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On destabilizing effects of two fundamental non-conservative forces
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Abstract

In this work we discuss the instabilities in mechanical systems caused by two fundamentally different non-conservative forces, referred to as
dissipative and positional forces, each of which may lead to energy dissipation. One of the objectives of this discussion is to recall and to put
into the context of current research some of the important classical results by Thomson–Tait–Chetayev and Merkin, which are under-appreciated
nowadays: many new examples, e.g. radiation in Hamiltonian systems, the Levitron, etc., appearing in recent literature can be interpreted with
the help of these classical results. Next, in the spirit of the Lagrange–Dirichlet theory, we introduce the geometric picture of the phase space
corresponding to the effects of destabilization in finite-dimensional systems. On the physical side, our objective is to demonstrate that both of
these types of non-conservative forces appear quite commonly and often simultaneously in physical systems. As an illustration, we consider the
Levitron, a system in which the dissipative effects have not heretofore been studied. Finally, using Nikolai’s elastic bar model as a paradigm, we
discuss the notion of a secondary dissipation-induced instability, when the above two fundamental non-conservative forces interact. This unified
way of thinking should help us to understand the intricate links among various mechanical systems through the most fundamental mechanisms in
their behavior.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Although the term was coined just recently by Bloch
et al. [1,2], the counter-intuitive concept of a dissipation-
induced instability has its origins in the classical work of
Thomson (Lord Kelvin) and Tait [3] in 1879. Its theoretical
basis was not properly understood until the 1950s in the
works of Chetayev [4], Merkin [5] and other researchers.
However, as the growing number of recent physical examples
and applications demonstrates, these classical results are
not appreciated and new physical examples are sometimes
explained by rediscovering the theory. At the same time, as we
shall see, the classical unified understanding of this apparently
universal behavior allows one to link various phenomena and to
find common features.

We consider here a generic canonical form of a finite-
dimensional system of second order equations
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q̈ + Sq̇
gyro.

+ Dq̇
dissip.

+ C0q
pot.

+ Pq
positional

= N, (1)

where the matrices D, C0 are symmetric, S, P are skew-
symmetric, and N is a nonlinear term. In addition, C0
is a diagonal matrix with each element of diag C0 =

{λ1, . . . , λn} called, following terminology of Poincaré, a
stability coefficient. This canonical form (1) has associated
kinetic T and potential Π energies given by the quadratic forms

T =
1
2

∑
i

q̇2
i , Π =

1
2

∑
i

λi q
2
i .

The number of negative λi s is called the degree of instability.
We are primarily concerned with instability phenomena,

so we shall focus on the linear part of (1). The results
retain their validity in the nonlinear case based on Lyapunov’s
theorem on stability which asserts nonlinear instability when
one has spectral instability of the linearization. The canonical
representation (1) is usually the result of a transformation of
an original formulation; for a standard mechanics problem,
such a transformation exists if both the mass matrix ai j
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and potential forces matrix are symmetric and the former
is also positive definite. The original formulation could be
the Euler–Lagrange equations with forcing for n independent
generalized coordinates,

dt Tq̇i − Tqi = Qi , Qi = −Πqi + Q̃i ,

where T =
1
2 aik q̇i q̇k is the kinetic energy and Qi are the

generalized forces decomposed into potential and non-potential
Q̃i parts. Since the energy is given by H = T +Π , and its time
evolution is

dt H = Q̃i q̇i + Πt ,

then, following Thomson and Tait [3], one can further classify
the non-potential forces into gyroscopic, Q̃i q̇i = 0, dissipative,
Q̃i q̇i ≤ 0, and accelerating, Q̃i q̇i ≥ 0, forces. While
these definitions are valid in the general nonlinear case, the
corresponding terms in the linear parts in (1) highlight that
the linear gyroscopic forces have a skew-symmetric structure
Q̃i = γik q̇k, γik = −γki , versus the dissipative forces, which
have a symmetric form Q̃i = −dik q̇k, dik = dki . Physically,
the dissipative forces could, for example, be due to motion in a
resisting medium, etc., when the resistance depends only on the
speed of motion. A special kind of force, not evident from the
above classification, are the so-called positional forces which,
similar to dissipative forces, change the energy of the system,
but depend on the coordinates only, Q̃i = −pikqk, pik = −pki .
Such forces are typified by follower-forces.

The preceding classification of linear forces is important
in studying the linear stability of various systems and allows
one to identify the nature of various terms in the linearized
dynamics. For a more complete classification of forces,
including the nonlinear case which is beyond the scope of this
introduction, we refer the reader to reviews by Merkin [6] and
by Karapetyan and Rumyantsev [7].

The instabilities we study here are all mainly due to
infinitesimal amounts of non-conservative effects in (1), thus
making the conclusions generically applicable. The amplitude
of non-conservative forces, though not important for the
appearance of instabilities, defines the characteristic time of
their evolution and thus are important in applications.

In Section 2 we state the two main results of the
classical theory on the effect of non-conservative dissipative
and positional forces relevant to our discussion and provide
their geometrical interpretation. Section 3 is devoted to an
interpretation of one of the recent examples in the literature—
radiation-induced instability [8]—in the framework of the
classical theory. In Section 4 we discuss the problem of objects
levitating in a magnetic field, and explore the presence of both
types of non-conservative forces as a generic phenomenon.
Section 5 introduces the concept of a secondary dissipation-
induced instability as coming from the interaction of both
non-conservative effects. Finally, in Section 6 we discuss the
challenge of extending these ideas for non-conservative effects
to the case of infinite-dimensional systems such as to fluids,
plasmas, and electromagnetism.
2. Geometry of the classical theory

The stability of conservative finite-dimensional systems is
usually understood in the context of the Lagrange–Dirichlet
theorem; that is, connected to the behavior of the second
variation of the Hamiltonian. This also suggests a geometrical
picture for the general non-conservative case and is the basic
idea of Lyapunov’s direct method, i.e. the construction of a
function majorizing the dynamics.

Even though the system (1) is non-conservative, with the
following definition of the Hamiltonian

H =
1
2

pT I p +
1
2

qT C0q, p = q̇, (2)

the system can be recast into a symplectic–metriplectic form.
With z = (q, p), the Eq. (1) can be written as

dt z = (J + G)Hz, (3)

where the operators J and G are given by

J =

[
0 I

−I −S

]
, G =

[
0 0

−PC−1
0 −D

]
, (4)

where the matrix J is skew-symmetric and is called a Poisson
operator, while the matrix G in the absence of non-conservative
positional forces is symmetric and called a metriplectic operator
(in view of its similarity to a metric tensor). In the presence
of non-conservative positional forces, the matrix G is neither
symmetric nor skew-symmetric. One can regard J and G
as determining the geometry of phase space. The operator
J comes from symplectic geometry and is (1) non-singular,
(2) skew-symmetric, and (3) obeys the Jacobi relation. If the
operator G is symmetric, i.e. contains only non-conservative
dissipative forces, then its addition modifies the symplectic
nature of phase space. The simplecticity is also destroyed by
an addition of non-conservative positional forces.

Note that (2) is a valid Hamiltonian even if the gyroscopic
forces are present (though in this case it corresponds to a non-
canonical Hamiltonian form) and the effect of the gyroscopic
forces appears through the non-canonical Poisson bracket (in
which a sum on repeated indices is understood):

{F, H} = Fqi Hpi − Fpi Hqi − Si j Fpi Hp j . (5)

Gyroscopic forces can provide an exchange of energy among
the modes, and thus can significantly alter the behavior of the
system; for example, they can stabilize a non-zero degree of
instability equilibrium.

The fundamental classical stability theorems [3–5], to be
discussed here, can be deduced from two generic forms of
the dynamical system (1) by appealing to spectral properties
and by appealing to the geometrical properties as given by
(3), respectively. In particular, a linear stability analysis of
(3) amounts to the eigenvalue analysis of (J + G)Hzz; in
this context, one speaks of spectral stability or instability. Of
course, spectral instability implies Lyapunov instability, but
spectral stability need not imply Lyapunov stability.

Before going into the discussion of non-conservative effects,
we first remember the main classical results for Hamiltonian
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Fig. 1. System with a stable potential.

systems. The Lyapunov stability in this case is often inferred
from the second variation of the Hamiltonian, which in the
finite-dimensional case is the matrix (Hessian) of the second
derivatives Hzi z j . This theorem for a finite dimensional system,
known as the Lagrange–Dirichlet principle (1846), states that if
the second variation of H is definite at the equilibrium point,
then the equilibrium point is Lyapunov stable. Definiteness of
the second variation of H is not necessary for stability, as noted
by Cherry [9].

In its simplest form (Lagrange, 1788), this theorem applies
to the case in which the Hamiltonian is separable and canonical
(also called a simple mechanical system), i.e. if H has the form
H =

1
2 pT I p+V (q). In this case, there is an obvious connection

between definiteness of H(q, p) and V (q), as depicted in
Figs. 1 and 2. In particular, an equilibrium point (qe, pe = 0)

is stable if the second variation of V at qe is positive definite,
i.e. if qe is a strict local minimum of V (q). This condition is
sufficient but not necessary, as was first shown by Painlevé [10,
11]; that is, the converse (namely, instability in the absence of
a minimum) to the Lagrange criterion is not true. However,
additional conditions (apart from the absence of a minimum
of V (q)) allow one to formulate the converse to the Lagrange
criterion; see [12] and references therein for more information.
In particular, if the second variation is non-degenerate but
indefinite, then one has spectral and hence Lyapunov instability.

As an illustration of the Lagrange–Dirichlet principle, we
refer to Fig. 1, where the trajectory of a stable two-dimensional
system

z̈1 + dż1 + c1z1 = 0,

z̈2 + dż2 + c2z2 = 0,

with d, ci > 0, is projected onto the potential energy surface,
V (z1, z2) =

1
2 ci z2

i (again, a summation over i is assumed).
This type of geometric picture turns out to be very helpful in
analyzing dissipation-induced instabilities.

Here we will discuss only one theorem by Thomson, Tait
and Chetaev and one theorem by Merkin, which are directly
pertinent to dissipation-induced instabilities. Instability in this
context is understood to be spectral instability, which in turn
implies Lyapunov instability of both the nonlinear system (1)
and its linearization.

Theorem 1 (Thomson–Tait–Chetayev). If the system q̈+C0q =

0 has non-zero degree of instability, then (1) remains unstable
after the addition of gyroscopic and dissipative forces with
complete dissipation (that is, Q̃i q̇i is negative definite).

This theorem implies that if a non-zero degree of instability
equilibrium is stabilized with gyroscopic forces as in Fig. 2(a),
then the stability is destroyed by an introduction of arbitrarily
small dissipative forces. This result is illustrated in Fig. 2(c) for
the following system:

z̈1 + gż2 + dż1 + c1z1 = 0,

z̈2 − gż1 + dż2 + c2z2 = 0,

which has the equilibrium (z, ż) = (0, 0). If ci < 0, i = 1, 2, it
has even degree of instability equal to 2. This equilibrium point
can be stabilized in the absence of dissipation, d = 0, by adding
gyroscopic forces provided that |g| >

√
−c1 +

√
−c2.

The dynamics of this example can be interpreted, for
instance, using the basic theory of the gyroscope, as that of
the linearized equations of a Lagrange top, which is familiar
to those who have spun a ball on their fingertip. Even when the
top is deflected from the unstable (vertical) equilibrium position
and is thus under action of destabilizing forces, a fast enough
rotation makes it move in the direction perpendicular to the
destabilizing force and to precess.

However, if the degree of instability is odd, as in
Fig. 2(b), then the mechanism described above for gyroscopic
stabilization does not work—gyroscopic stabilization is
prohibited by another theorem of Thomson–Tait–Chetaev
(see [3,4] and [1] for an exposition). Having the Lagrange
top in mind, if the potential surface is as in Fig. 2(b), then
the gyroscopic force changes its direction, passing from the
concave to the convex part of the potential function, and thus
violates conservation of angular momentum about the vertical
axis. The addition of a dissipative force, d > 0, destabilizes the
system, regardless of its stability under the action of gyroscopic
forces.

The counterpart of Theorem 1 for non-conservative
positional forces is the following.

Theorem 2 (Merkin). The introduction of non-conservative
positional forces (that is, the skew-symmetric matrix P in (1)
is non-zero) into a stable purely potential system, q̈ + C0q = 0,
with equal frequencies destroys the stability regardless of the
form of the nonlinear terms.

For the history and other important results, we refer to
Merkin [5,6], Zajac [13], and Agafonov [14]. To illustrate
Theorem 2, consider the following system:

z̈1 + p z2 + c z1 = 0,

z̈2 − p z1 + c z2 = 0.

A study of the corresponding characteristic equation shows that
the addition of non-zero, non-conservative, positional forces
(that is, p 6= 0) to a stable system (that is, with degree
of instability equal to zero) with equal frequencies makes it
unstable, as shown in Fig. 2(d). Note that the second variation
of the Hamiltonian of the original system is positive definite at
the origin. This theorem applies to the analysis of linearized
dynamics of isolated physical systems (such as the rotating
shaft problem [15]) and of open physical systems (such as
an elastic bar with a follower force). In the first case, this
amounts to a route to dissipation-induced instabilities that is
an alternative to the one given by the Thomson–Tait–Chetayev
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(a) Gyroscopic stabilization: even degree
of instability.

(b) Gyroscopic failure: odd degree of
instability.

(c) Dissipative destabilization of a
gyroscopically stable system.

(d) Non-conservative positional
destabilization of a system with stable
potential.

Fig. 2. Projection of dynamics onto potential energy surface.
Theorem 1. Also, even though the theorem is formulated for
the resonant case, it does lead to hyperbolic eigenvalues, so
non-symmetric perturbations, which are small compared to
the magnitude of the positional forces, do not destroy this
instability behavior.

In conclusion, the basic physical effects of non-conservative
(dissipative and positional) forces can be summarized as
follows. If a stable equilibrium is formed from an unstable
potential energy together with stabilizing gyroscopic forces,
then this stability is destroyed by arbitrary dissipative forces.
In contrast, if the stable equilibrium is formed from stable
potential forces with equal frequencies alone, then the
stability is destroyed by arbitrary non-conservative positional
forces. It is notable that these two cases both have anti-
symmetric coupling in system (1), which basically prohibits
the construction of a Lyapunov function to prove stability. The
instabilities occur in both cases due to the breaking of symmetry
in the original conservative system (and its phase space) so that
the eigenvalues move away from the imaginary axis.

3. Radiation-induced instability

As an application of the Thomson–Tait–Chetayev result
(Theorem 1), we consider the work [8], in which the
phenomenon of radiation-induced instability is developed. Here
we show that this instability can be understood by using
Theorem 1.

The physical set-up is modeled by a finite-dimensional
system coupled to an infinite-dimensional system that is
responsible for a process of wave radiation. For the
development and history of this model, we refer to Soffer and
Weinstein [16]. The resulting governing system has the form

ẍ + gẏ + αx = γ

∫ t

0
[x(s) + y(s)]ds,

ÿ − gẋ + βy = γ

∫ t

0
[x(s) + y(s)]ds,

(6)

where the right hand side describes the effects of radiation. The
work [8] establishes the Lyapunov instability of this system
as being caused by the presence of radiation even when the
mechanical part (i.e. the left-hand side) of (6) is spectrally
stable, say gyroscopically stabilized.

The proof in [8] is based on differentiation of the above
system followed by a direct analysis. On the other hand, in our
approach, we introduce another variable, z =

∫ t
0 [x(s)+y(s)]ds,

so that the preceding system reads

φ̈ + Gφ̇ + Cφ = 0, φ = [x, y, z]T , (7)

where G and C are defined by

G =

 0 −g 0
g 0 0

−1 −1 0

 , C =

α 0 −γ

0 β −γ

0 0 0

 .

Introducing the change of variables, φ′
= Aφ, where A is such

that AC A−1 is diagonal, we arrive at

φ̈′ + G̃φ̇′ + C̃φ′
= 0, C̃ =

α 0 0
0 β 0
0 0 0

 ,

where

G̃ =


γ

α

γ

α
− g

γ 2

α2 +
γ

β

(γ

α
− g

)
γ

β
+ g

γ

β

γ 2

β2 +
γ

α

(
γ

β
+ g

)
−1 −1 −

γ

α
−

γ

β

 ,
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Fig. 3. Schematics of Levitron.

where the new matrix G̃ has non-degenerate symmetric
(dissipative) and anti-symmetric (gyroscopic) parts. Therefore,
if the system with G̃ = 0 is unstable, then adding
arbitrary gyroscopic and dissipative forces leaves it unstable,
in accordance with Theorem 1.1

4. The Levitron

The invention of a levitating magnetic object by Harri-
gan [17] overcame the taboo imposed by the Earnshaw theo-
rem [18] and received some resonance in the literature [19,20].
However, a closer look at this problem reveals that Harrigan
had very strong intuitive reasons that are, in fact, supported by
the Thomson–Tait–Chetayev theory. As discussed in Section 2,
this theory predicts the possibility of gyroscopic stabilization of
an unstable system (with non-zero degree of instability), a fact
that is used in numerous engineering applications (such as a
monorail car, etc.). It is curious that, despite this theory, the ex-
planation of stabilization in the literature was based on a more
modern but approximate theory based on adiabatic invariants
(cf. Berry [19] and Simon et al. [20]).

The dynamics of a point magnetic dipole of strength µ and
mass M in an axisymmetric magnetic field B, as shown in
Fig. 3, are governed by torque and force balance as follows:

dtµ =
µ

Iω
µ × B,

Md2
t r = ∇(µ · B) − Mĝz.

The magnetic field can be represented in the neighborhood of
its axis of symmetry by means of a Taylor series expansion:

Bz = B0 + Sz + K z2
−

1
2

Kr2
+ · · · ,

Br = −
1
2

Sr − Krz + · · · .

With the following non-dimensionalization,

µ → aµ, r → αr, t → γ t;
a

α
=

ωp

ω

µ2 M

I
,

1 Note that, even though the classical Thomson–Tait–Chetayev theory was
developed for the non-critical case (i.e. all the stability coefficients are non-
zero), its physical implications are wider, and in many situations, including this
one, an examination of the proofs shows that the theorems are still true and
yield correct predictions.
γ =

√
M

Iω
, ω1 = γ

a

α

S

2M
, ω2 = γωp,

the linearized equations written in a component form become:
d2

dt2 −



0 0 0 −
ω1

ω2

0 0
ω1

ω2
0

0 −
ω1

ω2
0 0

ω1

ω2
0 0 0


d
dt




x
y

µx
µy



−


1 +

ω2
1

ω2
2

0 0 0

0 1 +
ω2

1

ω2
2

0 0

−ω1 0 −ω2
2 0

0 −ω1 0 −ω2
2




x
y

µx
µy

 = 0.

It is obvious that the degree of instability of this system is
even, so that one can expect stabilization for a certain ratio of
frequencies ω1 and ω2, since the stabilization is achieved only
at certain amplitude of gyroscopic force.

The dissipative effects in a spinning top are known to
be crucial, since they determine the finite lifetime of a
stable levitation [20]. However, those effects are, in general,
very complicated due to the top’s finite size, conductivity,
magnetization, interaction with air, etc. Here we just discuss
qualitatively the origin of various forces and moments and to
make one key point: eddy currents introduce both types of non-
conservative forces, i.e. dissipative and positional.

The actual Levitron is usually made of a rod attached to a
ring or disk magnet. Here we assume, for simplicity, a toroidal
shape of the top magnet, which is of ferromagnetic type and
is conducting (being made of iron, or various iron alloys). The
magnetic field is considered to be axisymmetric, but decaying
when one moves away from the base magnet and away from the
axis of symmetry. As is known from experimental observations,
the top is not rotating with its axis exactly aligned with the
axis of symmetry. Rather, it performs a precession and nutation
motion. This implies that the center of the torus is off the axis
of symmetry and the plane of the torus is performing oscillatory
motion (wobbling) about the horizontal plane. Now, on the
basis of Faraday’s law of induction, the induced electromotive
force equals the negative rate of change of flux:

E ind
= −

1
c

dΦ
dt

,

which is the consequence of the Lorentz force law, F =
e
c v ×

H. This means that, if the top is only precessing, then the
flux through the torus contour is constant, and thus there are
no currents induced. However, nutation makes the flux time-
dependent and, if the magnet were just a linear conductor, the
induced current would be only of the type shown in Fig. 4(a)
and denoted j1. However, the complicated behavior of the
top and its finite size induces eddy currents of sophisticated
topology, which can be obtained by solving the complete
time-dependent field equations, which is not really feasible.
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(a) On the origin of eddy currents. (b) Currents of j1-type. (c) Currents of j2-type.

Fig. 4. Forces on induced currents.
However, in view of the torus geometry of the top, one can
decompose the general elementary current j into the currents
of two types, j1 and j2, as shown in Fig. 4(a).

Once the origin of the currents is clarified, we can develop an
understanding of the forces acting on the top magnet besides the
interaction of the external magnetic field and the top magnetic
moment. The general formula tells us that

F =
I

c

∮
dl × H.

In the case of the elementary current j1, the torus is displaced
to the left along the x-axis (cf. Fig. 4(b)) and thus the point
C experiences a stronger magnetic field than the point D. The
configuration is symmetric about the x-axis, so we do not
need to take into account the force balance between points
A and B. For a given configuration of current and magnetic
field direction, the resulting force is restoring. Such a force
arises when one moves the torus away from axis of symmetry,
since the induced current resists the imposed motion. Also, the
induced current has its own magnetic moment that interacts
with the external magnetic field and contributes to the angular
momentum equations. However, in general the force resulting
from the presence of j1 might be pushing the top away from
the axis of symmetry. In the case of the elementary current j2,
the forces at points C and D vanish, so we need to analyze the
forces at the points A and B, which are closer to and farther
from a base magnet, respectively. The torus is again displaced
along the x-axis, but, as one can see, the fact that the magnetic
field at A is stronger than at B leads to a resulting force in the
y-direction, along with an overturning moment. An analogous
skew-symmetry arises in the rotating shaft problem [15] and
leads to destabilization due to positional forces. In general, one
can expect the forces to be of all these types. Regular dissipation
arises due to friction with air and due to the resistance of the
conductor. If the latter is R, then the induced total current is
I = E ind/R and the eddy current induced losses are I 2 R.
Since the origin of the fluctuating magnetic flux is through a
nutation motion, for example, then the underlying dissipative
force should be proportional to the velocity components. The
presence of both types of non-conservative forces implies that
the Levitron will always be unstable (though the characteristic
time of instability can be large) unless these dissipative effects
are compensated with external pumping of energy, as is often
done in gyroscopic systems [5].
In concluding this section, we should mention that the
simultaneous appearance of both types of non-conservative
forces is very common in real world systems. One of many
examples is discussed in the next section. Another famous
example is the instability of shafts rotating in hydrodynamic
media treated by Kapitsa [15], who assumed that friction is
proportional to squared relative velocity and, after integration
of these forces over the shaft’s perimeter, obtained the resultant
non-conservative forces of pure positional type. However, in
reality the friction law is a general function of velocity and other
variables, so that one can expect the presence of dissipative
forces as well.

5. Secondary instability

In this section we continue the discussion of the
simultaneous appearance of both types of non-conservative
effects and demonstrate their combined effect, which leads
to the notion of a secondary dissipation-induced instability
phenomenon; this phenomenon was discovered by Ziegler [21]
in the context of elastic systems.

We consider a system of this type, namely two identical bars
of length l and mass m, and torsional springs of stiffness c0, as
shown in Fig. 5. For simplicity, the two-bar system is restricted
to a plane and not subjected to a gravity field. The moment of
inertia of the first bar with respect to the point of attachment
O is J1, and that of the second bar with respect to its center
of mass is J2. With these definitions, the kinetic and potential
energies of the system for small deflections φ1,2, that is, for the
linearization of the system, are

T =
1
2
(a11ϕ̇

2
1 + 2a12ϕ̇1ϕ̇2 + a22ϕ̇

2
2),

Π =
1
2

cϕ2
1 +

1
2

c(ϕ2 − ϕ1)
2,

where a11 = J1 + ml2, a12 =
1
2 ml2, a22 = J2 +

1
4 ml2. The

resulting Euler–Lagrange equations for the angles ϕ1 and ϕ2
are:[

a11 a12
a12 a22

] [
ϕ̈1
ϕ̈2

]
+

([
c11 c12
c12 c22

]
+

[
0 p

−p 0

]) [
ϕ1
ϕ2

]
= 0, (8)

where a11 =
4
3 ml2, a12 =

1
2 ml2, and a22 =

1
3 ml2; c11 =

2c0 − Fl, c12 =
1
2 Fl − c0, c22 = c0, and p =

1
2 Fl. The system
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Fig. 5. Schematics of cantilever—elastic bar.

(8) can be reduced to the form (1) using the standard technique
for diagonalization of pencils of matrices (or quadratic forms),
as in [22]. Note that the follower force contributes to both the
positional P and potential C matrices, and thus the situation is
slightly more general than the one treated by Merkin’s theorem.
An eigenvalue analysis of Eq. (8) leads to a quartic equation for
λ2 of the form aλ4

+ bλ2
+ c = 0; this shows that the solution

is stable if λ2 < 0, that is

b > 0, b2
− 4ac > 0, (9)

which yields F < 6
5

(
3 −

√
20
3

)
c0
l . The stability breaks when

the magnitude of the follower force exceeds this value, and
thus the second inequality in (9) changes its sign. This model
was studied by Nikolai [23] as an approximation for the effects
occurring due to the outflow of combustion gases in jet engines.
The same model, in a finite-dimensional approximation, is
applicable to a continuous cantilever conveying liquid [24].

In addition to the positional (follower) force F , there are
regular dissipative forces, so one can introduce a regular
dissipation term into the previous example (8) and study the
effect of two non-conservative forces (1), namely the matrix
P (positional) and regular dissipation D. The origin of D
can be due, for instance, to hydrodynamic friction inside the
bar-tubes through which there is a flow of liquid, and the
ejection of which creates a follower force similar to that in a
jet engine. Suppose for simplicity that the dissipation matrix D
is diagonal with equal diagonal entries of magnitude ε, and that
the magnitude of the follower force is slightly below its critical
value; that is, the system is close to buckling.

If we perform an asymptotic study of eigenvalues, and write
λ = λ0+ελ1, where λ0 is the eigenvalue of the problem without
dissipation (the stable configuration), then it is straightforward
to show that

λ1 = −
c0 + e1 + (a11 + a22)λ

2
0

2(b + 2aλ2
0)

, e1 = 2c0 − Fl;

that is, under assumptions of stability of the non-dissipative
system (9) and in the case when both a > 0 and c > 0 (one can
show that this is physically realizable), the system experiences
instability, λ1 > 0, for an arbitrary small dissipation ε.
Fig. 6. Skipping stone.

6. Discussion

In this work we have illustrated the power of two
classical theorems due to Thomson–Tait–Chetayev and Merkin
concerning the destabilizing non-conservative effects. This
was shown by analyzing several phenomena currently
under discussion in the literature (such as radiation-induced
instabilities, the Levitron, etc.) using these classical results.

We have also introduced a basic geometric interpretation
of the two fundamental non-conservative destabilization
mechanisms (dissipation that destabilizes a gyroscopically
stabilized system and positional forces that can destabilize a
system even at an energy minimum, as shown in Fig. 2(c)
and (d)) and demonstrated that one can have the simultaneous
appearance of both types of non-conservative effects in physical
systems. The behavior of the second variation δ2 H at the
equilibrium point selects the appropriate type of destabilizing
non-conservative forces. Also, the interaction of both types
of non-conservative effects naturally leads to the notion of
secondary dissipation-induced instabilities.

As the structure of the complete fundamental system
(1) and the associated geometric picture in Fig. 2 suggest,
the two non-conservative destabilizing effects that we have
discussed exhaust the most fundamental possibilities for linear
instabilities in finite-dimensional mechanical systems.

At this stage there is no analogous rigorous theory for
infinite-dimensional systems, and a naive translation of the
above results can lead to a number of pitfalls associated with
infinite dimensionality, as shown in [25] and [26]. However,
the abundance of many infinite-dimensional physical systems,
such as fluid systems, for which this sort of theory is formally
applicable, requires further developments. The discussion in
Section 4 on the Levitron problem already indicates that, for
some systems, an appropriate description involves the coupling
of rigid body and field dynamics.

Another fascinating physical system—skipping stones
(cf. Fig. 6)—also exhibits the coupling of rigid body
and field equations. However, besides the oversimplified
phenomenological theory [27], there is no adequate (even
approximate finite-dimensional) description of the skipping
stone problem, which would allow one to understand the
physics better. It is notable that skipping stones (cf. Fig. 6)
require an initial spin Ω for gyroscopic stabilization [27] and
their interaction with the underlying fluid leads to dissipation.
Therefore, an approximate, finite-dimensional, description
should fit the universal picture introduced in the present paper.
In particular, the known fact of gyroscopic stabilization and
the presence of dissipation in this problem should allow one
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to conclude that the skipping stone will always be unstable,
in accordance with experience and with Theorem 1; as in the
Levitron, depending on the details of the particular situation,
the characteristic time of instability can be large.

Finally, we note that there are also infinite-dimensional
systems which do not readily admit an approximate finite-
dimensional mechanical analog. This class of essentially
infinite-dimensional problems usually corresponds to field
equations without coupling to rigid body dynamics. One such
example is the baroclinic instability—a large scale instability
of the westerly winds in mid-latitudes (see [25]). It is curious
that the destabilizing Eckman layer dissipation in this problem
corresponds to the geometrical picture 2(d), i.e. one has a
stable equilibrium with definite second variation δ2 H that is
destabilized by non-conservative forces that are analogous to
positional forces in the finite-dimensional case.
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Poincaré equations and double bracket dissipation, Comm. Math. Phys.
1975 (1996) 1–42.

[3] W. Thomson, P.G. Tait, Treatise on Natural Philosophy, Cambridge
University Press, 1879.

[4] N.G. Chetayev, The Stability of Motion, Pergamon Press, 1961.
[5] D.R. Merkin, Introduction to the Theory of Stability, Springer-Verlag,

1997.
[6] D.R. Merkin, Gyroscopic Systems, Nauka, Moscow, 1974 (in Russian)

(first edition, 1956).
[7] A.V. Karapetyan, V.V. Rumyantsev, Stability of conservative and

dissipative systems, Itogi Nauki Tekh. 6 (1983) 3–128.
[8] P. Hagerty, A.M. Bloch, M.I. Weinstein, Radiation induced instability in
interconnected systems, in: Proceedings of the 38th CDC, IEEE, 1999,
pp. 651–656.

[9] T.M. Cherry, Some examples of trajectories defined by differential
equations of a generalized dynamical type, Trans. Cambridge Philos. Soc.
23 (1925) 165–200.
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