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This work presents an analytical study of the structure of steady Marangoni-driven
singularities in the context of chemical-reaction driven tip-streaming, which identifies
the conditions when such singularities are observable. As motivated by experimental
observations of the conical symmetry of the problem, one can construct self-similar
solutions of the Stokes equations, which are singular at the tip; these solutions, how-
ever, provide no information on the thread structure which is responsible for a resolu-
tion of the singularity via tip-streaming. The cone-tip singularity is resolved here with
the help of asymptotic matching of the cone and thread solutions using slender jet ap-
proximation, which gives an explicit asymptotic formula for the thread radius and thus
of the emitted droplets size as a function of physical parameters governing the prob-
lem. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3685831]

I. INTRODUCTION

Formation of singularities at fluid interfaces has always been fascinating and served as an
inexhaustible source for many studies. However, a special class of these phenomena—self-driven
Marangoni singularities—has not been thoroughly studied as opposed to the singularities forced
externally, e.g., with straining or extensional flows. Existence of general Marangoni-driven singu-
larities was recently addressed with mean-curvature flow theory.1 The present work focuses on the
structure of steady self-driven Marangoni singularities: while the analysis and results are general
and applicable to Marangoni effects of various origins, the discussion is provided in the context of
chemically driven Marangoni flows.

A. History of the problem and motivation

The fact that chemically induced Marangoni effects, i.e., fluid flows resulting from variations
of interfacial tension, can transfer chemical into mechanical energy directly has been known for a
long time, e.g., in the context of camphor scrapings.2, 3 Among the regimes of interfacial mechanical
motion are violent and erratic pulsations studied in the works of Garner et al.,4 Haydon,5 and
Lewis;6 such motions may even lead to localized eruptions.7 It is this latter circumstance that is
of central interest to this work, namely, the formation of interfacial singularities due to Marangoni
effects. Historically, these dynamic effects were found to be responsible for the drop oscillations,
formation of pointed ends at the drop interface with occurrence of recirculation vortices,4 and
spontaneous emulsification;5 this is opposed to the earlier “static” understanding that the spontaneous
emulsification of oleic acid-paraffin oil mixtures in dilute alkali results from the existence of a
negative interfacial tension at the oil-water interface.8

As a paradigm, the problem under consideration here is the steady tip-streaming induced by
chemical reaction-driven Marangoni effects, which is motivated by the experimental observations of
Fernandez and Homsy9 shown in Figure 1. In the physical problem at hand, a chemical reaction at the
interface between the two phases—surrounding more viscous phase 2 (oil + acid) and less viscous
phase 1 in the pendant drop (water + alkaline)—produces surfactant. As a possible explanation of the
observed phenomena, it was suggested10 that the surfactant ends up being distributed non-uniformly
along the interface in a self-sustained fashion, which drives Marangoni flow in both phases and
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FIG. 1. Steady tip-streaming:9, 10 (a) cone, (b) thread, (c) thread break-up into small droplets.

sweeps surfactant towards the tip of the conical drop. The resulting ultra low interfacial tension in
the tip area allows the interface to tear up and to create a thin thread, cf. Figure 1(b), through which
the phase 1 is ejected into phase 2, cf. Figure 1(c). The evolution of the thread itself is usually
unsteady in view of the process of breaking-up; however, much longer (stable) threads (streamers)
were observed in the experiments of Mansfield.11 It is remarkable that the physical system in Figure 1
demonstrates a substantial separation of scales: the pendant drop is of 0.5 mm diameter, while the
thread is about 5 μm thick, i.e., the tip area appears as a singularity at the scale of the pendant
drop, see Figure 1(a). Predicting a scaling for the thread radius, which is the key question in the
tip-streaming phenomena, was left unanswered in the above mentioned work of Krechetnikov and
Homsy.10 Developing an asymptotic theory for the scaling of the size of the thread and thus of the
emitted droplets is the main focus of the present study.

The chemical reaction-driven tip-streaming studied here should be put in the context of general
tip-streaming phenomena, which include tip-streaming in externally imposed shear or extensional
flows, such as in the four-roll mill device.12 The basic features of externally driven tip-streaming
were quite extensively studied experimentally, see the review by Stone.13 Starting with experiments
by Taylor,12 it is known that drops with low viscosity relative to the ambient fluid, i.e., with viscosity
ratio μ1/μ2 < O(0.1), can lead to the tip-streaming. Later experimental studies by de Bruijn14 in
simple shear flows distinguished two primary modes of drop break-up: (1) a fracture mode occurring
for pure fluids at a certain shear rate (equivalently, at a critical capillary number Cac), accompanied
by the formation of satellite droplets, and (2) tip-streaming, which takes place in the presence of
surfactants and produces much smaller drops without satellites. The shear rates required for the
last type of break-up in simple shear flows can be two orders of magnitude lower than for the
fracture mode. In the case of extensional (straining) flows, the presence of surfactant may also lower
significantly the critical capillary number15, 16 from that for pure fluids studied by Acrivos and Lo.17

While the effect of surfactants appears to lower Cac, the limits of low (dilute) and high (saturated)
concentrations of surfactant lead to Cac corresponding to the pure liquid case. The last fact indicates
the importance of surfactant gradients in the tip-steaming phenomena as elucidated by de Bruijn14

for simple shear flows and by Eggleton et al.18, 19 for extensional flows. Further discussion of the
physical mechanisms behind surfactant effects can be found in the works by Stone13 in the context
of externally driven tip-streaming, Krechetnikov and Homsy10 in the context of chemical reaction-
driven tip-streaming, and Anna and Mayer20 in the context of flow focusing. Here, however, we
will be studying tip-streaming phenomena induced not by externally imposed flows, but driven by
a chemical reaction at the interface. Also, while the fluids viscosity ratio μ1/μ2 in experiments9

complies with the above mentioned restriction μ1/μ2 < O(0.1), the theory developed here shows the
possibility of tip-streaming regardless of the value of μ1/μ2.

B. On the key problem and methodology

While the physical system in Figure 1(a) exhibits a conical symmetry, the singularity associated
with that symmetry, i.e., the cone tip, is resolved physically by the tip-streaming phenomena as
shown in Figures 1(b) and 1(c). Another possibility, which is realized physically as a time-dependent
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solution, is a rounded cone tip. Based on the standard understanding of capillary phenomena, one
can formulate the key problem as a resolution of the following paradox:

(I) On one hand, in order to get a conical drop with a pointed end of an infinite curvature one
needs the interfacial tension to diverge, σ → ∞ as r → 0, which follows from the self-similar
solution construction in Sec. III and the fact that the Marangoni-induced flow should be
directed from the base of the drop towards its tip.

(II) On the other hand, in order to get the standard externally driven tip-streaming it is necessary
that the interfacial tension σ → 0; in the experiments of Fernandez and Homsy,9 it was also
observed that the emitted droplets carry surfactant and thus have low interfacial tension.

Thus, the problem is to reconcile (I) and (II), which should also lead to the prediction of the
thread radius. Speaking in general terms of perturbation methods, the phenomena considered here
belong to the class of singular as opposed to regular perturbation problems, since the self-similar
solution for the conical drop with a singular tip needs to be perturbed to include an asymptotically
thin, but finite, thread. This can also be seen from the fact that the base state—the self-similar stream-
function solution �0 with conical symmetry—is singular at the tip r = 0 and thus a construction of
a perturbed solution in order to resolve the singularity at r = 0 via regular perturbations, � = �0

+ ε�1 + . . . with some small parameter ε � 1, is not possible simply because �1 cannot cancel �0

in the neighborhood of the singular point, as �0 does not depend upon ε in the regular perturbation
scheme. Therefore, application of the domain (boundary) perturbation method,21, 22 which is widely
used in interfacial problems with non-singular base states, e.g., flat interfaces23 and circular drops,24

is not feasible.
The methods utilized here originate from other singular perturbation problems, e.g., the dip-

coating problem of Landau and Levich,25 where thickness of the thin film deposited in the process
of dip-coating is found by matching asymptotically to the static meniscus via a dynamic transition
region, in which the viscous and capillary forces balance each other. As will be discussed in
Sec. IV, matching procedure in the present problem is justified by the recent results26 which extend
the qualitative and, in certain cases, quantitative validity of lubrication approximations to certain
classes of non-unidirectional flows.

Since the motivating system9 is two-phase with non-equal viscosities, the reduction of the
problem to one phase will simplify the analysis considerably. This reduction will be done with the
help of the following proposition, the proof of which is given in Appendix A and which was used in
a particular form by Layton.27

Proposition 1 (Principle of equivalence of one- and two-phase interfacial motions): Given a
steady motion of a system of two phases with non-equal viscosities, μ1 �= μ2, separated by a dynamic
interface in R2 (or, in the axisymmetric case, in R3), where both phases are in the Stokes flow regime
and, at least, one of the phases does not contain singularities, one can replace this system with an
equivalent one-phase system of viscosity μ′ = μ1 − μ2 such that the interfacial motion is identical
to the original two-phase system. If μ′ < 0, then the sign of the interfacial tension of the equivalent
one phase must be changed.

Therefore, if the outer phase is more viscous, then indeed μ′ < 0, and the equivalent one-phase
system should have negative effective surface tension. In this context, it is worth mentioning that the
existence of negative physical interfacial tension is conjectured in certain physical problems such
as electro-capillary phenomena in molten metals, where the metal surface fold into complex fractal
corrugations of vast total surface area.28 However, in the context of the history of emulsification
phenomena mentioned earlier, it is likely that the physical interfacial tension is positive and fractal
corrugations are due to ultra-low interfacial tension and its variations. In our case, though, the
negative interfacial tension is just an intermediate mathematical result, while the interfacial tension
in the original two-phase physical system is positive. In addition to the proof of Proposition 1 in
Appendix A, it will be illustrated by a direct comparison of one- and two-phase solutions in Sec. III.
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C. Analogous problems

The apparent similarity of the observed cone shape of the drop in the steady tip-streaming
regime to Taylor cones29–32 is remarkable. While both the cone shape and tip-streaming (bursting)
effects suggest an analogy to the phenomena of formation of stable cones in electrified liquid
interfaces, the underlying physical mechanisms are different.10 As explained by G. I. Taylor (who
assumed equipotentiality of the interface), the conical shape arises as a balance of normal stresses:
the electrostatic pressure pE = ε0 E2

n/2 induced by the normal component of electrical field En (the
tangential component being zero in view of equipotentiality) equilibrates with the capillary pressure
pσ = σ cot α/r which varies inversely with the distance from cone tip, r, so that En ∼ (σ /ε0r)1/2.
In the case of gradients of the interfacial potential, the tangential component of electrical stresses
∼ε0EnEτ can be either negligible or lead to swirling or nonswirling motion inside the Taylor cone33

without influencing its self-similar conical shape. In our case, on the other hand, the conical shape
is produced as a result of balancing both normal and tangent stresses, and the predominant role
is played by the gradient of surface tension balanced by viscous stresses at the interface. As a
consequence, the cone shape is due to nontrivial fluid motion both inside (which is analogous to that
produced in Taylor cones by tangential stresses) and outside the cone.

The problem of predicting the emitted jet diameter exists in the Taylor cone problem too and,
to the author’s knowledge, has not been resolved yet.29, 30 The development of the methodology to
predict the thread properties in our problem may also provide some insight on how to construct the
jet solution in the Taylor cone problem, but this is out of the scope of the present paper.

D. Paper outline

The paper is organized as follows. The goal of the main body of the paper is to construct a global
non-singular solution for Marangoni-driven singularities in the axisymmetric three-dimensional (3D)
case formulated in Sec. II. The analysis is comprised of the study of the self-similar structure of
the singularity, Sec. III, and the resolution of this singularity via singular perturbation procedure,
Sec. IV, which matches the self-similar solution in the cone region to the thread solution. Because of
the natural geometries of these two regions, the cone solution is considered in spherical coordinates,
Secs. II and III, while the thread solution is constructed in cylindrical coordinates, Sec. IV. The
presentation is concluded with the discussion of open questions in Sec. V.

II. PROBLEM FORMULATION: SPHERICAL COORDINATES

The geometry of the problem is sketched in Figure 2(a). In the mathematical formulation, we
will utilize the facts that the phenomena are steady and axisymmetric, so that the appropriate system
of coordinates is either cylindrical or spherical; however, due to the additional conical symmetry of
the problem, we choose to work with spherical coordinates,

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, (1)

where θ ∈ [0, π ], φ ∈ [0, 2π ]. The cone semi-angle θ* in Figure 2(a) is dictated by stratification
and wetting properties of a syringe needle.9 Also, in practice, when the conical drop is of finite size,
for the phenomenon to be steady there should be some mass flux supplied; the latter condition can
be expressed in terms of the mass flow rate Q∞ through the thread of radius h∞, which is another
given parameter in the problem.

Defining interface in terms of (r, θ )-variables, H(r, θ ) = θ − h(r), the normal n and tangent t
vectors are given by

n = ∇H

|∇H | = −hr r̂ + 1
r θ̂√

h2
r + 1

r2

, t =
1
r r̂ + hr θ̂√

h2
r + 1

r2

,
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FIG. 2. Geometry of a steady tip-streaming: (a) cone set-up in spherical system of coordinates; θ* is the cone semi-angle,
(b) spherical coordinates (r, θ , φ); the relation to the cylindrical system (ρ, φ, z) is via x = ρcos φ, y = ρsin φ, and z = z.

respectively, where r̂ and θ̂ are unit vectors in the spherical coordinate system. The interfacial
curvature is calculated via

∇ · n =
[

1

r2

∂

∂r

(
r2 nr

) + 1

r sin θ

∂(sin θ nθ )

∂θ

]
θ=h(t,r )

= cot h − r {hr (3 + rhr [2rhr − cot h]) + rhrr }
r

(
1 + r2h2

r

)3/2 ,

where nr and nθ are r- and θ -components of the normal vector n, respectively; note that n is directed
from phase 1 to phase 2.

Since the tangential boundary condition (Marangoni stresses) drives the phenomena,10 the
appropriate non-dimensional notations (without introduction of new variables) read

r → lc r, v → σmax

μ
v, p → σmax

lc
p, σ → σmaxσ, γ → γ∞γ, (2)

where lc = √
σmax/ρg is the capillary length, μ the dynamic viscosity of each medium, σ max the

interfacial tension in the clean interface case, and γ ∞ the saturation interfacial concentration. This
choice of the characteristic length scale lc is dictated by the following considerations. First, in
the formulation there are no independent characteristic lengths as the drop is considered to be
semi-infinite. However, in reality, the drop size is dictated by the balance of gravity and surface
tension forces, which justifies the choice of the capillary length lc as a characteristic length scale.
The resulting value of the thread radius to be established in Sec. IV, where lc is present, agrees with
the observations on the order of magnitude, which a posteriori suggests that the chosen scaling is
correct. Should the gravity play no role in our problem, tip-streaming would occur in any direction
independent of the gravity vector, which was not witnessed in experiments.9 However, there could
be other regimes, where gravity is not responsible for the characteristic scale—after all, Marangoni-
driven singularities may occur in a low-gravity environment—which can be due to, for example, the
length scale set by the interplay of surfactant advection and kinetics and/or diffusion. These cases
are not considered here.

A. Velocity formulation

Let the (r, θ )-velocity components be (u, v), respectively. The continuity and momentum
equations for each phase (omitting indexes) are given by

0 = 1

r2

∂(r2u)

∂r
+ 1

r sin θ

∂(sin θ v)

∂θ
, (3a)
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Lr u√
Mo

= −∂p

∂r
+ gr + 
u − 2u

r2
− 2

r2 sin2 θ

∂(sin θ v)

∂θ
, (3b)

Lθ v√
Mo

= −1

r

∂p

∂θ
+ gθ + 
v + 2

r2

∂u

∂θ
− v

r2 sin2 θ
, (3c)

where Lr u = (v∇)u − v2/r and Lθ v = (v∇)v + uv/r are the advection operators, gr = −cos θ and
gθ = sin θ the gravity vector projections, Mo = gμ4/(ρσ 3) the Morton number, and the Laplacian

 is given by


 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
.

The dynamic normal, [n · T · n]2
1 = σ∇ · n, and tangent, [t · T · n]2

1 = −t∇sσ , interfacial boundary
conditions at θ = h(r) with the operator [ f ]2

1 = f2 − f1 and surface gradient ∇s = t · ∇, can be
written explicitly, taking into account that the stress tensor components are

Trr = −p + 2
∂u

∂r
, Trθ =

(
1

r

∂u

∂θ
+ ∂v

∂r
− v

r

)
, Tθθ = −p + 2

(
u

r
+ 1

r

∂v

∂θ

)
.

As a result, the dimensionless dynamic normal and tangent conditions become

[p]2
1 = −σ∇ · n + 2

h2
r + 1

r2

[
h2

r

∂u

∂r
− hr

r

(
1

r

∂u

∂θ
+ ∂v

∂r
− v

r

)
+ 1

r2

(
u

r
+ 1

r

∂v

∂θ

)]2

1

, (4a)

−∂σ

∂r
= r√

h2
r + 1

r2

[
−2

hr

r

(
∂u

∂r
− u

r
− 1

r

∂v

∂θ

)
+

(
1

r

∂u

∂θ
+ ∂v

∂r
− v

r

)(
1

r2
− h2

r

)]2

1

, (4b)

respectively. As it will be useful for the subsequent discussion in Sec. III, it is worth commenting
on the sign in the tangential dynamic boundary condition (4b), which can be done with the help of
a local analysis in Figure 3. Namely, if we consider the interface as locally flat, hr = 0, and phase 1
inertialess, then the tangential boundary condition (4b) becomes

nθ Trθ tr = −∂σ

∂r
⇒

[
1

r

∂u

∂θ
+ ∂v

∂r
− v

r

]2

1

= −∂σ

∂r
. (5)

If the surfactant is “standard,” i.e., it lowers the surface tension, then from Figure 3 it follows that
∂σ /∂r must be >0 in order to drive ∂u/∂θ < 0, which conforms to the tangential boundary condition
(4b) used below. The sign of σ in the tangential boundary condition (4b) should be changed in the
case of an “inverse” surfactant, i.e., which increases the surface tension.28

The condition of the continuity of velocity across the interface is of the form

u = (u, v) ≡ (u, v)1 =
(

Mo1

Mo2

)1/4

(u, v)2 . (6)

The kinematic boundary condition, u · n = 0,

u
∂h

∂r
= 1

r
v, (7)

where the velocity field corresponds to phase 1, completes the standard interfacial boundary condi-
tions formulation.

Finally, while in the construction of self-similar solutions (Secs. III A and III B), we treat
the singularity phenomena as generic here, i.e., independent of a particular interfacial material
behavior, in order to understand the limits of applicability of such solutions and to match them to
the thread solutions we will need to close the problem by adding the material behavior σ (γ ) and
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FIG. 3. On the sign in the tangential boundary condition (4b).

(non-dimensionalized) transport equation for the surfactant concentration γ ,

∇s · (γ us) = 1

Pes
∇2

s γ + js, (8)

where js is the flux due to chemical reaction, us the interfacial velocity, and Pes the interfacial Peclet
number. We assume that the surfactant is insoluble, as in the experiments of Fernandez and Homsy.9

The details on the chemistry of the reaction at the oil-water interface between linoleic (fatty) acid
and sodium hydroxide can be found in Chiwetelu et al.34 Simplified, the reaction is

RO− + H+
linoleic acid

+ Na+ + HO−
sodium hydroxide

→ H2O + RO−Na+,

where it is assumed that recombination of H+ and HO− and that of Na+ and RO− dominate any
others. In particular, the last interfacial reaction produces a tight, undissociated sodium salt, so that
the insoluble surfactant becomes surface inactive. This salt partially remains at the interface and
partially diffuses into the oil phase. In this paper, however, we are not concerned with the details of
the surfactant production, but rather focus on the generic Marangoni-driven singularity formation
phenomena. The effect of surfactant transport and realistic material behavior on interpretation of the
self-similar solutions constructed in Sec. III will be discussed in Sec. III C.

B. Governing parameters

In what follows, it will be assumed that the ratio of dimensional minimum and maximum values
of interfacial tension is σ min/σ max � 1; from now on we will designate σ min and σ max ≡ 1 as
non-dimensional quantities. We will also assume

Mo1 
 1, Mo2 
 1,

which corresponds to the Stokes approximation in both phases, since the inertia in momentum
equations is neglected. While, as mentioned in Introduction, it is known that the externally driven
tip-streaming occurs only if the ratio of viscosities μ1/μ2 (and thus Mo1/Mo2) is small enough
(actually <0.1 after the work of Taylor12),

μ1

μ2
=

(
Mo1

Mo2

)1/4

≡ δ � 1, (9)

the analysis below will show that this restriction is not necessary for the Marangoni-driven tip-
streaming.

C. Stream-function formulation

Introducing a stream-function � as

vr ≡ u = 1

r2 sin θ

∂�

∂θ
, vθ ≡ v = − 1

r sin θ

∂�

∂r
, (10)
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the creeping flow limit allows one to reduce problem (II A) to the biharmonic equation for � in each
phase,

E2� = 0, where E = ∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (11)

Given the velocity field one can determine the pressure field using

∂p

∂r
= gr + 1

r2 sin θ

∂

∂θ
E�, (12a)

1

r

∂p

∂θ
= gθ − 1

r sin θ

∂

∂r
E�, (12b)

which are the compatibility conditions between the pressure and velocity fields to be used later. Note
that dp = pθ dθ + pr dr is exact if there exists � which solves (11). One can scale out the hydrostatic
component of the pressure from (12) by the transformation

pi = −r cos θ + p̃i . (13)

Another way to find the pressure is to solve the Laplace equation for p̃ (note that the Laplacian is
different from the operator E defined above)

1

r2

∂

∂r

(
r2 ∂ p̃

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ p̃

∂θ

)
= 0. (14)

III. SELF-SIMILAR SOLUTIONS

A general solution of (11) in spherical coordinates, cf. Figure 2(b), is35

� =
∞∑

n=0

(
Anrn + Bnr−n+1 + Cnrn+2 + Dnr−n+3

)
�n(x)

+
∞∑

n=2

(
A′

nrn + B ′
nr−n+1 + C ′

nrn+2 + D′
nr−n+3

)
Hn(x),

where x = cos θ , �n(x), and Hn(x) are the Gegenbauer functions of the first and second kind,
respectively. Based on this fact one can expect that self-similar solutions should be of the form

�(r, θ ) = rnϕ(cos θ ), n ∈ Z, (15)

which are singular at r = 0 for n ≤ 1 and thus observable only away from the tip singularity; the
interface shape is then given by h(r) = θ* = const.

Since we are interested in the leading order behavior, it makes sense to focus on the lowest
positive powers of r similar to the analysis of Landau and Lifshitz36 for the potential flow around a
corner. This is justified by the following considerations. Let us first discuss the powers n ≥ 1, the
first three of which give:

(1) �(r, θ ) = r ϕ(cos θ ), p̃ = π (cos θ )/r2, and thus σ ∼ r−1, the physics of which makes
sense since the interfacial tension drives the Marangoni flow towards the tip, as observed
experimentally, but the velocity field of the self-similar solution is singular at r = 0. Note
that the velocity field of the self-similar solution of these conical vortices37 diverges as
r → 0, which is the usual behavior of self-similarities, e.g., the Jeffrey–Hamel flow in
converging channels or the flow around the corner (of angle <π ) as discussed by Landau and
Lifshitz.36

(2) �(r, θ ) = r2ϕ(cos θ ), p̃ = π (cos θ )/r , and thus σ = const., which is the lowest power such
that the velocity field may be expected to be non-singular at r = 0, but the pressure is still
unbounded.
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(3) �(r, θ ) = r3ϕ(cos θ ), p̃ = π (cos θ ) or p̃ = π (cos θ ) · ln r and thus σ ∼ r, the physics of which
may make sense near the tip since the highly curved tip requires ultra-low interfacial tension
to support it, but the Marangoni-induced flow is in the direction opposite to the observed one.

As indicated above, the case n = 1 conforms with the experimental observation that the flow
is driven from the base of the drop towards its tip. While the case n = 2 gives the same general
solution of (11) for the stream-function � as for n = 1, the pressure ends up being constant due
to the compatibility conditions (12). As a result, the solution develops a singularity along the axis
of symmetry, θ = 0, which cannot be compensated by a nonuniform pressure distribution as in the
case n = 1. The along-the-axis singularity is observed for higher positive n’s as well, i.e., n > 1
gives non-physical solutions singular at θ = 0 and this singularity is non-removable. Thus, among
positive n’s, n = 1 is the only possible solution. Also, the case n = 1 is the lowest order solution in
the following senses: (a) σ ∼ r−1 is the slowest decay of interfacial tension as r → ∞, which allows
for the flow towards the drop tip; (b) ψ ∼ r is the least singular at r = 0.

While the “harmonics” corresponding to n < 1 give velocity and pressure fields, which are also
non-singular at the axis of symmetry, and contribute to the interfacial tension at a higher order σ

∼ r−n, we construct only the leading order solution here. Therefore, the focus of the subsequent
discussion is on the case n = 1. The use of other “harmonics” n < 1 will be commented on in
Sec. III C.

A. Two-phase solution, n = 1

The experimental observations of the conical drop shape, cf. Figure 1(a), suggest that the
solution behaves in a self-similar fashion (ideal cone in Figure 2(a)), except for the regions near the
tip and the base of the drop, so the goal here is to construct this self-similar solution and to identify
the limits of its applicability. Under the condition n = 1 following the work of Krechetnikov and
Homsy,10 the solution in a self-similar region is given by (dropping indices corresponding to each
phase)

� = rϕ(x), p̃ = 1

r2
π (x), σ = σ̃min

r
, (16)

with independent variable x = cos θ and the constant σ̃min to be determined in Sec. III D. The
velocities defined by (10) are singular at r = 0. As suggested by the structure of the solution (16),
it belongs to the class of convergent flows, e.g., the Jeffrey-Hamel and Taylor cones solutions, but
the interfacial tension gradients effect differentiates our solution from these in a fundamental way.
In agreement with intuition, the infinitely sharp conical tip at r → 0 is supported by infinite surface
tension in (16); the other intuitive possibilities corresponding to n ≥ 3, which would allow σ → 0
as r → 0, are excluded here because of the along-the-axis singularity and the wrong direction of the
Marangoni flow.

Substitution of (16) into biharmonic equation for each phase (11) produces a simple equation
(omitting the phase indexes)

(1 − x2) ϕ(4) − 4 x ϕ(3) = 0, (17)

and the normal and tangential dynamic boundary conditions at the cone interface x = ξ = cos θ*,

[π (ξ )]2
1 − 2ξ

1 − ξ 2
[ϕ(ξ )]2

1 = − σ̃min ξ√
1 − ξ 2

, (18a)

σ̃min = 1√
1 − ξ 2

[
2ϕ + (1 − ξ 2)ϕ′′]2

1 , (18b)

respectively, where we used the fact that the curvature of the cone is ∇ · n = cot θ∗/r . Integrating
(17) three times, we get (

1 − x2
)
ϕ′ + 2xϕ = − [

C0 + C1x + C2x2
]
,
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the general solution of which in each phase

ϕ = (
1 − x2

) [
C −

∫
C0 + C1x + C2x2(

1 − x2
)2 dx

]

= 1

2

{− (C0 − C2)
(
1 − x2

)
Arcth x + 2C

(
1 − x2

) − [C1 + (C0 + C2)x]
}
, (19)

where C, C0, 1, 2 are constants and

Arcth x = 1

2
log

1 + x

1 − x
, |x | < 1.

The function Arcth x clearly has singularities at the axis of symmetry, i.e., at θ = 0, π , but, as we
will see from the subsequent analysis, the resulting solution for ϕ1, 2(x) is non-singular (this applies
only to the case n = 1, while for other positive n’s the singularities are not removable as mentioned
earlier). After the introduction of self-similarity variables into Eq. (14), the pressure is governed by

(1 − x2) π ′′ − 2 x π ′ + 2 π = 0. (20)

Integration of (20) produces for each phase

π (x) = D1x + D2 [xArcth x − 1] . (21)

The compatibility of pressure with the velocity field (12) yields

D1 = 2C, D2 = C2 − C0. (22)

The system is completed with the velocity continuity conditions at the cone interface x = ξ ,

ϕ′
1(x) = δϕ′

2(x) = 0, (23a)

ϕ1(x) = δϕ2(x), (23b)

and zero stream-function designations at the cone boundary

x = ξ : ϕ1 = ϕ2 = 0, (24)

and the axes of symmetry

x = 1 : ϕ1 = 0, (25a)

x = −1 : ϕ2 = 0, (25b)

of the drop and outer phase, respectively. Let us now count the number of constants and conditions
on them:

� The velocity field in each phase gives four constants C and C0, 1, 2 (eight altogether); the
pressure constants D1, 2 are expressed in terms of C and C0, 2. Thus, we have eight independent
constants.

� The number of independent boundary conditions is seven: normal (18a) and tangential (18b)
at the interface, three velocity continuity conditions (23) at the interface, and two zero stream-
functions at the axis of symmetry (25).

Thus there are more constants than conditions. Because the general solutions for velocity and
pressure fields have singularity at the axis of symmetry, θ = 0, π , it is desirable to eliminate it.
Since physically the singular behavior seems to be resolved in the inner phase, i.e., by formation
of a thread, then it makes sense to eliminate the singularity in the drop phase, which imposes the
condition of boundedness of the velocity field, ∂xϕ1, at the axis of symmetry x = 1 (drop), which
in turn gives C0 = C2; the pressure in the drop is non-singular then too. Therefore, the number of
independent constants is now equal to the number of conditions.
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FIG. 4. (Color online) Two-phase self-similar solution: plots of (a) the streamlines, (b) the isobars.

Note that the condition (23b) coincides with (24), and the kinematic condition, ϕ1 = 0, is just
trivial and contained in (24). The use of all boundary conditions yields for the drop phase

ϕ1 = σ̃minδ

2

(1 − x)(x − ξ )√
1 − ξ 2

1 + ξ

1 + δ − ξ (1 − δ)
, (26a)

π1 = σ̃min
δ x

√
1 − ξ 2

(1 − ξ )2 + δ(1 − ξ 2)
, (26b)

and for the outer phase

ϕ2 = σ̃min

2

(1 + x)(x − ξ )√
1 − ξ 2

1 − ξ

1 + δ − ξ (1 − δ)
, (27a)

π1 = −σ̃min
x
√

1 − ξ√
1 + ξ (1 − ξ + δ(1 + ξ ))

, (27b)

which are the velocity and pressure fields, respectively. Note that the velocity fields are bounded at
infinity, as follows from (10), and non-singular at the axis of symmetry as opposed to the solutions
found earlier in Krechetnikov and Homsy;10 the latter discrepancy is due to the difference in sign in
the tangential boundary conditions used in Krechetnikov and Homsy10 and here, respectively. The
resulting solution (26)–(27) is plotted in Figure 4 in polar coordinates (r, θ ) as

�i (r, θ ) = rϕi (cos θ ) , p̃i = 1

r2
πi (cos θ ).

As mentioned in Introduction, while the flow pattern in Figure 4(a) is analogous to that in Taylor
cones,38, 39 the underlying physics is different as discussed in Sec. I C.

B. One-phase solution

One-phase solutions satisfy the same boundary conditions—normal (18a) and tangential (18b)
dynamic conditions, compatibility of the pressure and velocity fields (22), zero stream-function at
the cone boundary (24) and the axes of symmetry (25)—with the exception of the velocity continuity
conditions (23).

The resulting solution in the outer phase is given by

ϕ2 = σ̃min

2

(1 + x)(x − ξ )√
1 − ξ 2

, (28a)
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FIG. 5. Streamline fields for one-phase solutions: (a) outer phase, (b) inner phase.

π2 = −σ̃min
x√

1 − ξ 2
, (28b)

which can also be obtained from (27) in the limit δ → ∞. The corresponding streamline pattern is
illustrated in Figure 5(a). Similarly, one can construct the non-singular solution in the inner phase
(when the outer phase is considered inviscid and inertialess),

ϕ1 = σ̃min

2

(1 − x)(x − ξ )√
1 − ξ 2

, (29a)

π1 = σ̃min
x√

1 − ξ 2
, (29b)

which can also be obtained from (26) in the limit δ → 0 and which is shown in Figure 5(b). One
can also view the solutions (28)–(29) as a result of application of the Principle of equivalence of
one- and two-phase Stokes flow motions (Proposition 1). As mentioned in Sec. I B, if the viscosity
of an equivalent one-phase system is negative, then the interfacial tension should have an opposite
sign. Here, without loss of generality, we will consider the case when the one-phase system, either
resulting from reduction of a two-phase system by Proposition 1 or if the outer phase is absent in the
original physical system, has a positive viscosity and thus the sign of interfacial tension is standard.
The same assumption will be carried over to Sec. IV, where we construct the thread solution.

If one uses the sign in the tangential boundary condition (4b) corresponding to an “inverse”
surfactant, then the singularity appears not only at the tip of the drop but also at the axis of
symmetry;10 for example, in the case when the phase in the drop is considered inertialess, then the
outer solution is still singular at the axis of symmetry and given by

ϕ2 = − σ̃min

2

(1 + x)(x − ξ )(1 − 2 ξ 2)√
1 − ξ 2

+ σ̃minξ
√

1 − ξ 2(1 − x2) (Arcth x − Arcth ξ ) , (30)

π2 = σ̃min
x(1 − 2 ξ 2) − 2 ξ (1 − ξ 2)√

1 − ξ 2
+ 2 σ̃min x ξ

√
1 − ξ 2 (Arcth x − Arcth ξ ) . (31)
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Since there are no experiments with inverse surfactants in the situations analogous to the considered
here, the true nature of singularity in (30) is not clear, but one can offer the following potential
explanations for the presence of this mathematical singularity:

� Flow is nonlinear (non-Stokes) at the axis of symmetry.
� Steady self-similar solution does not exist, i.e., the solution realizes only in an unsteady fashion.

C. On the existence and implications of self-similar solutions

The constructed Marangoni-driven self-similar solutions (16) are generic, i.e., independent of a
particular source of the interfacial tension variation (temperature, surfactant concentration, electric
field, etc.). In general, it is known that self-similar behavior near (interfacial) singularities is consistent
with the fact that interfacial tension plays the smoothing role due to its tendency to minimize the
surface area and with the general theoretical understanding that if there are no physically relevant
characteristic length scales in the problem (when the drop is considered to be semi-infinite), then
the solution behaves self-similarly.40, 41

As any other self-similar solutions, e.g., the Jeffrey-Hamel flow in a converging channel, the
ones constructed above are an idealization in the sense that real fluid properties (including interfacial
tension) cannot support the existence of the singularity. However, self-similar solutions are useful
constructions which capture the flow “in large” and thus provide reasonable approximations to
observable flows away from singularities. In our situation, the self-similar solution—the conical
drop and the flow structure—is suggested by experimental observations.9

From the physical considerations and the form of the self-similar solution (16), in particular
σ = σ̃min/r , it is evident a priori that this solution breaks down for r = σ̃min and σ̃min/σmin as the value
of the interfacial tension cannot go above its maximum σ max ≡ 1 and below minimum σ min values;
then σ̃min ≥ σmin in (16) has the meaning of the minimum interfacial tension achieved at the base
of the drop, where self-similarity breaks down. This is consistent with the fact that the interfacial
stretching is the weakest at the base of the drop, where it attached to a nozzle (cf. Figure 1(a)),
so that the chemical reaction produces the maximum surfactant concentration in this region giving
the minimum value σ̃min of the interfacial tension.

Therefore, the constructed self-similar solution (16) is valid in the intermediate asymptotics
sense,41 i.e., for σmin < r < σ̃min/σmin but not for all r’s. Given the equation of state σ (γ ) and the
self-similar form (16), the distribution of γ over this interval of r’s is given, in general, by the inverse
function

γ (r ) = σ−1

(
σ̃min

r

)
, (32)

which is a necessary condition for the observation of a conical shape driven by Marangoni effects.
Since σ (γ ) is unknown for the chemical reaction used in experiments,9 for concreteness of the
discussion we will consider a power-law approximation of the material behavior

σ ∼ γ −1/ζ , (33)

on such an interval of r’s over which self-similar behavior is observable, cf. Figure 6 and further
discussion in Sec. III D. It must be emphasized that as opposed to the above stated general necessary
condition (32) for the existence of a conically symmetric solution, the form (33) is not necessary
as there may exist other forms of σ (γ ) producing σ ∼ r−1 in (16). In fact, as follows from (32),
there exist an infinite number of other forms of σ (γ ) which produce self-similar behavior (16); γ (r)
need not behave self-similarly, though. As for the concrete form (33), the exact power-law form
of the equation of state σ (γ ) is not crucial for the existence of a self-similar solution—as long as
(a) the problem is well-posed in Hadamard’s sense42 and thus not very sensitive to a variation of
the coefficients (e.g., material behavior) in the equations, and (b) σ (γ ) is close to the power-law
form for some range of γ ’s—the solution will then stay close to the ideal self-similar form (16). As
mentioned above, the found self-similar solution is alike the experimentally observed conical drops,
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FIG. 6. (Color online) Composite (linear + power law) approximation of material behavior σ (γ ). The dot on the plot
corresponds to the point γ *, where linear and power laws match.

cf. Figure 1(a); this similarity will be further reinforced by a construction of the thread solution
(cf. Sec. IV B), which matches to the conical shape of the drop.

Therefore, the question of existence of a self-similar solution to the problem involving surfactant
transport (8) and realistic material behavior σ (γ ) can be approached from two viewpoints. First of
all, the work of Fernandez and Homsy9 suggested the existence of a self-similar solution—the cone
shape of the drop in the steady tip-streaming regime—empirically. Second, the following simple
theoretical considerations support the existence of the surfactant distribution γ (r), which allows the
self-similarity to be observable for a range of r’s.

The interfacial surfactant transport Eq. (8) on a cone shaped surface, hr = 0, in spherical
coordinates and in the non-dimensional form can be written as

1

r

∂

∂r
(rγ us) = 1

Pes

1

r

∂

∂r

(
r
∂γ

∂r

)
+ js, (34)

where us = −σ̃min(1 − ξ )/(2 r ) is the interfacial velocity obtained from (29). Note that the surface
divergence ∇s · T of the surface vector T = γ us in (8) is calculated according to tensor analysis43

on a Riemannian manifold (in our case, it is a two-parameter surface embedded in three dimensional
space defined by the position vector r(u1, u2), which is a function of free parameters u1 and u2).
Namely, ∇s · T is the covariant derivative of a contravariant component of a vector field T = T i ci

defined in the tangent space of the manifold,

∇s · T = ∂i T
i +

{
j
i j

}
T i , (35)

where { j
i j } is the Christoffel symbol of the second kind calculated generally via { k

ji } = ck · ∂ j ci ,

where ∂ j = ∂/∂uj and the basis vectors ci = ∂i r(u1, u2) are the tangent vectors of the parameter
curves in the surface. For our conical surface in spherical coordinates, cf. Figure 2(a), the surface is
parameterized by u1 = r and u2 = φ and the radius vector r is given by (1).

The form of Eq. (34) suggests the power-law distribution of surfactant along the interface,

γ = d r ζ , ζ > 0, σmin < r < σ̃min/σmin, (36)

where the value of the exponent ζ depends on the particularities of the equation of state σ (γ ). Thus,
problem (34) has the particular solution (36) provided the interfacial flux has the form

js = b γ
1− 2

ζ , (37)

such that the constant d in (36) is found by a direct balance of terms in (34). This power-law form of
js can be justified from a more general expression for the surfactant flux (73) utilized in the thread
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region analysis (Sec. IV B). If js = 0, then due to linearity of (34) in γ , the factor d is left arbitrary
without extra conditions dictated by the physics of the problem (cf. Sec. IV B 3).

Above we constructed a concrete case which leads to self-similar behavior (16): as an example
we used the equations of state (33), which together with the power-law solution (36) leads to σ

∼ r−1 required for the self-similarity to exist. Consideration of a combination of a few higher
order “harmonics” σ ∼ rn − 2 in conjunction with the corresponding self-similar solutions (15) may
provide a better approximation of the material behavior σ (γ ) and, based on the general properties
of asymptotic series, should enlarge the range of r’s for which the self-similarity holds.

D. Equation of state

The considerations in Sec. III C of a particular form of the equation of state (33) in the self-
similar (cone) region lead to the following discussion, which will be instrumental in the construction
of the thread solution in Sec. IV and matching it to the cone solution.

First of all, it should be noted that in the case when surfactant is produced by a chemical
reaction at the interface, interfacial tension is dynamic in general, i.e., it is a function of both
surfactant concentration and time. In the steady case and when there is no interface stretching,
one naturally gets σ = σ min everywhere at the interface since the chemical reaction continuously
produces surfactant. In our case, the problem is steady, which justifies the use of steady versions
of σ (γ ) and js(γ ), but interface stretching results in a non-uniform tension distribution along the
interface.

From a modeling prospective, there are no analytical expressions for equations of state valid
over the entire range of surfactant concentrations—most common equations, e.g., the Frumkin-
type state equation obtained from the Gibbs adsorption isotherm for an ideal solution, σ = σ max

+2 γ ∞ R T ln (1 − γ /γ ∞)44 in dimensional variables, are valid only for dilute premicellar solutions;45

here R is the gas constant, T is the temperature. This fact is obvious from the direct comparison
with the experimental data for both ionic46 and non-ionic surfactants47 as well as from the diverging
character of such equations as γ → γ ∞.48 Equations such as Sheludko’s one49, 50 often applied for
non-dilute concentrations51 are empirical and thermodynamically inconsistent with other models
such as Langmuir isotherm required for surfactant transport modeling. Given experimental mea-
surement points for σ (γ ), any function fit cannot give a unique state equation σ (γ ) due to scatter of
experimental data. In the case of the chemical reaction used in the work of Fernandez and Homsy,9

there is no experimentally measured state equation as the surfactant is produced by the chemical
reaction and is normally not present / used separately from the reaction itself; instead, there are
only dynamic interfacial tension measurements,52, 53 which are not relevant to the present study.
Therefore, a power-law form of σ (γ ) cannot be excluded and likely exists for a certain range of γ ’s
(especially close to the saturation value γ ∞) as sketched in Figure 6, since the self-similar solution
is observable experimentally.

As dictated by the experimental observations and the logical possibility that for some interval of
γ ’s the interfacial tension behaves in a self-similar fashion (33), one is lead to conclude that σ has a
composite form shown in Figure 6. For simplicity and as a good approximation of the experimental
data,46, 47 we will use the approximate linear equation of state,

σ = σmax + γ (σmin − σmax), 0 ≤ γ ≤ γ ∗, (38)

and the power-law form (33). As pointed out in Sec. III C, this approximation is non-unique and
without much effect on the solution, σ (γ ) can be approximated by other functions as long as it
stays close to the composite one. This composite form, of course, would come from the fit to data
and thus implies that both σ and dσ /dγ should be continuous at the point of matching γ *. The
continuity of σ and σγ is required as both of them appear in the formulation of the problem, i.e.,
in the normal and tangential boundary conditions (4). Higher order continuity of the solution is
achieved by constructing higher order corrections to σ (γ ).
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Given the linear form (38) of σ and the power-law form (33),

σ (γ ) = σ̃min

(γ /d)1/ζ
with γ = d r ζ , (39)

we find from the continuity of σ at γ * that

σ̃min = σmax

(
γ ∗

d

)1/ζ
ζ

1 + ζ
, (40)

and from the continuity of dσ /dγ at γ *,

γ ∗ = 1

1 − σmin
σmax

1

1 + ζ
. (41)

As a result, the equation of state for γ > γ *, i.e., in the “power-law” region, is given by

σ (γ ) = σmax

(
γ ∗

γ

)1/ζ
ζ

1 + ζ
, γ ∗ ≤ γ. (42)

Note that, as it should be, the material behavior does not depend on the factor d as the latter is
determined by the coupled hydrodynamics and surfactant transport.

It is remarkable that the derivative dσ /dγ is non-zero at γ = 0 as opposed to the intuitive
expectation, which can be explained from the standard models for soluble surfactants valid for dilute
concentrations. Namely, when expressed in terms of the bulk concentration c, which is more suitable
for the analysis of the interfacial material behavior, one gets

dσ

dγ
= dσ

dc

dc

dγ
with

dσ

dc
< 0 and

dγ

dc
> 0. (43)

Indeed, from the Szyszkowsky equation, σ = σ max − 2RTγ ∞ln (1 + KLc) in dimensional variables,
and the Langmuir isotherm, kac(1 − γ /γ ∞) − kdγ = 0, where KL = ka/(kd γ ∞) is the Langmuir
constant, ka and kd the adsorption and desorption coefficients, respectively, it follows that

dσ

dc
= −2RT γ∞KL

(
1 − γ

γ∞

)
< 0. (44)

Also,

dc

dγ
= kd

ka

(
1 − γ

γ∞

)−2

> 0, (45)

which together with (44) produces

dσ

dγ
= −2RT

(
1 − γ

γ∞

)−1

< 0. (46)

When evaluated at γ = 0, the derivative dσ /dγ is certainly non-zero.
Finally, note that as opposed to the above thermodynamic considerations of the derivative dσ /dγ

at γ = 0, there are no known restrictions on σ (γ ) to be convex σγγ > 0 or concave σγγ < 0 for the
entire range of γ ’s. Therefore, one cannot rule out the possible behavior shown in Figure 6.

IV. THREAD SOLUTIONS

A. General remarks

Due to the equivalence of one- and two-phase solutions (Proposition 1), we will construct a
thread solution for one-phase system, when only the drop is in the Stokes regime, while the outer
flow is inertialess and inviscid. The standard way to resolve the cone-tip singularity would be
through the introduction of a transition region (II) similar to that in the Landau-Levich problem,25

as shown on Figure 7, which matches the solution in the cone region (I), where the solution is
self-similar, to that in the thread region (III), where the jet is of constant radius h∞ as z → −∞.
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FIG. 7. On resolution of the singularity.

The presence of the stagnation point, cf. Figure 7, may appear to prevent one from application
of the lubrication (slender jet) approximation since the assumption of a unidirectional flow built
into the lubrication approximation is no longer valid. However, the recent work26 demonstrates the
applicability of lubrication approximations in such cases due to the weak ellipticity property of
the lubrication equations. Moreover, explicit construction of the solution below will show that the
lubrication approximation indeed captures the internal stagnation point.

In the construction of the thread solution, we can no longer use the idealized interfacial tension
behavior, σ ∼ r−1, but rather should appeal to the true physical property of its boundedness from
above and non-zero value at the minimum, cf. Figure 6. This is also necessary for correct prediction
of the thread radius. These considerations, however, do not invalidate the constructed self-similar
solution as the latter is valid in the intermediate asymptotics sense only (Sec. III C). Since interfacial
tension is always bounded, in particular 0 < σ̃min < 1, the self-similar solution (16) in Sec. III breaks
when z ∼ O (̃σmin cos θ∗). Thus, one can distinguish three distinct regions:

(I) Cone region: ρ, z ∼ O(1);
(II) Transition region: z ∼ O (̃σmin cos θ∗), ρ ∼ O(h∞); and

(III) Slender jet region: ρ � z, ρ ∼ O(h∞).

All these scalings, in particular z ∼ O(σ min), will naturally follow from the asymptotic analysis.
The scale h∞ can be found only after matching the solution with the one in the cone region in
analogy with the dip coating problem of Landau and Levich.25

B. Asymptotic analysis

1. Scaling and problem statement

In view of the cylindrical symmetry of the thread solution, it is convenient to study it in the
cylindrical system of coordinates:

x = ρ cos φ, y = ρ sin φ, z = z;

the geometry of the problem is sketched in Figure 8. The normal n and tangent t vectors to the
interface, H = ρ − h(z) = 0, are given by

n = ∇H

|∇H | = ρ̂ − hẑz√
1 + h2

z

, t = hz ρ̂ + ẑ√
1 + h2

z

, (47)

where ρ̂ and ẑ are unit vectors in the cylindrical coordinate system; note that the tangent vector t
has the same direction as in the spherical coordinates. The interfacial curvature is calculated via

∇ · n|ρ=h(z) =
[

1

ρ

∂

∂ρ

(
ρ nρ

) + ∂nz

∂z

]
ρ=h(z)

= − hzz

(1 + h2
z )3/2

+ 1

h
√

1 + h2
z

,

where nρ and nz are ρ- and z-components of the normal vector n, respectively.
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FIG. 8. Geometry of the problem in cylindrical coordinates.

The idea now is to analyze the solution in the neighborhood of the axis of symmetry with
the goal of resolving the singularity via a construction of a jet solution. Let the velocity compo-
nents be (u, w) along (ρ, z)-axes, respectively. Applying the following thin layer (or slender-jet)
non-dimensionalization:

z → lcz, ρ → h∞ρ, w → σmax

μ
w, u → ε

σmax

μ
u, p → κ

σmax

lc
p, σ → σmaxσ, γ → γ∞γ,

(48)

where ε = h∞/lc � 1 with h∞ to be determined from scaling arguments, to the axisymmetric
Navier–Stokes equations in cylindrical coordinates (ρ, z), we obtain

0 = 1

ρ

∂

∂ρ
(ρu) + ∂w

∂z
, (49a)

0 = −∂p

∂ρ
, (49b)

0 = −∂p

∂z
+ 1

ρ

∂

∂ρ

(
ρ

∂w

∂ρ

)
, (49c)

which is just a set of standard lubrication equations; here we used the condition κ = ε−2,
which follows from the slender jet assumption. The appropriate boundary conditions for (49) as z
→ −∞ are (a) w → w∞ to be determined from matching and (b) p → const. Note that the large
scaling factor for the pressure κ = ε−2 as opposed to the O(1)-factor in the cone region, cf. (2), can
be explained by the fact that the flow in the cone region is driven by a smaller pressure gradient
because of the geometry confining effect, while in the jet region one requires much larger pressure
gradients to drive the flow. Introducing the stream-function � in cylindrical coordinates,

u = 1

ρ

∂�

∂z
, w = − 1

ρ

∂�

∂ρ
, (50)

we get the general solution of (49),

�(ρ, z) = −ρ4

16

∂p

∂z
+ C0 + C1ρ

2 log ρ + C2ρ
2, (51)

where the constants are functions of z, Ci = Ci(z). The z-dependence of Ci turns out to be important
for the construction of the solution in the thread region capable of capturing the flow topology shown
in Figure 7.
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The dynamic normal, n · T · n = −σ∇ · n, and tangent, t · T · n = t∇sσ , boundary conditions
at the interface ρ = h(z), can be written explicitly, taking into account that the stress tensor compo-
nents are

Tρρ = −p + 2
∂u

∂ρ
, Tρz = ∂w

∂ρ
+ ∂u

∂z
, Tzz = −p + 2

∂w

∂z
,

so that in the dimensionless form, we get the normal

p + σ

[
ε3 hzz

(1 + ε2h2
z )3/2

− ε

h
√

1 + ε2h2
z

]
= 2ε2

1 + ε2h2
z

[
uρ − hz(ε

2uz + wρ) + ε2h2
zwz

]
,

and tangential √
1 + ε2h2

z σz = [
2εhz

(
uρ − wz

) + (1 − ε2h2
z )(εuz + ε−1wρ)

]
,

dynamic conditions, respectively. The kinematic boundary condition

u − whz = 0, (52)

completes the standard interfacial boundary conditions formulation.

2. Slender-jet approximation

The leading order asymptotic forms of the normal, tangential, and kinematic conditions relevant
to our subsequent analysis are

−p + σ

[
ε

h
√

1 + ε2h2
z

− ε3hzz

]
= −2ε2

[
uρ − hzwρ

] + O(ε4), (53a)

wρ = εσz + O(ε2), (53b)

u − whz = 0, (53c)

respectively. Note the sign in the tangential dynamic condition (53b), which is explained in
Figure 9: both σ z and wρ are negative. It is also remarkable that the second curvature (the first
term in the square brackets on the left hand-side) dominates the asymptotics, which is common for
slender-jet axisymmetric problems. In addition, there are conditions of no singularity, which give
C1 = 0 in (51), and the symmetry conditions,

r = 0 : u = 0, wρ = 0, (54)

from which it follows that C0 = const. in (51). Next, the condition of a constant stream-function
along the interface ρ = h(z) furnishes �(ρ, z)|ρ=h(z) = �(ρ,−∞)|ρ=ĥ∞ and thus from (51), we
obtain

− h4

16

∂p

∂z
= C∞

2 ĥ2
∞ − C2(z)h2, (55)

ρ

high σ

low σ

w         < 0

1

2

z,w

ρ

FIG. 9. On the sign in the tangential boundary condition (53b).
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FIG. 10. Variation of the interfacial tension along the interface.

where C∞
2 = C2(−∞) and ĥ∞ = h(−∞) is an O(1)-parameter, which can be set to one by a proper

choice of scaling as will be shown below. From now on, to avoid confusion, we will be denoting the
key variables in the limit z → −∞ with hats, in particular σ̂max = σ (γ̂min). The value of the constant
C∞

2 is determined from the flux in the thread at z = −∞, where the fluid velocity is uniform across
the thread and equals to w∞ < 0,

0 > lim
z→−∞

∫ h

0
w · 2πρ dρ = −2π � |̂h∞

0 = −2πC∞
2 ĥ2

∞ = w∞ · π ĥ2
∞, (56)

i.e., C∞
2 = −w∞/2.

Next, from compatibility of the leading normal (53a), p = ε σ /h, and tangential (53b), wρ

= ε σ z, interfacial boundary conditions it follows that the interfacial shape is given by

h(z) = c

σ (z)
, (57)

where c is a constant to be determined. Thus, the solution, which connects both the cone and thread
regions exists due to the capillary and Marangoni forces, which in turn arise due to the varying σ (z).
As follows from (57), the interfacial shape is determined by the interfacial tension distribution σ (z),
which is expected to be of the form sketched in Figure 10. Note that we have not used any conditions
at z → +∞ yet. Also, from (53b), we get the condition determining the function C2(z),

C2(z) = C∞
2

ĥ2
∞

h2
+ ε

8
h σz, (58)

as well as the general form of the stream-function in the thread region

� = −w∞
2

ĥ2
∞

ρ2

h2
+ ε

8
hσzρ

2

(
1 − ρ2

h2

)
+ C0, (59)

and the z-component of the velocity field

w = w∞
ĥ2

∞
h2

+ ε

4h
σz(2ρ2 − h2). (60)

As one can observe from expressions (59) and (60), the flow consists of the self-similar solution
(16), which has zero mass flux, superimposed with the constant flux solution, which is responsible
for the mass flow through the thread—this mass flow rate Q∞ is set by given experimental conditions
and thus serves as a given parameter here (along with the cone semi-angle θ*, cf. Sec. II).

Now, let us look into the conditions at z → +∞ necessary for matching the thread solution to
the cone one. Since in the case when the solution approaches the cone,

h → tan θ∗

ε
z, σ → σ̃min

z
cos θ∗, (61)

Eq. (57) yields the condition

ε c = σ̃min sin θ∗; (62)
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the latter along with Eqs. (57) and (60) allow us to determine the interfacial velocity

ws = w∞

(
σ

σ̂max

)2

+ ε c

4

σz

σ
= w∞

(
σ

σ̂max

)2

+ σ̃min sin θ∗

4

σz

σ
. (63)

The interfacial velocity behaves at infinities as

z → −∞ : ws → w∞,

z → +∞ : ws → − σ̃min sin θ∗

4 z
+ w∞

(
σ̃min

σ̂max

)2 cos2 θ∗

z2
,

where we used the asymptotic behavior of h(z) and σ (z) for z → ±∞. Note that the interfacial
velocity ws in the cone region decays to zero as z−1, which is in accordance with the self-similar
solution (29), while the flux responsible for the flow through the thread decays much faster in the
cone region as z−2, which can also be seen from mass conservation as applied to the thread and to
the cone geometry, cf. Figure 7.

Note that the form of interfacial tension σ = (̃σmin/z) cos θ∗ suggests the natural scaling

z → σ̃minz, (64)

which stretches the z-coordinate as is common for the “inner” solution in the matched asymptotic
analysis21 and consistent with the a priori considerations in Sec. IV A; here, the “outer” solution
is the cone one. The fact that the lubrication equations solution (57) naturally captures the outer
solution, i.e., conical shape, when σ ∼ r−1, is common in other problems: this property of the
lubrication approximation is used to construct a composite solution with the matching occurring
internally,54, 55 which is the procedure we will follow here. Thus, in order to keep both r and z
coordinates on the same scale, will not rescale the z-coordinate.

Because ε and c appear in the solution only as a product, without loss one can put c = σ̂max in
(62) so that ĥ∞ = 1 and the scaling for the thread radius becomes

h∞ = ε lc = sin θ∗ σ̃min

σ̂max
lc, (65)

i.e., it is determined by the ratio of the values of interfacial tension in the cone and thread regions;
the smaller the ratio σ̃min/σ̂max the stronger the Marangoni effects. As follows from (65), the lower
bound on the thread radius for a fixed cone semi-angle θ*,

inf h∞ = sin θ∗ σmin

σmax
lc, (66)

is determined by the ratio of the minimum and maximum interfacial tensions, σ min/σ max, which in
turn are defined by a given material behavior σ (γ ). Since ĥ∞ = 1 with the above choice of c, then
instead of the mass flow rate Q∞ = π ĥ2

∞w∞ through the drop, we will utilize the escape velocity
w∞ in the thread.

The boundary-value problem for h(z) should be supplied with the surfactant transport Eq. (8)
rewritten in cylindrical coordinates, which in the lubrication approximation (48) and non-dimensional
form reads

d

dz
(γ ws) = 1

Pes

d2γ

dz2
+ js . (67)

Together with the expression for the interfacial velocity (63), in which ε c was concluded to be equal
to σ̃min sin θ∗ and the boundary conditions:

z → z∗ : continuity of h, hz, γ, γz, (68a)

z → −∞ : h → ĥ∞,
dγ

dz
→ 0, (68b)

it forms a complete boundary-value problem. In (68a), z* is the point of matching between the thread
and the cone solutions: this is analogous to the solution procedure in the Landau-Levich problem,25
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where matching occurs at the point where the static meniscus is tangent to the thin film. Therefore,
the problem reduces to the construction of the distribution σ (z) via solving the surfactant transport
Eqs. (67) and (68) with a given material behavior σ (γ ). This in turn defines the interface shape (57)
and the form of the stream-function (59)

� = −w∞
2

(
σ

σ̂max

)2

ρ2 + σ̃min sin θ∗

8

σz

σ
ρ2

(
1 − ρ2 σ 2

σ̂ 2
max

)
+ C0, (69)

and pressure found by integration of (55)

p = σ̃min sin θ∗
(

σ

σ̂max

)2

+ const. (70)

Clearly, both forms of the stream-function and pressure resolve the singularity of (16) at r = 0.
Also, as one can see from the expression for �, it captures the flow structure with an internal
stagnation point shown in Figure 7. With the choice C0 = 0, the stream-function equals to zero
at the interface, axis of symmetry, and along the surface inside the cone, which separates the
fluid going into the thread and the one reversing back into the cone. This is the amazing property
of the lubrication approximation, which starts from the assumption of a unidirectional flow and
thus should be of parabolic character as the set of Eqs. (49) is, but is still capable of capturing
the stagnation point as in Figure 7, which normally requires an elliptic operator to get resolved.
This property of the lubrication approximations is known as weak ellipticity26 and explains why
lubrication approximations may apply well beyond the expected limits of their applicability.

Concluding these general theoretical considerations, it must be noted that:
� The Marangoni-driven tip-streaming exists even if only one phase is present and thus the

limitation μ1/μ2 < 0.1 from the externally driven tip-streaming does not apply here.
� While in this work we focused on the cone-shape singularities, as motivated by experiments,9

the analysis suggests that the Marangoni-driven singularities may exhibit other interfacial
shapes given by Eq. (57), which depend on the particularities of surfactant transport and
equation of state σ (γ ).

Finally, note that the scaling law (65) is the leading order solution; the corrections to it can be
found via the asymptotic procedure, which, as easy to demonstrate, provides corrections of the order
of ε3:

h = h1 + ε3h3 + . . . ,

p = ε p1 + ε3 p3 + . . . ;

however, this analysis is out of the scope of the present study.

3. Numerical integration

In order to integrate the lubrication Eq. (67) along with boundary conditions (68), it is important
to note that Eq. (67) is Galilean invariant with respect to translation along the z-coordinate. Thus,
when solving the boundary-value problem (67) and (68), one

1. fixes the values of w∞ and γ̂min;
2. integrates (67) up to the point where γ assumes the value γ *;
3. determines the location z* of that point on the z-axis using the continuity of γ

γ ∗ = d
( z

cos θ∗
)ζ

⇒ z∗ =
(

γ ∗

d

) 1
ζ

cos θ∗; and (71)

4. varies γ̂min for a fixed w∞ in order to match γ z from the thread and cone regions

dγ

dz

∣∣∣∣
z∗

= d ζ

cos θ∗

(
z∗

cos θ∗

)ζ−1

, (72)



022111-23 Structure of Marangoni-driven singularities Phys. Fluids 24, 022111 (2012)

which gives the interfacial concentration γ̂min in the thread region. It is straightforward to show that
continuity of h and hz at z* is automatically satisfied: this is due to the fact that conditions (61) were
used to match the thread solution (57) to the cone one.

There are two key cases to consider depending on the value of the surfactant flux js to the
interface due to chemical reaction: (1) when js = 0 and thus the coefficient d in (36) is arbitrary,
and (2) when js �= 0 and thus the coefficient d in (36) is determined by the surfactant flux to the
interface. In the case js = 0 and when diffusion is negligible, Pes 
 1, the surfactant transport
Eq. (67) reduces to d(γ ws)/dz = 0, but its counterpart (34) in the cone region yields dγ /dz = 0,
which is not compatible with the variation of interfacial tension (16). Despite being directly irrelevant
to the present study, the corresponding solution is interesting in its own right and thus discussed in
Appendix B.

Here we focus on the second case: note that due to the chosen system of coordinates d(γ ws)/dz
< 0 and therefore js < 0, which makes the surfactant flux js to the interface consistent with the
advection. For concreteness, the form of the surfactant flux is taken here as

js = b γ α(1 − γ )β, b < 0, (73)

which is a standard approximation in other chemical reaction systems56 allowing two equilibrium
concentrations at the maximum, γ = γ max = 1, and minimum, γ = γ min = 0, values of γ . Note that
this law reduces to the power-law approximation (37) of js in the cone region as when z → +∞, js
∼ b γ α with α = 1 − 2/ζ ; accuracy of such an approximation becomes better if α 
 β.

The boundary condition for the surfactant concentration dγ /dz → 0 as z → −∞ deserves a few
comments. From experiments,9 it is known that the emitted droplets carry surfactant, which can be
due to two factors: the surfactant is supplied by advection from the cone region—indeed γ̂min �= 0—
and by a chemical reaction happening at the droplet interface, i.e., the surfactant is produced after
the droplets detach from the thread. This resolves the paradox formulated in Sec. I B: small emitted
droplets indeed end up having low interfacial tension due to the above mechanisms.

It is remarkable that the two-point boundary-value problem (67) and (68) with (57) and com-
posite σ (γ ) given by (38) and (39) yield a solution even without a diffusion term. Even though the
resulting equation for γ appear to be first-order, the form of ws given by (63) shows that the advection
term in (67) is second order in the z-derivative; this is one of the sources of the weak ellipticity
property of the lubrication equations. The role of diffusion, however, is to further smooth out the
profile of γ (z).

Example computations are shown in Figures 11 and 12. One way to interpret Figure 11 is that
given a mass flux w∞, one gets a certain value of γ̂min in the thread, which defines the solution
structure everywhere as shown in Figure 12. For larger flow rates w∞, one may get two different
solutions γ̂min, which physically means that either one of them is unstable or there is a hysteresis
phenomenon. As pointed out in Sec. IV B 2, the constructed solution captures the whole “cone
+ thread” region with the matching occurring internally as can be seen from Figure 12. The self-
similar and slender-jet solutions have an overlapping region of validity in the neighborhood of the
point z*, where the linear (38) and power-law (39) forms of the composite material behavior match
along with their first order derivatives dσ /dγ .

Recalling all the scalings performed in order to arrive at the lubrication approximation, the
dimensional thread thickness is given by (65), which has the lower bound (66). Since the interfacial
tensions in the clean and surfactant interface case differ by two orders of magnitude,10 formulas
(65) and (66) give the right estimate for the experimentally observed difference between the drop
size ∼0.5 mm, which is of the order of the capillary length lc, and the thread diameter ∼0.5 μm.
Dependence of the factor σ̃min/σ̂max on γ̂min is shown in Figure 11(b) for d = 1: as mentioned earlier,
the factor σ̃min/σ̂max determining the thread radius (65) scales with d as ∼d−1/ζ and thus the larger the
magnitude of d, the smaller the value of this factor. In view of well-posedness of the problem, i.e.,
not high sensitivity to the slight variation in the coefficients (in particular, the form of the equation of
state), the use of an empirical state equation instead of (38) and (39) will not change the qualitative
behavior of the constructed solutions.
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FIG. 11. (Color online) Sample solution to the boundary-value problem (67) and (68) with (57) and composite σ (γ ) given
by (38) and (39): (a) functional dependence w∞(γ̂min); vertical dash-dotted line corresponds to the profiles of γ (z), σ (z), and
h(z) given in Figure 12, (b) functional dependence of σ̃min/σ̂max on γ̂min shown for d = 1; note that each γ̂min for a given
θ* has a value of w∞ associated with it according to Figure 11(a). Marks are computed points, and lines are interpolations
between them.
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FIG. 12. (Color online) Result of integration of (67) and (68) for γ̂min = 0.412 and different θ* corresponding to the vertical
dash-dotted line in Figure 11: profiles of (a) γ (z), (b) σ (z), (c) h(z). Dots on the plots indicate the point of matching between
the thread and the cone solutions. Note that the z-coordinate corresponds to the true one—the cone profile meets the origin
of the z-coordinate.
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FIG. 13. On the equivalence of one- and two-phase motions: (a) two-phase system, (b) equivalent one-phase system.

V. CONCLUSIONS

In this work, an analytical study of steady Marangoni-driven singularities is presented in the
axisymmetric three-dimensional case. The study involved finding a family of self-similar solutions in
the neighborhood of a singularity as well as the resolution of this singularity via the construction of a
thread solution based on a singular perturbation technique and matching to the self-similar solution.
The scaling law for the thread radius (65) and (66) is determined, which demonstrates the dependence
on the lowest, σ̃min, and highest, σ̂max, values of the interfacial tension, the cone semi-angle θ*, and
the material behavior σ (γ ). While the analysis is done in the context of surfactant Marangoni-driven
singularities, the obtained results and conclusions are general and independent of the nature of
the Marangoni stresses. However, one has yet to discover experimentally interfacial singularities
driven by temperature and electric field gradients. Also, it must be noted that even though this work
is motivated by experiments of Fernandez and Homsy,9 further careful experimental studies are
needed to uncover the physics of the observed tip-streaming phenomena.9

While in this work we focused on the cone-shape singularities, as motivated by experiments,9

the analysis suggests that the Marangoni-driven singularities may exhibit other interfacial shapes
given by Eq. (57), which depend on the particularities of surfactant transport and equation of state
σ (γ ). Although we considered only one class of self-similar solutions (16) corresponding to n
= 1 and resolution of this singularity at the tip, similar analysis can be conducted for higher order
solutions, n > 1. All the constructed shapes here are steady, so future studies are required to analyze
their stability with respect to unsteady perturbation: while the thread is clearly unstable via Rayleigh-
Plateau mechanism, the drop may experience other instabilities for certain range of parameters, e.g.,
for certain mass flow rates. Also, among the unanswered theoretical questions is the one on the
physical mechanisms responsible for the transition between “thread” and “no-thread” regimes. At
the methodological level, it would be useful for this and similar problems to develop a systematic
singular domain perturbation techniques capable of perturbing singular base state solutions, such as
the self-similar solutions with the conical symmetry constructed here.
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APPENDIX A: ON EQUIVALENCE OF ONE- AND TWO-PHASE MOTIONS

In this section, we prove the Principle of equivalence of one- and two phase creeping flow
motions, given by Proposition 1. Given a steady-state system of two immiscible viscous phases
separated by an interface, such that only one phase contains singularities, can one replace it with
an equivalent one-phase system which has the same steady-state evolution of the interface? What
would be the connection of the velocity and pressure fields between the new and old systems?

Proof. For concreteness, let us consider the first phase occupying region D1 ∈ R2, while the
second phase occupies its complement D2 = R2/D1, cf. Figure 13(a), and the interface between
them is designated by �, which can be given in an implicit form F(x) = 0. The same arguments
apply to the axisymmetric case in R3. The reason to consider the case when only one phase has
singularities (e.g., sink, source, dipole, vortex dipole) is because in general one cannot capture the
physics correctly by replacing the phase with a singularity by an inviscid inertialess phase.

Let us also denote the properties of the first phase (possibly with a singularity) by μ1, ρ1, ψ1, and
p1 (viscosity, density, stream-function, and pressure, respectively), while the other phase is character-
ized by μ2, ρ2, ψ2, and p2. The goal is to replace this system with a new one, cf. Figure 13(b), when
phase 2 is described by new properties μ′

2 = 0, ρ ′
2 = 0, ψ ′

2 = 0, and p′
2 = 0, while the properties of

phase 1, i.e., μ′
1, ρ ′

1, ψ ′
1, and p′

1, need to be determined under the condition that the interface
evolution stays intact, in particular, the interfacial velocity should stay the same.

The bulk dynamics is governed by the Stokes equations


2ψ1 = 0 for x ∈ D1, 
2ψ2 = 0 for x ∈ D2,

while interface dynamics obeys the no-slip u(1) = u(2), the dynamic normal and tangential, and
kinematic conditions

[n · T · n]2
1 = σ∇ · n,

[t · T · n]2
1 = −t∇sσ,

∇F · u(i) = 0,

respectively. Here we naturally consider the case when viscosities of these two phases are not
necessarily equal; thus, to preserve the structure and signs in the dynamic interfacial conditions when
we transform to a single phase, let us introduce new phase velocity u′ and pressure p

′
according to

μ′u′ = μ1u(1) − μ2u(2), p′ = p1 − p2,

so that the new viscous stress tensor becomes μ′e′ = μ1e(1) − μ2e(2) and thus the complete stress
tensor is T′ = T(1) − T(2), which leaves the signs in the dynamic interfacial conditions unchanged
and thus makes the dynamic conditions to be stated as if there is only one phase (primed variables)

n · T ′ · n = −σ∇ · n, (A1a)

t · T ′ · n = t∇sσ. (A1b)

The interfacial velocity of this new phase is then given by (recall the continuity of the velocity
field across the interface, u(1) = u(2))

u′ = μ1 − μ2

μ′ u(1),

i.e., the kinematic boundary condition, ∇F · u′ = 0, is satisfied as well. The no-slip condition at the
interface is redundant now. Next, because of the linearity of the bulk dynamics, it is enough to solve
for the bulk dynamics of the new phase only, 
2ψ ′ = 0, where u′ = ∇ × ψ ′, ψ ′ = (0, 0, ψ ′); this
makes the problem for an effective phase closed. In order to preserve the magnitude and direction
of the interfacial velocity, one should choose μ′ = μ2 − μ1. Note that if μ2 > μ1, then one needs
to change the sign of σ in (A1) in order to preserve the form of the dynamic interfacial condition,
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which corresponds effectively to negative interfacial tension. From these considerations, one also
concludes that in the case μ1 = μ2 it is impossible to replace a two-phase system with one phase
having the interfacial velocity, which is the same as in the original two-phase system.

The above simple arguments prove that indeed one can replace a two-phase system with an
equivalent one phase, under the conditions that the singularities are present only in one phase and
viscosities of the phases are not equal, and therefore conduct the analysis for an equivalent one-phase
system. �

APPENDIX B: THREAD SOLUTION WITHOUT CHEMICAL REACTION

In the case when there is no surfactant production at the interface, js = 0, and diffusion is
negligible, Pes 
 1, the surfactant transport Eq. (67) can be integrated to produce

γ ws = γ̂minw∞, (B1)

which implies that surfactant is feeded along the circumference of the base of a finite drop and then
transported to the thread. The conservation law (B1) gives the evolution equation for γ ,

dγ

dz
= 4 w∞

sin θ∗
σ

σ̃min

I

dσ/dγ
, I = γ̂min

γ
− σ 2

σ̂ 2
max

. (B2)

Clearly, in order to get interfacial concentration growing monotonically from its value γ̂min in the
thread to γ̃max in the cone (cf. Figure 10) necessary for a Marangoni flow maintaining the steady
solution, the expression I should be greater or equal to zero. With the linear equation of state (38),
which we apply in the thread region, this implies that

dI

dγ

∣∣∣∣
γ̂min

≥ 0 ⇒ γ̂min ≥ σmax(σmax − σmin)

2 + (σmax − σmin)

� σ 2
max

2 + σmax
� 1

3
, (B3)

provided σ min � σ max = 1. It is notable that due to dγ

dz |z∗ ∼ d1/ζ and σ̃min ∼ d−1/ζ , the func-
tional relation F(θ∗, w∞, γ̂min) = 0 between θ*, w∞, and γ̂min, determined from the solution to
the boundary-value problem (67) and (68), does not depend on the value of d, as can be seen from
equation (B2). However, the resulting profiles h(z), γ (z), and σ (z) do depend on the values of d. The
factor σ̃min/σ̂max determining the thread radius (65) scales with d as ∼d−1/ζ and thus the larger the
magnitude of d, the smaller the value of this factor and thus the sharper the singularity. Also, this
factor σ̃min/σ̂max does not depend on the cone semi-angle θ* due to the fact that for fixed γ̂min and
γ̃max (or σ̃min, which is independent of θ*), one has a fixed thread radius (65) and thus the mass flux
w∞ should scale as tan θ*, as can be seen from Eq. (B2).
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