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In this work, we study the local flow in the vicinity of a flat sector of arbitrary angle
α in the water impact problem as motivated by recent experimental observations in
the author’s laboratory. The key question is as to why the ejecta formed during the
impact at zero deadrise angle is considerably higher along a straight edge of the
sector compared to that near a sharp corner α < π , e.g., if the impacting body is a
rectangular plate. Resolving this question is made possible by the discovered here
mathematical equivalence of the problem to electromagnetic diffraction phenomena.
The main result of the present study is the revealed and quantified influence of the
geometry of a flat plate corner on the fluid flow around it, which also contributes to
the understanding of certain three-dimensional effects in the water impact problem
and provides a generalization of the classical two-dimensional results on the impact
at zero deadrise angle. The offered theoretical solution is also qualitatively supported
with the help of particle image velocimetry measurements. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4891229]

I. INTRODUCTION

A. Motivation

Real impact processes are three-dimensional (3D) in nature and, in view of their practical
importance in various industries and applications (ship building, sea landing, etc.), require accurate
models providing fundamental insights in the phenomena. Historically, the useful approximate model
of a 3D blunt-body impact onto a free surface of an ideal and incompressible liquid was introduced
by Wagner,1 which is based on the flat-disk approximation where the real shape of the impacting
body is substituted in the contact region by a flat disk. While there has been studied a wide variety
of body shapes impacting water, e.g., spheres,2 cones,3 disks,4–6 and wedges,7, 8 to mention a few,
in the present work we are interested in the impact of flat-bottomed bodies with sharp corners such
as the rectangular plate in Figure 1 and the local flow structure around such corners—the best way
to think about the general configuration studied here is an impact of a flat sector of angle α at zero
deadrise angle as will be clear from the subsequent discussion, cf. Sec. II A.

The present study is motivated by the observations in the author’s laboratory illustrated in
Figure 1—the key physical question here is on the origin of the observed difference in the ejecta
elevation along the flat edge compared to that near the corner. The details of the experimental
setup and procedure were reported earlier in this Journal in the context of studying “pancake”
structures on liquid rims.9 Because the Weber number corresponding to the impact of a plate of width
l = 2.5 cm with velocities V0 = 0.38–1.00 m/s is W e = ρ V 2

0 l/σ = O(102−3), one can expect that
the contribution of surface tension σ effects is considerably smaller than that of inertia of the fluid
of density ρ and, because the Reynolds number is Re = ρV0l/μ = O(104), the viscosity μ effects
can be neglected as well.
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FIG. 1. Impact of a finite-size rectangular plate of dimensions 2lx × 2lz = 2.5 cm × 7.5 cm in the (x, z)-plane on water at
speed 1 m/s and temperature 20 ◦C; perspective view showing the variation of the ejecta elevation along the flat edge and
around the corner 2.5 ms after the impact. The observed behavior persists over the entire range of tested impact velocities,
V0 = 0.38–1.00 m/s.

B. Problem statement

As is well-known,10 if there are no mass impulsive forces, then neither convective nor viscous
terms can balance the dominant time-derivative term, ∂v/∂t , in the Navier-Stokes equations, but
only the pressure gradients can handle this sudden change in the fluid motion:

∂v
∂t

= − 1

ρ
∇ p. (1)

Then the incompressibility condition, ∇ · v = 0, implies that the pressure p is a harmonic function,
�p = 0, which allows decoupling of the pressure and velocity fields at early times after the impact.
As classically argued,10 if the fluid is at rest before the impact, its motion right after the impact is
potential with the velocity potential φ defined such that v = ∇φ. Therefore, adopting the coordinate
system in Figure 1 brings us to the following formulation of the 3D impact problem of the plate
occupying the region (x, z) ∈ [ − lx, lx; −lz, lz] ≡ 	 with the appropriate boundary conditions:

�φ = 0, x, z ∈ R, y ∈ R−, (2a)

y = 0 :
∂φ

∂y
= −V0, (x, z) ∈ 	, (2b)

φ = 0, (x, z) /∈ 	, (2c)

y = −∞ : |φ| < ∞, (2d)

which determines the flow field right after the impact event.
In the two-dimensional (2D) case corresponding to lx = l and lz = ∞, cf. Figure 2(a), the

formulation (2) is a particular case of the Hilbert problem,11 which historically was solved in the
complex plane z = x + iy using the standard techniques for singular integral equations with Cauchy
kernels.12, 13 Indeed, after the introduction of the complex velocity potential f = φ + i ψ relating the
complex conjugate velocity potential φ and streamfunction ψ via the Cauchy-Riemann equations,
φx = ψy and φy = −ψx, one can appeal to the complex variable methods14 with the result

f (z) = φ(x, y) + i ψ(x, y) = iV0 (z −
√

z2 − l2). (3)

Since we are interested in the formation of ejecta near the plate edges, let us consider the near-the-
edge asymptotics of the above solution (3) by shifting the origin of the coordinate system to the
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FIG. 2. 2D impact problem treated in the complex plane, z = x + iy: (a) global problem, (b) near-the-edge region, (c)
streamlines in the near-the-edge region computed based on Eq. (3).

edge, z → z′ + l, cf. Figure 2(b). Retaining the leading order non-constant term only we get

f (z′) 	 −iα
√

2 z′, (4)

where α = V0

√
l with dim α = L3/2T−1. Note that in this approximation the normal velocity vanishes

at the plate surface, v = 0, because we retain the leading order terms only when arriving at (4), while
the next lower order non-constant term iV0z′ is responsible for satisfying the boundary condition
(2b). Expressing z′ in polar coordinates z′ = r eiθ and separating real and imaginary parts of the
complex velocity potential (4), we get the dimensional velocity potential function

φ = α
√

2 r sin
θ

2
, (5)

which clearly shows the singularity of the velocity field v = ∇φ ∼ r−1/2 near the plate edge. The
intuition behind this solution and thus the origin of ejecta is simple: once the plate impacts the
surface, a layer of displaced liquid beneath it—a wall jet—moves radially and since it fails to
accelerate the bulk of the surrounding liquid, this layer is deflected upwards and forms an ejecta, cf.
Figure 2(c) plotted based on Eq. (3). The key mathematical question of this paper is to understand
the dependence of the singularity exponent ν(α) on the sector angle α in 3D case, cf. Figure 3(a):

φ ∼ r ν(α). (6)

FIG. 3. On anti-duality of the fluid (a) and electrostatic (b) problems on the sector 	α of angle α = 2(π − θm) and the
natural sphero-conal coordinate system (c), in which coordinate surfaces correspond to constant r (sphere), θ (cone), and ϕ

(half-cone), respectively.
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II. 3D CASE

A. Approach

Since no complex variable technique exists in 3D, we need to find an alternative way of analyzing
the problem of the flow near a corner, cf. Figure 3(a). First, we will demonstrate with the familiar
example in 2D that one can get the asymptotics (5) without the knowledge of the global solution
(3) and then perform similar analysis in 3D, which will suffice for our purpose of answering the key
physical and mathematical questions in this paper.

Using the local system of coordinates near the edge, cf. Figure 2(b), we can perform the local
leading order analysis and recover the asymptotics (5) without the knowledge of the global solution
(3). Equation (5) gives the following boundary conditions:

plate surface 	 :
∂φ

∂n
= 0, (7a)

free interface R/	 : φ = 0, (7b)

where in 2D the plate surface corresponds to θ = −π , the free surface to θ = 0, and the differentiation
in the normal direction n to ∂φ/∂θ . The problem statement with the boundary conditions (7) is still
harmonic, the solution of which after application of the boundary conditions (7) gives

φ(r, θ ) =
+∞∑

n=−∞
Bn r

1
2 (1+2n) sin

1 + 2n

2
θ. (8)

Since at θ = 0 the velocity amplitude |v| must tend to zero as r → ∞, then (2n − 1)/2 < 0, so
that n < 1/2 with n ∈ Z. Thus, the least degenerate solution corresponds to n = 0, i.e., Eq. (5),
with the exception that the factor B0 in the constructed leading order solution is unknown, which is
a common problem in elliptic equations15, 16 and can be determined from the global solution only.
However, for our purposes, the value of B0 is not required since all we need is the dependence (6)
of the potential φ on the distance from the corner r.

Following the same approach as in the 2D case above, we can construct a local leading-order
solution for the 3D problem (2) corresponding to the local flow field near a given angular sector
	 ≡ 	α of angle α as in Figure 3(a) with the boundary conditions (2b) and (2c) substituted by
(7a) and (7b), respectively, and the boundary condition (2d) responsible for the decay of the solution
at infinity. The main trick comes from the realized here anti-duality to the problem of electromagnetic
diffraction shown in Figure 3(b), which not only highlights an interesting relation between the physics
of two different problems—no-penetration condition φn = 0 at the impact plate corresponds to the
symmetry condition in vacuum in the electromagnetic diffraction problem, while the free surface
condition φ = 0 in the fluid problem corresponds to zero potential at metal surface—but also allows
one to get the solution based on the known classical results in the electromagnetic diffraction.17–21

Namely, the solution of the electromagnetic diffraction problem22 for a sector of angle θm gives the
solution of the fluid problem with the angle α = 2(π − θm), e.g., the fluid problem for a sector of
angle 90◦ is equivalent to the electromagnetic diffraction problem for a sector of angle 270◦.

Since the solution is known from electromagnetic diffraction, we are not going into repeating the
details of the derivations, but just mention the effective coordinate system used, which is instrumental
in the construction of an analytical solution for the problem (2a) with the boundary conditions (7).
Namely, the sphero-conal coordinate system, cf. Figure 3(c), is described by three coordinate surfaces
that are a sphere, an elliptic cone, and an elliptic half-cone23 corresponding to constant r, θ , and φ,
respectively. The r, θ , and ϕ coordinates are related to the Cartesian coordinates x, y, and z by the
following equations:

x = r cos θ
√

1 − k ′2 cos2 ϕ, y = r sin θ sin ϕ, z = r cos ϕ
√

1 − k2 cos2 θ, (9)

where k′2 = 1 − k2, 0 ≤ k2 ≤ 1, 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , and r ≥ 0. The θ and ϕ angles are not
the same as the angles of the spherical coordinate system. The sphero-conal coordinate system is
one of the few coordinate systems in which the Laplace equation (2a) is not only separable, i.e., the
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solution can be represented in the form φ(r, θ , ϕ) = R(r) Y(θ , ϕ), where Y(θ , ϕ) = �(θ )�(ϕ) is a
Lamé polynomial,24 but also it is in this system that the plane angular sector is a coordinate surface,
which allows separability of both the Laplace equation and the boundary conditions. Namely, in
the case θ = π the corresponding cone in Figure 3(c) reduces to a plane angular sector shown in
Figure 3(a), which is a coordinate surface of the sphero-conal system and which angle is determined
by the ellipticity parameter k2 = cos 2(α/2) of the sphero-conal system (9). For example, k2 = 1/2
corresponds to the quarter plane α = π /2, while k2 = 0 to a half-plane α = π , and in the case
k2 = 1 the plane angular sector reduces to the negative x axis, α = 0, so that the sphero-conal system
degenerates into the spherical coordinate system (and the Lamé polynomials Y(θ , ϕ) into Legendre
ones)—the 2D case considered in Sec. I B corresponds to ϕ = π /2 and the same θ . Because of
the physical boundary conditions (7) in the fluid problem, φn(x) = 0 for x ∈ 	α and φ(x) = 0 for
x /∈ 	α , cf. Figure 3(a), the solution corresponds to the Neumann odd problem,19 i.e., �′(0) = 1,
�′(π ) = 1; �′(0) = 1, �(ϕ) = �(ϕ + 2π ).

B. Results and discussion

First, let us look at the solution for α = 90◦ and compare with experiments. The eigenvalues
ν(α) and eigenfunctions Y(θ , ϕ) are determined by the infinite continued fraction method.19, 26 As
one can learn from Figures 4(b) and 4(d), under the same impact conditions, the flow field around
the corner of 90◦ is less singular compared to that in the 2D problem, which is also confirmed by
the Particle Image Velocimetry (PIV) measurements in Figure 5. Hence, the ejecta is lower near the
corner—in the same amount of time the ejecta rises less compared to that along the straight edge
due to the difference in ejecta velocity. While the validity of the constructed solutions in Figures
4(c) and 4(d) is qualitatively supported by the direct PIV measurements in Figures 5(a) and 5(c),
quantitative comparison cannot be made, in particular, because the coefficient of proportionality Bν

in (6) is not known.27 General dependence ν(θm) was calculated in the context of electromagnetic
diffraction in Refs. 17–21 and is shown in Figure 5(d) in the form ν(α) with α = 2(π − θm).

The known results from elecromagnetic theory also allow us to comment on the asymptotics
for α → 0 and α → 2π (θm → π and θm → 0, respectively) in Figure 5(d).28 The α → 0 limit
corresponds to a flatwise impact of a narrow strip (spike or needle) and, in fact, is relevant (modulo
surface tension effects) to the surface slapping phase of water strider locomotion29, 30 since its
rod-like shape legs impact the water surface flat. As per the works,17, 18

ν 	 1 − α2/16. (10)

The case α → 2π corresponds to an impact of a plate with a slit along the x-axis. Since the exponent
ν tends to zero as θm → 0, it is natural to expand the solution in powers of ν, i.e., Y(θ , ϕ) = Y0(θ , ϕ)
+ νY1(θ , ϕ) + . . . , where Y0(θ , ϕ) corresponds to ν = 0, i.e., when the open part of the xz-plane
(free surface) is just the positive x-axis. With the help of standard perturbation theory and Green’s
theorem31 one can prove,17, 20

ν = 1

2
ln−1

(
4

θm

)
= 1

2
ln−1

(
8

2π − α

)
, (11)

which is shown as the dotted curve in Figure 5(d). This expression should be contrasted with that for
the field near a sharp conical point on the conductor surface,32 which differs only by the coefficient
in the logarithm.

Now, let us develop some physical intuition on the difference of the singularity exponents ν(α)
for the 2D edge, α = π , and for the 3D sector of angle α. To understand the fact that the velocity,
i.e., the gradient of the potential φ, is less singular in the case of the α < π corner, in particular
α = π /2 as shown in Figure 5(a), compared to the 2D plate edge in Figure 5(b), one can appeal to
the analogy of the steady-state diffusion of gas of concentration n from infinity towards a corner. In
the first case, cf. Figure 3(a), diffusing gas molecules are more likely to reach the apex before hitting
any other portion of the plate compared to the gas molecules hitting the edge of the 2D plate in
Figure 2(b). As a result, the net molecule flux, ∼∇n, to the 3D corner is smaller than that in the 2D
case. In our case, the gas concentration n is analogous to the velocity potential φ and the molecular
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(c) α = π/2
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(d) α = π/2

FIG. 4. Key cross-sections (a) of the computed flow fields: (b) cross-sectional view for α = π computed from Eq. (5); frontal
(c) and cross-sectional (d) views for α = π /2 computed from the solution of the problem defined by (2a), (2d), and (7). The
length of each arrow represents the (relative) amplitude of the velocity vector.

flux to the fluid velocity. From the fluid dynamics point of view, the key difference between the 2D
and 3D cases can be understood with the help of the deformations of the fluid parcels illustrated in
Figure 6. While the streamlines shown in Figure 6(a) are instantaneous due to unsteadiness of the
problem, close to the edge the velocities are high and the trajectories are short, so the adopted view
of a deformed fluid parcel as it is transferred from the initial position “A” close to the plate to the
free surface “B” is reasonable here. First, the singular behavior close to the edge, |v| ∼ r ν−1, occurs
due to the fluid parcel being squished between streamlines as it approaches the free surface near the
edge—the closer to the edge, the stronger the parcel stretching, cf. Figure 6(b). However, the key
difference between the 2D and 3D situations is sidewise stretching of the fluid parcel in the latter
case shown in Figure 6(c) versus the former shown in Figure 6(b), which can also be understood
from the mass conservation. Hence, the singularity exponent ν(α) is larger for the flow around the
sector of α < π . When α > π the splash curtain is going to be larger in the corner, which can be seen
from the general exponent ν(α) in Figure 5(d) and understood based on the fluid parcel deformations
in Figure 6(c)—if α > π , then the fluid parcel would be squeezed out of the free surface sector,
which is now narrower than the solid plate sector, and thus would naturally have higher velocity.

And, finally, another way to look at this difference between the 2D and 3D cases is via realizing
that in the 3D situation two lines of singularity of the potential gradient along sector edges, each of
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FIG. 5. Experimental PIV data on the flow fields near the 90◦ corner (a, c) in the cross-sections defined in Figure 4(a) made
by a laser sheet and near the 2D plate edge (b) obtained with a PIV system (TSI, Inc.) by looking through the flat glass
wall of a water tank in the direction parallel to the free surface to avoid any optical distortions similar to the approach taken
in the visualization of the Landau-Levich flow;25 the estimated maximum experimental uncertainty does not exceed 10%.
Figures 5(a) and (b) compare the cross-sectional flow fields for a corner of 90◦ and 2D problem; the 2D case was obtained
by performing PIV in the middle section of a long plate so that the 3D effects of the other ends of the plate are minimized.
Figures 5(a) and (c) show the cross-sectional and frontal views of the 3D flow field, respectively, and can be qualitatively
compared with the theoretical results in Figures 4(d) and 4(c), respectively; the scale in Figure 5(a) represents the length of
the velocity vector; the plate location is denoted by black solid bar. Figure 5(d) shows the general sector angle dependence φ

∼ rν(α); large symbols correspond to ν(π /2) = 0.814 and ν(π ) = 1/2; dotted curve is the asymptotics (11).

which corresponds to the 2D case, intersect at the sector corner and thus give a singularity exponent
ν(α) different from 1/2 and dependent on the angle of intersection α, as evidenced by the above
results. This, in general, represents an interesting class of problems of the singularity at the point of
intersection of several lines of singularity of the potential gradient.33

The presented analysis is local in nature and, while it answers the key physical question in this
paper, for practical purpose one needs to construct a globally valid solution for a given geometry
of the impacting body. Therefore, the constant of proportionality Bν in (6), e.g., in the case of an
impact of a rectangular plate case, will depend on both dimensions of the plate lx and lz or, actually,
on the aspect ratio lx/lz as one can see from nondimensionalizing the general formulation of the 3D
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(a)

A
B (b)

A

B (c)

A

B

α

FIG. 6. Deformation of a fluid parcel (shaded) in the near-the-edge region shown in the cross-section (a) as it travels from
underneath the plate to the free surface along dashed lines in (b,c): 2D (b) vs. 3D (c) case as viewed from the top. Fluid parcel
in the 3D case (c) is being stretched sidewise (arrows) for α < π and squished for α > π as opposed to the 2D case (b).

problem (2). While in 2D the solution can be constructed with the dual integral method,34–37 the
3D problem is intractable with current analytical methods (2) and would require development of the
solution methods for higher dimensional dual integral equations (these can be obtained by applying
Fourier transform in both x and z directions—application of the Fourier transform in this case is
justified by the fact that the singularity of the velocity potential φ is not stronger than that in the 2D
case). The resulting knowledge of an analytical solution for (2) would allow one to determine the
proportionality constant Bν in (6) as a function of lx/lz. Such a solution, however, was constructed
experimentally for some particular impact situations in the context of determining added masses for
rectangular plates of a few aspect ratios38, 39 as well as theoretically using singularity theory,40, 41

though the theoretical solutions reduce to series with coefficients determined numerically—in any
case, there is no analytical formula for the dependence Bν(lx/lz). Since the focus of the latter works
was the calculation of added mass, no information on the velocity potential is given to determine the
coefficient Bν(lx/lz). However, as it was shown in the 2D case above, for the purpose of answering
the key question of this paper we do not need to know the value of the coefficient Bν since all we
require is the dependence (6) of the potential φ on the distance from the corner r.

III. CONCLUSIONS

As inspired by recent experimental observations,9 the present work discusses one of the effects
of three dimensionality of the impacting body, namely, that of the corner of a sector of angle
α, on the local flow structure and thus the ejecta evolution in the water impact problem, which
complements the existing studies of 3D water impacts. The main finding of this study is the revealed
and quantified influence of the geometry of a flat plate corner on the ejecta properties, which
provides a generalization of the classical 2D results.14 Transparent physical interpretation of the
observed behavior is also offered. While the problems of interest here involve sharp corners, it
is worth noting that the development of higher-dimensional Joukowsky transformations based on
Clifford analysis42, 43 may be a promising tool for solving impact problems if the impacting bodies
do not have sharp corners. The presented problem motivated by a concrete physical phenomenon, in
fact, belongs to a wide class of problems in domains with point singularities,44, 45 which deals with
estimates for solutions in different function spaces, regularity assertions, solvability of the boundary
value problems, and asymptotic formulas for the solutions near singular points. Due to its analogy
to other physical phenomena (Sec. II B), one can use the variation of the ejecta elevation near the
corner exemplified in Figure 1 as an illustration of singular behavior in other physical systems where
such a direct visual appeal is not possible, e.g., in electromagnetism.

While the mathematical analogy, which helped to solve the problem here, was established
with the electromagnetic diffraction theory, one should mention that historically the mathematical
problem was first analyzed in the context of contact problems in elasticity46–48 with the foundational
contribution by Galin.46 It is a historical irony that Galin also studied the water impact problem,49 but
the found here mathematical analogy between these problems was not realized then. The problem
studied in the present work is also mathematically equivalent to the potential (aerodynamic) flow
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around the apex of a plane delta wing50, 51 as well as to wave scattering near the tip of a sector (corner
of a screen) analyzed later by many authors.52, 53
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