
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 412004 (18pp) doi:10.1088/1751-8113/42/41/412004

FAST TRACK COMMUNICATION

On the origin and nature of finite-amplitude
instabilities in physical systems

R Krechetnikov1 and J E Marsden2

1 University of California at Santa Barbara, Santa Barbara, USA
2 California Institute of Technology, Pasadena, USA

Received 26 May 2009, in final form 10 September 2009
Published 29 September 2009
Online at stacks.iop.org/JPhysA/42/412004

Abstract

Finite-amplitude instabilities are ubiquitous, but their theory and precise
definitions require clarification. In this work, we discuss the interrelation of
various notions connected with finite-amplitude instabilities and offer a precise
context for these phenomena. Then we establish a connection between non-
normality of linear operators, energy conservation by nonlinear operators and
the existence of finite-amplitude instabilities in finite- and infinite-dimensional
dynamical systems, both in the conservative and dissipative cases. Such a
connection may at first appear counter-intuitive since it relates intrinsically
linear and nonlinear phenomena, but it follows naturally from the properties
of linear and nonlinear operators when they appear together in a dynamical
system. In particular, the main theorem of this communication proves that
non-normality is a necessary condition for a finite-amplitude instability. It
is demonstrated that this phenomenon is relevant to a wide class of physical
systems with energy-conserving nonlinearities.

PACS numbers: 47.15.Fe, 47.27.Cn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Motivation

This work originated from the question: is it possible to have finite-amplitude instabilities in
evolution problems having the standard form

du

dt
= Au + N(u), (1)

with purely dissipative linear operators A (i.e., when the spectrum of A is located in the left
half-plane) and energy-conserving nonlinear terms N(u)? In recent years, there has been
a growing interest in physical systems, models for which have energy-conserving nonlinear
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terms, such as the classical Navier–Stokes equations (NSEs). One can write these equations
for the perturbation velocity field u superimposed on a base flow U in the form (1) with the
linear and nonlinear terms given by

Au = P[−U · ∇u − u · ∇U + Re−1�u], (2a)
N(u) = −P[∇ · (u ⊗ u)], (2b)

where P is the Leray projection onto the space of divergence-free vector fields and Re is
the Reynolds number. The NSEs are used, in particular, in the analysis of the transition to
turbulence. However, it is known that, for example, in plane Couette flow, the experimentally
observed transition to turbulence is not explained by a linearized spectral stability analysis of
the NSEs. The latter is usually done using a Fourier transform in the stream-wise direction
(see, for instance, [1]), and it predicts spectral and nonlinear stability for all Reynolds numbers
(nonlinear stability being due to [2]). This stimulated the following reasoning [3–6]: assume
that the spectrum of the linearized operator (2a) is in the left half-plane [1], and the nonlinear
terms of the NSEs are energy conserving3 [5], i.e.,∫

�

(u, N(u)) dx = 0; (3)

then it is usually argued that the only way to get energy growth of a perturbation u under
these conditions is through the transient growth mechanism [3], i.e. transient growth of a
solution of the linearized problem (1) before its eventual decay to zero as t → +∞. The latter
mechanism is due to generic non-normality of the linearized NSE operator4 AA† �= A† A,
where A† is the operator adjoint to A, and the existence of sensitive directions in the geometry
of this non-normal operator A. This has led to the assertion that the transition is ‘essentially
linear’ [3]. Analogous to [3], Reddy and Henningson [7] argued that subcritical bifurcations
of Couette and Poiseuille flows are related to the presence of transient growth. While the
linear operator (2a) in the NSEs is generically non-normal due to non-trivial base states and/or
boundary conditions, there are situations when it is normal5. In such cases, the linear stability
analysis is significantly simplified as the operator is diagonalizable6.

It should be pointed out that the notion of Lyapunov stability, cf definition 1, used both
in classical linearized stability studies [1] and in the nonlinear stability analysis of Couette
flow [2], does not exclude the possibility of finite-amplitude instabilities, which were in
fact found numerically in 3D Couette flow [9]—there are also experimental indications of
them [10]. Since finite-amplitude instabilities are an exhibition of nonlinear properties of a
system (in fact, they are intrinsically nonlinear phenomena), Manneville [6] advocated that
the non-normality of the linear operator is not itself responsible for the transition. One of
the purposes of this communication is to contribute to the clarification of the interplay of the
linear and nonlinear effects in the occurrence of finite-amplitude instabilities in this and many
other physical systems. As we show in section 3, the presence of non-normal operators is a
necessary condition for finite-amplitude instabilities.

The energy-conservation property of the nonlinear terms in the NSEs is also important in
wave turbulence [11], where the main role of nonlinear terms (advection) is to transfer energy

3 In fact this is true only for very special boundary conditions, e.g., no-slip on finite domains, periodicity and decay
at infinity. While this argumentation is often applied to the flows such as pipe or channel flows [5], these flows do not
obey such boundary conditions!
4 Though, not all non-normal operators lead to transient growth, as will be shown in section 3.1.
5 A linear operator A on H is normal if A is closed, densely defined, and A† A = A A† [21].
6 Moreover, in finite-dimensional and certain infinite-dimensional spaces a normal linear operator is unitarily
diagonalizable. Also, if its eigenvalues are real, then it is self-adjoint (the converse is true as well), i.e. A = A†, as in
the classical Rayleigh–Benard convection [8].

2



J. Phys. A: Math. Theor. 42 (2009) 412004 Fast Track Communication

from the large eddies at the integral scale where the system is forced to smaller eddies and
eventually to the viscous sink; there is also an inverse energy cascade in 2D turbulence [12].
In addition, there are various physical systems from geophysical fluid dynamics to plasma
physics, where nonlinearities are energy conserving, e.g., low-order models of large-scale
atmospheric variability [13] derived by truncation of the spectral Galerkin projection. It has
been realized that using a metric in a Galerkin projection that guarantees energy-conserving
nonlinear terms in the resulting dynamical system improves the performance of the low-order
model considerably [13]. Analogously, simplified models of the resonant nonlinear interaction
of equatorial baroclinic and barotropic Rossby waves [14] have energy-conserving nonlinear
terms. These equations were shown to have a Hamiltonian structure and to admit analytic
solitary wave solutions. Finally, a two-field model for collisionless trapped electron mode
turbulence [15] is also known to have energy-conserving nonlinearity and to exhibit a finite-
amplitude instability as opposed to single-field models, which are therefore inadequate for the
description of collisionless plasmas as argued in [15].

Subcritical bifurcations are also ubiquitous in various convection problems, e.g., double-
diffusive convection [16], non-Boussinesq convection [8], magneto-convection [17], etc. In
most of these cases, the nonlinear terms are energy conserving, e.g., classical double-diffusive
convection, but the linear operator fails to be normal, which allows for subcritical bifurcations.

1.2. Paper outline

This communication is organized as follows. First, in section 2.1 we introduce and discuss
the notion of finite-amplitude instabilities along with a few auxiliary definitions, used in
the formulation of the main results in section 2.2 and construction of the theory in the
subsequent text. In section 3, we provide a proof of theorem 1 in finite and infinite dimensions.
Section 4 gives an illustration, both analytical and graphical, of the theorem and corollaries, as
well as how the interplay of non-normality of the linear operator and energy conservation of the
nonlinear operator gives rise to a finite-amplitude instability. Also, in section 4.3 we discuss
the conditions for nonlinear terms to be energy conserving, and in section 4.2 the implication
of theorem 1 for normal form analysis and Hamiltonian systems. Finally, in section 4.4 we
formulate a key open question requiring further study.

2. Key notions and the main result

2.1. Notion of finite-amplitude instability

First, we discuss a general notion of finite-amplitude instabilities not restricted to physical
systems with energy-conserving nonlinear terms (and hence the examples in this section need
not comply with this restriction). Informally, the basic meaning of a finite-amplitude instability
of a Lyapunov stable equilibrium point of (1), e.g. the origin u = 0, is the existence of initial
conditions, which constitute an open set or, at least, have positive measure7, outside of a ball
of finite radius centered at the equilibrium point, such that the solution either tends to infinity,

7 This requirement on the initial conditions is crucial since only generic initial conditions are experimentally
feasible. The importance of this condition is illustrated with the following example. Consider a particular saddle-
node bifurcation in R

3, which should occur at a finite distance from the stable equilibrium at the origin, cf figure 1.
Let this bifurcation create an unstable node and a saddle with two-dimensional unstable manifold, and the origin be
the unique sink on the latter manifold. Then the invariant set consists of the unstable node and the one-dimensional
stable manifold of the saddle. Apparently, there is no finite-amplitude instability of the origin, since there are neither
other attractors nor trajectories that escape to infinity.
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Figure 1. A saddle-node bifurcation in R
3.

‖u‖ → ∞ as t → ∞, or to some invariant set other than the origin. A simple mathematical
example of finite-dimensional instability is the first-order ordinary differential equation,

dx

dt
= −εx + x2, 0 � ε < 1. (4)

Obviously, x = 0 is a linearly stable equilibrium state. If ε > 0, then x = 0 is asymptotically
stable. But the system has a finite-amplitude instability of critical amplitude σc = ε. In
general, in dynamical systems with dimension higher than 1, the critical perturbation usually
has a directional dependence, and the hyper surface defined by σc is a boundary of the basin
of attraction of the stable equilibrium at the origin.

First, let us state the classical Lyapunov’s notion of stability to arbitrarily small
perturbations.

Definition 1. The origin of (1) is said to be Lyapunov stable, if, for every ε > 0, there
exists a δ(ε) � 0 such that, if ‖u(0)‖ < δ, then the solution u(t) with the initial condition
u(0) exists and ‖u(t)‖ < ε for all t � 0. If, in addition, δ(ε) can be chosen such that
limt→+∞ ‖u(t)‖ = 0, then the origin of (1) is called asymptotically stable.

If the initial condition u(0) in the above definition can be chosen with arbitrarily large
norm ‖u(0)‖, then the origin is called globally Lyapunov stable (globally asymptotically
stable, respectively).

A formal notion of finite-amplitude instability can also be naturally based upon the notion
of a neighborhood of the origin.

Definition 2. The origin of (1) is said to be finite-amplitude unstable if

(i) it is Lyapunov stable, and
(ii) there exist a finite ball and a set of initial conditions, which constitute an open set or, at

least, have positive measure, outside this ball such that the corresponding ω-limit set8,
which may include infinity, does not contain the origin.

Definition 2 can be illustrated with the following two examples in figure 2. The first
one is taken from the Takens–Bogdanov bifurcation, which also illustrates the existence of

8 A point u0 is an ω-limit point of the forward orbit of u(0) if there is a sequence {ti}, ti → +∞, such that u(ti ) → u0;
the set of all ω-limit points is called the ω-limit set [18]. Note that the trajectory u(t) may go to infinity, ‖u(t)‖ → ∞,
if the state space is unbounded, e.g., R

n in finite dimensions (or R
2n for canonical Hamiltonian systems).
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Figure 2. On the notion of finite-amplitude instabilities. (a) Takens–Bogdanov bifurcation:
ẍ = − 1

4 +x2. (b) Subcritical pitch-fork bifurcation: Ȧ = μA+A3. The dashed curve corresponds
to unstable, and solid curves to stable equilibria.

initial conditions at a finite distance from the origin (outside the region defined by the solid
curve), such that the solution tends to infinity as t → ∞. This example can be considered
as an illustration of a hard bifurcation in the terminology of Arnold [19]. The second
example—subcritical pitchfork bifurcation—illustrates the fact that while the origin A = 0
is Lyapunov stable, there may exist stable equilibria A(μ) �= 0 at a finite distance from
the origin with non-zero basin of attraction. As can be seen from the above two examples,
finite-amplitude instabilities occurring due to subcritical bifurcations are a subclass of general
finite-amplitude instabilities even in the category of real smooth dynamical systems: for
a finite-amplitude instability to happen, (1) need not experience a subcritical bifurcation
at the origin. This is important to stress, as the notion of subcritical bifurcations is often
imprecisely used to substitute the notion of finite-amplitude instabilities, leaving aside the
fact that the former are ‘events’ and the latter are ‘properties’. Namely, (local) bifurcation
phenomena occur in dynamical systems, which depend upon a parameter such that a change
in the latter causes the stability of an equilibrium (or fixed point) to change, while instabilities
are the phenomena occurring at fixed values of the parameter upon which a given system may
depend. Finally, it should be noted that global asymptotic stability precludes a finite-amplitude
instability, but global Lyapunov stability does not (the proofs of the corresponding Lyapunov
stability theorem are usually silent about this fact as, for example, in theorem 4.1 in [20]); the
latter is illustrated in figure 3. This distinction will be useful for the subsequent discussion.
One of the popular tests for global Lyapunov stability is based on Lyapunov’s direct method
and thus on the notion of a Lyapunov function [20]. Namely, if there exists a continuously
differentiable, radially unbounded (i.e. V (u) → ∞ as ‖u‖ → ∞), positive-definite Lyapunov
function V (u) such that V̇ (u) is negative semi-definite for all u ∈ R

n, then the equilibrium
point is globally Lyapunov stable. If, in addition, V̇ (u) is negative definite, then the origin is
globally asymptotically stable. More general conditions for global asymptotic stability based
on LaSalle’s invariance principle can be found in [20].

2.2. Main result

While we consider system (1) and its solutions real, defined on a complete inner product (i.e.
Hilbert) space H (this could be a Sobolev space, as dictated by the existence and smoothness
of solutions of (1), but we are not concerned with these issues here), we will need an inner
product to be defined for complex elements of H in the standard way [21], with the convention
〈a u, b v〉 = a∗ b〈u, v〉 for scalars a, b ∈ C, a∗ being the complex conjugate of a.
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Figure 3. Example of a system with globally Lyapunov stable origin (which is also locally
asymptotically stable), but subject to a finite-amplitude instability—the shaded region is filled with
periodic orbits.

We define the energy to be the squared norm of the solution of (1):

E = 1
2‖u‖2, (5)

where the norm ‖ · ‖ is induced by the inner product; for example, in finite dimensions u ∈ R
n

and the norm is the standard Euclidean norm. Note that we use the term ‘energy’ even though
E, defined by (5), has such a meaning only in some special situations, such as the NSEs
(where it is the kinetic energy). In many other cases, it should be understood as a Lyapunov
function, or generalized energy, or Euclidean norm in the state space of (1). As discussed in
section 4.3, the form (5) is a natural choice for the NSEs in view of its meaning as a Hamiltonian
of the underlying Hamiltonian structure of the conservative part of the NSEs, and also because
it allows one to exploit the following property of the nonlinear terms. We define the nonlinear
terms to be energy conserving if

〈u, N(u)〉 = 0, (6)

e.g. in finite dimensions it would be uT N(u) = 0 for all u ∈ R
n.

For simplicity, we consider the case when the domain of the definition of the linear
operator A is dense in some separable Hilbert space H, which in the context of the NSEs is
usually the case if the flow domain is compact (i.e. it is bounded by solid boundaries and/or
periodic boundary conditions) or (semi-)infinite with the boundary condition of sufficiently
fast decay at infinity, e.g. L2(Rn); however, the case of semi- and unbounded domains may
lead to non-separable Hilbert spaces, which will be commented in section 3.2.

Then the main result, which applies to the classes of physical systems with energy-
conserving nonlinear terms discussed in section 1.1, can be formulated as follows.

Theorem 1. Assume that for the evolution system (1), posed on a separable Hilbert space
H, the linear (possibly unbounded) operator A is normal, and the following conditions hold:

(a) the initial value problem for (1) is well-posed;
(b) there exists an eigenbasis of A that is an orthonormal basis of H9;
(c) the spectrum of A is discrete with all eigenvalues located in the left half-plane, as well as

there exists ε < 0 such that Re λi(A) < ε < 0 (spectral gap condition)10;

9 This is automatic in finite dimensions, but requires the assumption of a discrete spectrum in infinite dimensions:
cf [22] for the case of a symmetric operator A. While every separable Hilbert space H has an orthonormal basis, the
operator A may have a continuous spectrum and thus a basis different from that of H.
10 Note that in finite dimensions, the spectral gap condition follows from the fact that all eigenvalues are located in
the left half-plane, while in infinite dimensions the spectral gap is a separate technical requirement.
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(d) the nonlinear terms N(u) are energy conserving with respect to the same inner product
in which normality of A is established.

Then the origin of (1) is globally asymptotically stable and thus no finite-amplitude
instabilities occur in the dynamics of (1).

Of particular relevance to our discussion are the following straightforward corollary and
proposition.

Corollary 1. Under the assumptions of theorem 1 a necessary condition for a finite-amplitude
instability to occur in the dynamics of the evolution system (1) with the linear operator A, all
eigenvalues of which have Re λi(A) < 0, and with energy-conserving nonlinear terms N(u)

is non-normality of the linear operator A.

Proposition 1. If the linearization of the evolution system (1) is Hamiltonian11, finite-
amplitude instabilities may occur even when the linear operator is normal and the nonlinear
terms are energy conserving.

It is worth noting that corollary 1 implies that finite-amplitude instabilities can also occur
in evolution systems with energy-non-conserving nonlinear terms and a normal linear operator.
This, of course, is a trivial consequence of the fact that finite-amplitude instability phenomena
are covariant, i.e. independent of the coordinate system, while non-normality is not.

As we establish here, the behavior stated in the theorem, corollary and proposition is
universal for various physical problems. The rest of the communication is devoted to a proof
and interpretation of the above results.

3. Proof and Discussion

The arguments in the proof of theorem 1 are somewhat analogous to the energy stability
method, but the objectives of the latter is to determine the bifurcation parameter value below
which the energy decays, while our goal here is to analyze the bounds on the energy decay
when the linear operator is dissipative (see the definition in the Introduction and in [23]).

Proof. The energy evolution equation is readily obtained from (1) by taking an inner product
with the solution u

1

2

d

dt
‖u‖2 = 〈u, Au〉, (7)

since the nonlinear terms are energy conserving.
Since the operator A, defined on a separable Hilbert space H, is normal, then the spectral

theorem [21, 24, 25] implies that it is diagonalizable and, by the assumption of the theorem,
its eigensolutions {φi}i=1,+∞ can be chosen as an orthonormal basis on H (a more transparent
analysis will be given in finite dimensions in section 3.1); recall that every separable Hilbert
space has an orthonormal basis. Note that A can be unbounded, as is relevant to differential
operators. Then, using the spectral representation of the solution

u(t, x) =
∑

i

ai(t)φi (x),

it follows that

‖u‖2 = 〈u, u〉 =
∑
i,j

〈aiφi , ajφj 〉 =
∑
i,j

a∗
i aj 〈φi ,φj 〉 =

∑
i

|ai |2

11 In this case, of course, for the origin of (1) to be stable, the eigenvalues λi(A) must lie on the imaginary axis,
Re λi(A) = 0.
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Figure 4. On the bounds on the energy norm ‖u‖2 evolution: the admissible dynamics is limited
to shaded regions. (a) The case of a normal linear operator A: the dynamics is bounded by its
maximal and minimal eigenvalues (9). The case of real eigenvalues is shown. (b) The case of a
non-normal linear operator A: the dynamics is bounded by minimal and maximal eigenvalues (15)
of the symmetric part of A.

and

〈u, Au〉 =
∑
i,j

〈aiφi , aiAφi〉 =
∑
i,j

a∗
i ajλj 〈φi ,φi〉 =

∑
i

λi |ai |2,

where the obvious relation Aφi = λiφi was utilized. As a result, (7) takes the form∑
i

1

2

d

dt
|ai |2 =

∑
i

λi |ai |2. (8)

Because all eigenvalues are located in the left half of the complex plane, i.e. Re(λi) < 0,
then from (8) it follows that the bounds on the energy norm (5) are given by the maximal and
minimal real parts of its eigenvalues

min
i

Re(λi)‖u‖2 � 1

2

d

dt
‖u‖2 � max

i
Re(λi)‖u‖2, (9)

i.e. the evolution of ‖u‖2 is bounded to a region shown in figure 4(a). Note that Re(λi) < ε < 0
in view of the assumed spectral gap condition. Therefore, regardless of the initial amplitude
and the geometry of a perturbation, its energy decays to zero, which proves global asymptotic
stability and hence prohibits the existence of any finite-amplitude instabilities and thus proves
theorem 1. �

Corollary 1 and proposition 1 are a direct consequence of theorem 1. In particular,
proposition 1 follows from the fact that if the origin of a Hamiltonian system is Lyapunov
stable, then the eigenvalues of the linear operator are located on the imaginary axis and thus
the bounds (9) do not apply. A specific example is given below.

3.1. Finite dimensions

To simplify the discussion, we first consider the case when the operators in (1) are defined on
a finite-dimensional inner product space, which is also relevant to discretized versions of the
NSEs used in various direct numerical simulations. In this case, the linear operator is just a
real n × n matrix: A ∈ Mn×n(R).

For the purpose of the subsequent discussion, it is instructive to sketch the proof
of theorem 1 from the standpoint of direct matrix computation. The energy evolution

8
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equation (7) is readily obtained from (1) by multiplying it by uT on the left, i.e. by taking an
inner product with u.

Since the matrix A is normal, then it is diagonalizable [26] (see also [27, 28]), i.e. there
exists a matrix P such that A = PDP−1, where D is the diagonal matrix containing the
eigenvalues of A. Then, equation (7) can be rewritten as

1

2

d

dt
uT P · P −1u = uT P · D · P −1u. (10)

Since A is normal, the matrix P can be chosen to be unitary (more generally, the matrix P is
unitary if and only if A is normal12). Because all eigenvalues Re(λi) < 0, then the bounds
on the energy norm (5) are given by the maximal and minimal real parts of its eigenvalues
(9), i.e. the evolution of ‖u‖2 is bounded to a region shown in figure 4(a). In the derivation
of (9) from (10) in finite dimensions, the facts that (P −1u)H = uT P , with H denoting the
Hermitian transpose, and thus ‖P −1u‖ = ‖u‖ are utilized. This proves theorem 1 in the
finite-dimensional case.

Next, to illustrate proposition 1 in finite dimensions, the Takens–Bogdanov system in
figure 2(a) can be written using x = − 1

2 + ξ and ξ̇ = η, as(
ξ̇

η̇

)
=

(
0 1

−1 0

)(
ξ

η

)
+

(
0
ξ 2

)
, (11)

where the linear operator is evidently skew-symmetric and thus normal, but its eigenvalues are
on the imaginary axis; hence the bounds (9) are not applicable. The nonlinear terms can easily
be modified to make them energy conserving, while still retaining the fact of the presence of
finite-amplitude instabilities. The latter can be achieved, if, for example,

(a) the nonlinear term is replaced with the vector [a(ξ, η), b(ξ, η)]T such that the energy-
conservation condition ξ a + η b = 0 holds,

(b) there exists an equilibrium point different from the origin (ξ0, η0) �= 0, which is the
solution of the system η = −a, ξ = −b, and

(c) the linearized operator
(

aξ

bξ −1
aη+1
bη

)
, evaluated at (ξ0, η0) �= 0, has both eigenvalues λ1,2

with Re λ1,2 � 0.

Then there exists a stable equilibrium other than the origin, and hence one gets a finite-
amplitude instability. As a particular choice of the functions a(ξ, η) and b(ξ, η), one can
have a = η k(ξ, η) and b = −ξ k(ξ, η) with the function k(ξ, η) satisfying two conditions:
k(ξ, η) = −1 and kη(ξ, η) � 0, at the equilibrium point (1, 0). Clearly, there are an infinite
number of possible choices for k(ξ, η). Note that the system resulting from such a modification
of the Takens–Bogdanov system is not Hamiltonian, in general, but its linearization around
the origin is, as reflected in proposition 1.

To develop an intuition about corollary 1, re-consider equation (10) in the case when P is
non-unitary. Since (P −1u)H �= uT P for a non-unitary matrix P, then one cannot expect that
the energy decays monotonically if the matrix A has eigenvalues with Re λi(A) < 0. In fact,
the energy evolution is dictated not only by the eigenvalues of A but also by the eigenvalues
of its symmetric part, since

uT Au = uT ASymu. (12)

12 Indeed, let A be normal, i.e. A AT = AT A. Since A AT is symmetric and thus orthogonally diagonalizable,
and it commutes with A and AT, then the eigenvectors of A AT are also eigenvectors of A. Because A AT has a
complete orthonormal set, then A = PDP−1 is also diagonalizable. The necessity follows from the assumption that
P is orthonormal, which leads to the conclusion that A must be normal.
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For example, if a1 �= a2, the matrix A given by

A =
(−a1 1

0 −a2

)
, (13)

as used later in the example in section 4, is diagonalizable with eigenvalues λi = −ai , i = 1, 2,
and the matrix P is given by

( 1
0

1
−a1

)
. Then, for A from (13) we get ASym = (−a1

1/2
1/2
−a2

)
and

its eigenvalues

λ1,2 � ± 1
2 − 1

2 (a1 + a2) ± 1
4 (a1 + a2)

2 + O
(
a4

1, a
2
1a

2
2, a

4
2

)
, (14)

i.e. the matrix ASym is not definite.
Thus, if the matrix A is non-normal, then as follows from the above discussion, it is more

insightful to deal with eigenvalues of its symmetric part:

min
i

λ
Sym
i ‖u‖2 � 1

2

d

dt
‖u‖2 � max

i
λ

Sym
i ‖u‖2, (15)

which, in turn, dictates the dynamics as in figure 4(b), i.e. the evolution of ‖u‖ is bounded
by the maximal and minimal eigenvalues of the symmetric part of a non-normal matrix A, the
substantial difference of which from (9) is due to the transient growth. Obviously, the bounds
(15) are too loose for long-time evolution, as it is controlled by the maximal and minimal real
parts of the eigenvalues of the non-normal matrix A similar to the normal case (9), where such
control is valid for all times. Therefore, the energy argument in this case does not prohibit
an existence of finite-amplitude instabilities for evolution systems with non-normal linear
operators and energy-conserving nonlinear terms, as suggested by corollary 1.

Next, it should be illustrated that non-normal operators, as for example

A =
(

0 1
−2 0

)
, (16)

do not necessarily lead to transient growth as defined in section 1.1: the solution of the
corresponding linear initial-value problem, ut = Au, is just oscillating in time with frequency√

2. However, for any non-normal operator with all eigenvalues located in the left half-plane,
Re(λi) < 0, there always exist initial conditions which lead to transient growth. The latter
follows from non-orthogonality of eigenvectors and will be illustrated in section 4.

It should be stressed, however, that the occurrence of finite-amplitude instabilities is not
guaranteed by non-normality of the linear operator itself, but is also controlled by the existence
of ω-limit sets not containing the origin (e.g. at least one stable fixed point different from the
origin should exist; also, recall that we defined an ω-limit set as possibly containing infinity,
cf section 2.1).

As an alternative to studying the eigenvalues of ASym, one can analyze singular values
of A, which are an important tool used in transient growth analysis [29]. Indeed, for a real
square matrix A ∈ Mn×n(R), its singular value decomposition is A = U�V T , where U and
V are orthogonal matrices and � is a diagonal matrix containing non-negative singular values
σi of A. Then, from the properties of all these matrices it follows that

min
i

σi‖u‖2 �
∣∣∣∣1

2

d

dt
‖u‖2

∣∣∣∣ = |uT Au| � max
i

σi ‖u‖2, (17)
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which illustrates the geometric meaning of A = U�V T —the matrix A maps the unit sphere
into an ellipsoid with semi-axes equal to singular values of A, since U and VT are orthogonal.
Clearly, the lower bounds obtained from the singular value decomposition analysis (17) are
less informative than those obtained from the analysis of the symmetric part of A, as in (15),
because of non-negativeness of singular values. Also, the upper bounds obtained from the
singular value decomposition analysis may be looser than those obtained from the analysis of
the symmetric part of A; for example, in the case of the matrix (13) the singular values are
given by

σ1 � 1 + O
(
a2

1, a
2
2

)
, σ2 � 0 + O

(
a2

1, a
2
2

)
, (18)

which certainly give an ‘overshoot’ upper bound compared to (14). It should be noted, though,
that singular and eigenvalue decompositions coincide if the matrix is symmetric positive semi-
definite. Indeed, recalling that singular values are positive square roots of the eigenvalues of
the matrix AAT , and that AAT = A2

Sym −A2
Skew with ASym being symmetric and ASkew skew-

symmetric parts of A, one can observe that for symmetric and almost symmetric matrices,
the main contribution to singular values comes from ASym

13, while for highly non-normal
matrices both symmetric and skew-symmetric components contribute more equally to the
singular values of A.14 However, the use of singular value decomposition is indispensable in
identifying the directions of optimal disturbances; namely, if v1 and u1 are column vectors of
V and U corresponding to σ1, one obtains

Av1 = σ1u1, (19)

which describes the amplification of the initial condition v1 by a factor σ1, ‖Av1‖ = σ1.

3.2. Infinite dimensions

With regard to the bounds (9) and figure 4(b), it should be noted that in the infinite-dimensional
case the real part of the minimal eigenvalue may tend to −∞, e.g. in the case of the Dirichlet
problem for the Laplace operator −� on a bounded domain.

Next, the fact that the linear operator A can be unbounded, i.e. the condition that there
exists M > 0 such that for all u ∈ H the inequality ‖Au‖ � M‖u‖ does not hold, does
not contradict the fact of the existence of an orthonormal eigenbasis, which spans the space
H. Indeed, the fact that the eigensolutions {φi}i=1,+∞ of Aφi = λiφi span H implies that
‖Au‖2 = ∑

i |λi |2 |ai |2, which can be infinite, while the solution norm ‖u‖2 = ∑
i |ai |2

should be finite. Thus, the boundedness of the linear operator is not implied by the existence
of an orthonormal eigenbasis.

The proof of theorem 1 can be extended to the case of infinite-dimensional operators in (1)
on non-separable Hilbert spaces, which often occur when the evolution problem (1) is defined
on (semi-) infinite spatial domains and thus leads to continuous spectra; while the spectral
theorem for normal bounded operators on non-separable Hilbert spaces is known [25], the
case of unbounded operators may need some further elaboration [21]. The case of continuous
spectra may also occur on separable Hilbert spaces and thus requires special treatment, as, for
example, the Laplace operator on L2(R), which is a separable Hilbert space, has a continuous
spectrum [30], namely λ = −k2, k ∈ R with generalized eigenfunctions eikx , x ∈ R. In
summary, it should be stressed that there are a number of technical conditions, including
normality of the linear operator which goes beyond the formal equality AA† = A† A, to be

13 As an illustration, consider the matrix (13), where the symmetric part is given by ASym =
( −a1 1/2

1/2 −a2

)
and

skew-symmetric one is ASkew =
(

0 1/2
−1/2 0

)
. Clearly, the symmetric part dominates for |ai | � 1.

14 If A is almost skew-symmetric, then it is almost normal.
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Figure 5. Finite-amplitude instability phenomena from the phase-space geometry viewpoint:
phase portraits of the example (20). Red dots are stable equilibria: the origin is a stable node and
the rest are stable foci (at Re = 2

√
2 two saddles and two stable nodes appear; further growth

of Re turns these nodes into stable foci shown in (b) and (c)). (a) Almost normal operator:
Re = 0.1. No finite-amplitude instability of the origin (stable node). (b) Non-normal operator:
Re = 2.85. Finite-amplitude instability of the origin due to the presence of two stable foci.
(c) Highly non-normal operator: Re = 102. Finite-amplitude instability of the origin due to the
presence of two stable foci. (d) Highly non-normal operator: Re = 102. Zoomed out (c) in the
neighborhood of the origin.

checked in order to exclude finite-amplitude instabilities from the dynamics of (1) based on
theorem 1.

4. Interpretations and discussion

4.1. Geometric interpretation of theorem 1

While the proof above highlights some of the salient features of the interrelation of the
occurrence of finite-amplitude instabilities and non-normality of linear operators in systems
with energy-conserving nonlinearities, one can still gain more insight from particular examples.
First, we would like to analyze the example, originally given by Trefethen et al [3], from the
phase-space geometry viewpoint. Its phase portraits are a good illustration of theorem 1: in
the normal case, or almost normal case as in figure 5(a), there is no finite-amplitude instability,
while starting with some degree of non-normality, controlled by the parameter Re, finite-

12
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amplitude instabilities appear as in figures 5(b) and (c). Namely, the example is of the form
(1) with the linear and nonlinear operators defined as

A =
(−a1 1

0 −a2

)
, N(u) = ‖u‖Bu, (20)

respectively, where a1 = Re−1, a2 = 2 Re−1, B = ( 0
1

−1
0

)
and u = (u1, u2)

T . This model
problem exhibits non-normality of the linear operator for Re � 1 and a finite-amplitude
instability [3], as illustrated in figure 5. It should be pointed out that the nonlinear terms in
(20) are energy conserving, uT N(u) = 0, in view of the skew-symmetry of the matrix B. Since
the eigenvectors of A are almost parallel for Re � 1:

e1 =
[

1
0

]
, e2 =

[
1

−Re−1

]
, (21)

the linearized system u̇ = Au experiences a transient growth on the time scale t = O(Re),
e.g. for the initial conditions u(0) = [0, 1]T :

u =
[

t + O
(

t2

Re

)
1 − 2t

Re
+ O

(
t2

Re2

)
]

.

This is also reflected on the phase portrait of the system: with an increase in non-normality,
the trajectories are deformed from the picture in the almost modal coordinates in figure 5(a)
to the highly deformed one in figure 5(c), the geometry of which near the origin is defined
by the eigenvectors, as shown in figure 5(d). It is also notable that the domain of attraction
near the origin shrinks with Re increasing.

4.2. Relation to normal form analysis

Examples such as (20) considered above are often derived by (invariant manifold) reduction
from a more complete model, e.g. NSEs, and thus for the sake of local bifurcation analysis
can be simplified further through normal form transformations [31]. A natural question to
ask is whether the property of energy conservation by nonlinear terms is invariant under
such transformations or not? The answer to this question certainly affects the ability of the
transformed model to capture finite-amplitude instability phenomena present in the original
model.

As can easily be inferred from the simple case (20) with N(u) smoothed out (so that
application of the normal form analysis is possible), the normal form is

dx

dt
= Jx +

(
0

ax2
1

)
, where x =

(
x1

x2

)
, (22)

where the nonlinear term becomes non-energy conserving and thus energy conservation by
nonlinear terms is not invariant under the normal form transformations. Conversely, one can
have the situation when the linear operator is non-resonant and the original nonlinear operator
is not energy conserving and thus after the normal form transformation one arrives at the
linear system with no nonlinear terms, which is of course a trivial case of energy-conserving
nonlinear terms. This non-invariance property is due to the fact that the normal form analysis
is local, while the energy conservation by nonlinear terms dictates the global phase (or state)
space structure, in particular finite-amplitude instabilities.

13
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There are, however, normal forms which exhibit finite-amplitude instabilities, e.g. the
normal form

Ȧ = i(λA − |A2|A − εA∗) − δA, λ, ε, δ ∈ R, A ∈ C, (23)

studied in [32, 33]. The latter works illustrate instabilities in Hamiltonian systems occurring
due to symmetry-breaking deformations, such as in the problem of a vortex filament in a
cylindrical vessel the cross-section of which is perturbed from a circular to an elliptical shape
of small eccentricity. The normal form (23) has both the non-normal linear operator and
non-energy-conserving nonlinear terms, which allows for the existence of finite-amplitude
instabilities according to theorem 1. It would be interesting, though, to identify a class of
normal forms with the property of energy conservation by nonlinear terms as such normal
forms would have a better reflection of some of the global features of the NSEs.

4.3. The conditions for and meaning of energy conservation by nonlinear terms

Since in this work we consider physical systems with energy-conserving nonlinear terms, it is
worth commenting on the mathematical and physical conditions under which nonlinear terms
possess the property (6). Apparently, the condition (6) holds if N(u) is orthogonal to u for
all u, or, as suggested by example (20), if N has the form N(u) = N ′(u)u, with the matrix
N ′(u) being skew symmetric for all u. The same applies to the infinite-dimensional case,
but with an appropriate definition of the inner product, e.g. the nonlinearity in the NSEs for
incompressible fluid (2b) gives,

〈u, N(u)〉 =
∫

�

(u,∇ · (u ⊗ u)) dx =
∫

�

∇ · (u|u|2) dx = 0, (24)

which is due to the divergence-free velocity field and thus due to the ability to put the product
of the solution vector with nonlinear one in the divergence form. In other words, the nonlinear
operator in the NSEs is skew in the case of no-slip, periodic or decay at infinity boundary
conditions and because ∇ → −∇ when x → −x. From a physical point of view, this
conservation property is clearly related to the second (spatial) component in the material
derivative, D/Dt = ∂t + (u · ∇). Namely, if the transport of some scalar C is considered, the
convective part (u · ∇)C represents the time rate of change of C due to the fact that the fluid
particle, which at time t is at the position x, moves to a new position in space. Thus, locally
C can change, but globally it is conserved if there is no net flux of C through the boundaries,
i.e. all local changes cancel each other when summed up over the entire domain.

Alternatively, the property (6) can be understood based on the relation between dissipative
and conservative systems. As we saw in the relation between the Euler and NSEs, for example,
conservative systems form a basis for dissipative formulations15. Therefore, below we discuss
the condition (6) just in the context of finite-dimensional conservative formulations (similar
arguments apply to continuous systems); linear dissipative terms can be added to make the
linear operator as in theorem 1. It is notable that the nonlinearity in the NSEs is independent
of the dissipative effects and thus is exactly the same in the Euler equations. The latter have
an underlying (non-canonical) Hamiltonian structure with the Hamiltonian H = ‖u‖2/2 [37];
therefore, since Euler’s equations are conservative, then H is conserved, which means that the
nonlinear terms must conserve H too. Thus, while most of the systems we study in mechanics
and physics are dissipative as the NSEs are, this leads to the question: under which conditions
do Hamiltonian systems, often underlying dissipative formulations, belong to the class of
nonlinearly energy-conserving systems?

15 If, however, one starts from a dissipative system and would want to decompose it into Hamiltonian and dissipative
parts, such decomposition is non-unique in general [34–36].
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Let us first look at canonical finite-dimensional Hamiltonian systems. For example, in
two dimensions:

dp

dt
= −∂H

∂q
, (25)

dq

dt
= ∂H

∂p
, (26)

the nonlinear terms would enter through the cubic or higher order contribution HN in the
Hamiltonian, H(p, q) = HL(p, q)+HN(p, q), and would be (phase space) energy conserving
if HN satisfies the first-order linear partial differential equation

−p
∂HN

∂q
+ q

∂HN

∂p
= 0. (27)

The latter is feasible only if HN(p, q) = HN(q2 +p2). These results can easily be generalized
onto 2n-dimensional Hamiltonian systems written in a symplectic form

dzi

dt
= J ij ∂H

∂zj
, zi = (qi, pi), (28)

i.e. the condition (27) becomes

ziJ
ij ∂HN

∂zj
= 0. (29)

Addition of a linear dissipative operator to (28) does not change the condition (29).
Since we are dealing with the energy form (5), which in finite dimensions has the meaning

of the Euclidean norm in the phase space, there must be a natural connection to the Liouville
theorem on the conservation of the phase-space volume. Since a Hamiltonian system linearized
around the origin is still Hamiltonian then the dynamics generated by the nonlinear contribution
HN is still incompressible, i.e. leaves the phase-space volume intact.

The latter observation suggests that there should be a global conservation law associated
with the property of energy conservation by nonlinear terms. This fact leads to an interesting
insight into the nature of energy-conserving nonlinear terms, as can be seen from the point of
view of Lagrangian mechanics. Indeed, let us start with an action integral

S =
∫

L(q, q̇) dt, q ∈ R
n, (30)

with some Lagrangian density L(q, q̇). Application of Hamilton’s principle leads to the
Euler–Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= 0. (31)

Let us consider simple mechanical systems, i.e. L(q, q̇) = T (q̇)−V (q), where T = q̇2/2. If
the potential consists of linear (quadratic) and nonlinear parts, V (q) = VL(q) + VN(q), then
the phase-space energy is conserved by the nonlinear terms iff

q̇i

∂VN

∂qi

= 0 ⇒ d

dt
VN(qi) = 0 ⇒ VN(qi) = const, (32)

which implies the existence of a conserved quantity; in this case q̇i (∂VN/∂qi) = 0 appears
to be analogous to the angular momentum conservation and also has a meaning that no work
is done by the forces Fi = −∂VN/∂qi , that is δW = ∑

Fiδxi = ∑
Fiq̇iδt = 0. Then, if a

converse to Noether’s theorem applies [38], this fact implies that conservation of energy by
nonlinear terms means existence of symmetries in a given physical system.
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Figure 6. Distribution of the energy gradients, Ė ≡ dE/dt = −u2
1/Re − 2u2

2/Re + u1 u2, for
figure 5(d).

4.4. Open problem: sufficient conditions for finite-amplitude instabilities

In conclusion, it is worth commenting on the general problem of finding finite-amplitude
instabilities in a given dynamical system. Since the energy appears to be the cornerstone
of the overall discussion, it is natural to appeal to the Lyapunov direct method [39] (based
on a consideration of a Lyapunov function). While this method is usually used for studying
the stability of the origin of (1), its extension should be suitable for finding finite-amplitude
instabilities thanks to its global character. In particular, the level sets of the time gradients
of the energy in figure 6 and alternating-sign Ė suggest that some trajectories may leave the
neighborhood of the origin if the perturbation amplitude is high enough. However, the fact of
stability of the origin in some neighborhood is consistent with LaSalle’s invariance principle
(theorem 4.4 in [20]), which in turn implies that the sufficient conditions for Lyapunov (not a
finite-amplitude) instability in the key instability theorem of Chetayev (theorem 4.3 in [20])
are not met. An intuitive sufficient condition for finding finite-amplitude instabilities can be
based on the definition of a finite-amplitude instability formulated in section 2.1. Namely,
given a finite-dimensional dynamical system ẋ = f(x) with the spectrum of the vector field
linearized around the origin x = 0 located in the left half-plane, Re(Dxf(0)) < 0 (so that the
origin is Lyapunov stable), a sufficient condition for a finite-amplitude instability to occur is
the existence of an (not necessarily compact) invariant set M disjoint from the origin in the state
space, dist(M, 0) > 0. Practically, set M is identified by finding a Lyapunov function V such
that V̇ � 0 in M (note that the space energy E = x2/2 may grow on some parts of a trajectory
in M due to transient growth). A proof of the above sufficient condition is straightforward, and
its illustrations are given for two-dimensional state space in figure 7. This sufficient condition
is a generalization of the concept of a trapping region [18], which is a compact set N such that
the flow of (1) gives φt(N) ⊂ int(N) with int(N) being the interior of N. Basically, the vector
field points inward everywhere on the boundary of M (or N if it is a compact). It should be
noted that the fact of the presence of a transient growth does not invalidate this condition; the
size of the subsets defined by V̇ � 0 may shrink, through.

Extension of the above sufficient condition for finding finite-amplitude instabilities to
PDEs is not straightforward in view of infinite dimensionality of the phase space and issues
with existence of a solution, etc, which invites future endeavors in view of the practical
importance of identifying finite-amplitude instabilities in the behavior of physical systems.
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Figure 7. On a sufficient condition for finite-amplitude instability; set M is defined by the points
where V̇ � 0 with V being a Lyapunov function. (a) Compact set M. (b) Non-compact set M
contained in a sector of angle δ.

Lastly, given the observation that the linear operator in the NSEs is generically non-normal
(since the base states, stability of which is studied, are usually non-trivial) one may conjecture
that finite-amplitude instabilities are generic phenomena in the context of the NSEs (or systems
of similar complexity). Clarification of this conjecture may help to advance our understanding
of the transition to turbulence problem. In particular, this may clarify if turbulence in shear
flows is a transient [40] or an instability phenomenon.
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