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In this work, the characteristic properties of the lubrication approximation are studied and its weak
ellipticity is established, in contradistinction to the commonly accepted parabolic character of the
lubrication equations resulting from the underlying unidirectional flow assumption. The weak
ellipticity property allows the lubrication analysis to capture flow topologies around stagnation
points, contact lines, and flows over edges, all of which normally require elliptic operators to be
accounted for. This is used to explain the empirically observed overperformance of the lubrication
approximation from the perspective of characteristic analysis. While the analysis is developed in the
context of the classical Landau–Levich problem of dip-coating, which is known to possess an
interfacial stagnation point both in the clean and surfactant interface cases, the analysis is general
since the Landau–Levich equation is common to many other lubrication problems. The analytical
approach presented here when applied to the surfactant interface case, also allows one to establish
a new physical result: a variation of the bulk surfactant concentration is the necessary condition for
the film thickening phenomenon in the Landau–Levich problem to occur due to surfactant-induced
Marangoni effects. © 2010 American Institute of Physics. �doi:10.1063/1.3484276�

I. INTRODUCTION

The lubrication approximation for thin film flows has
received pervasive use in fluid dynamics since the pioneering
work of Reynolds,1,2 which is based on the assumption that
the flow is almost unidirectional. The original idea is analo-
gous to that of Prandtl for boundary-layer type flows,3 i.e.,
that the dynamics of the bulk fluid is subject to the approxi-
mation of parabolic characteristic type as will be discussed in
detail in Sec. II C. However, the lubrication equations have
been applied to the situations where the assumption of a
unidirectional flow fails and thus the elliptic nature of the
flow should not be neglected; examples include flows near
contact lines,4 over a cavity,5 and over an edge6 as depicted
in Fig. 1. The obvious reasons for such “extensions” of the
lubrication approach without rigorous justification are that
the lubrication equations are much simpler than the Navier–
Stokes or Stokes equations, and, as was found empirically,
such equations work reasonably well even for the aforemen-
tioned “prohibited” flows.4–6

The first goal of this work is to give a justification from
the point of view of classical method of characteristic analy-
sis for the application of lubrication approximations to thin
film flows with special points, which normally require a full
elliptic �Stokes� operator to correctly resolve the structure of
the flow. Such points may include eddy centers and stagna-
tion points7 and are referred to here as elliptic points. This
notion should not be confused with the one in dynamical
systems8 used to describe fixed points x0 of a map ẋ� f�x�,
x�RN such that the eigenvalues of the linearization of the
map around x0, i.e., Df�x0� have a unit modulus. The analog
of an elliptic fixed point for vector fields is a center, i.e.,
when trajectories of the system ẋ= f�x� appear as “ellipses”
in a sufficiently small neighborhood of the fixed point x0.

While one can apply the dynamical systems terminology if
the flow field is considered as a vector field of some dynami-
cal system �e.g., stagnation points in the bulk in Fig. 6 can be
regarded as hyperbolic fixed points�, here we deal with flows
having free and rigid boundaries and therefore such termi-
nology would not always be appropriate. In view of that and
because of the nature of the analysis developed in this work,
we classify fixed points of the flow based on the nature of a
partial differential operator needed to resolve them as dis-
cussed above. For concreteness and because of their practical
importance, we will focus on stagnation points, such as that
illustrated in Fig. 2. However, due to the generality of the
characteristics property of the lubrication approximation es-
tablished below, the general origin of the unexpected perfor-
mance of this approximation in a variety of situations4–6 is
clarified.

First, in Sec. II, we will perform the characteristics
analysis of the clean interface case in the context of the clas-
sical Landau–Levich problem of dip-coating, i.e., when a
solid substrate is coated with a thin film by being pulled out
of a liquid bath as depicted in Fig. 3�a�. As the name implies,
the problem was first studied by Landau and Levich9 by
exploiting the lubrication approximation, which was later put
on a firm foundation of matched asymptotic expansions.10

The same approximation applies to the Bretherton problem
in Fig. 3�b� of film deposition in a channel by a penetrating
bubble. The Landau–Levich �-Bretherton� problem is par-
ticularly suitable for the purpose of our discussion since the
elliptic stagnation point �cf. Fig. 3� can be captured by the
lubrication approximation as will be demonstrated in Sec. II.

The behavior of this elliptic point—the stagnation point
in Fig. 3�a�—also has nontrivial consequences for the phys-
ics of dip-coating in the presence of surfactants. Thus, the
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second goal of this paper is to understand the characteristic
properties of the lubrication approximation in the presence
of surfactants and to clarify the behavior of the stagnation
point in the Landau–Levich problem, which is done in
Sec. III. One is thereby able to gain new insight into the
surfactant-laden Landau–Levich problem and establish a
necessary condition for the film thickening due to surfactant-
induced Marangoni effects, which is still an unexplained
phenomenon11,12 as discussed in detail in Sec. III.

II. WEAK ELLIPTICITY: CLEAN INTERFACE CASE

In this section, we first provide a brief but self-contained
derivation of the lubrication approximation in the context of
the Landau–Levich problem �Sec. II A�, which in Sec. II B is
shown to be able to capture elliptic points. An explanation of
this fact is given in Sec. II C based on the characteristic
analysis, and implications of these results for other lubrica-
tion flows are discussed in Sec. II D.

A. A concise derivation of the lubrication
approximation

We consider a two-dimensional steady dip-coating
flow and choose the �x ,y�-system of coordinates with the
unit vectors i and j, respectively. The interface is given by
y=−h�x� with h ,hx ,hxx�0, as shown in Fig. 4, so that the

outer normal to the interface is n=−�ihx+ j� /�1+hx
2, the tan-

gent vector t=−�i− jhx� /�1+hx
2, and the interfacial curvature

�=� ·n=−hxx / �1+hx
2�3/2. The flat bath interface at y→−�

corresponds to x=0. We consider the entrainment of a film
due to the vertical motion of the solid boundary with velocity
−U. For convenience, the analysis will be done in non-
dimensional variables defined by �x ,y�→ lc�x ,y� , �u ,v�
→U�u ,v� , p→��g�p, where lc=�� /�g is the capillary
length and ��g� is the capillary pressure. With the above
choice of nondimensional variables, the problem contains
two nondimensional parameters: the capillary number
Ca=�U /�, which is considered to be asymptotically small
here, Ca�1, and an inertial parameter La=�U4 / ��g� re-
ferred to as the Landau number,11 the square root of which
multiplies the inertial terms in the Navier–Stokes equations,
cf. Krechetnikov and Homsy.11 The classical Landau–Levich
problem corresponds to the case when the meniscus is static
on the scale lc, which implies low values of La�1 and thus
the creeping flow regime. As a result, the bulk dynamics
obeys the Stokes equations

ux + vy = 0, �1a�

(a) (b)

FIG. 3. Flow topologies in the classical film deposition: �a� Landau–Levich
flow �the flow region extends to infinity� and �b� Bretherton flow �only half
of a channel is shown�. Encircled are elliptic points of interest to this study.
Bretherton problem has a second stagnation point �at the axis of symmetry�,
which is not captured by the lubrication approximation, as discussed in Sec.
III B.

FIG. 4. Coordinate system: h ,hx ,hxx�0. Thick lines are walls and thin lines
are streamlines. The transition region is shaded. The arclength s is measured
in the direction from the bath to the film.

(a) (b)

(c)

FIG. 1. Thin film flows containing elliptic regions, which are often analyzed
with lubrication approximations �Refs. 4–6�: �a� flow near the contact line,
�b� flow over the cavity, and �c� flow over the edge.

ξ

η

FIG. 2. Streamlines 	�x ,y� of the flow field in the neighborhood of a stag-
nation point at the interface. If u=	
 and v=−	� are the velocity compo-
nents, then based on the symmetry of the flow field, i.e., that u�−��=−u���
and v�−��=v���, it is straightforward to show that the Taylor series of the
stream-function 	 in the neighborhood of the interfacial stagnation point is
	�C1�
+C2�3+¯, where constant coefficients C1 ,C2 , . . . are determined
from the interfacial boundary conditions.
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0 = − px + 1 + Ca�u , �1b�

0 = − py + Ca�v , �1c�

augmented by �a� the normal n ·T ·n=−��s ·n and the tan-
gential t ·T ·n= t ·�s� dynamic boundary conditions at the
interface y=−h�x�

p = � +
2Ca

1 + hx
2 �vy + hx

2ux + hx�uy + vx�� , �2a�

�s =
Ca

1 + hx
2 �2hx�ux − vy� + �1 − hx

2��uy + vx�� , �2b�

respectively, where s is the natural arclength parameteriza-
tion, ds=−�1+hx

2dx, and �b� the no-slip condition at the wall
y=0, i.e., u=−1 and v=0. The kinematic condition at the
interface, uhx+v=0, closes the problem formulation. In this
section, we consider the clean interface case �s=0 only.

With the idea to develop a lubrication approximation for
the transition region in the low capillary number regime,
Ca�1, which connects the thin film and the meniscus re-
gions, one introduces a thin-layer assumption

y → h�y, x → x, u → u, v → �h�/�v, p → p , �3�

where 1��h�, so that the dimensional film thickness is

h̄�=�h�lc with the O�1� numerical factor � to be determined
later. The assumption of a thin-layer approximation, �h�,
and the balance of capillary and viscous forces �or a formal
application of the principle of least degeneracy of Ref. 13� in
the x-momentum equation yield

 = h�
2 /Ca, �4�

which leads to the following system for the bulk dynamics:

ux + vy = 0, �5a�

0 = − px + uyy , �5b�

0 = − py . �5c�

Since we are working in two dimensions, it is convenient to
introduce the stream-function defined by u=	y and v=−	x,
so that Eq. �5� can be immediately integrated to produce

	 = px
y3

6
+ C2

y2

2
+ C1y + C0, �6�

where thanks to the no-slip at the solid wall, C0=0 and
C1=−1. In the clean interface case, the interfacial boundary
conditions �2� at y=−h�x� yield to the leading order

p − hxx = O�Ca2/3� , �7a�

	yy = O�Ca2/3� , �7b�

where the requirement that the capillary pressure should
be present at the leading order gives h��2, i.e., together
with Eq. �4� produces the classical result =Ca1/3 and
h�=Ca2/3.

Taking into account the asymptotically simplified inter-
facial boundary conditions �7a� and �7b�, we find C2= pxh,
and thus the expression for the stream-function �6� becomes

	 = hxxx
y2

6
�y + 3h� − y . �8�

The classical Landau–Levich equation9 is deduced via
equating the values of the stream-function at h�x� and at
h=� for x=−�, since in the steady case the value of the
stream-function at the interface is constant, i.e., 	 �y=−h�x�
=	 �y=−�,x=−�, which produces

hxxxh
2 + 3	1 −

�

h

 = 0. �9�

The solution of this equation matches the thin film
�x→−� :h→�� and the static meniscus; the latter is deter-
mined from the capillary-hydrostatic equilibrium

− hxx/�1 + hx
2�3/2 = x + D1. �10�

Since h�x� approaches the flat bath interface for x→0, the
constant D1 vanishes in the above expression. Integrating Eq.
�10� once

− hx/�1 + hx
2�1/2 =

x2

2
+ D2, �11�

and using the condition as x→0 again, i.e., hx→+�, we get
D2=−1. Therefore, the point of zero tangency, hx�x��=0, is at
x�=−�2, and from Eq. �10�, we determine the interfacial
curvature at that point, hxx=�2, which is the second condi-
tion for Eq. �9�. Scaling h→�H and x→��, we get the
canonical Landau–Levich boundary-value problem

H���H
2 + 3	1 −

1

H

 = 0, �12a�

� → − �: H → 1, H� → 0, H�� → 0, �12b�

integration of which gives �→+� :H��→�2� and the value
of the factor ��0.945. The deduced Landau–Levich law is
also confirmed experimentally: see the discussion in
Krechetnikov and Homsy.12

B. Capture of elliptic points

The expression for the stream-function �8� yields the in-
terfacial velocity

u�s� = 	y�y=−h = − 1
2hxxxh

2 − 1. �13�

With the use of Eq. �9�, the interfacial velocity is expressed
as

u�s� =
3

2
	1 −

�

h

 − 1, s � �− �,+ �� , �14�

which indicates that u�s� changes sign along the interface at
least once

s → + �: u�s� = − 1,
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s → − �: u�s� = 1/2.

As follows from Eq. �14�, the interfacial velocity vanishes at
h=3�, i.e., the lubrication approximation is able to capture
this stagnation point and the velocity field around it. Its lo-
cation and the surrounding flow field are consistent �within
asymptotic accuracy� with the full numerical solution of the
Stokes equations �1�, cf. Krechetnikov and Homsy11—this is,
of course, of no surprise as the location of the stagnation
point controls the mass flux into the film, cf. Fig. 3�a�, and
should the lubrication analysis fail to capture it correctly, the
resulting Landau–Levich law9 would be inconsistent with re-
ality. Alternatively, representing the interfacial shape near the
stagnation point x� in the Taylor series form h�x�=�i=0

� ci�x
−x��i / i!, where c0=3� and c3=−2 / �9�2� result from the so-
lution constructed in Sec. II A, it is straightforward to show
through a change of coordinates �x ,y�→ �� ,
� that the flow
field of the oblique stagnation point �8� shown in Fig. 3�a�
can be mapped to the Stokes flow field in the neighborhood
of the “orthogonal” stagnation point at the flat interface dis-
cussed and shown in Fig. 2. More precisely, from the point of
view of differential topology,14 these two flows are diffeo-
morphic, i.e., there is a smooth bijective map between them
with smooth inverse. The fact that the lubrication approxi-
mation captures a stagnation point, which is obviously of
elliptic character, may appear to contradict the fact of the
parabolic characteristic type of the bulk dynamics �5� that
naturally follows from the originally assumed thin-layer ap-
proximation �the parabolic character of Eq. �5� will also be
established in Sec. II C�. This paradox is resolved in Sec.
II C with the help of characteristic analysis.

C. Characteristics analysis of the lubrication
equations

In our characteristics analysis and classification of char-
acteristic types of partial differential operators, we essen-
tially follow Petrovsky15 and Courant;16 for the reader’s con-
venience some technical details of the analysis are given in
the Appendix. In order to determine the characteristic type of
Eq. �5�, let us first consider the case when the pressure p in
Eq. �5� is a given function, which is standard in the boundary
layer theory3 since the pressure cannot be found from system
�5� alone. If � denotes the characteristic surface in the
�x ,y�-plane, then the corresponding characteristic determi-
nant for the system �5� with prescribed pressure p�x ,y� is
obtained by direct application of the formula �A3� for the
characteristic determinant from the Appendix

�x �y

�y
2 0

 = ��y�
parabolic

continuity

� ��y
2�

parabolic

diffusion

= �y
3 = 0, �15�

where the terms in the first row of the determinant matrix
originate from the continuity equation, while the second row
is due to the reduced diffusion. The factors �y and �y

2 in the
determinant �15�, corresponding to the continuity and re-
duced diffusion, both contribute to the parabolic behavior.17

Indeed, because all three roots of Eq. �15� are real with the
degenerate characteristics ��x�=const normal to the wall,
then system �5� is parabolic15,16 and, therefore, disturbances

propagate in both positive- and negative-y directions with an
infinite speed. Also, even if the pressure p�x ,y� is considered
as an unknown function, in which case the characteristic de-
terminant for Eq. �5� is of the form

��x �y 0

�y
2 0 − �x

0 0 − �y
� = ��y�

parabolic

continuity

� ��y
2�

parabolic

diffusion

� ��y�
parabolic

pressure

= �y
4 = 0,

�16�

system �5� is clearly still of parabolic type.
This is opposed to the Stokes equations �1�, in which

case the characteristic determinant is

� �x �y 0

Ca��x
2 + �y

2� 0 − �x

0 Ca��x
2 + �y

2� − �y
�

= ��x
2 + �y

2�
elliptic

incompressibility

Ca2��x
2 + �y

2�2

elliptic

diffusion

= 0, �17�

thus implying that there are no real characteristics, i.e., sys-
tem �1� is of elliptic type. The property of elliptic operators,
such as the Stokes operator in Eq. �1� defined in the
�x ,y�-plane, is that disturbances propagate in all directions
with infinite speed. Let us now demonstrate that the lubrica-
tion approximation possesses the same property, although the
mechanism for disturbance propagation is different.

To make the analysis transparent, first note that the un-
steady version of the Landau–Levich equation �9� is obtained
simply by inserting the stream-function solution �8� into the
unsteady kinematic condition at y=−h�t ,x�

ht + uhx + v = 0, �18�

which produces

ht − hx − �x�hxxxh
3/3� = 0. �19�

In order to understand the characteristic type of Eq. �19�,
in particular, the propagation of disturbances in this physical
system, Eq. �19� needs to be linearized around the steady
state H�x� by introducing an unsteady perturbation
h�t ,x�=H�x�+h��t ,x�. The resulting linearized equation
reads �omitting the primes�

ht − hx − �x�hxxx�H3/3� + HxxxH
2h� = 0, �20�

which has the characteristic surface �̃�t ,x� defined by

�̃x
4 = 0, �21�

thus implying that Eqs. �9� and �19� are parabolic and the

corresponding characteristics are the surfaces �̃�t� parallel to
the x-axis. Therefore, on the basis of the characteristic analy-
sis, propagation of disturbances in the x direction is unlim-
ited and occurs with an infinite speed in both positive- and
negative-x directions.

Altogether, the above leads to the weak ellipticity prop-
erty of the lubrication approximation, as illustrated in Fig. 5.
Namely, the characteristics � of Eq. �5� allow for the propa-
gation of disturbances from the point P in the y-direction

with an infinite speed, while the characteristics �̃ of Eqs. �9�
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and �19� allow for the propagation of disturbances in the
x-direction. Therefore, a disturbance from P can reach arbi-
trary points downstream P� and upstream P� with an infinite
speed analogously to a true �bulk� elliptic operator. It should
be stressed, though, that the weak ellipticity property comes
from the boundary conditions operator �19� in the problem
with a parabolic bulk operator �5�, and remains unchanged
when passing to the steady case in Eq. �19�.

D. Discussion

The above characteristics analysis does not change for
coating flows over topography as the presence of the sub-
strate curvature �sub modifies Eq. �19� to

ht − �x�h3

3
�x�hxx + �sub�� = 0, �22�

where the Galilean transformation �t ,x�→ �t ,x− t� was also
applied to bring the Landau–Levich equation to the standard
form used for surface tension driven flows on curved
substrates.18–20 In addition to the Landau–Levich problem
considered here, there are other situations when stagnation
points arise in lubrication approximations: a couple of ex-
amples are given in Fig. 6. The first example—tip-streaming
flow21 in Fig. 6�a�—has a stagnation point in the bulk. It
must be noted that the presence of a free boundary is not
necessary for the lubrication approximation to capture a stag-
nation point, as illustrated by the problem of the flow near
the nip of the co-rotating two-roll mill, cf. Fig. 6�b�. In this
case the net pressure gradient px across the nip is zero, i.e.,
�−�

+�pxdx=0, but the pressure inside the nip is nonuniform and
is found as a part of the solution as it adjusts itself to pre-
serve the constraint of constant mass flux at each cross-
section of the nip.

The analysis in Sec. II C also explains why the lubrica-
tion approximation works better than expected from equa-
tions of parabolic type in the situation such as a contact line
or a flow over an edge shown in Fig. 1. In all these situa-
tions, the flow topology requires an elliptic operator to be
accounted for—while the bulk operator in Eq. �5� is still
parabolic, the overall weak elliptic character of the problem
does allow the solution to exist and to capture elliptic points
instead of blowing up. While the established weak ellipticity
property is a necessary condition for the lubrication approxi-

mation to capture elliptic points, it does not allow the lubri-
cation equations to capture elliptic behavior too far from the
region of a thin film approximation, i.e., too far from the
region where a thin-layer scaling applies. For example, in the
context of the considered coating problems, the fact that the
lubrication approximation is inapplicable far away from the
wall follows from the fact that it cannot capture the second
stagnation point present, for example, at the centerline in the
Bretherton flow, cf. Fig. 3�b� or in dip-coating in confined
geometries. In fact, in all known examples, where the lubri-
cation approximation works, the elliptic points are localized
in the otherwise global thin film approximation �stagnation
points, contact lines, flows over the edge, etc.�. However,
while due to their weak ellipticity lubrication approximations
are able to capture flows with elliptic behavior, they do not
necessarily reflect the true behavior in a precise quantitative
manner.4 In the Landau–Levich problem though, the lubrica-
tion approximation for Ca�1 does conform with the true
dynamics quantitatively, as was seen in Sec. II A.

An interesting parallel can be drawn with boundary layer
theory,22,23 where the classical steady Prandtl boundary layer
equations are parabolic, as we know from the characteristic
analysis �15� �the neglected inertia terms in Eq. �5� are of
lower order and thus do not contribute to the characteristic
determinant�. Because of their parabolic character, the
boundary layer equations cannot account for separation phe-
nomenon, cf. Fig. 7, i.e., their solution blows up and thus
cannot be continued beyond this point in a meaningful
way3,24 without modifying the assumption of a prescribed
pressure. Indeed, the flow structure around a separation
point, as in Fig. 7, clearly violates the built-in assumption of
an almost unidirectional flow in the derivation of the bound-
ary layer equations and requires an elliptic operator �i.e.,
nonreduced diffusion� to capture this structure. At the char-
acteristics level, this is due to the fact that the boundary layer
equations cannot allow for the propagation and thus the in-
fluence of disturbances upstream due to the parabolic char-

FIG. 5. On the weak ellipticity of the lubrication approximation: character-
istics of Eqs. �9� and �19�.

FIG. 6. Examples of flows with stagnation points studied with lubrication
approximations: �a� tip-streaming phenomena �Ref. 21� and �b� flow near the
nip of the corotating two-roll mill.
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acter of the equations; however, experiments clearly demon-
strate upstream influence: see discussion in Ref. 23. The
contradiction is resolved by allowing the boundary layer and
outer inviscid flow to interact through the boundary condi-
tion between them, which allows for adjustments of the pres-
sure similar to the above free boundary problems and thus
leads to weak ellipticity, i.e., disturbances propagate both
upstream and downstream.

III. MARANGONI EFFECTS IN THE BEHAVIOR
OF ELLIPTIC POINTS

With the above-introduced characteristic analysis of lu-
brication approximations, let us now understand how surfac-
tant dynamics affects the characteristics properties of the lu-
brication approximation and the behavior of elliptic points.

A. Characteristic analysis of the surfactant
interface case

To stay within the lubrication approximation, let us fol-
low the work of Ratulowski and Chang25 and consider the
case of asymptotically small concentration of the surfactant
�,

� → �mCa2/3�̃ , �23�

where �m is the saturation interfacial concentration. With Eq.
�23�, the tangential interfacial condition �7b� in the transition
region is replaced with

	yy = E
d�̃

ds
+ O�Ca2/3� , �24�

where the arclength s is scaled in the same way as x and
E=−d� /d� ��=0 is the nondimensional elasticity number.
Note that the elasticity number is positive, which can be seen
from the derivative d� /d� expressed in terms of the bulk
concentration c, which is more suitable for the analysis of the
interfacial material behavior,

d�

d�
=

d�

dc

dc

d�
with

d�

dc
� 0 and

d�

dc
� 0. �25�

Indeed, from the Szyszkowsky equation, �=�−2RT�m ln
��1+KLc�, and the Langmuir isotherm, kac�1−� /�m�−kd�
=0, where R is the gas constant, T is the temperature,
KL=ka / �kd�m� is the Langmuir constant, ka and kd are

the adsorption and desorption coefficients, respectively, it
follows that

d�

dc
= −

2RT�m

1 + KLc
= − 2RT�mKL	1 +

�

�m

 � 0. �26�

Also,

dc

d�
=

kd

ka
	1 +

�

�m

−2

� 0, �27�

which together with Eq. �26� produces

d�

d�
= − 2RT	1 +

�

�m

−1

� 0. �28�

This behavior agrees �qualitatively� with the actual material
properties of surfactants.26

As a result, the expression for the stream-function gen-
eralizes to

	 = hxxx
y2

6
�y + 3h� + E�̃s

y2

2
− y , �29�

where we distinguish s- and x-derivatives for convenience,
although in the transition region ds�−dx+O�Ca2/3� to the
leading order. It is interesting to note that, based on the
meaning of the stream-function 	 in the steady case as a
measure of the flow rate, the Marangoni term in Eq. �29�
appears to provide an additional mass flux into the film if
E�̃s�0; however, one has to keep in mind that the depen-
dence on Marangoni effects enters also through the modified
dependence of hxxx, which makes the flow rate 	 a nontrivial
function of the Marangoni effects.

The classical Landau–Levich equation9 is generalized
for the surfactant presence case to

hxxxh
2 + 3	1 −

�

h

 +

3

2
E�̃sh = 0, �30�

which is derived in the same fashion as Eq. �9�. Its unsteady
version is also derived as in Sec. II C and reads

ht − hx + E�x��̃xh
2/2� − �x�hxxxh

3/3� = 0. �31�

At this point, it is necessary to invoke the analysis of the
surfactant transport equation, which in the nondimensional
form in the unsteady case can be written for the scaled inter-
facial concentration defined by Eq. �23� as

��̃

�t
−

�

�x
��̃	1 − Eh�̃x + hxxx

h2

2

�

=
1

Pes
�

�2�̃

�x2 + j���̃, c̃� + O�Ca2/3� , �32�

where Pes
�=Ca1/3Pes is the scaled Peclet number and

j�=−Ca1/3�KLcmc̃+ �̃�lckd /U is the flux from the bulk to the
interface. For the sake of brevity of the present characteristic
analysis we keep the bulk concentration c constant—as we
will show, this assumption does not affect the characteristic
type of the system. In order to understand the characteristic
type of the system of equations �31� and �32�, in particular,
the propagation of disturbances in this physical system, one
needs to linearize around some steady state �H�x� ,��x�� by

FIG. 7. Steady boundary layer streamlines near a separation point.
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introducing the perturbation h→H�x�+h��x , t� and �̃

→ �̃�x�+ �̃��x , t�. The resulting linearized system is �drop-
ping the tildes and primes�

ht − hx + E�x��x
H2

2
+ �xHh� − �x�H3

3
hxxx + H2Hxxxh�

= 0,

�t − �x + �x��	EH�x −
H2

3
Hxxx
�

+ �x��	EH�x + E�xh −
H2

2
hxxx − HHxxxh
�

=
1

Pes
� �̃xx + j����, j���� = − Ca1/3�lckd/U ,

the characteristic determinant of which is found by the trans-

formation used Sec. II C, i.e., �t ,x�→�̃�t ,x�

� −
H3

3
�̃x

4 E
H2

2
�̃x

2

− �
H2

2
�̃x

4 ��EH − Pes
�−1��̃x

2�	h�4�

��2� 
 = l.o.t. ,

where h�4� and ��2� stand for the derivatives with respect to

the characteristic coordinate �̃, and the terms on the right-

hand side contain lower order derivatives with respect to �̃.
When the determinant of the matrix on the left vanishes, this
gives the characteristic condition

�̃x
6H3

3
	 1

Pes
� −

1

4
�EH
 = 0. �33�

Since H�0 and if the expression in brackets does not van-

ish, the characteristic surface �̃�t ,x� is defined by �̃x
6=0,

which implies that the system of equations �31� and �32� is
parabolic and the corresponding characteristics are the sur-

faces �̃ parallel to the x-axis. Therefore, following the analy-
sis in Sec. II C, we conclude that the system of lubrication
equations �31� and �32� possesses the weak ellipticity prop-
erty.

While in the above argument, we kept the bulk concen-
tration c constant, this does not affect the results as the bulk
concentration obeys the convection-diffusion equation,
which is parabolic and thus the whole coupled system with
varying h, �, and c remains parabolic. As we established
here, Marangoni effects do not affect the weak ellipticity of
the lubrication approximation, since the system of coupled
Landau–Levich and surfactant transport equations is still of
parabolic character. Therefore, one should be able to capture
the stagnation point at the surfactant-laden interface within a
lubrication approximation similar to the clean interface case;
this intuition is also confirmed by the analysis below.

B. Behavior of the stagnation point

In the asymptotic analyses of surfactant effects in the
Landau–Levich problem,25,27,28 there are two scalings for the
interfacial concentrations that admit self-consistent
asymptotic lubrication approximations, namely, the case
when the equilibrium concentration and its variations are of
the order of Ca2/3 �so-called trace amounts of surfactants25�
and the case when the concentration deviates from its equi-
librium value �0 in the bath on the order of Ca2/3, cf. works
of Stebe and Barthès-Biesel27 and Park.28 Below we consider
each case separately.

1. Case 1: Trace amounts of surfactant

In this case, the surfactant at the interface and thus in the
bulk �as a consequence of the Langmuir isotherm� is present
in trace amounts, cf. Eq. �23�. Due to the tangential boundary
condition �24� modified to account for surface tension gradi-
ents, the precise expression for interfacial velocity u�s� de-
rived from Eq. �29� becomes

u�s� =
3

2
	1 −

�

h

 − 1 +

1

4
E�̃sh . �34�

The fact that the interfacial velocity changes its sign is inde-
pendent of the presence of Marangoni effects and thus
clearly there must be at least one stagnation point at the
interface contrary to the idea of the paper29 that it can move
into the bulk.

Thus the equation for zeros of u�s� is quadratic in h

E�̃s
h2

4
−

h

2
+

3

2
� = 0 ⇒ h1,2 =

1 � �1 − 6�E�̃s

E�̃s

. �35�

Since the elasticity number E is positive �cf. discussion in
Sec. III A�, there are two options:

�1� �̃s�0: one stagnation point because the only physically
meaningful solution is h1= �1−�1−6�E�̃s� / �E�̃s� since
h�0. If �E�̃s��1, which corresponds to negligible
Marangoni effects, then h1�3�.

�2� �̃s�0: two stagnation points as long as E�̃s�1 / �6��. If
E�̃s�1, then h1�3�, which is the same as in the clean
interface case, and h2�2 / �E�̃s��12�. However, the
presence of this second stagnation point is not physically
feasible in the Landau–Levich problem in view of the
topological impossibility, cf. Fig. 8. Indeed, the velocity
fields at the interface in the film and the bath have op-
posite directions in the interfacial arclength s coordinate
as shown in Fig. 8. Therefore, the velocity field in the
region between the streamlines A and B terminating at
the two stagnation points, indicated in the same figure, is
not feasible: the velocity along the vortex streamline C
would have to change its sign, which is impossible.

2. Case 2: Small variation of surfactant concentration

In this case, i.e., when the dimensional surfactant con-
centration �0 in the bath away from the wall is such that
�0 /�m�O�1�, the appropriate scaling should be with respect
to its equilibrium value �0. Therefore, in the case of asymp-
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totically small deviations of the surfactant concentration �
from the equilibrium one �0, cf. the work of Stebe and
Barthès-Biesel,27 we find

� → �0�1 − Ca2/3�̃� , �36�

which allows the balance of viscous and Marangoni stresses
in Eq. �24�. As a result, the reduced tangent dynamic bound-
ary condition �24� has the same form as in the previous case
if the elasticity number is defined as E=d� /d� ��=1, which is
negative now. Indeed, Eq. �28� gives d� /d� ��=1�0.

Since the only change compared to the previous case is
the sign of the elasticity number, then the behavior of the
stagnation point is reversed compared to the previous case:

�1� �̃s�0: two stagnation points as long as E�̃s�1 / �6��. If
E�̃s�1, then h1�3�, which is the same as in the clean
interface case, and h2�2 / �E�̃s��12�. However, the
presence of this second stagnation point is not physically
feasible in the Landau–Levich problem in view of the
topological impossibility, cf. Fig. 8, analogously to the
case of trace amounts of surfactants.

�2� �̃s�0: one stagnation point because the only physically

meaningful solution is h1= �1−�1−6�E�̃s� / �E�̃s� in
view of h�0. If �E�̃s��1, then h1�3�.

3. Discussion

While the value of the factor � is affected by Marangoni
stresses, its value must be O�1� for the lubrication assump-
tion to remain valid; also, all known experimental observa-
tions, e.g., by Groenveld30 and Krechetnikov and Homsy,12

report �=O�1�. Because �=O�1�, the physically realizable
stagnation points are always at a finite distance from the
wall, which is of the order of the film thickness. Also, appar-
ently, there are no physical conditions under which the stag-
nation point at the interface disappears. The latter observa-
tion is critical for the subsequent analysis in Sec. III C.

Notably, in none of the above cases does the location of
the stagnation point go to infinity, y→−�, i.e., the expecta-
tions of the works29,31 cannot be justified.

C. Application: A necessary condition for film
thickening in the Landau–Levich problem

As motivated by our newly gained understanding of the
ability of the lubrication approximation to capture stagnation
points and their behavior in the Landau–Levich problem, it is
worth revisiting the long-standing question on surfactant ef-
fects in this classical problem, which was originally studied
in the lubrication approximation.25,28 While surfactant effects
are usually deemed responsible for the experimentally ob-
served film thickening phenomenon,30 i.e., film turns out to
be thicker compared to the one in the clean interface analysis
of Landau and Levich,9 there is no general firm justification
of this assertion. Namely, in the regime when asymptotic
analyses25,28 are not applicable,32 the experimental12 and
numerical11 studies have demonstrated that Marangoni
stresses cannot explain the experimentally observed film
thickening. In particular, as illustrated in Fig. 9, the distribu-
tion of surfactant concentration relative to the stagnation
point is such that there are two Marangoni flows �dashed
arrows: see interpretation in the caption of Fig. 9�, which
contribute to film thinning, and one Marangoni flow �solid
arrow�, which thickens the film. As shown numerically11 in
the Stokes flow approximation, if the bulk concentration is
maintained constant, which takes place for high concentra-
tions of surfactant, then the Marangoni thinning stresses
dominate and thus the net effect in the framework of the
conventional macroscopic interfacial conditions should be
film thinning. It is the goal here to establish a necessary
condition for film thickening to occur due to Marangoni ef-
fects by analytical means. This will clarify the role of sur-
factants in the film thickening, the explanation of which is
still an open problem.11,12 In this work, we consider surfac-
tant effects in the steady Landau–Levich problem in the case
of soluble surfactants only, as the fact of the presence of a
stagnation point at the interface makes it impossible for an
insoluble surfactant to affect the dynamics �contrary to the
analysis in Refs. 28 and 33�.

FIG. 8. Topological impossibility of the presence of two stagnation points in
the Landau–Levich problem. The velocity fields at the interface in the film
and the bath have the opposite directions, and thus the velocity field between
the stagnation points, marked by dots in the figure, is not feasible unless
there is a third stagnation point between these two, which is also impossible
in view of Eq. �35�. FIG. 9. Marangoni effects in the Landau–Levich problem: �a� Marangoni

flows and �b� surfactant distribution. Dot designates the location of the stag-
nation point. Dashed and solid arrows are Marangoni stresses leading to film
thinning and thickening, respectively. Note that the leftmost Marangoni
stresses �dashed arrow� push the separating streamline, which emanates
from the stagnation point, and thus reduce the mass flow into the film.
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Let us go back to the original nondimensional concen-
tration scaled with respect to the saturation value �m, i.e.,
with no assumption on its smallness, and consider the steady
case of its transport

d

ds
��u�s�� =

1

Pes

d2�

ds2 + j , �37�

where Pes is the Peclet number and j is the flux from the bulk
to the interface. Integrating this equation along the interface
from arbitrary s to s=�,

− �� − ��s�u�s��s� = −
1

Pes

d�

ds
+ �

s

�

j�s̃�ds̃ , �38�

and evaluating at the point where the interfacial velocity van-
ishes, furnishes the result

d�

ds
= Pes��� + �

s

�

j�s̃�ds̃� , �39�

where �� is the nondimensional interfacial concentration in
the film away from the meniscus.

Obviously, based on the generic distribution of Ma-
rangoni stresses, cf. Figs. 9 and 10�b�, one needs d� /ds�0
at the stagnation point in order to get Marangoni stresses
contributing to film thickening �solid arrow�. The latter can
be achieved only if the total flux—the second term on the
right-hand side of Eq. �39�—is negative �i.e., cumulative
surfactant net flux in the region after the stagnation point,
�s ,+��, is from the interface into the bulk� and outweighs ��

as in Fig. 10�b�. This is, obviously, possible only if there can
be a desorption of surfactant from the interface into the bulk,
i.e., the bulk surfactant concentration cannot be constant. To
prove that the generic concentration distribution in Fig. 10�b�
is the only possible one, let us consider all other potential
surfactant distributions shown in Fig. 10. Because interface
stretching takes place only in the meniscus region, there is
only one local extremum of ��s� in the meniscus region, i.e.,
it occurs before or after the stagnation point provided that the
bulk concentration dynamics is governed only by diffusion,
advection, and kinetic exchange with the interface. The situ-
ation in Fig. 10�c� cannot lead to film thickening because the
Marangoni stresses in this case contribute to film thinning.
Cases �a� and �d� are nonphysical since one cannot achieve
higher interfacial concentrations in the region of interfacial
stretching, i.e., in the meniscus and thus in the neighborhood
of the stagnation point. Thus, the only option left is �b�,

which was also found numerically,11 and which is generic in
the sense that it does not depend on the details of the bulk
concentration dynamics. Thus, logically, the necessary con-
dition for film thickening within the framework of the stan-
dard hydrodynamic models is to allow for a variation of the
surfactant concentration in the bulk. If the bulk concentration
is lower in the thin film region than in the bath, in particular,
���1, this weakens the film thinning Marangoni stresses
and opens an opportunity for the film to thicken. Notably, the
necessary condition for film thickening to occur due to
Marangoni stresses established above does not rely upon the
fact of the lubrication approximation and is valid in general,
as follows from the analysis which led to Eq. �39�.

IV. CONCLUSIONS

First, with the help of classical characteristics analysis,
we have established the property of weak ellipticity of the
lubrication approximation, which justifies the qualitative ap-
plicability of the latter to thin film flows with stagnation
points. This explains how the performance of the lubrication
approximation may exceed expectations in situations where
the assumption of an almost unidirectional flow is patently
invalid �e.g., flows over edges, cavities, and with contact
lines�.

Second, we also have developed the characteristics
analysis in the surfactant interface case and analyzed the be-
havior of elliptic �stagnation� points within the lubrication
approximation. In particular, based on the newly derived ex-
act expressions for the interfacial velocity and surfactant flux
in the surfactant-laden Landau–Levich problem, we proved
rigorously that the stagnation point can neither go to infinity
nor can it reside in the bulk. This new analysis also led to a
necessary condition for the film thickening to occur due to
Marangoni stresses.
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APPENDIX: ON COMPUTING CHARACTERISTIC
DETERMINANTS

The discussion here follows Sec. III in Petrovsky15 with
the notation adopted to the present needs. The characteristic
surface ��x� in the space of independent variables x is de-
fined in the context of proving the Cauchy–Kovalevskaya
theorem, namely, an initial value �Cauchy� problem has no
unique solution, and thus is ill-posed, if the initial data are
given at ��x�. This allows a straightforward determination of
the characteristic surface by making a transformation from
the original independent variables x to ��x�, in which
resolution of the governing partial differential equation�s�
for the highest order derivatives of the solution becomes
impossible.15 For example, in the case of the wave equation,
utt−c2uxx=0, the transformation of independent variables
x= �t ,x� to the characteristic one ��t ,x� yields ��t

2

FIG. 10. All possible interfacial surfactant concentration distribution ��s�
after the stagnation point �dot on the graph�.
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−c2�x
2�u��+l.o.t.=0, where only the highest order deriva-

tive terms are shown as they define the characteristic type of
the equation. Thus the characteristics, defined by the unde-
termined highest order derivative u��, are given by the
solutions of the vanishing characteristic determinant
�t

2−c2�x
2=0, i.e., �t−c�x=0 and �t+c�x=0, which are the

familiar straight lines x�ct=const responsible for the wave
propagation in both positive and negative x directions with
the speed c. This is reflected in the general form of the so-
lution for the wave equation u�t ,x�= f�x+ct�+g�x−ct�,
where f and g are general functions.

In general, suppose we are given a system of nonlinear
partial differential equations of dimension N,

��x,u,u�� = 0 , �A1�

where �= ��1 , . . . ,�N�, u= �u1 , . . . ,uN�, and x= �x1 , . . . ,xn�
represent dependent and independent variables respectively,
and the partial derivatives u� of the order of � are given
explicitly by

u�
j =

����uj

�x1
k1 . . . �xn

kn
, ��� � nj , �A2�

with �= �k1 , . . . ,kn� being the multi-index, ���=k1+ ¯+kn,
and nij the highest order of the derivative of the variable uj in
the ith equation �i=0. Then the characteristic determinant
for the system �A1� is15

 �
�=nj

��i

�u�
j 	 ��

�x1

k1

¯ 	 ��

�xn

kn = 0, �A3�

where only the �i , j�-element of the determinant matrix is
shown. Equation �A3� defines the characteristic surface
��x�. Classification of characteristic types of Eq. �A1� at a
particular point x is based on the type of solutions ��x� of
Eq. �A3�. Namely, if characteristic surfaces ��x� are all real
and nondegenerate, then Eq. �A1� is hyperbolic; if character-
istics are real and degenerate, then Eq. �A1� is parabolic; if
there are no real characteristics, then Eq. �A1� is elliptic. As
a test, the reader may want to apply Eq. �A3� to the wave
equation in its original form utt−c2uxx=0 and in the form of
the system ut=v, vt=c2uxx.

In the case of the system �5�, we have x= �x ,y�,
u= �u ,v , p�, and

� = � ux + uy

px − uyy

− py
� . �A4�

Thus, application of Eqs. �A3� and �5a�–�5c� produces the
determinant �16� if the pressure p is an unknown function
and Eq. �15� if the pressure p is a given function as is com-
mon in boundary layer theory.3
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