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Accelerating edges of thin liquid sheets are ubiquitous and are known to experience a longitudinal
�along-the-edge� instability, which often leads to their break-up and atomization. The fundamental
physical mechanisms of this instability are studied analytically in the quasisteady regime, which
admits a concise modeling. It is discovered that the classical Rayleigh–Taylor mechanism is
substantially modified which leads to a stability picture different from that for flat interfaces, in part
due to an interplay with Rayleigh–Plateau mechanisms. In particular, as the Bond number increases,
first, only one critical wavenumber is excited, but for higher values of the Bond number several
critical wavenumbers can coexist with the same growth rates. This allows for the transition from the
regular picture, in which one wavelength sets the pattern, to the frustrated picture, in which a few
wavenumbers compete with each other. © 2010 American Institute of Physics.
�doi:10.1063/1.3474640�

I. INTRODUCTION

A. The phenomena of liquid sheet edges

Liquid sheets are ubiquitous, from waterfalls and
splashes to numerous applications such as curtain coating1,2

and atomization.3 Regardless of the physical situation, liquid
sheets are bounded and thus have edges, which have always
been of interest, e.g., in the context of liquid curtains,1,2,4

since they are the gateways to liquid sheet disintegration and
atomization. Liquid edges may be present in an apparently
steady form, such as in the case of an impact of a continuous
water jet on a disk,5,6 or in a highly unsteady fashion, as in
the case of a water drop impact on a small target disk.7 The
sources of unsteadiness of liquid edges are the external
forces �e.g., gravity or inertial effects as in the drop impact
problems7–9� and the retraction phenomena due to surface
tension.

The retraction effects have been studied in the inviscid
approximation using a macroscopic momentum balance by
Taylor10 and by Culick,11 who calculated the retraction ve-
locity, and later by Keller,12 who extended the previous
analyses to liquid sheets of nonuniform thickness. The case
of viscous retraction was analyzed by Brenner and
Gueyffier13 using the lubrication approximation, which al-
lowed them, in particular, to explain the existence of flat
retracting edges observed earlier in experiments in Refs. 14
and 15 and caused by the domination of viscous effects over
the capillary ones. The same problem of retraction was stud-
ied numerically as well, cf. Refs. 16 and 17.

Despite extensive studies of the retraction processes, the
longitudinal �called here “along-the-edge”� instability,
sketched in Fig. 1, has not received much systematic atten-
tion. The only two theoretical works on the subject—by
Roisman et al.18 and by Fullana and Zaleski19—are based on
phenomenological treatments, which nevertheless required
numerical solution of phenomenologically formulated equa-
tions, and produced contradictory results. Namely, in the
limit when the edge develops into a blob attached to a thin

liquid sheet, the problem was studied phenomenologically by
Fullana and Zaleski,19 who followed the Rayleigh–Plateau
analysis for jet break-up and concluded that the growing re-
tracting edge does not typically break into droplets for mod-
erate wavelengths. Besides retraction, other unsteady effects,
such as acceleration and a time-dependent sheet thickness,
were not taken into account in that work. On the other hand,
the work by Roisman et al.,18 based on the phenomenologi-
cal momentum balance, predicted instability, which they at-
tributed solely to the Rayleigh–Plateau mechanism, thus con-
tradicting the conclusion of the work of Fullana and
Zaleski.19 Above, we reviewed only the facts, which are rel-
evant to our present discussion, while the reader can learn
more about liquid sheets from the book by Lin20 and review
articles by Sirignano and Mehring21 and Clanet.5

In conclusion, one has to admit that there are no rigorous
predictive models for the evolution of liquid sheet edges,
which is due to the lack of understanding of the underlying
fundamental mechanisms. While instability of accelerated
flat interfaces of infinite extent �the Rayleigh–Taylor insta-
bility� is well-studied, it is known that it is not applicable to
curved interfaces, as shown in Ref. 22 in the case of slightly
perturbed flat base state interfaces. There have been attempts
to apply the classical Rayleigh–Taylor analysis developed for
flat interfaces to liquid sheet edges, e.g., in the context of the
drop splash problem by Allen,23 but, as expected, without
much success in explaining the number of spikes in the drop
splash crown.8,9,24–26 On the other hand, static interfaces with
positive curvature �convex interfaces� are known to be sub-
ject to the Rayleigh–Plateau instability,27 so one can expect a
simultaneous presence and interplay of both Rayleigh–Taylor
and Rayleigh–Plateau mechanisms in the case of accelerating
liquid sheet edges. As we will see from the analysis in Sec.
II D, the presence of a sufficiently strong acceleration, inde-
pendent from that due to retraction, simplifies the problem
substantially, compared to the one studied by Roisman
et al.18 and Fullana and Zaleski,19 and allows a systematic
treatment.
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Therefore, the focus of this work will be on accelerating
liquid sheet edges, whose thickness is comparable to the cap-
illary length, so that surface tension is a leading order effect
and thus both Rayleigh–Taylor and Rayleigh–Plateau mecha-
nisms coexist. Only along-the-edge stability of flat liquid
sheets will be considered here; such a configuration occurs in
a number of physical situations, some of which are sketched
in Fig. 2, i.e., a flat liquid sheet cut along a straight line in a
gravity field, a splash of a jet on a narrow target, and water
hammering. However, the results of the analysis are appli-
cable to other geometries such as rims of large enough radius
such that the liquid sheet can be locally considered as flat, as
it occurs under certain conditions in the problems of drop
splash, curtain coating, and atomization. We will treat three
limiting situations: the flattop edges �Fig. 3�a��, rounded
edges �Fig. 3�b��, and blob-edges �Fig. 3�c��. The goal will
be to uncover the role and interplay of the surface tension
and inertial mechanisms in the origin and evolution of along-
the-edge instabilities and to develop their quantitative theory.

B. Paper outline

This paper is organized as follows. First, in Sec. II, we
pose the problem and discuss the theoretical prerequisites
necessary for the stability study of accelerating liquid sheet
edges. With this background, in Sec. III, we then study the
stability of ideal flat edges and discover the key new phe-
nomena associated with the along-the-edge instability. Given
these basic results in Sec. III B, we then investigate the ef-
fects of unsteadiness �namely, due to time-dependence of
liquid sheet thickness and retraction� and in Sec. IV, the ef-
fects of the curvature of liquid edges; the latter requires a
new method of constructing a general solution of the Laplace
equation analytically on complex domains, which is offered
in this work. The study would be incomplete without a dis-
cussion of instability of well-developed blob-edges in Sec. V.

II. THEORETICAL PREREQUISITES

In this section we first provide a general formulation for
the stability study of accelerated edges �Sec. II A�. For the
purpose of further discussion, we then review the classical
Rayleigh–Taylor theory in Sec. II B: This is important for

understanding why the classical Rayleigh–Taylor theory is
not applicable to studying instabilities of liquid sheet edges
�Sec. II C�. Next, since the accelerating edges of liquid
sheets are characterized by two key phenomena—the along-
the-edge instabilities and retraction—we then estimate the
characteristic time scales of retracting sheets �Sec. II D�
based on the classical Taylor–Culick theory, which allows us
to define the quasisteady regime to which the subsequent

FIG. 1. Along-the-edge instability; k is the wavenumber and a is the
acceleration.
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FIG. 2. Accelerating edges of flat liquid sheets due to external body forces
�a� and due to inertia ��b� and �c��. �a� Cut liquid sheet in a gravity field, �b�
jet splash on a narrow target, and �c� water hammering.

(a)

(b)

(c)

FIG. 3. Three types of edges: �a� flat edge, �b� rounded edge, and �c�
blob-edge.
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analysis applies. While the analysis in this section is done in
dimensional variables in order to make various physical ef-
fects transparent in Sec. II D, we introduce a nondimension-
alization which will be used throughout the remainder of the
paper.

A. General problem statement

In the stability analysis of liquid interfaces we consider
an inviscid and incompressible approximation of irrotational
fluids, i.e., Kelvin’s restrictive assumption,28 usual in the
analysis of Rayleigh–Taylor and Rayleigh–Plateau instabili-
ties. Let a general configuration of the interface y= f�t ,x ,z�
�or implicitly F=y− f�t ,x ,z�=0� between two fluids in a
body force field g, be as in Fig. 4; the body force is either
due to gravity or due to transformation to the noninertial
coordinate system moving with the accelerating interface
�we use the same symbol g for acceleration regardless of the
physical origin of the body force�. For simplicity of notation,
we consider phase 2 inertialess, while the bulk dynamics in
phase 1 of incompressible fluid of density � is governed by
the Laplace equation for the velocity potential �, defined
such that u=��. In the frame of reference moving with the
interface �similar to the analysis of Taylor10�, this results in
the following system for the bulk and interface dynamics:

y � f�t,x,z�: � �� = 0,

���� � �, y → − � ,
� �1a�

y � f�t,x,z�:
��

�t
+

1

2
����2 = −

1

�
p − gy + C�t� , �1b�

y = f�t,x,z�: p = − � � · n , �1c�

y = f�t,x,z�:
�F

�t
+ �� · �F = 0, �1d�

where n is the outer normal vector, �=�x
2+�y

2+�z
2 is the La-

placian, and C�t� is a time-dependent constant in the
Lagrange–Cauchy integral �1b�, which is the unsteady ver-
sion of the Bernoulli integral for potential flow.29

As one can learn from Eq. �1�, a liquid sheet with an
edge cannot exist in a steady state with the interface f0�x ,z�
unless such an external pressure distribution P0 is applied
along the interface, which supports the interface shape as in
Fig. 5, P0 /�=−gf0+�� ·n /�. In particular, if the pressure of

the surrounding phase P0=0, then surface tension force will
cause the interface to retract according to the Taylor–Culick
theory.10,11

B. Classical Rayleigh–Taylor theory for flat interfaces

As a first step towards understanding instabilities of ac-
celerating interfaces, let us consider, for simplicity, a two-
dimensional perturbation of a flat interface between two
phases, one of which is inertialess, as in Fig. 4. The standard
way to analyze this problem is to linearize Eq. �1� around the
flat interface base state, f0=0, i.e., f�t ,x�= f0+ f��t ,x�
= f��t ,x� and similarly for p�t ,x ,y� and ��t ,x ,y�,

���

�t
= −

1

�
p� − gf�, y � 0, �2a�

p� = − �fxx� , y = 0, �2b�

� f�

�t
=

���

�y
, y = 0, �2c�

where the velocity potential �� satisfies the elliptic problem

��� = 0, �3a�

����� → 0, y → − � . �3b�

Representing both the velocity potential and the inter-
face perturbation in terms of the Fourier harmonics,

���t,x,y� =	 Ak�t�eikx+�k�ydk , �4a�

f��t,x� =	 fk�t�eikxdk , �4b�

where Eq. �4a� is the formal solution of the Laplace equation
�3�, and substituting them into Eq. �2� gives the second order
oscillator equation

d2fk

dt2 + 	fk = 0, 	 = �k�
�

�
k2 + g� . �5�

Note that Eq. �5� stays the same in the three-dimensional
case with the only difference that the scalar wavenumber k
should be replaced with the two-dimensional wavenumber
k→k= �kx ,ky�. For the purpose of further development, it is
important to note that in order to solve Eq. �2�, one needs a

FIG. 4. Two-dimensional interface between two fluids. FIG. 5. Interface between two fluids: three-dimensional edge.
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general solution of the Laplace equation �3�, not one for
some specific boundary condition. The dispersion relation
corresponding to Eq. �5� is


2 = − �k�
�

�
k2 + g� , �6�

where 
 is the growth rate, which indicates that instability is
present if �� /��k2+g�0, i.e., g�0, and that the maximum
growth rate 
� occurs for the wavenumber defined by the
extremum

d
2

dk
= 0 ⇒ k�

2 = −
g

3

�

�
, 
� = 
 4

27

�

�
�− g�3�1/4

. �7�

While the above formal analysis is standard,28 it does not
highlight certain physical aspects of the instability relevant
to our discussion, such as a trivial one �What is the physical
meaning behind �k� in Eq. �5�?� and the key questions as to
what would be different if the base state interface is not flat.
Thus, in order to get better insight into the physics of Eq. �5�,
let us look at the Rayleigh–Taylor instability from the first
principles in Sec. II C.

C. Why is the classical Rayleigh–Taylor theory
not applicable to edges?

First, notice that Eq. �5�, upon multiplication by dfk /dt
and integration, yields

�dfk

dt
2

+ 	fk
2 = const, �8�

and thus suggests that this conservative problem has a very
simple physical structure, namely, its energy is just a sum of
kinetic and potential components. In view of the linearity of
the problem, Eq. �8� is the energy of the mode having
wavenumber k, which is decoupled from other wavenum-
bers. Thus, one should be able to derive first Eq. �8� and then
Eq. �5�.

Consider a perturbation of a wavenumber k and the liq-
uid column of thickness dx as dark shaded in Fig. 4. When
the interface is deflected from the flat one, y=0, this liquid
column attains the following changes in potential energies:

��g = 1
2g�f2dx , �9a�

��� = ���1 + fx
2 − 1�dx � �fx

2/2, �9b�

due to acceleration and surface tension, respectively. The ki-
netic energy is less straightforward since the mass of the
column, which attains an increment in the kinetic energy, is
defined not by the deflection f from the flat interface posi-
tion, but by the depth of penetration of the perturbation into
the bulk. As we know from solution �4a� of the Laplace
equation �3�, in the flat interface case the depth of penetra-
tion is of the order of the wavelength �k−1 of the perturba-
tion. Therefore, the change in the kinetic energy should be of
the form

�T �
1

2
��k�−1�df

dt
2

dx . �10�

Next, since the system is conservative, the sum of the
changes of potential �9� and kinetic �10� energies of the per-
turbation f�t ,x�=2fk�t�cos kx, integrated over the wave-
length 2� /k, should vanish. The fundamental reason why
this sum needs to be integrated over the wavelength is that
the linear problem is nonlocal in the physical space �and thus
the equation for f�t ,x� is integrodifferential�, while in the
wavenumber space the problem becomes local. Again, it is
important to stress that the origin of the factor �k� in Eq. �5�
is due to the depth of penetration of the perturbation of
wavenumber k into the bulk.

Given the above understanding of the flat interface case,
let us consider the long-wave perturbation of a three-
dimensional edge having the curvature , as illustrated in
Fig. 5. As one can immediately guess, the key difference
from the flat interface case will be the depth of penetration of
the k-wavenumber perturbation �which is dictated by the so-
lution of the Laplace equation�, as will be demonstrated in
Secs. III and IV, and thus, this difference will affect the ki-
netic energy estimate. This in turn will modify the instability
growth rate since the factor �k� in Eq. �5� should be replaced
by a general function of the wavenumber k and curvature .

In addition, one should expect another important input to
the instability due to the geometry of edges being that be-
tween flat interfaces and circular jets. Namely, the geometric
configuration of an edge may make it susceptible to the
Rayleigh–Plateau instability mechanism, although modified
from the classically studied free jet case.28,30

D. Characteristic time scales
and nondimensionalization

In what follows, for convenience, we will work with
nondimensional variables, which are introduced �without us-
ing new symbols� via

�x, f� → L�x, f�, t → �L/a�1/2t, � → L3/2a1/2� ,

�11�
p → � Lap, g → ag ,

where L is the characteristic length scale of the physical
system, e.g., the liquid sheet thickness h, and a�0 is a suit-
able constant acceleration. As a result of this nondimension-
alization, the effect of surface tension is expressed in terms
of the Bond number

Bo =
�L2a

�
, �12�

which measures the ratio of inertial to surface tension forces.
As follows from the Taylor–Culick analysis10,11 of re-

traction, the characteristic time scale can be estimated as

tret = hs/Uc � t�Bo1/2, �13�

where t�= �L /a�1/2 and Uc=�2� /�h is the asymptotic retrac-
tion speed reached at t→+�. On the other hand, the charac-
teristic time of the Rayleigh–Taylor instability �based on the
analysis of the flat interface case in Sec. II B� is
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tins = 1/
� � t�Bo−1/4, �14�

where 
� is the maximum growth rate defined by Eq. �7�.
While the above estimate for the characteristic instability
time is made using the stability analysis for flat interfaces,
the subsequent study will prove that this estimate does not
change for liquid sheet edges: an appropriate remark will be
made in due course.

Based on formulas �13� and �14�, one can introduce a
simplification, which will allow us to study the problem ana-
lytically and thus to extract the key aspects of the phenom-
ena. Namely, because of the separation of retraction �13� and
instability �14� time scales for Bo�1, when instability de-
velopment is clearly faster than retraction, one can treat the
stability problem of unsteady accelerating liquid sheet edge
in a quasisteady manner, i.e., one can assume that the base
state is “frozen” in time. Such regime is justified, in particu-
lar, in the case of large magnitude accelerations as it occurs,
for example, in the early stage of the drop impact on a fluid
film,9 when acceleration of the ejected sheet achieves values
of at least 105 m /s. Similar large accelerations of liquid
sheets are observed in the impact of a jet on a solid, cf. Fig.
2�b�, and in the water hammering problem, cf. Fig. 2�c�.

III. IDEAL FLAT EDGES

By an ideal flat edge base state, we understand the one
sketched in Fig. 6. This is a useful idealization, since it al-
lows one to formulate the key phenomena succinctly and
serves as a starting point for further analysis in Secs. IV and
V �though flat edges with smoothed out corners are observed
under certain conditions, e.g., for viscous sheets13; here,
however, we treat the case of inviscid irrotational fluid
motion31�. The flat edge shown in Fig. 6 is the base state
upon which a disturbance field in both x and y directions is
imposed. In this work we are concerned with the along-the-
edge instability only and therefore disregard any instability
on the vertical �with respect to the acceleration g� sides
based on the following two observations. First, the vertical
sides are not accelerating and thus are not subject to the
Rayleigh–Taylor instability, i.e., should we include the
boundary conditions on the sides, they will not enter the
right-hand side of Eq. �16a� as the acceleration is orthogonal
to the �x ,z�-plane. Second, we are interested in the along-
the-edge instability with the largest growth rate and thus the
most energetic mode of this instability. The latter clearly can
be achieved only if the vertical sides stay unperturbed since

nonzero perturbations of the vertical sides would reduce the
energy of the along-the-edge perturbation. This is due to the
fact that the total energy of all perturbations comes from the
hydrostatic �Rayleigh–Taylor� and surface tension
�Rayleigh–Plateau� components of the potential energy of
the base state of the system, which is conservative. On the
basis of the above arguments, the boundary conditions on the
vertical sides are considered to be trivial in the subsequent
analysis.

A. Constant thickness liquid sheets

Starting from system �1�, and taking into account that the
normal vector and its gradient are given by

n =
− ifx + j − kfz

�1 + fx
2 + fz

2
, �15a�

� · n = −
fxx�1 + fz

2� − 2fxfzfxz + fzz�1 + fx
2�

�1 + fx
2 + fz

2�3/2 , �15b�

respectively, the linearization around the flat edge base state
f0=const in the quasistatic approximation gives

���

�t
= − p� − gf�, �16a�

� f�

�t
= − �y�, �16b�

p� = Bo−1�fxx� + fzz� � , �16c�

where the velocity potential is the solution of the Laplace
equation �1a�. Using separation of variables, one finds that
the general solution of Eq. �1a� is given by

���t,x,y,z� = 	
R

�
n=−�

�

�kn�t�eikxe
�k2+n2yeinzdk , �17�

where n is the discrete wavenumber in the z-direction and k
is the continuous wavenumber in the x-direction. Solution
�17� confirms the intuition developed in Sec. II C that the
perturbation penetrates into the bulk at the distance depen-
dent on both the wavenumber k and the sheet thickness,
equal to 2� in nondimensional units. In the long wavelength
limit, k�1, the penetration of perturbation is at the depth of
O�1�, as suggested by Eq. �17�, instead of k−1, as it would be
for flat interface. As will be shown next, this also affects the
growth rate and the critical wavenumber selection.

Analyzing system �15c� in a manner similar to that in
Sec. II B, we find that the linear evolution of the Fourier
coefficient fkn of f� obeys

d2fkn

dt2 + �n2 + k2�Bo−1�n2 + k2� − g�fkn = 0. �18�

The corresponding dispersion relation


2 = − �n2 + k2�Bo−1�n2 + k2� + g� , �19�

suggests that the growth rate 
 depends only on the modulus
of the two-dimensional wavenumber �k2+n2�1/2 and thus is

FIG. 6. Base state with flat edge.

092101-5 Stability of liquid sheet edges Phys. Fluids 22, 092101 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



structurally the same as Eq. �6�. Therefore, the scaling for 
�

does not change and the characteristic time of instability �14�
stays intact, which justifies the quasisteady approximation
used here. The maximum growth rate 
�=max 
 is achieved
at


� = 
�k�=�−�g/3�Bo−n2 = � 4
27Bo�− g�3�1/4, �20�

that is for each n, such that −g Bo /3�n2, there exists k��n�.
Moreover, since k�2+n2=−g Bo /3, the maximum growth
rate 
� is exactly the same for all k�’s and is independent of
the mode number n! This curious behavior is illustrated in
Fig. 7. However, the range of unstable wavenumbers, defined
by k2�−�g /3�Bo−n2, does depend upon the mode number
n. Also, for illustration, the first few harmonics are shown in
physical space in Fig. 8. Obviously, depending upon the
value of the Bond number, one can get wavenumbers, which
are multiplicative and thus there can be a possibility of three-
wave resonance, with all the ensuing nontrivial nonlinear
dynamics.

At the linear level, the above result implies that if only
one critical wavenumber is excited, then the pattern is regu-
lar, while for higher values of Bond number or acceleration
more than one critical wavenumber is excited such that the
picture will likely become “frustrated,” cf. Fig. 9, as was
discovered recently in the experimental study of the drop
splash problem by Krechetnikov and Homsy.9 The frustration
picture occurs due to randomness of the initial conditions,

which are amplified and evolved into several superimposed
patterns of different wavenumbers;32 accordingly, these pat-
terns are positioned with respect to each other in a random
manner. As a result, for larger numbers of critical k�’s the
pattern may appear irregular, as suggested by experimental
evidence.9 These phenomena certainly necessitate further ex-
ploration, which is beyond the scope of this work: Such
study will require inclusion of the effects of second curva-
ture, unsteady acceleration, etc., in a full analysis.

Given this basic understanding of the along-the-edge in-
stability in the flattop case, the two natural questions arise:
�1� how does unsteadiness affect this instability and �2� how
does the curvature of an edge change the above result? While
the latter requires a separate study, which will be done in
Sec. IV, the former is dealt with in Sec. III B.

B. Effects of unsteadiness

While the effect of retraction was discussed in Sec. II D
and shown to be unimportant for Bo�1, another natural
source of unsteadiness is the change in the liquid sheet thick-
ness, as happens, for example, in the drop splash problem.9

The fact that the ejecta �from which the crown is formed�
travels over the time of its existence �t in the direction of
“ejection” on a greater length �l than the change in thickness
�h it experiences,9 indicates that its thickness evolves with a
slower rate �h /�t��l /�t.

In general, the time-evolving thickness of a liquid sheet
implies that the base state is time-dependent, which calls into
question the standard normal mode analysis. However, if the
thickness changes on a slower time scale tthk than the char-
acteristic time of instability defined by Eq. �14�, i.e., if

tins � tthk ⇔ Bo−1/4 � tthk/t�, �21�

then a quasistatic stability analysis is feasible. Namely, the
only difference from the steady dispersion relation �19� is
that the discrete wavenumber n is replaced by n /h��t�, and
so the growth rate expression becomes


2 = −� n2

h2��t�
+ k2
Bo−1� n2

h2��t�
+ k2 + g� , �22�

where �= t� / tthk�Bo1/4 indicates that the sheet thickness
evolves on a slower time scale compared to the instability.
The dispersion relation �22� physically implies that as the
liquid sheet thickness changes in time, the pattern should
change as well, even at the linear level of description, except

FIG. 7. Growth rates and wavenumber selection: Bo=20 and g=1.

FIG. 8. Three first even modes of instability �cos n� Re�eikx�: �a� n=0, �b�
n=1, and �c� n=2.

FIG. 9. Frustration phenomena �Ref. 9�.
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for the critical wavenumber corresponding to n=0 �!�, be-
cause in this case �22� does not depend upon h��t�.

IV. ROUNDED EDGES

A. Linear stability equations

As a reasonable approximation of a rounded edge, as-
sume that the edge of semicircular cross-section is attached
to a uniform thickness sheet, as in Fig. 10. Adopting a cylin-
drical coordinate system, the normal vector is

n =
irfr − i�f�/r − ixfx

�1 + f�
2/r2 + fx

2
�23�

and the curvature is given by

� · n =
1

r

�

�r
�rnr� +

1

r

�n�

��
+

�nx

�x
, �24�

where nr, n�, and nx are the coordinate components of the
normal vector in cylindrical coordinates. Equations linear-
ized about the steady base state f0 are rendered in the quasi-
steady approximation

���

�t
= − p� − gf� sin � , �25a�

� f�

�t
= −

���

�r
, �25b�

p� = Bo−1
 f�

f0
2 +

f���

f0
2 + fxx� � , �25c�

where �� is the general solution of the Laplace equation �1a�
in the region defined by the interface f0.

Since we are interested in the along-the-edge instability,
Fourier transforming in the x-coordinate, we arrive at the
following system of equations:

��̂

�t
= − p̂ − gf̂ sin � , �26a�

� f̂

�t
= −

��̂

�r
, �26b�

p̂ = Bo−1
 f̂

f0
2 +

f̂��

f0
2 − k2 f̂� , �26c�

where the variables with “hats” stand for the Fourier ampli-
tudes. A special form of the Lagrange–Cauchy integral �26a�
should be commented upon here: the gravity term contains
dependence on sin � since the projection of the gravity vec-
tor on the r-component of linear momentum is −g sin �; this
will entail some nontrivial consequences in the stability
analysis.

B. General solution for the velocity potential

As we learned in the previous two sections, the stability
analysis requires a general solution of the Laplace equation.
Obviously, in the case of the interface shown in Fig. 10, the
construction of a globally valid analytical solution is a pro-
hibitive task. However, one can utilize two important facts,
namely, that the domain is a combination of two “nice” do-
mains, as shown in Fig. 11, over which separation of vari-
ables is possible, and that we need a general solution of the
Laplace equation. First, we already know a general solution
for the rectangular semi-infinite strip domain �region II�,
which is given by Eq. �17�. The task now is to construct a
general solution in the semicircular bar domain �region I�,
which is matchable with the solution in region II. Essentially
we follow the domain decomposition techniques in acoustics
and other fields.33

The Laplace equation in region I becomes a Helmholtz
equation after Fourier transformation in the x-direction,

1

r

�

�r
�r

��̂

�r
 +

1

r2

�2�̂

��2 − k2�̂ = 0. �27�

Separating variables as

�̂�r,�� = R�r�T��� �28�

yields two equations

�2T

��2 + �2T = 0, �29�

�2�2R

��2 + �
�R

��
− ��2 + �2�R = 0, �30�

where �=kr. The bounded solution of the latter equation for
�→0 is the modified Bessel function I����, Re����0. This

FIG. 10. Curved edges: base state with semicircular edge. FIG. 11. Domain decomposition.
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means that, in general, all continuous indices Re����0 need
to be summed up. However, as we will see below, the sym-
metry restrictions and the necessity to match the solution to
the one in region II require the index � to be natural even
numbers.

Noting that the real part of solution �17� in region II is
symmetric with respect to the y-axis, i.e., �cos nz, we re-
strict ourselves to solutions, which are symmetric with re-
spect to the y-axis everywhere. In particular, for y�0 this
means that

�̂��� = �̂�� − ��, � � �0,�� , �31�

and thus

T � cos 2n� . �32�

This is consistent with the symmetry of the solution for y
�0, which is �cos nz, since the latter contains only even
powers of z. Now, recalling that z=−r cos �, we can see that
even powers of z for y�0 are “matchable” with cos 2n� for
y�0. As a result, the general solution for the velocity poten-
tial in region I is

�̂�k;r,�� = �
n=0

+�

�kn�t�I2n�kr�cos 2n� . �33�

Since the interfacial perturbations follow the same spectral
representation, one can picture the first few modes, as in Fig.
12. Since the form of solution �33� is the same as for the
even modes of the free zero-gravity jet in the classical
Rayleigh–Plateau analysis in Fig. 17�b� below, the stability
results coincide in the absence of acceleration, i.e., g=0.

C. Dispersion relation and its analysis

The dispersion relation is obtained in the same fashion
as done in Secs. II B and III, i.e., one substitutes the spectral
representations for the velocity potential �33�, interface per-

turbation, f̂ =�fkn cos 2n�, and pressure, p̂=�pkn cos 2n�,
into system �25� and projects onto the adjoint spectral space
cos 2m�, i.e., via multiplying by harmonics cos 2m� and in-
tegrating over �� �0,��, and to finally arrive at

I2n�kf0�
d�kn

dt
= − pkn − �,�n,n

−1 g�
m=0

�

fkm

�	
0

�

cos 2m� cos 2m� sin � d� , �34a�

dfkn

dt
= − kI2n� �kf0��kn, �34b�

pkn =
Bo−1

f0
2 �1 − �2n�2 − k2f0

2�fkn, �34c�

where we utilized orthogonality of cos 2n� and cos 2m� on
the domain �� �0,�� for n�m,

�,�n,m � 	
0

�

cos 2n� cos 2m� d� = ��,n = m = 0,

�/2,n = m � 1,

0,n � m ,
�

and where the integral

	
0

�

cos 2n� cos 2m� sin � d�

= − 
 1

1 − 4�n + m�2 +
1

1 − 4�n − m�2� ,

is a general function of n ,m due to nonorthogonality of the
gravity vector to coordinate vectors �ir , i�� or in other words,
to the spectral directions in the domain with cylindrical
symmetry.

Because of that property, the final evolution equation for
fkn,

d2fkn

dt2 = − k
I2n� �kf0�
I2n�kf0��g
2 − 16n2

1 − 16n2��,�n,n
−1

−
Bo−1

f0
2 �1 − �2n�2 − k2f0

2�� fkn − �,�n,n
−1 k

I2n� �kf0�
I2n�kf0�

g

� �
m�n

� 1

1 − 4�n + m�2 +
1

1 − 4�n − m�2� fkm, �35�

turns out to be coupled to all other amplitudes fkm, although
the coupling strength between nth and mth modes decays
with the distance between the modes as ��n−m�−2, i.e., as
the distance �n−m� from the diagonal. This allows one to
analyze a truncation of Eq. �35� numerically and to reach
convergence with the size of the truncated system. Next, let-

ting fkn�e
nt f̃ kn and denoting the coefficients of fkm in Eq.
�35� by 	nm, we get an infinite-dimensional system


n
2 f̃ kn = �

m

	nmf̃km. �36�

The dispersion relation is formally just

det��2 · I − �� = 0. �37�

Ignoring the coupling for a moment, i.e., considering just
the diagonal part �35�, one can notice that the corresponding
dispersion relation

FIG. 12. Three first modes of instability �cos 2n� Re�eikx�: �a� n=0, �b�
n=1, and �c� n=2.
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2 = − k
I2n� �kf0�
I2n�kf0��g
2 − 16n2

1 − 16n2��,�n,n
−1

−
Bo−1

f0
2 �1 − �2n�2 − k2f0

2�� ,

has a structure similar to that for Rayleigh–Plateau instability

of a free jet of radius R0,28 given here in dimensional form �
̄
stands for the dimensional eigenvalue�,


̄2 =
�

R0
3�

kR0I2n� �kR0�
I2n�kR0�

�1 − �kR0�2 − n2� , �38�

but with a few crucial differences. Since
kR0I2n� �kR0� / I2n�kR0��0 for all kR0�0, in the classical case

the jet is unstable, 
̄2�0, only if n=0 and thus only to axi-
symmetric modes whose wavelength 2� /k is greater than the
circumference 2�R0 of the jet. In our case though, the edge
is unstable if

g
2 − 16n2

1 − 16n2��,�n,n
−1 −

Bo−1

f0
2 �1 − �2n�2 − k2f0

2� � 0,

which holds not only for n=0, as in the case of free jets, but
also for higher values of n, if g�0, depending upon the
value of the Bond number.

This intuition is confirmed by analysis of the complete
dispersion relation �37�, which is done numerically via trun-
cating Eq. �35� and achieving convergence with the size of
the truncation. Namely, the nonzero curvature of the edge
does not change the main result observed for flat edges, i.e.,
that in general there are a few critical wavenumbers, but the
presence of curvature upsets the fact that the growth rates of
those critical wavenumbers are exactly the same. This is il-
lustrated in Fig. 13�a�, which suggests that physically there
may be a dominating pattern with one wavenumber and a
number of superimposed secondary patterns provided all of
them evolve from initial conditions of the same amplitude.
For higher values of acceleration, the difference in growth
rates becomes smaller, as shown in Fig. 13�b� and thus, the
overall pattern may look frustrated as in Fig. 9. Finally, the
limit of zero acceleration in the dispersion relation �37�
clearly demonstrates that the along-the-edge instability in-
volves both Rayleigh–Taylor and Rayleigh–Plateau mecha-
nisms. Namely, the absence of acceleration leads to substan-
tial weakening of the instability, as the leading growth rate
corresponding to n=0 in Fig. 13�b� is much smaller than that
in Fig. 13�a�, which is due to the fact that of the two mecha-
nisms only the Rayleigh–Plateau mechanism remains. Fur-
ther decrease of the acceleration magnitude to negative val-
ues can make the edge stable! This again indicates a
complicated interplay of the Rayleigh–Taylor and Rayleigh–
Plateau mechanisms, which cannot be considered here just as
a linear superposition of noninteracting modes, as is also
evident from the nondiagonal structure of Eq. �35�.

V. BLOB-EDGES

In this section, we consider the case when the edge is a
well-developed blob of a radius substantially greater than the
liquid sheet it attaches to, as illustrated in Fig. 14. In this
situation, one just needs to construct a solution of the
Laplace equation �or Helmholtz equation �27� in Fourier
space� in the jet region. In fact, this harmonic solution is the
same as in the study of the Rayleigh–Plateau instability28

�̂�r,�� = �
n=0

�

��kn
�c� cos n� + �kn

�s� sin n��In�kr� , �39�

where we have separated the even and odd components. The

other two dependent variables, f̂ and p̂, have similar repre-
sentations. Because both even and odd harmonics are present

FIG. 13. Growth rates in the case of rounded edges: �a� Bo=102, g=−1, and
f0=1, and �b� Bo=102, g=−10, and f0=10.

FIG. 14. Base state blob-edge.
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in this case, the leading order instability picture is more com-
plicated compared to flat and rounded edges, as one can learn
from the shape of the instability modes in Figs. 15 and 16.

Eliminating pressure and velocity potential, the resulting
linear evolution system for even and odd components of the
interfacial perturbations is

k−1 In�kf0�
In��kf0�

d2fkn
�c�

dt2 = �Bo−1

f0
2 �1 − n2 − k2f0

2�� fkn
�c�

+
g

�,�n,n
�c� �

m=0

�

anm
�s� fkm

�s� , �40a�

k−1 In�kf0�
In��kf0�

d2fkn
�s�

dt2 = �Bo−1

f0
2 �1 − n2 − k2f0

2�� fkn
�s�

+
g

�,�n,n
�s� �

m=0

�

anm
�c� fkm

�c� , �40b�

where

�,�n,m
�c� � 	

0

2�

cos n� cos m� d� = �2�,n = m = 0,

�,n = m � 1,

0,n � m ,
�

�41�

�,�n,m
�s� � 	

0

2�

sin n� sin m� d� = �0,n = m = 0,

�,n = m � 1,

0,n � m ,
�

and the coupling matrices are

a�s� =�
� 0 0

0
�

2
0

−
�

2
0

�

2
�

0 −
�

2
0 �

� � �

� , a�c� = �a�s��T. �42�

Next, letting fkn�e
nt f̃ kn we get a dispersion relation analo-
gous to Eq. �37�, but with very sparse matrices due to the
form of Eq. �42�. Its analysis demonstrates that, as opposed
to the classical zero-gravity free jet analysis28 shown for ref-
erence in Fig. 17�b�, the acceleration allows the existence of
several instability modes, e.g., for n=0 and n=1 in Fig.
17�a�. Again, in analogy to the conclusions drawn from the
study of flattop edges, there can be several critical wavenum-
bers excited.

Similar to the case of rounded edges considered earlier,
the limit of zero acceleration in the corresponding dispersion
relation again demonstrates that the instability has two inter-

FIG. 15. The first three even modes of instability: �cos n� Re�eikx�: �a� n
=0, �b� n=1, and �c� n=2.

(a)

(b)

FIG. 16. The first three odd modes of instability: �sin n� Re�eikx�: �a� n
=1 and �b� n=2.

FIG. 17. Growth rates in the case of blob-edges: �a� Bo=102, g=1, and f0

=1, and �b� Bo=102, g=0, and f0=1.
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acting components—Rayleigh–Taylor and Rayleigh–Plateau
mechanisms. This is also suggested by nondiagonal structure
of the dispersion relation and since in the absence of accel-
eration the instability is weakened. The case of negative ac-
celerations is identical to the one for positive values of ac-
celeration because of the symmetry of the blob in the
y-direction, i.e., the instability picture is invariant with re-
spect to the transformation g→−g. It should be noted that
we treated blob-edges as free jets, which is justified by the
small influence of the fluid-fluid contact between the blob
and the attached thin liquid sheet due to negligible inertia of
the latter. This is opposed to the case of a liquid jet contact-
ing a fixed �and thus of infinite inertia� solid wire studied by
Davis,34 where the effect of the contact line seems to change
the range of unstable wavenumbers at the leading order.
However, the cases of a semicircular jet on a solid surface
and a rounded liquid sheet edge, studied in Sec. IV, are
analogous in the sense that the presence of a contact line and
a finite thickness sheet has the leading order effect on the
range of unstable wavenumbers.

VI. CONCLUSIONS

The systematic study of longitudinal �along-the-edge� in-
stabilities of accelerated flat, rounded, and blob-edges in this
work has revealed the underlying physical mechanisms, and,
in particular, the fact that the growing disturbances owe their
existence to two mechanisms—Rayleigh–Taylor and
Rayleigh–Plateau instabilities—which cannot be considered
simply as a linear superposition of noninteracting modes.
Thus, the resulting stability picture cannot be inferred from
the classical studies of Rayleigh–Taylor instability for flat
interfaces and the Rayleigh–Plateau instability of a round jet.
Therefore, the interplay of these two instabilities leads to a
number of nontrivial results.

In particular, it is discovered in the case of flat edges that
several critical wavenumbers may coexist with the same
growth rates. Physically, this leads to frustration phenomena,
when several along-the-edge wavelengths compete with each
other; since the pattern is dictated by the initial conditions,
the resulting picture may appear irregular. Curvature of the
edge, i.e., in the case of rounded and blob-edges, distorts
somewhat this equal amplification of different critical wave-
numbers, but still allows for several critical wavenumbers to
coexist.

While this study gives quantitative information about in-
stability in the quasisteady case only, it also provides an
important insight for the cases when Bo is not large by sug-
gesting that the perturbation penetrates into the liquid sheet
on the distance of the order of the sheet thickness and thus
invalidates the application of the classical Rayleigh–Taylor
analysis for flat infinite interfaces.

This work was also limited to planar sheets subject to
inviscid irrotational disturbances, so possible extensions
would include effects of viscosity and a second curvature.
Such extensions would make the analysis relevant, for ex-
ample, to the drop splash problem, where the question of
predicting the number of spikes along the rim,25 remains
open in view of the complexity of the splash phenomena

�i.e., highly unsteady acceleration of the rim and nontrivial
time-dependence of the liquid sheet �ejecta� thickness, cf.
Ref. 9�.

In conclusion, it is worth mentioning that liquid sheet
edges also occur when a jet impacts a small disk so that a
radially expanding film is formed, which disintegrates along
its periphery with the drop formation process at its rim.6,35

The mechanism of this disintegration is different, however,
from the instability considered here, which is due to accel-
eration of the entire sheet combined with the Rayleigh–
Plateau mechanism. Namely, the disintegration of a radially
expanding sheet is either due to local acceleration near the
edge induced by flapping �when the friction with the sur-
rounding air is strong enough to trigger Kelvin–Helmholtz
instability�6 or solely due to the Rayleigh–Plateau mecha-
nism for smooth liquid sheets.35
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