a > 0
and c > 0 (one can show that this is physically realiz-
able), the system experiences an instability, since λ1 > 0,
for an arbitrary small dissipation ǫ.

C. On phase space behavior

Having discussed the geometric picture of dissipation-
induced instabilities in terms of the second variation δ2H
and trajectories in the phase space, we would like to ad-
dress another important geometric implication: how does
a volume V (t) of some region D(t) in the phase space
change with time under the phase flow

gt : (p(0),q(0)) 7→ (p(t),q(t)). (3.26)

In the Hamiltonian case, it is known that the phase space
volume is conserved, D(t) = gtD(t) = const, according
to Liouville’s theorem (Arnold, 1978). More generally,
if we have a system of ODEs ẋ = f(x), then the vol-
ume in x-space is conserved if div f = 0, where div f
is the time rate of change of the phase space volume.
If x0 is a non-singular point, then by the local normal
form theorem (Arnold, 1973), there exists an orthogonal
volume-preserving transformation y = y(x), such that
this system in the neighborhood of x0 takes the form

ẏ1 = |f(x0)|,
ẏj = λjyj, j = 2, . . . , n,

where λj are local Lyapunov exponents. This indicates
that one eigenvalue of a flow at a non-singular point x0

always vanishes and the associated eigenvector points in
the direction of the flow. All other Lyapunov exponents
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are responsible for the phase space volume deformations.
Therefore, the divergence can be expressed in terms of
the local Lyapunov exponents, div f =

∑
j

λj .

Next, for simplicity, consider the case of a velocity
phase space; then our two key examples from previous
sections – the Lagrange top and the rotating shaft – can
be treated in a straightforward manner. In the case of
an instability induced by regular dissipation, the system

for z = (q1, v1, q2, v2)
T is of the form

dz

dt
=




0 1 0 0
−c1 −d 0 −g
0 0 0 1
0 g −c2 −d


 z. (3.27)

Therefore, div f = −2d, i.e. the volumes shrink with
time at the same rate everywhere in the available re-
gions of phase space. This may appear to contradict
the fact that the equilibrium of the above system is un-
stable with z(t) growing exponentially in time. These
two facts can be reconciled by noting that even though
the volume D(t) in z-space is decreasing, some of its di-
mensions are growing in the unstable eigen-directions of
the operator on the right-hand side of ż = (J + G)∇zH ,
as depicted in Fig. 13. Here J is a symplectic skew-
symmetric operator, and G is the dissipative part of the
operator (metriplectic part). It is worth noting that those
unstable eigen-directions need not coincide with unstable
eigen-directions of the second variation ∇2

zH
∣∣
z=0

.

FIG. 13 A cartoon showing the velocity phase space shrinkage
in the case of dissipation-induced instability.

Next, in the case of an instability induced by positional
forces, the system is

dz

dt
=




0 1 0 0
−c 0 −p 0
0 0 0 1
p 0 −c 0


 z. (3.28)

From here we immediately see that div f = 0, that is
the volume is conserved even though the system is non-
conservative, which illustrates that Liouville’s theorem
does not have a converse. In terms of the behavior of the
phase space this case is analogous to the Hamiltonian
instabilities: the phase space volume shape is deformed
similar to Fig. 13, but its volume is conserved.

D. Summary and discussion

In this section we have illustrated the power of the rel-
evant classical theorems in explaining several phenom-
ena currently under discussion in the literature (such as
radiation-induced instability, the Levitron, etc.). We also
introduced the basic geometric interpretation of the two
fundamental destabilization mechanisms, which are sum-
marized below, and demonstrated their generic simulta-
neous appearance in physical systems. The latter natu-
rally leads to the notion of secondary dissipation-induced
instabilities.

As the structure of the complete fundamental system
(2.4) suggests, the two non-conservative destabilizing ef-
fects that we have discussed and that are illustrated in
Figs. 5(c) and 5(d), exhaust the most fundamental pos-
sibilities for finite-dimensional mechanical systems.

The two destabilization mechanisms can be summa-
rized as follows. If a stable equilibrium is formed from an
unstable potential energy together with stabilizing gyro-
scopic forces, then this stability is destroyed by arbitrary
dissipative forces. On the contrary, if the stable equi-
librium is formed from stable potential forces with equal
frequencies alone, then the stability is destroyed by ar-
bitrary non-conservative positional forces. It is notable
that these two cases both have anti-symmetric coupling
in system (2.4), which basically prohibits the construc-
tion of a Lyapunov function to prove stability. The insta-
bilities occur in both cases due to breaking of symmetry
in the original conservative system (and its phase space)
so that the eigenvalues move away from the imaginary
axis.

To summarize the geometric observations, we again
refer to the two key examples – the Lagrange top and
the rotating shaft – discussed in the introduction. As
pointed out by Bloch et al. (1994), the fact that the sec-
ond variation of the Hamiltonian H = 1

2 ż
T ż + 1

2zCz for
(1.1) is indefinite is crucial for the destabilizing effect of
dissipation, since the condition necessary for stability of
a Hamiltonian system, namely definite second variation
δ2H in the Lagrange-Dirichlet theorem, is not satisfied.
At the same time, it is notable that, in contrast to the
Lagrange top example (1.1), the second variation δ2H for
the rotating shaft problem (1.2) is positive definite at the
origin and thus the energy of the disturbance eventually
grows10. Thus, in the finite-dimensional case, the funda-
mental difference in the type of non-conservative forces,
i.e. regular dissipative versus positional, has a direct im-
pact and goes in parallel with a drastic change in the
geometrical picture, i.e. indefinite versus definite second

10 This, however, does not prohibit having Ḣ < 0 on certain por-
tions of the trajectory as can be readily seen from the energy
production rate equation: Ḣ = p (z1ż2 − z2ż1). These portions
of a motion correspond to the trajectories that are temporarily
heading towards equilibrium.
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variation:

indefinite δ2H ⇒ dissipative forces destabilize, (3.29a)

definite δ2H ⇒ positional forces destabilize, (3.29b)

where we have summarized the geometric precursor
which predetermines the type of non-conservative desta-
bilizing forces.11

IV. MOVEMENTS OF EIGENVALUES: GEOMETRY IN

SPECTRAL SPACE

Here we would like to take an alternative look at the
dissipation-induced instabilities – instead of the configu-
ration or phase space we consider the picture in spectral
space.

A. Hamiltonian bifurcations

The first task is to establish a link between the effect
of dissipation and the bifurcations in the corresponding
Hamiltonian systems, which may appear to be a stretch
since the concepts of stability in dissipative and conserva-
tive systems are quite different. Namely, the equilibrium
in a dissipative system is stable if all eigenvalues of the
linear operator have negative real parts, as follows from
Lyapunov’s theorem. On the contrary, in a Hamiltonian
system a necessary condition for stability is that the en-
tire spectrum lies on the imaginary axis, since the spec-
trum of conservative systems is always symmetric with
respect to both real and imaginary axes, and therefore
is present either in doublets or quartets. Since the goal
of this review is to understand the effect of dissipation,
which leads to a structural change in the behavior of
an originally conservative system, we first briefly review
the state of affairs for bifurcations of Hamiltonian vector
fields.

It is known that there are two kinds of generic local bi-
furcations from an equilibrium in Hamiltonian systems:
(1) steady-state bifurcation when the linearized vector
field at the equilibrium has a zero eigenvalue of multi-
plicity two, and (2) 1:1 resonance (codimension one bi-
furcation) when the linearization has a pair of purely
imaginary eigenvalues of multiplicity two. In the case
when there are no symmetries present, the classification
can be given based on the original work of Galin (1975),
according to which in the steady-state bifurcation the
eigenspace has generic dimension, dimE = 2 and the
corresponding normal form (result of versal deformations

11 Some other possibilities might be observed in, for instance, the
degenerate case when the second variation vanishes or in the case
in which a finite-amplitude instability takes place, which we do
not discuss here.

introduced by Poincaré or, which is the same, universal
unfolding) of the linearized vector field,

M(λ) =

(
0 1
λ 0

)
, (4.1)

so that as λ increases through zero the eigenvalues, ±
√
λ,

move along the imaginary axis and split onto the real
axis, as shown in Fig. 14(a). In the case of the 1:1
resonance, the Galin normal form contains the block of
dimE = 4,

M(λ) =




0 −1 ρ 0
1 0 0 ρ
λ 0 0 −1
0 0 1 0


 , ρ = ±1, (4.2)

which exhibits the generic movement of eigenvalues,
which first move along the imaginary axis and upon
reaching 1:1 resonance split, i.e. move into the right- and
left-halfs of the complex plane, as shown in Fig. 14(b).
This 1:1 resonance with splitting is often referred to as
the Hamiltonian-Hopf bifurcation or Krein crash, since
was first accounted for by Daleckii & Krein (1974), who
also provided a necessary condition for splitting (Krein
theorem). The above Galin forms indicate that splitting
is generic both in the steady-state and the 1:1 resonance
bifurcations.

λ - planeIm

Re

(a)Steady-state bifurcation.

λ - planeIm

Re

(b)1:1 resonance
(Hamiltonian Hopf)

bifurcation.

FIG. 14 Hamiltonian bifurcations: splitting of eigenvalues.
Solid circles stand for an initial locus, while empty circles
stand for the final state.

Example. As an illustration of the above discussion,
consider a Hamiltonian system with two degrees of free-
dom and the Hamiltonian

H =
1

2m

(
p2
1 + p2

2

)
+ ωG (q2p1 − q1p2)

+
1

2

(
ω2

G − ω2
k

) (
q21 + q22

)
, (4.3)

which has two time scales that are determined by two fre-
quencies ωG = G/m and ωk =

√
k/m, where m stands

for a mass, k for a spring constant, and G for a gy-
roscopic constant proportional to an angular speed of
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a rotating system. The corresponding Lagrangian that
is related to H by the inverse Legendre transform is
L = 1

2m
(
ẋ2 + ẏ2

)
+ G (ẏx− ẋy) + 1

2k
(
x2 + y2

)
. The

dynamics is apparently determined by the two character-
istic exponents λ = ±iωk

(
ǫ±

√
ǫ2 − 1

)
, ǫ = ωG/ωk > 0.

The parameter value ǫ = 1 corresponds to a 1:1 resonance
and bifurcation from stable situation (all eigenvalues are
on the imaginary axis for ǫ ≤ 1) to an unstable case of
complex eigenvalues (ǫ > 1), as shown in Fig. 14(b). �

The above example also demonstrates the concept of
a negative energy mode (Morrison, 1998), which can be
seen in the case ǫ > 1 after applying a canonical trans-
formation (q,p) → (Q,P), given by the generating
function F (q,P) = c(q1Ps + q2Pf ) + PfPs + 1

2c
2q1q2,

where c =
[
4(ω2

G − ω2
k)

]1/4
and pi = Fqi , Qi = FPi

(Goldstein, 1956). This transformation takes the Hamil-
tonian H(q,p) into H(Q,P) = − 1

2ωs

(
P 2

s +Q2
s

)
+

1
2ωf

(
P 2

f +Q2
f

)
, where ωf = ωG + c2 and ωs = ωG − c2.

The latter is the linear part of Cherry’s Hamiltonian
(Cherry, 1925) and represents a sum of two oscillators,
one slow and one fast. The slow oscillator is a negative
energy mode: a decrease of the total energy H(Q,P) due
to dissipation can be achieved by an increase of the am-
plitude of the slow mode, as can be observed from the
above expression.

λ - plane

(a)Steady-state passing.

λ - plane

(b)1:1 resonance passing.

FIG. 15 Passing of eigenvalues in the Hamiltonian case.

It is clear that the situations in Fig. 14 do not span
all the possibilities and one can also expect that instead
of splitting, the eigenvalues can pass, thus staying on
the imaginary axis, as shown in Fig. 15. However, in
the case when the Hamiltonian system has no symme-
tries, at least three parameters are required for pass-
ing to be expected (Galin, 1975). However, eigenvalue
passing is often encountered in applications due to the

presence of various symmetries, which restrict the possi-
ble movements of the eigenvalues. Understanding of the
conditions for passing in the steady-state case was at-
tained in the work of Golubitsky et al. (1987) and in the
1:1 resonance case in the work of van der Meer (1990),
while the proofs are given in Dellnitz et al. (1992). The
latter work demonstrated that the dichotomy in eigen-
value movements can be understood only by using both
energetics and group theory (in the steady-state case, en-
ergetics suffices). While the presence of symmetries can
restrict the eigenvalues to stay on the imaginary axis, the
same system but with different symmetries might have
quite different stability characteristics, as was found by
Guckenheimer & Mahalov (1992) (see also more recent
work by Knobloch et al. (1994)). They studied a sys-

tem in R2, of the form Ȧ = i
(
λA− |A|2A− ǫA

)
with

λ, ǫ ∈ R, which possesses S1 symmetry group if the sym-
metry breaking parameter ǫ = 0 and Z2 symmetry, given
by the action A → −A in the complex plane, if ǫ 6= 0.
Because this system is only two-dimensional, it is not
amenable to dissipation-induced instabilities. Finally, in
this context it is worth mentioning the work by Nagata &
Namachchivaya (1998), who studied symmetry breaking
effects in gyroscopic systems in R4 in a rotating frame.

Summarizing, bifurcations of Hamiltonian vector fields
include a steady-state and a 1:1 resonance bifurcations
from a stable equilibrium. Generically this happens in
systems without symmetries since in this case the eigen-
values split (which however may also take place when
symmetries are present though eigenvalues passing is
more common in the latter case). In this context it be-
comes clear that reduction of allowed symmetries may
lead to destabilization, such as S1 → Z2 in the above
discussed example of Guckenheimer & Mahalov (1992).

Concluding this discussion of Hamiltonian bifurca-
tions, it is worth mentioning the case when the system is
spectrally stable, but in view of the presence of multiple
eigenvalues and non-trivial Jordan block(s), the dynam-
ics involves an algebraic growth and is thus unstable, as
can be seen on the trivial example: q̇ = p and ṗ = 0.

B. Dissipation-induced movements of eigenvalues

The goal of this subsection is to discuss two points of
view on the subject, the classical one largely forgotten
and the modern one developed in the context of bifur-
cations, and to show their overlap. To start with, we
consider the effect of dissipation on the 1:1 resonance,
at which there are two alternative points of view. The
first one comes from the work of Clerc & Marsden (2001),
which claims that “... close to the 1:1 resonance, gener-
ically the dissipative terms induce an instability.” How-
ever, there are many physical systems (and applications)
when dissipation does not induce instability, as the fol-
lowing simple example indicates.

Example. Apparently, the following system with the
1:1 resonance remains stable after the addition of dissi-



Krechetnikov, Marsden: Dissipation-induced instabilities 20

λ - planeIm

Re

(a)Stabilization.

λ - planeIm

Re

(b)De-stabilization.

FIG. 16 Effects of dissipation on the stability of motion.

pation,

q̈1 + dq̇1 + c1q1 = 0,

q̈2 + dq̇2 + c2q2 = 0,

where d, c1 = c2 = c ∈ R+. This system may come from
a rotating shaft problem, for example. When dissipation
is added, d > 0, the eigenvalues move to the left of the
imaginary axis. This behavior persists for the more gen-
eral case, when there is no resonance, c1 6= c2, as in Fig.
16(a). The doubt in using “generically” comes from the
fact that the cardinality of systems with stable potential
energy is the same as the cardinality of systems with an
unstable one. The presence of resonances is an equally
rare phenomenon in both situations. �

Based on the above observations, one can conclude
that the 1:1 resonances and instabilities induced by dissi-
pation are independent phenomena, but can overlap. The
natural question is “under which conditions can these
phenomena overlap?” We shall address it in this sub-
section. Let us consider the following simple system for
q = (q1, q2),

q̈+Dq̇ +Gq̇ + Cq = 0, (4.4)

with

D =

[
d1 0
0 d2

]
, G =

[
0 g
−g 0

]
, C =

[
c1 0
0 c2

]
,

which in the case c1 = c2 = c and d1 = d2 = d possesses
S1 symmetry, i.e. is equivariant with respect to the ac-
tion q → Rθq for all θ ∈ S1, where Rθ is the rotation
matrix,

Rθ =

[
cos θ sin θ
− sin θ cos θ

]
. (4.5)

It is easy to determine that eigenvalues, as functions of
the dissipation d, the gyroscopic parameter g and poten-
tial energy effects measured by c, are given by

λ1−4 =
1

2

[
−(d± ig) ±

√
(d± ig)2 − 4c

]
, (4.6)

which, in the absence of dissipation, that is d = 0, have a
1:1 splitting bifurcation at |g| = 2

√−c, as shown in Fig.
16(b). As allowed by the Thomson-Tait-Chetaev theo-
rem 4, if c < 0, the system gets stabilized at a certain
amplitude of gyroscopic force, |g| ≥ 2

√−c, consistent
with the condition that the degree of instability is even.
This fact is reflected by the stability picture in the (g, c)-
plane: both paths, a and b, shown in Fig. 17(a) lead
to the 1:1 resonance. Once dissipation is added, d > 0,

(a)No dissipation, d = 0. (b)With dissipation, d > 0.

FIG. 17 Effects of dissipation on the gyroscopic system (4.4).

the real part of the eigenvalues at small d is given by

2 Re (λ) = −d±2dg/
√
g2 + 4c > 0 thus leading to insta-

bility for all c < 0 in the (g, c)-plane (cf. Fig. 17(b)) by
moving the eigenvalues off the imaginary axis in a fashion
shown in Fig. 16(b) (this Fig. shows only one possibility,
while the reversed direction of movements is also possi-
ble). It is notable that all the complicated behavior of
the eigenvalues discussed above is a simple consequence
of algebra12, since the eigenvalues (4.6) are the solutions
of the polynomial dispersion relation, i.e. the character-
istic equation of (4.4).

Concluding this section, we can state that the desta-
bilizing effect of dissipation, as in Fig. 16(b), predicted
by the Thomson-Tait-Chetayev theorem is more robust
and general than the one restricted to the 1:1 resonance
case, which is obviously just a particular situation, which
might be of special interest in various applications once
the nonlinearity is taken into account13. From a stabil-

12 The methods of algebra become useful if one wants to answer
the questions like by which amount the eigenvalues move off the

imaginary axis, which goes back to Daleckii & Krein (1974) (see
also MacKay (1991)), and what is the number of eigenvalues in

the right half plane usually dealt with the help of the Routh-
Hurwitz criterion (Gantmacher, 1966).

13 Physical situations, in which the 1:1 resonance is encountered,
span from celestial mechanics (Szebehely, 1967) (e.g. the re-
stricted three-body problem for the planar motion of a light body
orbiting in the fields of two heavy bodies) and astrophysics (Kon-
drat’ev, 2000) (e.g for star moving in a spheroidal, ring-shaped
galaxy) to fluid dynamics (e.g water waves (Buffoni & Groves,
1999)) and elastodynamics (e.g. flutter of a flag (Argentina &
Mahadevan, 2005)).
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ity stand point, it follows that the 1:1 passing resonance
is probably more interesting for the study of dissipative
effects, than the splitting case since in the latter the in-
stability develops in any event (if the Hamiltonian bifur-
cation parameter experiences an arbitrary small change)
with or without dissipation.

So, what are the conditions (symmetries, energetics)
which determine the effects capable of destabilizing the
equilibria? The answer to this question can be seen with
the help of the following two simple systems: a gyroscop-
ically stabilized system with an unstable potential, i.e.
c < 0, to which the dissipative forces are applied,

q̈ +Dq̇ +Gq̇ + Cq = 0, (4.7)

where

D = d · id, C = c · id, G =

[
0 g
−g 0

]
,

and a system with a stable potential, i.e. c > 0, and
under the action of positional forces,

q̈ + Cq + Pq = 0, C = c · id, P =

[
0 p
−p 0

]
. (4.8)

When the underlined terms, i.e. the destabilizing ef-
fects, are absent, both systems are stable and are in
1:1 resonance if |g| = 2

√−c. Instability occurs if the
non-zero underlined terms are added, no matter how
small, in accordance with the corresponding Thomson-
Tait-Chetayev and Merkin theorems 3 and 5, respec-
tively. Apparently, both systems possess an S1 symmetry
even if destabilizing effects are present. What is different
though is the stability type of the potential energy sur-
face (concave versus convex) and the destabilizing cou-
pling (symmetric versus skew-symmetric). Therefore, to
isolate the most fundamental cause for this story, we can
formulate the following theorem.

Theorem 6. Consider a Hamiltonian system, which has
an equilibrium at (0,0); assume it has a 1:1 resonance.
Then, this equilibrium is destabilized (I) by arbitrarily
small dissipative forces if the second variation δ2H

∣∣
(0,0)

is indefinite, or (II) by arbitrarily small positional forces
if δ2H

∣∣
(0,0)

is definite.

The proof of the theorem is a straightforward conse-
quence of theorems 3 and 5. It would be interesting to
identify these arbitrarily small destabilizing effects as the
ones breaking some specific symmetry (other than S1 and
being non-Hamiltonian). While the distinction between
these two cases is still to be fully understood, in the next
subsection we discuss a unified interpretation from the
point of view of singularity theory. This interpretation
also provides a geometric picture for the movement of
eigenvalues.

C. Connection to Singularity theory

The dichotomy of the eigenvalues movements studied
above in the dissipative and conservative cases suggests

that the Hamiltonian case represents some kind of singu-
lar limit (and highly degenerate, but nevertheless central,
case) when viewed in the general class of dissipative sys-
tems. Singular limit here is understood in the context
of stability: a stability is replaced by an instability if
the bifurcation parameter experiences an arbitrary small
change from its zero value, which corresponds to no dis-
sipation case. This raises the question on how reasonable
to consider Hamiltonian models to account for real world
behavior, in which dissipation, through interaction with
unmodeled dynamics, is common. While there is no gen-
eral answer to this question, we would like to discuss one
particular case, namely the so-called Hamiltonian Hopf
bifurcation, following the work of Langford (2003).

It is known that the Hamiltonian Hopf bifurcation is
quite different from the classical Poincaré-Hopf bifurca-
tion (Hopf, 1942), in which there are two complex conju-
gate eigenvalues (with non-zero frequencies) crossing the
imaginary axis from left to right. In the Hamiltonian
case, as we have seen, the bifurcation occurs through
eigenvalues splitting at the 1:1 resonance. Naturally, is
it possible to characterize as a parameterized family all
possible dissipative systems that are sufficiently close to
the Hamiltonian Hopf bifurcation? The answer to this
question can be given with the help of versal deforma-
tions following Arnold (1971), whose goal is to reduce
a given family of matrices, which depend smoothly on
the parameters, to the simplest form. In our case, the
simplest form corresponds to the Hamiltonian Hopf bi-
furcation and we are looking for the family of vector
fields which can be reduced to that form. Adopting com-
plex variable notations as in (Langford, 2003), a linear
two-dimensional Hamiltonian system, which undergoes
a Hamiltonian Hopf bifurcation, can be transformed by
a linear canonical transformation to the Jordan normal
form

d

dt

[
z1
z2

]
=

[
i 1
0 i

] [
z1
z2

]
. (4.9)

This system possesses the multiple eigenvalue λ = i and
together with its complex conjugate yields the standard
picture of the 1:1 resonance. The symplectic matrix in
(4.9) is the Jordan canonical form of a family of matrices
which form a codimension-2 submanifold of C4, i.e. a ver-
sal deformation has at least two (complex) parameters.

This is opposed to the symplectic matrix

[
i 0
0 i

]
, the

versal deformation of which has four parameters (matri-
ces having this Jordan normal form are a codimension-4
submanifold of C4) (Wiggins, 2003). Versal deformations
produce a 3-parameter (real unfolding parameter) family
of non-conservative systems of the form

d

dt

[
z1
z2

]
=

[
i+ ǫ 1
µ+ iν i+ ǫ

] [
z1
z2

]
, (4.10)

with the corresponding eigenvalues λ± = (i + ǫ) ±√
µ+ iν. The necessary condition for the classical Hopf
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bifurcation is

Re (λ±) = 0 : ν2 + 4ǫ2
(
µ− ǫ2

)
= 0, (4.11)

which defines a topology of the so-called Whitney um-
brella14 (Whitney, 1943) in the (ν, µ, ǫ)-parameter space,
as shown in Fig. 18. The umbrella self-intersects trans-

µ

ε ν

0

FIG. 18 Whitney umbrella (4.11).

versely along the µ-axis for µ < 0 with crossing angle
at the intersection going to zero as µ → −0. Whitney’s
umbrella may be pictured as a self-intersecting rectangle
in 3 dimensions. It possesses a pinch point, which occurs
at the top endpoint of the segment of self-intersection.
In every neighborhood of the pinch point, the surface
intersects itself. Pinch points are also called Whitney
singularities or branch points.

At every point of the umbrella, except for the points
on the µ-axis, there is one purely imaginary eigenvalue
and one with non-zero real part. On the negative part of
the µ-axis there are two distinct purely imaginary eigen-
values, which coalesce as double purely imaginary eigen-
values at the origin of Fig. 18. Finally, on the positive
part of the µ-axis the four eigenvalues are symmetrically
arranged as in the final state in Fig. 14(b). Therefore, the
µ-axis corresponds to the Hamiltonian case and eigenval-
ues movement as in Fig. 14(b). The umbrella divides R3

into three disjoint open regions, in each of which the real
parts of the eigenvalues have distinct behavior; namely,
ǫ > 0: Re(λ±) > 0, ǫ < 0: Re(λ±) < 0, above the um-
brella the real parts have opposite signs. Concluding, the
codimension-1 Hamiltonian Hopf bifurcation is a singular
limit of the codimension-3 dissipative normal form.

D. Summary

In this section we discussed the manifestation of
dissipation-induced instabilities in terms of eigenvalue

14 The canonical form of the Whitney umbrella is given by y2 =
zx2.

movement. In particular, we explored the interaction of
dissipative effects with the behavior of eigenvalues at a
1 : 1-resonance and in theorem 6 identified the conditions
under which an instability occurs. Next, we discussed the
effect of dissipation on the movement of eigenvalues in the
non-resonant case as well. Finally, a connection to sin-
gularity theory was established by investigating the tran-
sition from the Poincaré-Hopf to the Hamiltonian Hopf
bifurcations using versal deformations. It is important to
stress that there are physical systems in which implica-
tions of singularity theory are not fully understood yet:
one of them – a double spherical pendulum, which may
experience a Hamiltonian Hopf bifurcation (Marsden &
Scheurle, 1993), – will be discussed in the next sections,
but in different contexts, namely relative equilibria in
Sec. V and control in Sec. VI.

V. DISSIPATION-INDUCED INSTABILITIES OF

RELATIVE EQUILIBRIA

The natural question one might ask is what would be
the effect of dissipation if the equilibria is not ordinary,
but relative? As we observed on the example of rolling
disk in Sec. III.A, the answer to this question can be
reduced to the study of the effect of dissipation on the
ordinary equilibria. The starting point in developing a
general methodology is to realize that if we want to study
the stability of relative equilibria in the Hamiltonian case,
then we are dealing with Hamiltonian systems, which are
symmetric, i.e., invariant under the action of a group G.

At first, we provide a few epistemological remarks. It
appears that the study of destabilizing effect of dissi-
pation on Hamiltonian systems was recently continued
only in the works of Bloch et al. (1994, 1996), and Derks
& Ratiu (2002), but the contribution of these works is
limited to the case when an addition of dissipation to
a Hamiltonian system preserves the symmetry related to
the relative equilibria. The first work (Bloch et al., 1994)
proves a dissipation-induced instability when the dissi-
pation does not destroy the conservation law associated
with the symmetry group. The work of Derks & Ratiu
(2002) relaxes this assumption by studying the case of
invariant manifolds of relative equilibria when the dissi-
pation leaves the family of relative equilibria invariant,
which the orbits of the individual relative equilibria do
not have to be invariant. The study of Bloch et al. (1996),
which is a sequel of Bloch et al. (1994), considers the dis-
sipation terms in Brockett’s double bracket form, which
are encountered, for example, in the dissipative mecha-
nisms in ferromagnetism. The conclusion of that work
similarly indicates that the addition of dissipative effects
to a formally unstable equilibrium leads to instability.

The discussion in this section is given for simple me-
chanical systems (i.e. for which the Hamiltonian is sepa-
rable) only, while the generalizations of some of the ideas
– namely the reduction procedure – to natural mechani-
cal systems (i.e. when the Hamiltonian is non-separable),
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can be found in Lewis (1992) and Wang & Krishnaprasad
(1992).

A. The concept of relative equilibria and the history of

reduction

In analyzing dissipation-induced instabilities, we nat-
urally start the discussion with Hamiltonian systems,
which, in addition to being conservative, may also be
invariant under the action of a continuous symmetry
group. A natural class of solutions of such Hamiltonian
systems are solutions moving with the flow of the sym-
metry group, i.e whose dynamic orbit coincides with a
one-parameter group orbit, and includes relative equilib-
ria and were known at least to Routh and Poincaré, who
realized the necessity of distinguishing this type of equi-
libria. For instance, if the symmetry group is a rotation
group, then the relative equilibria is a uniformly rotating
state: e.g. the circular orbit of a geostationary satellite
or the rotation of a flywheel about its axis of symmetry.
In fields other than mechanics, relative equilibria may
have other names, e.g. rotating waves or simply basic
states in fluid mechanics.

The presence of symmetry implies an existence of
conservation laws (constants of motion) other than the
Hamiltonian, as follows from Noether’s theorem. Cor-
respondingly, relative equilibria in Hamiltonian systems
are critical points of the Hamiltonian constrained to the
constants of motion related to the symmetries. The exis-
tence of relative equilibria is contingent on the presence
of symmetries: once the symmetry is broken, the relative
equilibrium solution disappears. The relative equilibrium
also becomes an ordinary equilibrium once the problem is
transformed to a frame which “sticks” with the relative
equilibrium solution; for example, if the relative equilib-
rium is a uniformly rotating state, then it becomes an
ordinary equilibrium in a coordinate system uniformly
rotating with the same rate as the relative equilibrium.
It is clear that, as a result of this procedure, the lin-
ear operator, which is important for stability analysis,
might become time-dependent, that is with variable co-
efficients, and thus the classical Thomson-Tait-Chetayev
theorem are not applicable. There are numerous exam-
ples in fluid dynamics when the non-trivial basic state
resulting from the presence of symmetries leads to an
inhomogeneous linearized operator. However, there are
many examples when those theorems and/or analogous
analysis are useful: one of them was the example on sta-
bility of a disk rolling along a straight line in Sec. III.A.
Moreover, in contrast to the transformation to a rotating
frame of reference, the reduction procedures, including
the one described in this section, in these situations lead
to time-independent operators on the reduced space.

Thus, in studying relative equilibria, a natural step in-
volves the reduction of the original system. In the mid of
1800s Routh was very interested in rotating mechanical
systems, such as those possessing an angular momentum

conservation law. In this context, Routh used the term
steady motion for dynamic motions that were uniform
rotations about a fixed axis. According to the modern
understanding, these motions are ordinary equilibria of
the reduced equations and relative equilibria of the Euler-
Lagrange system before reduction. It was Poincaré who
introduced this clarification around 1890. First, start
with the notion of relative equilibria for a general dy-
namical system ẋ = f(x). Let G be a compact Lie group
acting orthogonally on Rn, and let f(x) : Rn → Rn be a
G-equivariant vector field. A group orbit X is a relative
equilibrium if the flow of the dynamical system leaves X
invariant (alternatively, X is a relative equilibrium if f is
tangent to X at points of X).

In the Hamiltonian context, consider a finite-
dimensional symplectic manifold (M,ω), where ω is a
symplectic form on the manifold M . Suppose on (M,ω)
we have a symmetric Hamiltonian system ẋ = XH(x, t),
where XH(x, t) is a vector field on M which defines a
flow φt(x(0)) = x(t), with a Lie group G acting on M
and G-invariant Hamiltonian H . The Lie algebra of the
group G is denoted by g. A point ze in the phase space
P is a relative equilibrium if the Hamiltonian vector field
XH(ze) points in the direction of the group orbit through
ze:

Definition 4. A point ze ∈ P is called a relative equi-
librium if XH(ze) ∈ Tze

(G · ze), that is, if the Hamil-
tonian vector field XH at ze points in the direction of the
group orbit.

Equivalently, a point m ∈ M is a relative equilibrium
of an invariant Hamiltonian if there exists a ξ ∈ g such
that etξm is a solution of the Hamiltonian system, i.e.
φt(m) = etξm. Here etξ is a group flow generated by the
element of Lie algebra ξ ∈ g.

In the Lagrangian context, consider the Euler-
Lagrange equations,

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0, j = 1, . . . , n. (5.1)

Let, as usual, pj = ∂L
∂q̇j be a generalized (canonical, con-

jugate) momentum. Assume that there are cyclic (ignor-
able) coordinates qj , which by definition correspond to
∂L
∂qj = 0, so that the corresponding conjugate momenta

are conserved ṗj = 0, i.e. pj = const. Therefore, in this
situation in the Hamiltonian description there are fewer
variables to solve for. The latter usually serves as a mo-
tivation for an introduction of the Routh procedure, an
exposition of which may be found in Goldstein (1956).
The same point of view goes back to Whittaker (1917)
who explicitly stated that Rough procedure is a special
case of Hamiltonian transformation. However, it should
be kept in mind that this classical way of motivating the
Routh reduction can be misleading, since it does not al-
low one to understand the reduction in the non-abelian
case. The latter issue was understood and led to the ex-
tension of the classical Routh procedure to non-abelian
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case by Marsden & Scheurle (1993). It should be men-
tioned that the original reasoning by Routh (1913) was
based on a simple observation that (5.1) simplifies for
each cyclic (or “absent”) coordinates qj , since ∂L

∂qj = 0.

In non-intrinsic terms, the essence of the Routh pro-
cedure in the classical case is to transform the cyclic co-
ordinates, say with indexes i = 1, . . . , s, to the Hamil-
tonian formulation by performing a partial Legendre
transform (fiber derivative) FL : TQ → T ∗Q (in co-
ordinates qi, q̇j → qi, pj)

15 as applied to H(q,p, t) =∑
q̇ipi − L(q, q̇, t)|q̇→p, while the rest of the coordi-

nates, i = s + 1, . . . , n, to live in the Lagrangian frame.
As a result, one gets

∂R

∂pi
= q̇i,

∂R

∂qi
= −ṗi, i = 1, . . . , s (5.2)

d

dt

∂R

∂q̇i
− ∂R

∂qi
= 0, i = s+ 1, . . . , n, (5.3)

where R(q1 . . . q
n, p1 . . . ps, q̇

s+1 . . . q̇n, t) =
s∑

i=1

piq̇
i − L.

This again explains why the Routh method in the case
of abelian symmetries can be understood as having a foot
in both the Lagrangian (5.3) and Hamiltonian (5.2) for-
mulations. Equations (5.3) are reduced Euler-Lagrange
equations.

As an illustration, consider a natural mechanical
system on the configuration manifold Q = S ×(
S1 × · · · × S1

)
with coordinates (x1, . . . , xm) on the

shape space S and cyclic coordinates (θ1, . . . , θk) on fac-
tors S1 (the symmetry groupG = S1×· · ·×S1 is abelian),
for which the Lagrangian has the form kinetic minus po-
tential energy,

L(x, ẋ, θ̇) =
1

2
gαβ(x)ẋαẋβ + gaα(x)ẋαθ̇a

+
1

2
gab(x)θ̇

aθ̇b − V (x). (5.4)

Because θa are cyclic, the corresponding conjugate mo-
menta pa = ∂L

∂θ̇a
= gaαẋ

α + gabθ̇
b ≡ µa are conserved

quantities, µa = const. The corresponding Routhian is

Rµ(x, ẋ) = gaαg
acµcẋ

α +
1

2
(gαβ − gaαg

acgcβ) ẋαẋβ

− Vµ(x), (5.5)

where Vµ = V (x) + 1
2g

abµaµb is the amended potential

and gab denotes entries of the inverse matrix of gab. It
is notable that, due to the reduction, both the potential
and kinetic energies are changed, and the Routhian Rµ

has picked up a term linear in the velocity, which has a
meaning of an extra force having a structure of a Coriolis

15 note that one can solve pi = ∂L
∂q̇i for q̇ locally only if Hessian

det(L′′

q̇q̇
) 6= 0; FL is a diffeomorphism if L is hyperregular.

force in this case. The positive definite nature of the
kinetic energy term in Rµ can be seen by rewriting it in
a form

1

2

[
ẋα,−Aa

δ ẋ
δ
] [

gαβ gαb

gaβ gab

] [
ẋβ

−Ab
γ ẋ

γ

]
, (5.6)

where Aa
α = gabgbα. In the above illustration we took

the coordinate viewpoint, but it should be kept in mind
that this cannot be done globally in general; instead, the
intrinsic approach should be taken, as in the case of a
double spherical pendulum (Marsden & Scheurle, 1993).

As noted by Arnold (1993), the problem of reduction is
linked to the question of hidden motions, which troubled
physicists at the end of the 19th century: Helmholtz,
J. J. Thomson and Hertz insisted that every mechani-
cal quantity, which manifests itself as a potential energy
(does not depend on velocities), is in fact the kinetic en-
ergy of hidden motions under which only cyclic (hidden)
coordinates vary. A typical example is the rotation of a
symmetric top: we may perceive that the top does not
rotate and explain its behavior and stability as if it is
acted upon by some conservative forces. Finally, the fa-
mous example of Routh reduction is the elimination of
the polar angle in Kepler’s problem presented below for
illustration of the above exposition and for the needs of
further discussion.

Example. Consider the classical two-body (Kepler’s)
problem (Arnold, 1993; Goldstein, 1956; Smale, 1970) of
the motion of two bodies of mass m1 and m2 respectively
in the potential field U = U(|r|), r = r1 − r2:

m1r̈1 = − ∂U

∂r1
, m2r̈2 = − ∂U

∂r2
. (5.7)

Since in a barycentric coordinate system the trajectories
of the two point masses are similar planar curves (with
similarity ratio m1/m2), then the problem reduces to the
investigation of a single equation, namely,

mr̈ = −∂U
∂r

, (5.8)

for m = m1m2/(m1 +m2). The Lagrangian of this sys-
tem in polar coordinates is simply,

L = T − U =
m

2

(
ṙ2 + r2θ̇2

)
− U(r), (5.9)

so that the coordinate θ is obviously cyclic. The con-
served momentum is pθ = mr2θ̇ ≡ l, so that the total
energy can be written as

E = T + V =
m

2
ṙ2 +

1

2

l2

mr2
+ V (r), (5.10)

and the equation (5.8) reduces to

mr̈ = −∂Uc

∂r
, (5.11)
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where Uc = 1
2

l2

mr2 + V (r) is the reduced (also known as
amended or fictitious) potential, i.e. potential function
amended by adding a term corresponding to a “centrifu-
gal force”. It is notable that the usual potential U has
no extrema, while the amended one has a minimum (po-
tential well), which explains the orbital stability. �

It fact, any generic two-dimensional gyroscopically sta-
bilized system is closely analogous to the Kepler problem,
but with a different potential function in general: e.g. the
restricted three-body problem (Murray, 1994), a planar
oscillator on a rotating plate and the charged spherical
pendulum (Bloch et al., 2004); see also the discussion in
Sec. III.A.

B. Cotangent bundle reduction

To illustrate the effect of dissipation on relative equi-
libria, we consider the case of a double spherical pendu-
lum, shown in Fig. 19. First we need to introduce the
necessary elements of the cotangent bundle reduction.

(a)Stretched
out solution.

(b)Cowboy
solution.

FIG. 19 Two relative equilibria of the double spherical pen-
dulum.

Consider an abstract mechanical system on a configu-
ration manifold Q, and canonical phase space P , which
is the cotangent bundle P = T ∗Q. Assume that the
mechanical system is Hamiltonian, with the Hamiltonian
function denoted by H : P → R, which represents the
total energy of the system. We denote by q an element
of Q, and say that coordinates qi on Q induce coordi-
nates (qi, pi) on T ∗

q Q, where p ∈ T ∗
q Q is the associated

momentum16. The pair (q,p) ∈ Q × T ∗
q Q of the canon-

ical cotangent coordinates is identified with z ∈ T ∗Q.
Further, assume that the Hamiltonian system possesses
symmetry induced by a Lie group G with a Lie algebra g.
Associated to the action of G on Q are the infinitesimal

16 The tangent spaces TqQ and T ∗

q Q are in natural duality via the
non-degenerate pairing < ·, · >.

generators ζQ(q), which form the tangent space to the
group orbit Gq.

By Noether’s theorem, for each continuous symmetry
ξ ∈ g there is a conserved quantity J(ξ) which has the
same dimension as the group G has. If g

∗ is the dual
of the Lie algebra g, then, as a generalization of linear
or angular momenta, we introduce a momentum map
J : P → g

∗ for the action of G on P = T ∗Q, which
reproduces as special cases the usual angular and linear
momenta. The function J is determined by

J(z) · ξ = 〈p, ξQ(q)〉 , p ∈ T ∗
q Q, (5.12)

for all ξ ∈ g. Let {e1, . . . , en} be the basis for gµ, which is
the Lie algebra of Gµ; then for ξ ∈ gµ we have ξ = ξjej .
If in coordinates the infinitesimal generator is ξi

Q(q) =

Ki
a(q)ξ

a (here ξa are components on g), then in canonical
coordinates pq = (qi, pi) we get 〈J, ξ〉 (pq) = piK

i
a(q)ξa,

i.e. Ja = piK
i
a(q). Here Ki

a is called the action tensor.
Next, consider the diagram

T ∗Q
J−−−−→ g

∗

FLq

x
yI(q)

TQ −−−−→
Aq

g

(5.13)

where coordinates are (q, p) ∈ T ∗Q and (q, v) ∈ TQ. We
will also use a shorthand pq and vq. We are left to define
I(q) and Aq in this diagram to have a complete geometric
characterization of the cotangent bundle reduction.

Definition 5. For each q ∈ Q, the locked inertia ten-
sor is the isomorphism I(q) : gµ 7→ g

∗
µ given by

I(q)η · ξ = 〈ηQ(q), ξQ(q)〉 , (5.14)

for ξ, η ∈ gµ.

Since the action of G on Q is free, I(q) is an inner
product (Riemannian metric). This terminology comes
from the fact that for coupled rigid or elastic systems,
I(q) is the classical moment of inertia tensor of the rigid
body, obtained by locking all the joints of the system.
In coordinates, for simple mechanical system H(q, p) =
1
2g

ijpipj + V (q) we have

Iij(q) = gkl(q)K
k
i (q)K l

j(q). (5.15)

To close the “loop” in (5.13) we define the connection
one-form for the mechanical connection: Aq : TQ → g,
which is actually an angular velocity of the locked system.
It is a g-valued one-form on Q and defined by

A(q, v) = I
−1(q) (J(FL(q, v))) , (5.16)

that is, Ai(vq) = I
ij(q)gkl(q)K

k
j (q)vl,

where Iij(q) are the components of the inverse of Iij(q).
Note that A(q, v) has the meaning of the angular ve-
locity of the locked system, and FL : TQ → T ∗Q is
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simply the metric tensor regarded as a map from vectors
to covectors, FL(q, v) = (q, p), where pi = gijv

j . One
should also think of A as a connection on the principal
G-bundle Q → Q/G, i.e. A is G-invariant and satisfies
A(ξQ(q)) = ξ. Classically, a connection (Arnold, 1993)
is an invariant splitting of the tangent space TqQ into
horizontal and vertical vectors, i.e. the distribution of
horizontal vectors is invariant under the action of G. The
basic idea behind this is very simple: the larger space is
projected on the smaller space – base space; directions
in the larger space that project to zero are vertical; the
connection is a specification of the horizontal directions,
which complement the space of vertical directions. The
horizontal space horq of the connection A at q ∈ Q is
given by the kernel of Aq:

horq = {(q, v)| J(FL(q, v)) = 0} . (5.17)

Since J(z) · ξ = 〈p, ξQ(q)〉, we see that horq is the space
orthogonal to the G-orbits. On the contrary, the vertical
space consists of vectors that are mapped to zero under
the projection Q→ S = Q/G, i.e. verq = {ξQ(q)| ξ ∈ g}.
Thus, the horizontal-vertical decomposition of a vector
(q, v) ∈ TqQ is just v = horqv + verqv. For each µ ∈ g

∗,
define the 1-form Aµ on Q by 〈Aµ(q), v〉 = 〈µ,A(q, v)〉,
that is (Aµ)i = gijK

j
bµaIab.

Having defined all the geometric structures (5.13) per-
tinent to the cotangent bundle reduction, we can formu-
late the main outcome of this reduction, which is actually
a generalization of the ideas introduced in Sec. V.A and
Kepler’s example.

Definition 6. The amended potential Vµ is de-
fined by Vµ = H ◦ Aµ, i.e. intrinsically Vµ(q) =
V (q) + 1

2

〈
µ, I−1(q)µ

〉
, or in coordinates Vµ(q) = V (q) +

1
2 Iab(q)µaµb.

Example (double spherical pendulum, Fig. 19).
To explore the above ideas, we use, as an illustration,
the mechanical system consisting of two coupled spherical
pendula in a gravitational field following the discussions
in (Marsden, 1992; Marsden & Scheurle, 1993). The con-
figuration space is Q = S2

1 × S2
2 , i.e. the product of two

spheres of radii l1 and l2 respectively and corresponding
coordinates q1 and q2. The respective Lagrangian is of
the form appropriate for a simple mechanical systems,
i.e. kinetic minus potential energies,

L(q1,q2, q̇1, q̇2) =
m1

2
‖q̇1‖2 +

m2

2
‖q̇1 + q̇2‖2 (5.18)

−m1gq1 · k −m2g (q1 + q2) · k,

from where we can get to the cotangent bundle T ∗Q, with
conjugate momenta p1 = Lq̇1

= m1q̇1 + m2 (q̇1 + q̇2)
and p2 = Lq̇2

= m2 (q̇1 + q̇2), and the Hamiltonian

H(q1,q2,p1,p2) =
‖p1 − p2‖2

2m1
+

‖p2‖2

2m2
(5.19)

+m1gq1 · k +m2g (q1 + q2) · k.

The continuous symmetry group is simply a simultaneous
rotation about z-axis, G = S1, i.e. the group action is
(q1,q2) → (Rθq1, Rθq2), where Rθ is the rotation by an
angle θ. The element of the Lie algebra is the rotation
vector ξ = ωk ∈ g ≃ R with the infinitesimal generator
ω(k × q1,k × q2) and thus the momentum map is

〈J(q1,q2,p1,p2), ωk〉 = ω [p1 · (k × q1) + p2 · (k × q2)] ,
(5.20)

i.e. J = k·[q1 × p1 + q2 × p2]. The locked inertia tensor
is found by identifying the metric in (5.18),

〈I(q1,q2)ω1k, ω1k〉 =

= ω1ω2〈〈(k × q1,k × q2), (k × q1,k× q2)〉〉 (5.21)

= ω1ω2

{
m1‖k × q1‖2 +m2‖k× (q1 + q2)‖2

}
, (5.22)

with the result I(q1,q2) = m1‖q⊥
1 ‖2 +m2‖(q1 + q2)

⊥‖2

being the moment of inertia of the system about the k-
axis, where ‖q⊥

1 ‖2 = ‖q1‖2−‖q1 ·k‖2 is the square length
of the projection of q1 onto the xy-plane. The mechanical
connection is calculated using (5.16) to produce

A(q1,q2,v1,v2) = I
−1J (5.23)

= I
−1 (k · [m1q1 × v1 +m2(q1 + q2) × (v1 + v2)]) .

Therefore, the amended potential is

Vµ(q1,q2) = m1gq1 · k +m2g(q1 + q2) · k (5.24)

+
µ2/2

m1‖q⊥
1 ‖2 +m2‖(q1 + q2)⊥‖2

.

The relative equilibria are computed by finding the crit-
ical points of Vµ. The obvious relative equilibria with
q⊥

1 = 0 and q⊥
2 = 0, in which individual pendula point

vertically upwards or downwards, are singular and not
of interest here. Rather, we search for solutions pointing
downwards with q⊥

1 6= 0 and q⊥
2 6= 0. Since in (q⊥

1 ,q
⊥
2 )-

coordinates:

Vµ

(
q⊥

1 ,q
⊥
2

)
= − (m1 +m2)g

√
l21 − ‖q⊥

1 ‖2

−m2g
√
l22 − ‖q⊥

2 ‖2 +
1

2

µ2

I
, (5.25)

its extrema yield relative equilibria given by the points
of the graph of

λ2 =
L2 − r2

L2 − α2
, where L =

(
1 +

α

m

) (
α

1 + α

)
, (5.26)

with the restriction 0 ≤ λ2 ≤ r2/α2 and definitions α =
q⊥

2 /q
⊥
1 , λ = ‖q⊥

1 ‖/l1, r = l2/l1, m = (m1 +m2)/m2.
It is easier to analyze the solution by rewriting q⊥

1 ,q
⊥
2

in polar coordinates (r1, θ1) and (r2, θ2) with φ = θ2− θ1
being an S1-invariant coordinate. The functions φ, r1, r2
form a coordinate chart on the shape space, i.e. they can
be regarded as G-invariant functions on the configuration
space. At a relative equilibria, both pendula have to lie
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in the same vertical plane through the origin. Therefore,
the value of the coordinate φ is either 0 or π. Thus, the
internal configuration of the system is determined by the
parameter α: if α > 0, we get a straight-stretched-out
solution with φ = 0, whereas if α < 0, the solution is of
the “cowboy” type with φ = π. �

C. Energy-momentum method

As a result of the above cotangent bundle reduction,
we arrive at the augmented Hamiltonian,

Hξ(z) = H(z) − 〈J(z) − µ, ξ〉 = Kµ(z) + Vµ(q), (5.27)

where Vµ is the above introduced amended potential,
Kµ(z) = 1

2‖p − αµ(q)‖2 is the amended kinetic energy,
and µ ∈ g

∗ and ξ ∈ g are related by the locked inertia
tensor I(q) : gµ 7→ g

∗
µ, as discussed in Sec. V.B.

Consider a relative equilibrium ze ∈ P , µ = J(ze);
thus, there exists ξ ∈ g such that ze is a critical
point of the augmented Hamiltonian Hξ(z) = H(z) −
〈J(z) − µ, ξ〉, i.e. δHξ(ze) = 0. This is same as ze being
a critical point of the energy-momentum map H × J :
P → R × g

∗. Next, introduce a subspace S ⊂ Tze
P ,

which is also S ⊂ kerDJ(ze) and is transverse to the
Gµ-orbit within kerDJ(ze).

Theorem 7. (Energy-momentum theorem) (Mars-
den, 1992; Marsden et al., 1989; Simo et al., 1991) If
δ2Hξ(ze) is definite on S, then ze is Gµ-orbitally stable
in J−1(µ) and G-orbitally stable in P .

The space of admissible configuration variations mod-
ulo variations generated by gµ is denoted by V . That is,
if N consists of the vectors tangent to the Gµ-orbit of qe,
then V is a complement of N in Tqe

Q. The key idea is to
split V = VRig ⊕VInt, i.e. rigid (group or rotational) and
internal (vibrational) variations. If g

⊥
µ is the orthogonal

complement to gµ in g with respect to the locked iner-
tia metric, then NRig =

{
ηQ(q) ∈ TqQ| η ∈ g

⊥
µ

}
. The

split V = VRig ⊕ VInt induces a split of the phase space
S = SRig ⊕SInt. Then, if the energy-momentum method
is applied to simple mechanical systems with separable
Hamiltonian, H = K+V , there are coordinates in which
δ2Hξ block-diagonalizes (Marsden, 1992; Marsden et al.,
1989; Simo et al., 1991):

δ2Hξ =




[
Rigid body

block

]
0

0

[
Internal vibrations

block

]


 ,

(5.28)

where the rigid body block corresponds to the Arnold
form Aµ = δ2Vµ

∣∣
VRig×VRig

, which first appeared in

Arnold (1971) in the special case Q = G, and the internal
vibrations block is simply diag[δ2Vµ

∣∣
VInt×VInt

, δ2Kµ].

If the symmetry group is abelian, then gµ = g and
g
⊥
µ = {0}, so that VRig = g

⊥
µ · qe = {0}. Therefore,

Arnold form vanishes, Aµ = 0, and the resulting lin-
earized equations of motion correspond to (2.4), so that
the influence of dissipation can be easily accounted by
the Thomson-Tait-Chetayev theory. On the other hand,
if the symmetry group is non-abelian, then Aµ 6= 0. The
main result of the work by Bloch et al. (1994) applies to
the general case of non-abelian symmetries: if δ2Hξ is
indefinite, then the relative equilibrium gets destabilized
after the addition of dissipation. This is the main mes-
sage of this subsection, which is apparently built on a fair
amount of geometry, some of which is introduced above.
In the classical times, when the results by Thomson-Tait-
Chetayev and Merkin were developed, these geometric
underpinnings were not available. One of the examples
of a non-abelian group is the rotation group SO(3), that
is the order in which rotations are composed makes a dif-
ference. For example, a quarter turn around the positive
x-axis followed by a quarter turn around the positive y-
axis is a different rotation than the one obtained by first
rotating around y and then x. For illustration of the
use of the energy-momentum method in determining the
amended potential, we consider an example with abelian
group.

Example (double spherical pendulum, Fig. 19).
The stability analysis amounts to the computation of
δ2Vµ on the subspace orthogonal to the Gµ-orbit. It is
easier to perform this task by rewriting q⊥

1 ,q
⊥
2 in polar

coordinates (r1, θ1) and (r2, θ2) with φ = θ2−θ1 being an
S1-invariant coordinate. Then, the amended potential is
given by

Vµ = −m1g
√
l21 − r21 −m2g

(√
l21 − r21 +

√
l22 − r22

)

+
1

2

µ2

m1r21 +m2 (r21 + r22 + 2r1r2 cosφ)
,

so that

δ2Vµ =



a b 0
b d 0
0 0 e


 , (5.29)

where

a =
µ2

[
3(m+ α)2 − α2(m− 1)

]

λ4l41m2(m+ α2 + 2α)3
+

gm2m

l1(1 − λ2)3/2
,

b = (sign α)
µ2

λ4l41m2

3(m+ α2 + 2α) + 4α(m− 1)

(m+ α2 + 2α)3
,

d =
µ2

λ4l41m2

3(α+ 1)2 + 1 −m

(m+ α2 + 2α)3
+
m2g

l1

r2

(r2 − λ2α2)3/2
,

e =
µ2

λ2l21m2

α

(m+ α2 + 2α)3
.

From here it follows that the “straight-stretched-out”
branch of the double spherical pendulum (with α > 0)
is stable, while the “cowboy” branch has an indefinite
second variation, and thus is susceptible to dissipation-
induced instabilities. �
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D. Summary

One can conclude that in certain situations, when rel-
ative equilibria can be reduced to the ordinary one, the
stability of relative equilibria can be studied with the help
of the classical Thomson-Tait-Chetayev theory. Since the
existence of relative equilibria presumes the presence of
symmetries and thus conserved quantities, then the sta-
bility can be naturally proved with the use of the energy-
momentum method. If, however, the symplectic struc-
ture is singular, then the existence of the corresponding
constants of motion – Casimirs, i.e. functions C which
Poisson commute with every function F : {C,F} = 0,
allows the stability to be demonstrated via showing the
strict convexity using the energy-Casimir method. How-
ever, in this paper we are primarily interested in the in-
stability phenomena, which are usually established on
the basis of Lyapunov’s linearization theorem. The proof
of stability is necessary, however, in order to establish
the existence of the bifurcation point rigorously (recall
that the location of all the eigenvalues on the imaginary
axis is necessary condition for stability of Hamiltonian
systems, but not sufficient and thus requires more in-
tricate analysis with the help of these methods). What
is the most relevant to our discussion here is the fact
that the Thomson-Tait-Chetayev and the Merkin the-
orems allow one to establish dissipation-induced insta-
bility if the Hamiltonian system has indefinite and def-
inite second variation, respectively, and is of the form
(2.4). Evidently, the form of the system in (2.4) implies
that the equilibrium is ordinary, but, as we know, the
same form (2.4) applies to certain cases of relative equi-
libria after the change of variables (reduction). More
general situation of relative equilibria originating from
non-abelian symmetries is accounted by the theory of
Bloch et al. (1994), which is a natural extension of the
classical Thomson-Tait-Chetayev theory.

VI. CONTROLLING DISSIPATION-INDUCED

INSTABILITIES

In this section we discuss the question of controlling
dissipation-induced instabilities both from classical and
modern geometric viewpoints.

A. Classical approach

At the most trivial level, the structure of the linear
part of system (2.4) suggests simply to add the appropri-
ate linear forces which would stabilize the equilibria, e.g.
Borisenko et al. (2001). In many engineering applica-
tions this is a widespread approach, as will be illustrated
with the following famous example – the monorail car,
schematically shown in Fig. 20.

As we know from the necessary condition for the gyro-
scopic stabilization, the number of degrees of instabilities
should be even, while the monorail car apparently has an

G

C

θ

ψ

L

FIG. 20 Monorail car.

odd degree – the angle ψ defining the deviation of the car
from vertical plane. To achieve gyroscopic stabilization,
one needs to make the second coordinate – the angle of ro-
tation of the gyroscope ring θ – unstable by placing a load
L to the top of the ring as depicted in Fig. 20. However,
as follows from the Thomson-Tait-Chetayev theorem, the
achieved stability is temporary since the dissipation com-
ing from friction makes the vertical position of the car
unstable. The engineering solution to this problem is to
create an angular momentum which would act in the di-
rection of rotation of the ring and be proportional to the
angular velocity θ̇. This is one of the oldest examples
that was resolved with the help of the classical theory.
Below we discuss more modern approaches to controlling
dissipation-induced instabilities.

B. Geometric control

The basic idea of this discussion follows from a sim-
ple observation: dissipation-induced instabilities of the
Thomson-Tait-Chetayev type happen only if δ2H(ze) is
indefinite. Therefore, to avoid this instability, we can
modify the original Hamiltonian system so that δ2H(ze)
becomes definite. Therefore, more involved control tech-
niques compared to the above compensators are based
on reshaping either potential (Jalnapurkar & Marsden,
2000) or kinetic (Bloch et al., 1997) energies through a
feedback. While the former is done in the Hamiltonian
context, the latter is devoted to Lagrangian approach.
Here we discuss the elements of the geometric control in
the Hamiltonian setting, since it exploits the ideas of the
previous sections. In general, it should be kept in mind
that the control in the Lagrangian setting is equivalent
to its Hamiltonian counterpart under rather general hy-
potheses as shown by Chang et al. (2002).

1. General methodology

In the context of the general finite-dimensional nonlin-
ear control system ẋ = f(x, u) on a smooth n-manifold
M , an affine Hamiltonian control system on a Poisson
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manifold M = P has the form

ẋ = XH0
(x) +

m∑

j=1

XFj
(x)uj , x ∈M, (6.1)

where H0, F1 . . . , Fm are smooth functions on P , XH0

is the (Hamiltonian) drift vector field and XFj
, j =

1, . . . ,m are (Hamiltonian) control vector fields corre-
sponding to Fj , and the admissible map to the con-
strained set Ω, u(t) : R+ → Ω ⊂ Rm is piecewise smooth.
The system (6.1) is said to be underactuated if m < n.
The most important issue of the control problem (6.1)
is controllability, i.e. whether one can drive the system
from one point to another with the given class of admis-
sible controls u(t). The controllability is closely related
and in many cases can be proved through the system
accessibility. The accessibility distribution17 is the dis-
tribution generated by vector fields in the accessibility
algebra C, which is a linear space and is just the span
of all possible brackets of XH0

and XFj
. If the dimen-

sion of the co-distribution, dC(z) = span {dg(z)| g ∈ C},
is dim dC = 2n, then the system (6.1) is strongly acces-
sible.

Further we assume that at the equilibrium z0, defined
by dH0(z0) = 0, we have Fi(z0) = 0, j = 1, . . . ,m. Since
the second derivative, δ2H(z0) at the isolated equilib-
rium, is intrinsically defined, there are two main possi-
bilities to consider. In the case when δ2H(z0) is positive
definite, z0 is a strict minimum of H . As proved in Ni-
jmeijer & van der Schaft (1996), if the co-distribution dC
is of dimension dim P on a neighborhood of z0, then the
feedback ui = kiXFi

[H ], ki > 0, makes z0 an asymp-
totically stable equilibrium. Moreover, if the functions
Fi commute, i.e. {Fi, Fj} = 0, the feedback can be ex-

pressed in the form ui = −kiḞi, which is easy to show
from (6.1).

The more interesting situation corresponds to δ2H(z0)
indefinite. Introducing a new feedback of the form
ui(z) = −ciFi(z) + vi, where constants ci > 0, and not-
ing that ciFi(z)XFi

(z) = ciX(1/2)F 2

i
(z), we rewrite the

system (6.1) as

ẋ = X eH(x) +

m∑

j=1

XFj
(x)vj , x ∈M, (6.2)

where

H̃ = H +
∑

i

ciF
2
i /2, (6.3)

is the modified Hamiltonian. Since Fi(z0) = 0, the point

z0 is a critical one for H̃(z). As proved by van der Shaft

17 A smooth distribution on a manifold M is the assignment to each
point x ∈ M of a subspace spanned by a set of smooth vector
fields at x ∈ M .

(1986), if δ2H(z0) is positive definite on ker dF (z0), then

one can find positive constants ci, such that δ2H̃(z0) is
positive definite. Intuitively, this implies that we need
actuation along all direction on which the second varia-
tion is not positive definite. This enables us to use the
same theorem of Nijmeijer & van der Schaft (1996), which
was discussed previously for the case δ2H(z0) > 0, but

now is used with a new set of functions C̃ = C(H → H̃).
As a result, the feedback of the proportional derivative
form ui = −ciFi − kiḞi makes z0 an asymptotically sta-
ble equilibrium. The proportional term −ciFi modifies
the potential and converts the equilibrium to a minimum
of the modified Hamiltonian, while the derivative term
−kiḞi is used to introduce dissipation in the system and
thereby achieve an asymptotic stability.

2. Application to systems with symmetry

Following Jalnapurkar & Marsden (2000), we apply
this theory to mechanical system with symmetry and
illustrate using the double spherical pendulum. Keep-
ing this example in mind, we discard the Arnold form
Aµ = δ2Vµ(qe)

∣∣
VRig

in (5.28) in view of abelian symme-

try. Therefore, we have V = VInt, so that we are left
with

δ2Hµ =

[
Bµ 0
0 Kµ

]
, (6.4)

where Bµ = δ2Vµ(qe)
∣∣
VInt

and Kµ is a matrix of size

dim S×dim S that depends on the kinetic energy metric
only and is known to be positive definite. We assume that
Bµ is not positive definite, and thus we apply the proce-
dure from Sec. VI.B.1 to form a modified Hamiltonian
(6.3), which leads to the modification of the potential

energy, Ṽµ = Vµ + (1/2)
∑

i ciF
2
i . Since δ2

(∑
i ciF

2
i

)
=

(dF (qe))
T
C dF (qe), with C = diag {c1, . . . , cm}, and

denoting by K the matrix of dF (qe) : V → Rm, the
block-diagonal form is transformed to

δ2H̃µ =

[
Bµ +KTCK 0

0 Kµ

]
. (6.5)

As proved in Jalnapurkar & Marsden (2000), Bµ +
KTCK is positive definite iff Bµ is positive definite on
kerK. The requirement of the van der Shaft theorem (Ni-
jmeijer & van der Schaft, 1996) that the co-distribution
should be of maximal dimension, i.e. of the dimension of
(T ∗Q)µ, is verified in Jalnapurkar & Marsden (2000).

Example (double spherical pendulum, Fig. 19).
Recalling that φ, r1, r2 are the coordinates on the shape
space, after diagonalization the 3 × 3 matrix Bµ =
δ2Vµ(qe) has only one positive entry. Since we need Bµ to
be positive definite on ker dF (qe) : V → Rm, ker dF (qe)
can have dimension at most one, and thus F needs to
have at least two components, since, roughly speaking,
we must apply actuation in all directions along which
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the second derivative of the Hamiltonian is not positive
definite. Therefore, let m = 2 and choose F1 = r1 and
F2 = φ. Note that F2 is not continuous everywhere on
the shape space, but for the study of the local behavior
in the neighborhood of relative equilibrium, this is not
an issue. Our system is underactuated since the shape
space has dimension equal to 3, while the control inputs
is of dimension m = 2. The matrix dF (qe) : V → R2 is

K =

[
∂F1

∂r1

(qe)
∂F1

∂r2

(qe)
∂F1

∂φ (qe)
∂F2

∂r1
(qe)

∂F2

∂r2
(qe)

∂F2

∂φ (qe)

]
=

[
1 0 0
0 0 1

]
,

with ker K = span
{[

0 1 0
]T

}
. If Bµ is positive def-

inite on ker K, it is possible to find c1, c2 such that

δ2Ṽµ(qe)
∣∣∣
V

is positive definite. Thus, we need to check if

∂2Vµ/∂r
2
2(qe) is positive.

Let us assume that both the rods are of unit length,
and both the bobs are of unit mass, and choose α =
−3/2, which corresponds to a “cowboy” solution. The
amended potential Vµ is given by (5.24), and it is easy to
verify that ∂2Vµ/∂r

2
2(qe) is positive. This ensures that

there exist constants c1 and c2 such that δ2Ṽµ(qe)
∣∣∣
V

is

positive definite. For example, the choice c1 = 300 and
c2 = 20 will work, and the corresponding feedback law
u1 = 300 r1 − k1ṙ1 and u2 = 20 r2 − k2φ̇ will make the
cowboy solution asymptotically stable relative equilib-
rium for any choice of positive constants. �

C. Remarks

In this section we discussed only the control relevant to
the Thomson-Tait-Chetayev theory, while Merkin’s case
was not explored. Another interesting problem would be
to develop control theory of the Hamiltonian-Hopf 1:1
resonance, since the literature is concerned only with the
dissipative case of 1:1 resonance, as in the works of Abed
and collaborators (Abed & Fu, 1986; Liaw & Abed, 1990,
1996).

VII. TOWARDS AN INFINITE-DIMENSIONAL THEORY

As both the title of this paper and the content of all the
above sections indicate, dissipation-induced instabilities
are now well understood in the case of finite-dimensional
mathematical description. While this description mod-
els and reflects appropriately the behavior of underlying
physical systems, one needs to keep in mind that the real
physical systems are always infinite-dimensional; for in-
stance, the friction of the Lagrange top either with air
or solid surface (hinge) is of infinite-dimensional18 na-

18 Instead of “infinite-dimensional” we will use adjectives “ex-
tended” or “continuous”, as is common in the physics literature.

ture, but the finite-dimensional description of it is just
a good and a successful approximation. In this sense
we distinguish this class of physical systems as “finite-
dimensional”, while the strict meaning is attached only
to the type of mathematical description. In this con-
text, the radiation-induced instability discussed in Sec.
III.A.1 might be thought of as an infinite-dimensional
example (3.16) (coupling of finite degree of freedom me-
chanical system to an infinite-dimensional wave equa-
tion), but, as analysis revealed, the underlying dynam-
ics is finite-dimensional (3.17). In this concluding sec-
tion we would like to address the question of the pres-
ence of dissipation-induced instabilities in truly infinite-
dimensional systems, i.e. which cannot be easily approx-
imated with finite-dimensional models. First, we provide
a motivating physical example, and next we outline the
general points pertinent to all infinite-dimensional sys-
tems.

A. Baroclinic instability

One example of this type – a baroclinic instability in
atmospheric and ocean dynamics – was recently devel-
oped rigorously by Krechetnikov & Marsden (2005). The
baroclinic instability is a large-scale instability of the
westerly winds in mid-latitudes, when the basic (equi-
librium) state has a vertical shear, ψe

i = −Ue
i y, as shown

in Fig. 21. In this mathematical idealization, the origin

FIG. 21 Physical domain and basic state Ui on the surface of
a rotating planet.

of the basic state is unspecified and the model reflects
the fact that this basic state is maintained against dissi-
pative effects by an external source of energy. Physically,
this particular basic state results from a temperature gra-
dient between the subtropical and polar regions, which
causes a pressure gradient aloft. The latter is balanced
by the Coriolis force to form a geostrophic flow known as
the Westerlies. The instability of these baroclinic zonal
currents has been a subject of numerous studies and is
known to occur as a result of a release of available po-
tential energy of sloping density surfaces.

The paradigm used in our study is the quasi-
geostrophic two-layer β-plane model introduced by Nor-
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man Phillips (1951), namely

∂tqi + vi · ∇qi = −r∇2ψi, (x, y) ∈ D, i = 1, 2, (7.1)

with no summation over i. This model, whose no-
tation is explained below, accounts for the large-scale
evolution in mid-latitudes with the simplified effects of
Earth’s rotation and sphericity (β-effect), stratification
(modelled by two-layer approximation) with internal ro-
tational Froude number F , and Eckman layer dissipation
(r ≥ 0). Equation (7.1) is posed on a rectangular domain,
D = {−1 ≤ x ≤ 1 ; 0 ≤ y ≤ 1}, located on the surface of
a rotating planet as shown in Fig. 21. In the formulation
(7.1), we have used the usual definition of potential vor-

ticity, namely qi = ∇2ψi +(−1)
i
F (ψ1 − ψ2)+βy, where

the stream-functions ψi in the i-th layer is related to the
velocities by vi = (u, v)i = ez × ∇ψi = (−∂yψi, ∂xψi),
and where the two-dimensional gradient is ∇ = i∂x+j∂y.
The left hand side of (7.1) is the usual material (Euler)
transport of potential vorticity, while the right-hand side
is the Eckman layer dissipation, where r ≥ 0. The prob-
lem (7.1) is treated here with the boundary conditions
corresponding to a Phillips model, i.e. periodicity in x
and no-penetration condition at y = 0, 1. For further de-
tails we refer the reader to a standard text of Pedlosky
(1987).

The unexpected destabilizing effect due to the in-
troduction of friction was vindicated, in particular, in
the linear stability study of Romea (1977), who demon-
strated that an introduction of dissipation leads to an
O(1) destabilization effect. However, no attempt to prove
the presence of a dissipation-induced instability in a sense
of Definition 2 has been made. As our study (Krechet-
nikov & Marsden, 2005) demonstrated, the dissipation-
induced instability develops according to scenario (3.29b)
in analogy with positional forces in the finite-dimensional
case. This constitutes the main result of Krechetnikov &
Marsden (2005):

Theorem 8. The equilibrium ψe
i = −Ue

i y of the
Hamiltonian quasi-geostrophic two-layer β-plane system
(7.1) with r = 0, experiences a dissipation-induced

instability in the parameter range
�
2
�
1 +

√
2
��−1/2

<

|U1 − U2|F/2β < 1/2 in a sense of Definition 2 when ar-
bitrarily small dissipation effect, r > 0, is added. More-
over, this equilibrium of the Hamiltonian system (that is,
with r = 0) is Lyapunov stable in the above parameter
range.

From the physical viewpoint, this result implies that if
one is predicting the appearance of a baroclinic instabil-
ity by measuring the velocity difference Uc = |U1 − U2|
based on the Hamiltonian formulation, the error of pre-
dicting the critical bifurcation parameter will be around
10%. Though this difference is probably within the accu-
racy of meteorological forecasts, it is still of physical and
mathematical importance: we believe that this phenom-
enon is more frequent than rare and its prominence may
vary depending upon a particular problem at hand.

B. General issues

From physical standpoint one can anticipate that the
dissipation-induced instability phenomena should take
place in other truly infinite-dimensional systems. How-
ever, the lack of classification of forces and of their iden-
tification in the mathematical formalism, analogous to
the finite-dimensional case, does not allow one to sys-
tematize clearly the various types of dissipation-induced
instabilities based on forces classification (dissipative vs.
positional), as we did in finite dimensions in section 3. In-
deed, an infinite-dimensional description usually comes
after some kind of coarsening procedure has been ap-
plied to a system with an infinite number of degrees of
freedom (e.g. averaging over fluid particles when deduc-
ing Navier-Stokes equations) and often after a certain
symmetry reduction (e.g. removing a particle-relabelling
symmetry when deriving Euler equations for ideal fluid).
The latter obscures the physical interpretation of vari-
ous terms in the resulting equations compared to finite-
dimensional mechanical systems (2.4). However, the geo-
metric picture introduced in section 3 immediately sug-
gests to build the classification upon the definiteness of
the second variation δ2H of the disturbance dynamics,
as depicted in Fig. 5. Similar to the finite-dimensional
case the two basic situations correspond to definite and
indefinite δ2H .

From the mathematical standpoint, though, one can
anticipate a number of complications. First of all, addi-
tion of dissipation usually introduces higher order deriv-
atives in the PDE models, as in the case of the addition
of viscosity to the Euler equations, which results in the
Navier-Stokes equations. The presence of such higher
order derivatives can lead to a modification of a given
equilibrium solution (i.e. basic state in fluid mechanics
terminology) and thus complicates the interpretation of
a stability analysis. However, the destabilizing effect of
viscosity, which is obviously responsible for dissipation,
has been noticed a long time ago: cf. Lin (1955), but
explaining this effect is not a trivial problem: even tran-
sition to turbulence in a simple geometry such as a chan-
nel or pipe (Poiseuille flow) is a challenge that is still not
fully resolved. Lastly, even when the equilibrium solu-
tion remains unmodified after dissipation is added, both
components of the analysis – (in)stability and existence of
solutions – and their interrelation provide other sources
of intricacy, as discussed below.

As we know, in proving instability one heavily re-
lies upon the Lyapunov’s indirect (linear approximation)
method, which is well-justified in the finite-dimensional
case, but in general is not valid in infinite-dimensions
(Luo et al., 1999). This difficulty might be overcome
with the help of Daleckii & Krein (1974) or Yudovich
(1989) theories (Yudovich’s version is more advanced
than Krein’s), which allow one to establish the connection
between linear and nonlinear (in)stability under specific
conditions on linear and nonlinear operators. While the
general theory is quite involved, to get a feeling of limi-
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tations of the theory compared to the finite-dimensional
case, consider a general nonlinear equation with a sta-
tionary principal part in Banach space:

dx/dt = A x+ F (x, t). (7.2)

Then, if the spectrum σ(A) does not intersect the imag-
inary axis but there are eigenvalues in the right half
plane, and there exists a number q0 depending only on
the operator A such that the nonlinear operator satisfies
‖F (x, t)‖ ≤ q‖x‖ for q ≤ q0 and t ≥ 0, ‖x‖ ≤ ρ, then the
zero solution of the differential equation (7.2) is unstable
for t→ +∞. Here ‖·‖ stands for the norm in the Banach
space.

Even after succeeding in establishing (in)stability, one
meets with another complication – norm-dependence of
stability criteria – the issue which has been understood
for a long time (Friedlander & Yudovich, 1999; Yudovich,
1989). In the finite-dimensional case this difficulty can-
not arise since all norms are equivalent. One of the sim-
plest examples of this subtlety is due to Yudovich (1989)
and represents a linear PDE:

∂u

∂t
= x

∂u

∂x
,

u(0, x) = φ(x),

the unique solution of which is simply u(x, t) = φ (x et).

Since
∥∥∥∂ku(·,t)

∂xk

∥∥∥
Lp(R)

= e(k−p−1)t
∥∥φ(k)

∥∥
Lp(R)

, one has (a)

asymptotic stability in Lp(R) for 1 ≤ p < ∞, (b) Lya-
punov stability in L∞(R), and (c) exponential instability
in Sobolev spaces W k,p(R) with k > 1, p ≥ 1 or k = 1,
p > 1.

This brings up the last major issue, one has to worry
about, namely choosing a physically relevant function
space and proving existence of the solution in the same
function space in which stability is investigated. This
task immediately uncovers the disjointness of current
methods for proving nonlinear stability (mainly Arnold’s
method, i.e. convexity estimates (Arnold, 1965, 1969;
Holm et al., 1985)), and methods for proving existence of
solutions, which are usually based on a priori estimates.
While the work of Krechetnikov & Marsden (2005) suc-
ceeded in establishing stability and existence in the same
function space, the lack of elegance and efficiency be-
comes evident and suggests a development of new meth-
ods which would achieve a simultaneous study of both
questions. In the next subsection we highlight the major
difficulties of studying existence and stability in a unified
approach in the context of finite-dimensional mechanical
problems: those difficulties become even more dramatic
in the context of infinite-dimensional systems.

C. On proving existence and stability

Historically, the methods for proving existence and sta-
bility have been developing independently, and therefore

it is natural that the techniques used often do not have
much in common. In general it is clear that the equi-
librium solution may exist, but be unstable, which ex-
plains why existence methods are not tied up with sta-
bility methods. Therefore, the conditions obtained in
the stability proof are generally of no use in the exis-
tence proof. This is the fundamental reason for these
two methods to be disjoint. However, one might expect
that the estimates found in the stability proof might fa-
cilitate the existence proof substantially and thus lead to
a united method for proving both properties. Here we
would like to illustrate that in some situations the as-
sumptions necessary for proving stability and existence
are basically the same, and therefore should help one in
developing a united method to prove these two proper-
ties simultaneously in the same function space. While
the way of achieving that has not been explored yet, it
should be important for PDEs, where the function space
setup becomes intricate for both stability and existence
analyses.

The observation that proving nonlinear stability is of
greatest importance for conservative systems, for which
linear and spectral stabilities do not imply nonlinear one,
suggests us to look first at this class of problems19. Just
for illustration, we consider the following simple example,
in which linear stability does not imply nonlinear one:

q̈ + q3 = 0. (7.3)

It is easy to see, by multiplying by q̇ and integrating in
time t, that this system is conservative with the energy
of the form kinetic T plus potential V energy:

E =
q̇2

2
+
q4

4
= T + V (q). (7.4)

1. Stability

Let generalized momentum be p = q̇, so that the
Hamiltonian isH = p2/2+V (q) with the resulting Hamil-
tonian equations

ṗ = −∂H
∂q

= −q3, (7.5a)

q̇ =
∂H

∂p
= p, (7.5b)

or Jż(t) + ∇H(z(t)) = 0 with z = (q, p) and H ∈
C1(R2,R). The equilibrium point is simply the origin
of the phase space z = (q, p) = 0 with H(0) = 0, so that
the linearized dynamics is given by

ṗ = 0,

q̇ = p.

19 In the dissipative case there are general results by Daleckii &
Krein (1974) and Yudovich (1989), which allow one to establish
nonlinear (in)stability based on linearization.
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Clearly, the system is spectrally stable with eigenvalues
λ1,2 = 0, but linearly unstable since for initial conditions
t = t0 : (q, p) = (q0, p0), the solution grows linearly in
time

p = p0,

q = q0 + p0(t− t0).

Following to the Lyapunov’s definition of stability, let ini-
tial conditions are chosen as in (2.10), then the maximum

possible energy is Hmax = δ2

2 + δ4

4 , while the energy of
the evolving system is

H =
p(t)2

2
+
q(t)4

4
≤ Hmax =

δ2

2
+
δ4

4
. (7.6)

Therefore, in view of convexity of (q, p) 7→ H(q, p),

|p(t)| ≤ (2Hmax)
1/2

, |q(t)| ≤ (4Hmax)
1/4

, (7.7)

and ǫ in (2.11) is given by ǫ =

max
[
(2Hmax)

1/2
, (4Hmax)

1/4
]
. Thus, we have found

explicit estimates for all the constants in the definition
of Lyapunov stability and proved that the system is
nonlinearly stable. We effectively used the Lyapunov
direct method: the energy function is a Lyapunov
function in this case, because it is positive definite and
its time derivative vanishes. The stability, of course,
can also be seen from the fact that the Hamiltonian is
separable and the potential energy has a strict minimum
at q = 0, which is a global minimum here. It should be
noted that the energy E cannot be chosen as a norm
since the property of homogeneity is not satisfied, i.e.
‖λ q‖ 6= |λ|‖q‖. However, in view of finite-dimensionality
of the problem, the stability result would hold in any
norm. It should be stressed that the above proof is
based on finding the appropriate energy estimate and
convexity estimates, which bound the dynamics of each
variable, q(t) and p(t). Since the proof involves only
q(t) and q̇(t) ≡ p, then the appropriate function space is
q(t) ∈ C1.

2. Existence

The history of proving existence of solutions for Hamil-
tonian systems is very rich. Starting with Poincaré’s ini-
tiative to treat this question with variational calculus,
it has been tempting to move this problem into the La-
grangian realm, and to prove existence of a solution by
demonstrating existence of a minimizer for a correspond-
ing action. The associated Lagrangian for (7.3) is

L(q, q̇) =
q̇2

2
− V (q), (7.8)

and the variational principle of Hamilton

δ

∫ t1

t0

L(t, q, q̇)dt = 0, (7.9)

yields the original Euler-Lagrange equation (7.3):

d

dt

∂L

∂q̇
− ∂L

∂q
= q̈ + q3 = 0. (7.10)

Now, a proof of existence for (7.10) in the variational for-
mulation can be based on the proof of the existence of

a minimizer q for the action I(q) =
∫ t1

t0
L(t, q, q̇)dt. Suf-

ficient conditions on the Lagrangian density L are con-
vexity in q̇, i.e. the mapping q̇ 7→ L(t, q, q̇) is convex
which here implies that Lq̇q̇(t, q, q̇)ξ

2 ≥ 0 for all ξ ∈ R,
and coercivity, i.e. L(t, q, q̇) ≥ α|q̇|γ − β for all t, q and
fixed 1 < γ < ∞ with α > 0 and β ≥ 0, as stated in
Theorem 2 on pp. 443–449 of Evans (1998), and Theo-
rem 4.1 on p. 82 of Dacorogna (1989), for example. As
easy to observe, while the first condition – convexity –
is satisfied, the coercivity is not. Hence, this variational
approach does not immediately allow one to establish the
existence of a solution even for this very simple example.
However, from an intuitive point of view it is clear that
the coercivity is satisfied once we restrict the variations
in the Hamilton principle (7.9) to the open region de-
fined by the upper energy bound (7.6). In this case we
know that q̇2/2+q4/4 ≤ Hmax, and thus L ≥ |q̇|2−Hmax,
which is exactly the coercivity condition needed for prov-
ing existence. While this intuition is also supported by
the fact that solutions do exists, as discussed in the fol-
lowing paragraph, the technical details of this approach
require further development.

The problem of existence (of periodic solutions) for
Hamiltonian systems was initiated by Seifert (1948) for
simple Hamiltonians, i.e. H = T (p) + V (q), and We-
instein (1978), who used differential geometric methods
to prove existence, that is by interpreting solutions as
geodesics in a suitable Riemannian or Finsler metric.
Their theory directly applies to our example. Namely,
the Hamiltonian in our case is convex, as we observed
in the course of stability proof, so that the fixed energy
H(z) = c defines a compact, convex, regular20 surface
S = H−1(c). Thus, the conditions of Theorem in We-
instein (1978) (see also Mawhin & Willem (1989) on p.
59, Struwe (1990) on p. 58, Buttazzo et al. (1998) on p.
200) are satisfied, and therefore the Hamilton’s equations
in our case have a (periodic) solution which orbit lies on
S. It is important to stress that the central condition for
both stability and existence is a convexity of the Hamil-
tonian. The variational methods in proving this result
were introduced later by Rabinowitz in his seminal pa-
per (Rabinowitz, 1978), but this field still has many open
problems (Ekeland, 1990).

20 Namely, ∇H 6= 0 for every z ∈ S = H−1(c).
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D. Summary

Concluding this section, the infinite-dimensional case
is still characterized by a number of technical mathe-
matical issues, which reveal the shortcomings of current
approaches to prove (in)stability of solutions rigorously,
and by the lack of clear physical interpretation and clas-
sification of dissipation-induced instabilities for PDEs.
However, recent progress in understanding the finite-
dimensional geometric picture (Krechetnikov & Marsden,
2006) provided a systematic way of looking at the infinite-
dimensional problems.

VIII. CONCLUSIONS

In this article we attempted to review many-sided man-
ifestations of the counter-intuitive effect of dissipation –
dissipation-induced instabilities phenomena – both in the
physical and the mathematical contexts. A multitude of
physical applications and situations, in which this type of
instabilities occurs, indicates that this particular effect is
one of the paramount ones governing instability mecha-
nisms in Nature. At the same time, striking connection to
many areas of mathematics, which we tried to highlight
here, also indicates the fundamental importance of these
phenomena. Clearly, there are many open problems and
issues associated with our further understanding both at
the fundamental level, e.g. infinite-dimensional systems,
and on the applied side, e.g. control.

The paper contains both classical results and more re-
cent ones, related to the deeper understanding of the geo-
metric picture of these instabilities, some of which have
never appeared in the literature. Therefore, we hope
that the reader found this coherent story of dissipation-
induced instability phenomena illuminating and useful.
To the authors’ knowledge this work is the first exposi-
tion of the subject in the literature.
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