
PHYSICAL REVIEW E 84, 056212 (2011)

Pattern identification in systems with S(1) symmetry
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This work is devoted to pattern identification in systems with S(1) symmetry based on limited experimental
data. As we demonstrate, such pattern identification is complicated by the lack of a theoretical basis as well as by
the presence of experimental uncertainties, and possible overlapping and missing points in the data. The study
is motivated by a recent finding of physical systems where instabilities of different wave numbers may coexist
and thus lead to several single-wave-number patterns superimposed with a random phase-shift between them.
As shown in this work, such patterns cannot be identified with Fourier analysis as well as direct measurement
of the wave numbers is not possible. We present both a constructive theoretical approach, which establishes the
conditions under which the structure of such patterns is identifiable, and an example of application—the crown
structure analysis in the drop splash problem. For the latter study, an experimental setup is developed based on
high-speed stereo photography, which produces data suitable for a quantitative analysis of the observed patterns.
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I. INTRODUCTION

A. Motivation

There are many natural and engineering systems that exhibit
pattern formation and are defined on periodic spatial or time
domains: some examples are coupled oscillators [1], oscilla-
tory convection in binary mixtures [2], numerous astrophysical
phenomena [3–6], synchronous rhythmic flashing of fireflies
[7], along-the-edge instabilities of accelerating liquid sheets
[8], and crown patterns in the drop splash phenomena [9],
just to name a few. In this work, we consider systems in
which patterns are formed due to instabilities with several
wave numbers excited at the same growth rate. One recent
example refers to along-the-edge instability of liquid sheets
[8,10,11], where it was found that the linear evolution of the
interfacial perturbation f (or its Fourier coefficient fkn, k ∈ R
and n ∈ Z), is governed by the following dispersion relation:

λ2 = −κ(σ−1κ2 + 1), (1)

where λ is the growth rate, κ = ±√
n2 + k2 is the two-

dimensional wave number, and σ is the bifurcation parameter.
Since the growth rate λ depends only on the modulus of the
two-dimensional wave number κ , the maximum growth rate
λmax is achieved at κmax = √

σ/3, and thus if κmax > n � 1,
there exists several critical wave numbers k(i)

c , parametrized
by i = 0, . . . ,n, with the same growth rate λmax.

At the linear level, the above result implies that if only one
critical wave number is excited, then the pattern is single-wave-
number, while for higher values of σ , more than one critical
wave number can be excited such that the picture becomes
“frustrated,” cf. Fig. 1(b), as was discovered recently in certain
regimes of the drop splash phenomenon [9]. The frustrated
picture occurs due to the randomness of the initial conditions,
which are amplified and evolved into several superimposed
single-wave-number patterns of different wave numbers and
with random phase shifts between them.

B. Key problem

Given the above theoretical example of frustrated pattern-
forming systems among many other natural phenomena, the
natural question is how to identify such patterns based on
experimental data. Namely, given experimental points, the
collection of which is limited and could represent just peaks
of the pattern (e.g., the location of spikes in Fig. 1), can one
decompose the pattern into single-wave-number subpatterns
with random phase shifts between them? As discussed below,
such patterns cannot be identified with Fourier analysis, and
direct measurement of the wave numbers is also not possible.

In this work, we focus on one-dimensional systems with
S(1) symmetry, i.e., circle groups, although the results are
readily applicable to systems with isomorphic to S(1) symme-
try groups SO(2), T , and R/Z and are also generalizable to
higher dimensions. Therefore, our data are a list of points of the
form � = {θ1, . . . ,θn}, and the underlying pattern structure is
the subject of this study. For example, for the spatial domain
case in the context of the drop splash crown shown in Fig. 1,
each θi represents the angle location of an individual crown
spike on the interval [0,2π ). In the time-domain case, the
data could be signals of several flashing fireflies [7] with
rational ratios of periods,1 which naturally have a random
phase shift between them: each θi would then be the time
corresponding to a single flash. The problem in both time
and spatial domains is to determine an underlying periodic
structure of subpatterns of a given collection of data points
�—the list of time events or spatial locations. Obviously,
such sampling does not comply with the Nyquist-Shannon
theorem [12] (i.e., if the period of our signal is 2π/n in
the case of n spikes, the sampling rate should be n/π ),
which makes the discrete Fourier transform (DFT) approach
impossible, as will be shown below. However, here we have

1It is easy to show that in this case, there is a common period for
such flashings, i.e., over which the pattern repeats itself.
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(a) (b)

FIG. 1. Patterns observed in the drop splash problem [9]:
(a) single-wave-number crown, (b) frustrated crown.

limited data, e.g., only the peaks of patterns, which, as we
will show, are nevertheless sufficient to determine the pattern
structure.

C. Paper outline

In Sec. II, we first discuss the currently available tools and
show their inapplicability to the resolution of the key problem
formulated above. Next, we develop a theory (Sec. III) that
shows under which conditions patterns are identifiable in the
ideal case (Sec. III B), in the presence of scatter (Sec. III C),
as well as for the data with overlaps (Sec. III D) and missing
points (Sec. III E). As an example of an application of the
developed theory, we use the data from the crown patterns
in the drop splash problem (Sec. IV), which required a new
experimental technique (Sec. IV A) to obtain data suitable for
the analysis presented here. The examples of data analysis are
given in Sec. IV B. The discussion is concluded in Sec. V with
questions requiring further exploration.

II. INAPPLICABILITY OF KNOWN APPROACHES

In the case of a simple periodic signal, one may use finite
differences �θij = θi − θj to identify if such a pattern is
periodic with a single period because the first off-diagonal
elements of the matrix �θij give the period. For example, for

� = {0,π/2,π,3π/2}, (2)

this matrix becomes

�θij =

⎛
⎜⎜⎜⎝

0 −π
2 −π − 3π

2
π
2 0 −π

2 −π

π π
2 0 −π

2
3π
2 π π

2 0

⎞
⎟⎟⎟⎠ , (3)

which tells us that the period is π/2. However, once multiple
periods are present, one must account for “interference,”
and thus finite differences alone become insufficient and
inefficient. In the case of a substantial number of data points, a
“guess work” search for patterns is not feasible either because
of the large number of possible combinations to analyze.
Besides these direct inefficient approaches, one may also
think of application of the DFT, circular statistics, and the
order parameter method to gain some insight into the pattern
structure; however, as will be shown below, they do not allow
one to resolve the key problem adequately and robustly.

(a)
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FIG. 2. (Color online) Shown is the inability of DFT to identify
the structure of frustrated patterns: (a) two patterns of wave number 4
with the phase shift π/12, (b) power spectrum of DFT for the function
in f(a); X2 = 7.93.

A. Discrete Fourier transform

While the DFT is the standard tool for wave-number or
frequency analysis, it works well only for the data obeying
the Nyquist-Shannon sampling theorem. For example, given
the set (2) representing only the spike location, so that the
corresponding points on the unit circle are

xn = ei θn , n = 0, . . . ,N − 1, (4)

the DFT

Xk =
N−1∑
n=0

xn e−(2πi/N) k n, k = 0, . . . ,N − 1, (5)

gives X = {0,4,0,0}, i.e., the wave number k = 1 (correspond-
ing to the wavelength 2π ) is identified instead of the correct
one k = 4. The same Fourier amplitudes X are obtained for
the very different data set � = {π/2,π/2,π/2,π/2}.

Also, if we superimpose on the top of (2) the same
wave-number pattern (2) but with a phase shift φ = π/12,
then the DFT yields the distribution of the Fourier amplitudes
as in Fig. 2(b), which clearly illustrates that for a given set
of data, the DFT does not help one to identify readily that
there are two single-wave-number patterns with k = 4 and
the phase shift φ = π/12. Instead, one may formally conclude
that the pattern is of the wave number k = 2 with some noise.
The useful insight one can get from the above examples is that
the maximum of the power spectrum (in the ideal case without
scatter) shown in Fig. 2(b) is approximately equal to the
number of pattern data points. For example, in the considered
example it is equal to 7.93 � 8, but there are a number of
possible combinations of wave numbers yielding the same
maximum of the power spectrum. The number of possible
subpattern combinations grows with the number of data points
and thus makes the DFT approach nonconstructive. Therefore,
one needs a robust and systematic approach to decompose and
identify patterns.

B. Circular statistics and order parameter

There are many systems, defined on a circle, that include
problems with angles and time and require statistical analysis
known as circular statistics [13]. One example from circular
statistics is the measurement of the angles at which birds
take flight [14]. Biologists are interested in how the data
are clumped, i.e., if the birds leave in the same direction.
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Therefore, the circular statistics analysis is not intrinsically
targeted to the identification and quantification of regular
patterns because a regular distribution of the birds’ departure
angles would involve some sophisticated bird behavior.

More precisely, given a set of angles on the interval [0,2π ),
each of them defines a unit vector—adding up all these unit
vectors results in a vector of length r , which can be rephrased
more compactly using complex exponentials,

r(m) eiψ(m) = 1

N

N∑
j=1

ei θj m, m ∈ N, (6)

where in the case m = 1 the expression reiψ is known
as the trigonometric moment in circular statistics [13], and
the complex order parameter in dynamical systems [1,15].
Essentially, the complex order parameter can be interpreted
as the collective rhythm produced by the collection of points
on the unit circle in the complex plane. The complex order
parameter is a useful diagnostic tool but its scope is to give
a sense of how well ordered the system is: if r(1) � 0, then
the system is considered disordered as the unit vectors point
in arbitrary uniformly distributed directions; if, on the other
hand, r(1) � 1, then the azimuths of a distribution are clumped
in a particular direction. This is also known as the Rayleigh
test. From the perspective of our analysis of patterns, when the
order parameter is small, as in the case of regular pattern data
with some scatter, then there is formally no difference between
random and regular data from the point of view of circular
statistics. The general case of (6), m � 1, introduced by Daido
[16], allows one to characterize the synchronization properties
and clustering: r(m) eiψ(m) are the mth Fourier modes of
the distribution of phases. While the usual Kuramoto order
parameter r(1) eiψ(1) [15] is suitable for distributions with a
single maximum, the higher-order parameters are suitable for
analyzing distributions with several maxima, often referred
to as clusters. However, as we will show in Sec. IV, even
such a generalization is not suitable for the identification
of patterns composed of several single-wave-number patterns
with random phase shifts between them.

III. PATTERN IDENTIFICATION THEORY

A. Key notions

We begin by first introducing the key notions informally as
motivated by the examples discussed in Secs. I and II. A single-
wave-number pattern is a set of elements that are regularly
spaced on a circle and have at least two elements, e.g., (2). A
regular pattern is a set consisting of a finite union2 of single-
wave-number patterns with (potentially random) phase shifts
between them, cf. Fig. 2(a). As a result, an irregular pattern

2Since the goal here is to develop practical algorithms, we
consider a finite union of single-wave-number patterns because,
from an experimental point of view, an infinite union would be
indistinguishable from continuous data. From a theoretical point
of view, one can consider an infinite union of single-wave-number
patterns, and the resulting pattern would still be formally identifiable
with the algorithms presented in the paper.

φ

FIG. 3. An ideal single-wave-number pattern, �(4,φ), with wave
number 4 and phase φ = π/6 relative to a given, e.g., laboratory,
system of coordinates.

does not have a regular structure and cannot be decomposed
into a union of single-wave-number patterns.

For systems with S(1) symmetry, it is natural to consider
a data point as an angle θ ∈ [0,2π ), where the angles 0
and 2π are understood to represent the same point. A
single-wave-number pattern is described by a wave number
k � 2 and a phase φ with respect to the origin θ = 0, as
illustrated in Fig. 3. Positive angles are measured in the
counterclockwise direction from the x axis. The spacing
between two consecutive elements of a single-wave-number
pattern is called the wavelength λ and is related to the wave
number by k = 2π/λ, which is an integer and also represents
the number of points (spikes) on the unit circle.

If a single-wave-number pattern with wave number k

contains k elements, it is said to be complete, i.e., not missing
any elements. Expressing a regular pattern in terms of single-
wave-number patterns constitutes pattern decomposition.

B. Regular ideal patterns

We begin with the simplest case—the “ideal pattern”—
which is considered to be free from experimental scatter. The
ideal-pattern case will serve as the basis for more general cases
developed later in Secs. III C–III E.

1. Definitions

For the purpose of qualitative analysis, we will need a
formal definition of ideal patterns.

Definition 1. Ideal single-wave-number pattern. Let � =
{θ1, . . . ,θk} be a set of ∞ > k � 2 elements. If � can be
represented as

{θn ∈ [0,2π ) | θn = n λ + φ, for n = 0, . . . ,k − 1}, (7)

where λ = 2π/k is the wavelength and φ ∈ [0,λ) the phase
shift, then �(k,φ) is an ideal single-wave-number pattern.

An ideal regular pattern is a set that can be decomposed
into a finite union of ideal single-wave-number patterns, as
formalized below.

Definition 2. Ideal regular pattern. Let � be a finite set
containing all elements of interest. If � = ⋃m

i=1 �(i)(ki,φi),
where �(i) is the ith ideal single-wave-number pattern such
that �(i) ⋂ �(j ) = ∅ if i �= j , and m is the least number

056212-3



RORY HARTONG-REDDEN AND ROUSLAN KRECHETNIKOV PHYSICAL REVIEW E 84, 056212 (2011)

of ideal single-wave-number patterns,3 then � is an ideal
regular pattern.

Note that permutations in this decomposition into single-
wave-number patterns do not lead to a new pattern. To clarify
the terminology introduced above, consider the example in
Fig. 3. Plotted are the angles from the set � = {φ,π/2 +
φ,π + φ,3π/2 + φ} with φ = π/6. By inspection, we see that
this set is a single-wave-number pattern with the wave number
k = 4 and the wavelength λ = π/2 because � ≡ �(4,φ) =
{θn ∈ [0,2π ) | θ = π n/2 + φ for n = 0, . . . ,3}.

For the subsequent analysis, we will also need the difference
matrix introduced in Sec. II, which is a key step toward uncov-
ering the regular decomposition of a set � = {θ1, . . . ,θN } with
N elements. The difference N × N skew-symmetric matrix
�� consists of differences between all pairs of elements in
the set �:

��ij = θi − θj . (8)

Remark. The difference matrix �� contains (N −
1)N/2 = N!

(N−2)!2! = (
N
2

)
possible unique entries; its lower

triangular half of �� contains all the positive difference
combinations, cf. (3).

2. Pattern identification

Now the idea is to demonstrate decomposability of ideal
regular patterns.

Theorem 1. If a given ideal regular pattern is complete and
without overlapping elements, then there exists an algorithm
that identifies it. The resulting pattern decomposition is unique.

Proof. Let us demonstrate the existence of at least one algo-
rithm capable of decomposing any given ideal regular pattern,
which is complete and without overlaps, into ideal single-
wave-number patterns with some phase shifts between them.
In order to initiate a decomposition of the given set � of length
N into ideal single-wave-number patterns �(i)(ki,φi), we first
identify the wavelength λ of ideal single-wave-number pat-
terns. Let us consider differences between two elements of �,

��ij = θi − θj = (niλ + φi) − (n′
j λ

′ + φj ), (9)

for some ni,n
′
j ∈ Z+. Any pair of elements belongs either to

the same single-wave-number pattern or to different single-
wave-number patterns. Should two elements happen to belong
to the same single-wave-number pattern, i.e., if θi,θj ∈ �(i),
then λ = λ′ and φi = φj , in which case Eq. (9) becomes

��ij = (ni − n′
j )λ, ni − n′

j ∈ Z+, (10)

which allows one to distinguish the elements θi of the set
� obeying (10), which belong to that single-wave-number
pattern. Equation (10) states that the spacings between
elements in an ideal single-wave-number pattern are multiples
of the wavelength λ of that pattern. In particular, for
a single-wave-number pattern of wave number k = 2π/λ

containing k elements, we should expect to find
(

N
2

) = k!
2!(k−2)!

positive entries in the difference matrix ��.

3Otherwise, as is easy to conclude, the decomposition of an ideal
regular pattern into ideal single-wave-number patterns is not unique.

Given λ, Eq. (10) allows one to form a set of elements
from ��ij , which belong to a single-wave-number pat-
tern with wavelength λ. This set of elements, which are
spaced by multiples of λ, requires further consideration. Two
complications may occur: (a) it may be that “pathological”
phase shifts between subpatterns of different wave numbers
coincide with the wavelength λ and thus give rise to spurious
pairs of elements, or (b) there may be multiple single-wave-
number patterns with the same wave number and some phase
shifts between them. Even though the situation (a) is highly
improbable due to the randomness of the initial conditions,
those spurious elements are easy to exclude from consideration
since the wave number (and therefore the number of elements
in the single-wave-number pattern) is known. As for the
situation (b), the same individual wave-number patterns and
the phase shifts between them can be identified based on
the knowledge of the wave number. A search for possible
single-wave-number patterns begins with the largest wave
number k = N , i.e., containing the total number of elements in
�. Namely, starting with the largest wave number ensures that
the fewest number of single-wave-number patterns will be used
in the decomposition. Once single-wave-number patterns are
identified, they are removed from the set � and the process iter-
ates until every element of � belongs to a unique single-wave-
number pattern. By construction, the pattern decomposition is
unique. �

3. Subpatterns of single-wave-number patterns

In certain cases, a single-wave-number pattern may be
decomposed as a union of smaller subpatterns. A subpattern
is simply another single-wave-number pattern with a smaller
wave number (larger wavelength), which is a subset of the
larger single-wave-number pattern under consideration. This
idea of subpatterns will prove useful when analyzing patterns
with overlaps in Sec. III D.

We now clarify these ideas with an example. Refer-
ring to Fig. 4, where �(6,0) = {θn ∈ [0,2π )| θ = π n/3 for
n = 0, . . . ,5}, we can observe that this single-wave-number
pattern with wave number 6 can be grouped into two sets
of single-wave-number patterns with wave number 3, or
into three sets of single-wave-number patterns with wave
number 2:

�(6,0) = �(1)(3,0)
⋃

�(2)(3,π/3) , (11a)

= �(3)(2,0)
⋃

�(4)(2,π/3)
⋃

�(5)(2,2π/3). (11b)

FIG. 4. An ideal single-wave-number pattern �(6,0).
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In general, this leads to the following claim, the proof of which
is straightforward.

Lemma 1. Any ideal single-wave-number pattern �(N,φ),
where N is not a prime number, may be expressed as a union of
ideal single-wave-number patterns of wave number p, where
p is an integer divisor of N ,

�(N,φ) =
N/p⋃
i=1

�(i)(p,φ + λN (i − 1)) . (12)

C. Regular patterns with scatter

A natural generalization of ideal patterns is to consider the
case of (nonideal) regular patterns when the elements of �

have some uncertainty (experimental scatter) associated with
them. As such, the following development is more relevant
to actual measured data. It is natural to introduce nonideal
patterns by allowing deviations (residuals) from the ideal case.
Hence, a regular pattern with scatter is defined about the cor-
responding ideal regular pattern by letting εi be the deviation
of θi from the ideal case. A natural assumption is that the
magnitude of the uncertainties |εi | is bounded from above by
some constant δ. Such patterns are called regular with scatter,
where the amount of scatter is quantified with the scatter
bound δ.

Definition 3. Single-wave-number pattern with scatter. Let
� = {θ1, . . . ,θk} be a set with k elements. If � admits
the representation {θn ∈ [0,2π ) | θn = nλ + φ + εn for n =
0, . . . ,k − 1, |εn| � δ}, where λ = 2π/k is the wavelength,
φ ∈ [0,λ) is the phase shift, and δ is the scatter, then �(k,φ,δ)
is a single-wave-number pattern with scatter.

Figure 5 illustrates the correspondence between the two
ways of viewing the same pattern. On the left is the unit circle
with points θi shifted by εi from the ideal location. On the
right is a plot in the (n,θn) coordinates. All the points collapse
to a line in the limit of vanishing scatter δ → 0. This graphical
representation of a regular pattern naturally illustrates scatter
and phase shifts, e.g., the phase shift is just the y intercept of the
line. One can apply standard error analysis [17] by considering
� = {θ1, . . . ,θN } as a series of measurements, which ideally

φ

(a)

n

θn

φ

(b)

FIG. 5. On the definition and identification of patterns with
scatter: (a) a pattern with scatter (dark circles) defined relative to
the ideal pattern (light circles), (b) representing a circular pattern
on a graph: the points are plotted as coordinates (n,θn), where the
line represents the ideal linear relationship n λ + φ, with λ being the
wavelength λ, and εn is the residual between the line and the plotted
point, εn = θn − (n λ + φ).

should fall on a line θn = λ n + φ, where λ = 2π/k and k ∈ N
[cf. Fig. 5(b)].

As is easy to see, the condition for a given pattern to be in
the ideal regime is when two elements are not closer than twice
the scatter δ, λ > 2 δ. Such spacing of the elements allows one
to avoid the ambiguity when two points lie within the scatter
radius and effectively overlap. From a theoretical perspective,
the two conditions—spacing of the elements and the pattern
completeness—are sufficient to avoid the cases when patterns
are not identifiable.

Theorem 2. If a given regular pattern � with scatter δ is
complete and in the ideal regime, such that neither of the
two elements of � are closer than twice the scatter, λ > 2 δ,
then there exists an algorithm that identifies the pattern. The
resulting pattern decomposition is unique.

Proof. We will again demonstrate the existence of an
algorithm that identifies regular patterns with scatter by provid-
ing the decomposition into single-wave-number patterns with
scatter. Let � be a regular pattern with N elements that can
be partitioned into single-wave-number patterns with scatter
δ. In the ideal regime, the single-wave-number patterns are
separated such that �(i) ⋂ �(j ) = ∅ if i �= j . Similar to the
case without scatter, we begin by considering a difference
between two elements of �,

��ij = (ni λ + φn + εn) − (n′
jλ

′ + φn′ + εn′), (13)

for some indices ni,n
′
j ∈ Z+. In analogy to the ideal case

considered in Sec. III B, Eq. (13) may be simplified if θi and
θj belong to the same single-wave-number pattern with scatter.
That is, θi,θj ∈ �(k),

��ij = (n − n′) λ + εn − εn′ . (14)

By the theorem assumption, εn,εn′ are both bounded by
constant δ, so that the relation (14) gives

|��ij − (n − n′) λ| � 2δ. (15)

Equation (15) is an exact analogy to Eq. (10) in the ideal
case, with the only difference being that the scatter parameter
δ introduces an inequality [the ideal equality case (10) is
recovered in the limit δ → 0]. Thus, the algorithm follows
that of Theorem 1 and therefore provides a unique pattern
decomposition (provided λ > 2δ). �

Therefore, in the regular pattern regime with scatter, the
analysis is straightforward and no “pathological” cases need
be considered because the points are spaced according to
the conditions in Theorem 2. With the modification of the
equality (10) to the inequality (15), the algorithm is identical
to the one presented for ideal regular patterns in Sec. III B.

D. Regular patterns with overlaps

Until now, we have considered only regular patterns
when no overlapping single-wave-number patterns may occur.
Figure 6 illustrates an ideal regular pattern with overlaps
consisting of two single-wave-number patterns, �(3,0) and
�(4,0), which share one element, θ = 0. A physical example
and reasons for the presence of overlaps will be given in
Sec. IV E. Due to the fact that overlapping elements are
“double-counted,” a regular pattern with overlaps has fewer
elements than the sum of the elements of the constituent
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FIG. 6. Two overlapping single-wave-number patterns with wave
numbers 3 and 4, which share the element θ = 0.

single-wave-number patterns. The presence of overlaps in a
regular pattern requires the understanding of the origin of
single-wave-number patterns developed in Sec. III B, as will
become clear from the subsequent discussion.

Motivated by the example in Fig. 6, let us consider ideal
regular patterns, which may contain overlapping ideal single-
wave-number patterns, while each component single-wave-
number pattern is complete.

Theorem 3. If a given ideal regular pattern, possibly
containing overlaps, consists of complete single-wave-number
patterns, then there exists an algorithm that identifies it. The
resulting pattern decomposition is unique.

Proof. Let us again demonstrate the existence of an
algorithm that identifies ideal regular patterns potentially
containing ideal single-wave-number patterns with overlaps.
Accommodating the presence of overlaps requires only a few
modifications of the original algorithm developed in Sec. III B.
The main modification is to note that a given element θi ∈ �

may belong to multiple single-wave-number patterns. There-
fore, subtracting single-wave-number patterns as they are
identified may affect other equally valid single-wave-number
patterns. One mechanism to avoid this complication is to
test for and identify all possible single-wave-number patterns
with wave numbers ranging from N to 2 without removing
single-wave-number patterns once they are identified. From
Lemma 1 on subpatterns, finding redundant subpatterns of
a single-wave-number pattern is trivial and guarantees a
unique pattern decomposition. Once subpatterns are removed,
all that remains are the largest possible single-wave-number
patterns, which constitute the decomposition of the ideal
regular pattern. The rest of the algorithm is the same as in
Theorem 1. �

E. Incomplete patterns

Finally, we provide some considerations for the case of
incomplete regular patterns, i.e., when there are missing
points, which can be due, for example, to the limited ability
to collect experimental data. These considerations lead to a
proper definition of incomplete patterns and the conditions
under which they are identifiable. It is not straightforward,
however, to define an incomplete pattern because any given
regular pattern can be considered to be the result of a larger
pattern missing the appropriate elements. We illustrate this
and other complexities with the following simple example of
a regular single-wave-number pattern �(4,φ) in Fig. 7(a). Let
us remove some elements and consider whether the resulting
incomplete pattern is identifiable. To identify an incomplete

(a) (b)

(c) (d)

FIG. 7. The definition of incomplete patterns (light circles are
the removed elements): (a) the complete single-wave-number pattern
with wave number k = 4, (b) one element removed: the incomplete
single-wave-number pattern is identifiable, (c) two elements removed:
the incomplete pattern is still identifiable, (d) two elements removed:
the resulting single-wave-number pattern (k = 2) cannot be identified
as incomplete.

pattern, a minimal number of elements are added such that a
regular pattern is completed.

In the first case, when only one element is removed, as
shown in Fig. 7(b), the incomplete pattern is identifiable and
can be completed because the grayed element can be added
by extrapolating the obvious wavelength π/2 to the area of
missing spikes.

The second case deals with two elements, which can be
removed in two ways. Figure 7(c) shows the result if two
consecutive elements are removed. In this case, the incomplete
pattern may be identified in the manner analogous to the one in
Fig. 7(b) since the wavelength is identifiable: the two grayed
elements may be added back to make a single-wave-number
pattern with wave number 4. In the other case, in which
two nonadjacent elements are removed as in Fig. 7(d), the
“incomplete” pattern is just a single-wave-number pattern
with wave number 2. Therefore, the incomplete pattern is not
identifiable. The key distinction in this case from the former
ones is that the removed elements constitute a subpattern,
which is a single-wave-number pattern on its own.

Therefore, a useful definition of an incomplete pattern is
the one in which a pattern is identifiable.

Definition 4. An incomplete regular pattern �I is a regular
pattern, �R , minus a subset of points �− ⊂ �R:

�I (k,φ) = �R(k,φ) \ �−, (16)

where �I is not a regular pattern in the sense of Definition 2.
While the theory of incomplete pattern identification has

yet to be developed, probably in the context of a concrete
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application, one may conjecture that a sufficient condition for
�I (k,φ) to be identifiable is if �− is not regular, i.e., not
decomposable into any single-wave-number patterns.

IV. APPLICATION: CROWN PATTERNS IN THE DROP
SPLASH PROBLEM

The goal of this section is to provide an illustration of
physical phenomena when the question of pattern identifica-
tion arises and to demonstrate an experimental approach to
obtaining data suitable for the analysis offered in Sec. III. The
illustration comes from the drop splash problem [9]. Since the
goal here is just to illustrate pattern identification theory, no
attempt is made to perform a full study of the drop splash
patterns, which is beyond the scope of the present paper.

A. Experimental setup and data extraction

The key components of the experimental setup (cf. Fig. 8)
necessary to collect the data suitable for the pattern identi-
fication analysis can be divided into two groups. The first
group is responsible for measuring the physical parameters
and generating the drop splash, which is discussed in detail
in [9]. Namely, the droplet is created by pumping a liquid
through a syringe at a consistent low flow rate, ensuring that
droplet formation is uniform. The syringe is positioned, with
the help of a linear stepper motor, above a petri dish filled with
a thin liquid film of controlled thickness.

The second group of components serves to capture the
drop splash event. Since the drop splash event lasts over a
fraction of a second, high-speed cameras (Phantom v5.1-5.2)
are necessary to capture the dynamics, which is standard in
the drop splash studies. However, since we are interested in
the structure of the crown in space, we use three-dimensional
(3D) high-speed photography, which is new in the context of
the drop splash experiments; note that it is impossible to get
accurate positions of the crown spikes using just one camera
because (a) it cannot be placed right above the drop splash and
(b) the time-dependent dynamics of the crown is unknown.
The setup in Fig. 8 illustrates how two high-speed cameras
are positioned at two different viewing angles to generate a
stereo video of the event. The cameras need to be calibrated
and synchronized with a trigger to ensure that each pair of
frames corresponds to the same time event.

HSC 1 HSC 2

FIG. 8. Schematic of the experimental setup consisting of two
synchronized high-speed cameras (HSC) oriented at different viewing
angles.

1. Stereo camera calibration and triangulation

The basic idea of the stereo approach is that given two
images of the same scene taken from different viewing
positions, they are first matched and the difference between
them allows one to recover the lost 3D dimension, i.e., the
depth [18].

The practice of making physical measurements using
images, known as photogrammetry, is over a century old;
the historical development of camera models and calibration
techniques may be found in [19]. The result of a “camera
calibration” is a model of the camera that translates between a
point in an image and the light ray that is projected to that point,
which is indispensable for relating the image features acquired
with stereo photography to the laboratory coordinates. A stereo
calibration consists of determining the position of the right
camera reference frame with respect to the left camera (or
vice versa). Beginning with the seminal work by Tsai [20],
steady progress has been made toward the passive calibration
of standard cameras [21,22], which does not require any
internal information about the camera, such as its focal length.
Bouguet [23] has implemented the calibration procedure into
a MATLAB toolbox [24], which is used in our setup.

Stereo triangulation, i.e., the determination of a coordinate
in 3D space from a pair of images, is possible once a stereo
calibration has been performed. Stereo triangulation makes
use of the fact that each pixel location on the image defines
a ray as in human vision, hence determining a point in 3D
space becomes a geometric problem of finding the point of
intersection of two rays (or the closest point between the
rays in the nonideal case). Accuracies of various calibration
routines, when an object of known geometry is compared to
the geometry measured using a stereo triangulation method,
have been reported to be one part in a thousand [20].

2. Data extraction procedure

We now give a detailed description of the data extraction
procedure, which begins with a pair of images and ends with
a set of angles �.

The first step is to identify the corresponding spikes in each
of the left and right images. The corresponding spikes from
the left and right images are shown in Fig. 9, where the same
numbers correspond to the same spike.4 It should be noted
that the ability to recognize the same object from different
perspectives is known as the “correspondence problem” of
stereo vision [25], which is complicated by noise, obstructions,
and reflective properties of the viewed objects; this remains a
generally unsolved problem. Therefore, the process of actually
determining which spikes correspond between the left and
right images is done “by hand.” For accurate correspondence,
it is necessary to have a visible and identifiable point on the
object in both camera views. For the purposes of the present
experiment, such a point is the tip of a particular spike. We
intentionally used slightly out-of-focus photos as it does not
affect the accuracy of stereo triangulation.

4For illustration, we chose to use images from later (nonlinear)
stages of the drop splash evolution, which does not affect the
application of the pattern identification method.
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(a)

(b)

FIG. 9. (Color online) Stereo images of a drop splash crown with
corresponding spikes (circles) labeled by number: (a) left image,
(b) right image.

The two pixel coordinate pairs, (̃xl ,̃yl) and (̃xr ,̃yr ), of a
given point from the left and right cameras, respectively, are
the input for the stereo triangulation function. The latter gives
the position (xl,yl,zl) of the point in the reference frame of the
left camera, cf. Fig. 10(a); the details of stereo triangulation
may be found in [23].

With the 3D data now available, the next step is to reduce
the data to a set of angles on the unit circle. Since the point
(xl,yl,zl) is given in the frame of the left camera, whose
position relative to the location of the crown rim is arbitrary,
an ideal (flat) rim would be just a set of points lying on a
circle that has been rotated and translated. Therefore, instead
of directly fitting the spike coordinates to a general rotated and
translated circle in 3D space, we break up the task into two
linear steps: fitting to a plane and then to a circle in that plane.
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FIG. 10. (Color online) Example of data reduction from the
images in Fig. 9: (a) spike positions as a result of stereo triangulation
in the reference frame of the left camera; circle size corresponds to the
cumulative experimental uncertainty (Sec. IV A 3), (b) data projected
onto a plane and circle.

A plane is fitted to the data in the least-squares sense, which
gives a plane defined by its normal z′ vector. To rotate this plane
to the laboratory frame of reference defined by normal Z to the
horizontal plane, we make use of Rodrigues’ rotation formula
[26]. The direction of a desired rotation is from Z to z′, i.e., a
rotation vector can be found according to the right-hand rule:
vrot = Z × z′. The angle of rotation is θrot = arccos (Z · z′),
where (Z · z′) is the dot product between Z and z′. The result
of implementing Rodrigues’ formula is a rotation matrix R,
such that (X,Y,Z)T = R (xl,yl,zl)T ; the projection onto the
plane is obtained by setting Z = 0, cf. Fig. 10(b).

The resulting set of coordinates (X,Y ) has to be fitted to a
circle, again in the least-squares sense, which may be displaced
from the origin. If the fitted circle has a center (Xc,Yc), by
taking (X,Y ) → (X − Xc,Y − Yc), the center of the circle can
be made to coincide with the origin of the axes. Then each data
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FIG. 11. (Color online) Example of data analysis for the regular
crown with experimental scatter shown in Fig. 9: (a) moments r(m)
of the complex order parameter (6) for the function in Fig. 10(b);
(b) extracted angles (dots) and the least-squares fit (line) according
to (7) with λ = 2π/k, k ∈ N; (c) residuals of the least-squares fit in
(b), cf. Definition 3.

point projected on the plane represents the point closest to the
circle. Once all these steps are accomplished, determining the
angle set � becomes straightforward.

For example, given the stereo images in Fig. 9, the results of
the data extraction are shown in Fig. 10. Stereo triangulation
in the frame of reference of the left camera yields the position
of spikes as displayed in Fig. 10(a). After fitting to a plane and
rotation to the laboratory frame of reference (not shown), one
can see that the variance in the Z direction is much less than the
crown size in the (X,Y ) plane. This fact confirms the expecta-
tion that the tips of the spikes of the crown are nearly coplanar.
The next step is to fit the data to a circle using the least-squares
approach, the result of which is given in Fig. 10(b).

FIG. 12. Right image of the irregular crown.

3. Remarks

As in any experiments, the collected data are subject to
experimental errors and uncertainties, which can be divided
into two categories. The first type of error is due to in-
strumentation imprecision. The second type of error comes
from data reduction and analysis. For example, the error in
determining the pixel coordinates of corresponding spikes is
due to how well the same spike location can be identified
in each image. All three factors—spike definition, camera
focus, and resolution—contribute to the uncertainty in data
reduction.

B. Examples of data analysis

In this section, we demonstrate the analysis of three data
sets from the drop splash experiments. The three patterns we
have chosen are aimed at illustrating a regular pattern, which
has a substantial scatter but is still identifiable,5 an irregular
pattern, and a frustrated pattern exemplified in Fig. 1(b):
these are the cases of real experimental data that are most
interesting from the point of view of the analysis presented
here.

C. A regular pattern with substantial scatter

The generalized complex order parameter (6), while
suggesting some clustering of data, shows the lack of a
clear single dominating order between the dominant values
m = 21,22,23. Therefore, the order parameter plot is incon-
clusive but still may be interpreted as indicating the possible
presence of a single-wave-number pattern with considerable
scatter.

Following the algorithm developed in the proof of Theo-
rem 2, we arrive at the graph θn in Fig. 11(b), which clearly
suggests that the pattern is complete with single-wave number
k = 23 and scatter δ � 0.94λ. The substantial scatter ratio
δ/λ so close to unity (compare to the conditions in Theorem
2) indicates that, while it conforms with the Definition 3

5Regular patterns with a small amount of scatter are frequently
observed [cf. Fig. 1(a)], but they are not interesting to the present
discussion.
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FIG. 13. (Color online) Example of data analysis in the case of
the irregular pattern shown in Fig. 12: (a) moments of the complex
order parameter (6) for the function in Fig. 12; (b) extracted angles
(dots) and the least-squares fit (line) according to (7) with λ = 2π/k,
k ∈ N; (c) residuals of the least-squares fit in (b).

of a single-wave number with scatter,6 the fit is far from
ideal according to Theorem 2. The fact that the pattern is

6One may reinforce the expectation that the data correspond to
a single-wave-number pattern on physical grounds. First, from the
earliest stages in the drop splash recording, it is qualitatively clear
that the spikes are uniformly spaced [9]. To be able to confidently
identify the tips of the spikes, it is necessary to wait for the crown to
develop fully. Along with the fact that all the spikes to be accounted for
are observable, one expects a complete single-wave-number pattern
with scatter.
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n

θn

(a)

(b)

FIG. 14. (Color online) Decomposition of the crown pattern in
Fig. 1(b) into single-wave-number patterns. (a) Extracted angles
(dots) and the least-squares fit (line) according to (7) with λ =
2π/k, k ∈ N, the slope of which gives the wavelength of each
single-wave-number pattern: k = 8 (dotted), k = 5 (dashed), k = 3
(dotted-dashed), and three patterns with k = 2 (solid). The scatter
bound of such a decomposition is δ � 0.075. Note that there
are several overlapping points at θ = 28◦,103◦,176◦,248.5◦,343.5◦.
(b) Superposition of single-wave-number structures giving rise to the
crown pattern in Fig. 1(b).

still identifiable despite δ � 0.94λ implies that the condition
λ > 2δ in Theorem 2 is sufficient, but not necessary.

D. An irregular pattern

Now let us consider the apparently irregular crown pattern
shown in Fig. 12. From this figure, we may expect that
interpreting the data as a complete single-wave-number pattern
with some scatter is inappropriate. It is notable that the
complex order parameter amplitudes in Fig. 13(a) do not
suggest any dominate wave number(s). With the assumption
that there are no overlaps and missing points, based on the
algorithm developed in the proof of Theorem 2, one concludes
that the pattern is irregular. The latter fact is also evidenced by
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the attempted fit of the data to a single-wave-number pattern
in Fig. 13(b) exhibiting the scatter [cf. Fig. 13(c)] substantially
larger than the wavelength.

E. A frustrated pattern

Finally, we would like to “decipher” the pattern in Fig. 1(b),
which will serve as an illustration of both a superposition of
several single-wave-number patterns and overlapping points.
Naturally, the DFT and order parameter approaches are not
helpful in this case and thus are not discussed. The single-
wave-number patterns are identified with the help of the
algorithm in the proof of Theorem 3 leading to the plot θ (n)
in Fig. 14(a); the complete pattern decomposition is shown in
Fig. 14(b).

As one can see from the latter figure, there are five overlap-
ping points, which is suggested, in particular, by the larger size
of the corresponding spikes in Fig. 1(b). While it may appear
that given random initial conditions the odds of five coinciding
spikes are very low, the surface tension effect tends to minimize
the surface area. Therefore, if there are two close enough spikes
and the time evolution of the crown is sufficiently slow, surface
tension will have time to force the spikes to merge in a way
similar to the coalescence of liquid drops.

V. CONCLUSIONS

In this paper, we offered a theoretical approach for pattern
identification in the wave-number space. At its basis is the

case of ideal patterns without scatter. The effects of scatter
and overlaps are then introduced as a generalization of the
ideal pattern identification algorithm; conditions for pattern
identification are established systematically. This theoretical
approach is applicable to a broad range of physical problems
with S(1) symmetry on spatial and time domains. The case
of incomplete patterns remains a challenge, though a step has
been taken toward defining such patterns and understanding
the conditions under which they are identifiable. Another
potentially interesting extension of the pattern identification
theory could involve quasipatterns, i.e., patterns that satisfy
f (x + T ) = eax+b f (x) with quasiperiod T and some con-
stants a and b.

To illustrate the theory, an experimental method is devel-
oped to produce data suitable for the pattern identification
analysis of the crowns resulting from drop splashing. In
particular, we used stereo triangulation and a data reduction
procedure to identify the angular position of each crown spike,
and we applied the theory to a regular pattern with scatter as
well as to irregular and frustrated patterns.
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