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Abstract We explore the key differences in the stability picture between extended
systems on time-fixed and time-dependent spatial domains. As a paradigm, we take
the complex Swift–Hohenberg equation, which is the simplest nonlinear model with
a finite critical wavenumber, and use it to study dynamic pattern formation and evolu-
tion on time-dependent spatial domains in translationally invariant systems, i.e., when
dilution effects are absent. In particular, we discuss the effects of a time-dependent
domain on the stability of spatially homogeneous and spatially periodic base states, and
explore its effects on the Eckhaus instability of periodic states. New equations describ-
ing the nonlinear evolution of the pattern wavenumber on time-dependent domains
are derived, and the results compared with those on fixed domains. Pattern coarsening
on time-dependent domains is contrasted with that on fixed domains with the help of
the Cahn–Hilliard equation extended here to time-dependent domains. Parallel results
for the evolution of the Benjamin–Feir instability on time-dependent domains are also
given.
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1 Introduction

1.1 Motivation and General Context

There are many natural systems which evolve on time-dependent spatial domains. A
classical example is provided by fluid problems with a free interface that bounds a
spatial domain and deforms in time owing to the motion within the domain, such as
the drop-splash problem shown in Fig. 1a. In the situation depicted in Fig. 1a, the
spatial domain is a circular rim, which evolves in time and experiences an instability
responsible for the crown structure (Krechetnikov and Homsy 2009; Krechetnikov

(a) (b)

(c) (d)

Fig. 1 Patterns observed in problems on growing domains: (a) drop-splash problem: regular crown
(Krechetnikov and Homsy 2009); (b) frustration pattern (Krechetnikov and Homsy 2009; Hartong-Redden
and Krechetnikov 2011); (c) pattern sequence on Pomacanthus semicirculatus (Painter et al. 1999); (d)
patterns on growing square domains (Madzvamuse et al. 2003)
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2011; Hartong-Redden and Krechetnikov 2011). This system exhibits instabilities
leading either to regular structures as in Fig. 1a or to irregular ones as in Fig. 1b.
In particular, the number of spikes may stay constant over the time of evolution or,
in appropriate regimes, may change as the crown evolves. Part of the goal here is
to uncover, with the help of a simple model, the dynamical origins of the qualitative
behavior observed in this and analogous systems. Thus, while the analysis that follows
applies to a general class of systems, the accompanying discussion will be framed in
terms of the crown problem. Since in such situations the domain size is determined
by internal dynamics, we refer to it as an internal parameter.

Besides fluid dynamics (Serrin 1959; Lions 1963; Fujita and Sauer 1970; Shahin-
poor and Ahmadi 1972; Miyakawa and Teramoto 1982; Teramoto 1983; Vanneste
and Wirosoetisno 2008), there are a large number of other processes involving time-
dependent domains, including transport–reaction processes—crystal growth, metal
casting, gas–liquid and gas–solid reaction systems—as well as classical electromag-
netic cavity resonators with moving walls (Lee 1966; Rogak 1966; Borgnis and Papas
1972; Garcia and Minzoni 1981; Dittrich et al. 1998), quantum-mechanical problems
(Dodonov et al. 1993), fluid–structure interaction (Fernández and Tallec 2003), and
the formation of patterns and shapes in biology (morphogenesis) (Kondo and Asai
1995; Crampin et al. 1999; Neville et al. 2006; Gjorgjieva and Jacobsen 2007; Madz-
vamuse et al. 2010; Hetzer et al. 2012; Ueda and Nishiura 2012), cf. Fig. 1c. The latter
phenomena include mammalian coat patterns, seashell pigmentation patterns, and
skin patterns on tropical fish, as well as various symmetry-breaking events: branching
processes in plants, initiation of single or multiple new organs in animals, and solid
tumor growth. As suggested by Turing (1952), pattern formation in biology can be
modeled by a system of reacting and diffusing chemicals (morphogens) that interact
to produce stable patterns of morphogen concentrations u(x, t) as described by the
reaction–diffusion model ut = D ·�u+ f (u), where D is a matrix of diffusion coeffi-
cients and f is a reaction term. Such models are known to be able to capture complex
evolving patterns arising from competition between reactions that create spikes in the
concentration of the product and diffusion that smoothes out its gradient, cf. Fig. 1d.
Recent interest has focused on incorporating other biologically relevant features such
as domain growth, shape, and curvature into models of this type (Crampin et al. 1999;
Neville et al. 2006; Gjorgjieva and Jacobsen 2007; Madzvamuse et al. 2010; Hetzer
et al. 2012). In these problems the domain size is typically an externally imposed
parameter, i.e., not controlled by internal dynamics.

The most common approach (Armaou and Christofides 2001) to analyze problems
on time-dependent spatial domains is to map them onto a new fixed in space domain.
The simplest case corresponds to the situation when the boundaries are deformed
slowly compared with the inverse growth rate of the most unstable mode. In this case
a solution can be constructed by multiple-scale asymptotic methods (Garcia and Min-
zoni 1981). Another common approach for studying stability and long-time behavior of
these problems is by energy methods, as done in the context of fluid mechanics for the
Navier–Stokes equations (Teramoto 1983), Cosserat fluids (Shahinpoor and Ahmadi
1972), wave equations (Garcia and Minzoni 1981; Dittrich et al. 1998), and the non-
linear beam equation (Ferreira et al. 1999). In the case when there is a well-defined
map from the time-dependent spatial domain onto a fixed domain, the linearized sta-
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bility problem is then about stability of a time-dependent base state, which usually
reduces to the analysis of problems with nonautonomous linear operators, even if the
original operator is autonomous. The best-studied case corresponds to time-periodic
base states (Davis 1976) which allow a straightforward application of Floquet the-
ory (Floquet 1883). In general, however, the arsenal of methods which enable one to
obtain analytical results for problems with nonautonomous operators is very limited
and amounts to either energy methods (Homsy 1973) or the computation of Lyapunov
exponents (Farrell and Ioannou 1996, 1999) of the propagator �[t,t0] which evolves
the solution u(t, x) = �[t,t0]u(t0, x) from the initial condition u(t0, x).

1.2 Key Questions and Scope of the Present Study

The key question is: what new behavior can one expect in the stability picture on time-
dependent spatial domains versus stability on time-independent domains? Therefore,
the idea of this work is to address the following questions for both dissipative and
conservative systems:

• May time dependence of the spatial domain lead to destabilization of a base state
that is otherwise stable in the time-independent domain case?

• How may the spatial structure of the solution be affected by the time evolution of
the domain?

• Does pattern coarsening take place in such problems?

While the class of systems evolving on time-dependent domains is very wide, as
discussed in Sect. 1.1, in the present study we limit ourselves to one-dimensional (1D)
systems where patterns form in the same spatial direction as the domain deformation
and the dependent variable is not conserved, as opposed to systems with a conserved
quantity or originating from a conservation law. For example, if the total amount (mass
m) of a chemical is conserved (i.e., it is not being used up), then in one spatial dimension
the material concentration u ∝ 1/L , where L is the length of the domain, so that the
total mass m ≡ ∫ L

0 udx remains constant. Thus as L increases, the concentration
decreases. This effect is referred to as dilution (Crampin et al. 1999) and is present
whenever the whole domain is stretching (somewhat like an elastic substrate). In this
case the Lagrangian velocity of the domain translates into an Eulerian velocity v(x, t)
at every point of the domain and the conservation law changes the time derivative ∂t u
to ut + ∂x (v u) ≡ ut + v∂x u + u∂xv, where the second term describes advection and
the last term dilution. In the simplest case, v(x, t) is proportional to the motion of
the boundary, v(x, t) = (Lt/L)x , and the Eulerian velocity increases away from the
center at x = 0. However, in a translation-invariant system on a periodic domain there
is no preferred location and so v(x, t) ≡ 0. Indeed, the motion of the boundaries alone
does not, in general, result in dilution—if the system is conservative such motion may
excite propagating waves; if it is dissipative, the effects of the boundary motion may
be confined to the vicinity of the boundary. Below we give two examples of physical
systems where dilution is absent.

Example 1 The crown formation problem discussed in Sect. 1.1 represents a good
example, where the fluid domain (the rim) on which instability develops is evolving
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and its mass is not conserved (Krechetnikov and Homsy 2009; Krechetnikov 2011),
since the rim originates from very thin ejecta at the time of the drop impact and
subsequently grows in both radius and thickness (Krechetnikov and Homsy 2009;
Krechetnikov 2011). While the domain (the rim) stretches, the stretching is uniform
and because of the periodicity of the domain the spikes are not diluted/advected,
but instead the wavelength increases in proportion to the domain stretch. Note that
the crown formation problem may be conservative or dissipative, depending on the
viscosity of the fluid.

Example 2 Certain systems exhibit spatially localized structures (Riecke 1999;
Knobloch 2008), e.g., a pattern of rolls, embedded in a background trivial state. Such
structures are quite common in many driven dissipative fluid systems. The amplitude
of the rolls in such a state is independent of the distance between the fronts of the
localized structure and is determined by the strength of the forcing, which in the case
of convection is controlled by the applied temperature difference as measured by the
Rayleigh number (a fixed parameter). Outside of the “pinning” region containing sta-
tionary structures of this type, the fronts connecting the periodic pattern to the trivial
state depin and the structure grows in extent owing to the (outward) motion of the
bounding fronts. Thus, no dilution is present and instead the structure has to supply
additional rolls (of appropriate amplitude) as required by the motion of the fronts (Ma
et al. 2010; Ma and Knobloch 2012).

It should be noted that there are examples of systems where domain change in one
spatial direction leads to pattern wavelength change in another, e.g., propagation of
waves on the surface of a leaky shallow tank. Here the frequency of the waves depends
on the depth of the water as ∼ √

k2h (Lighthill 1978; Lamb 1994). Thus, as water
slowly drains out of the tank, the frequency of free waves changes. Conversely, if the
waves are driven at fixed frequency, then their wavelength will change with time. In
either case no dilution or advection terms are present in the equation describing the
nonlinear evolution of the waves because the domain changes in a direction orthogonal
to the direction in which the waves propagate. A different example is provided by
pattern formation in melting boundary convection (Vasil and Proctor 2011).

In both Examples 1 and 2 one may ask if the wavelength of an initially periodic
structure is stretched uniformly throughout the domain as in Example 1, or if new
structures are nucleated in special locations, for example, near a moving front, as
in Example 2. Our work is motivated by the current lack of understanding of the
nucleation process whereby the system succeeds in replicating existing rolls (in the
dissipative case) or crown spikes (in both conservative and dissipative cases) at just
the right rate. As argued in the present work, the situations described above can be
modeled by simpler equations describing the evolution of the amplitude of such struc-
tures on a growing domain—these take the form of amplitude equations and include
the dissipative and conservative complex Swift–Hohenberg equation, the Ginzburg–
Landau equation, and the nonlinear Schrödinger equation, appropriately modified to
take into account the growing domain. For example, in the context of localized struc-
tures, the amplitude of the “rolls” in such equations is determined by μ − μc(L),
where μ is the bifurcation parameter and μc(L) is its threshold value in a domain of
length L . Since |μc(L)−μc(∞)| = O(L−2), it follows that the amplitude of the rolls
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is almost independent of L and hence no dilution is present. This is a fundamental
property of amplitude equations of the aforementioned type. Instead, the lateral expan-
sion of the domain manifests itself in the stretching of the wavelength of the pattern,
and it is this stretching that pushes the wavelength into the Eckhaus-unstable regime,
thereby triggering the nucleation of the new rolls required so that the growing domain
continues to be filled with rolls corresponding to the given value of the bifurcation
parameter.

Motivated by the above discussion, we use here (complex) amplitude equations as
model problems for studying the effects of a time-dependent domain on the stability
properties of simple uniform and periodic states. This approach allows us to respect
translation invariance of the problem and hence to study analytically the onset and
evolution of Eckhaus and Benjamin–Feir instabilities of periodic patterns and waves.
We are therefore implicitly assuming/postulating that these amplitude equations can
be derived from the underlying field equations such as the Navier–Stokes equations on
slowly changing time-dependent domains in much the same way as universal ampli-
tude equations on time-independent domains. In Appendix 2 we provide an example
of such a derivation for a near-critical system on a time-dependent domain. In this
context, one must note that a systematic derivation of the amplitude equation for the
crown formation problem, which provided the original motivation for this work, is a
prohibitive task, since even the base state—a temporally evolving flat rim—cannot be
determined analytically (Betyaev 1995; Krechetnikov 2011).

1.3 Finite- versus Infinite-Dimensional Systems: Bifurcation Delay

Local phenomena, i.e., phenomena described by a local balance, on time-dependent
domains can be formulated in one dimension as the following partial differential
equation (PDE) problem:

ut = F(u(t, x), μ), (1.1)

where F is a nonlinear differential operator and x ∈ [0, 2π L(u(t, x), t)], i.e., x is
defined on a time-dependent domain with moving boundary x = 2π L , and μ is a
(bifurcation) parameter. If L does not depend on u(t, x), we refer to it as an external
variable; otherwise, L is determined as part of the solution and there may be a separate
PDE governing the evolution of L . In the latter case, one can view L as one of the
components of the solution vector u, i.e., an internal variable.

On the physical side, given the time dependence of the domain size and shape, two
possible scenarios can be envisaged: (1) in experiments, one adjusts the domain size
in any desired manner, implying that L is an external variable, and (2) the domain size
changes solely as a result of the evolution of the system, i.e., without any external input
from the experimenter (Vasil and Proctor 2011). In the latter case, the size becomes an
internal variable of the system. In either case, it is natural to consider the associated
instability phenomena within the realm of dynamic bifurcations (Benoit 1991), as
informally defined above.
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In the simplest case, for finite-dimensional systems, dynamic bifurcation problems
can be formulated as follows:

du
dt

= f (u(t), μ), (1.2a)

dμ

dt
= εg(u(t), μ), (1.2b)

where ε � 1, firmly placing such problems in the framework of slow–fast systems. In
what follows we focus on the case where L is an external parameter; i.e., we assume
that g(u(t), μ) does not depend on the solution u(t). Below we provide an example
illustrating the main difference between static and dynamic bifurcations, and introduce
the terminology necessary for subsequent discussion.

Example 3 (Maesschalck et al. 2009). Let us assume that u is a scalar, that μ is an
external parameter that varies linearly on the timescale τ = εt , and that (1.2a) admits
linearization to the nonautonomous ordinary differential equation (ODE)

ε
du

dτ
= a(τ )u, u(0) = u0 > 0, (1.3)

where a is a sufficiently smooth function, which changes sign at some “turning” time
τ∗ > 0 with a(τ ) < 0 on t ∈ (0, τ∗) and a(τ ) > 0 on τ ∈ (τ∗,∞).

This problem has the solution

u(τ ) = u0 exp

(
1

ε

∫ τ

0
a(s) ds

)

, (1.4)

implying that an initial condition u(0) decays over the time interval 0 < τ < τ∗ and

then grows so that at some time τexit > τ∗ the exponent
τ∫

0
a(τ ) dτ vanishes and for

τ > τexit continues to grow. The time τexit then implies that for τ > τexit the solution
escapes (exits) from a ball of radius u(0) around u = 0 defined by the initial conditions;
the two times, τexit and τ∗, characterizing the instability onset, do not depend on the
value of u(0). Because τexit > τ∗, one usually speaks of a bifurcation delay since the
solution u(τ, ε) shows the following interesting property:

lim
ε→0

u(τ, ε) = 0, ∀τ ∈ (0, τexit) and lim
ε→0

u(τ, ε) = ∞, ∀τ ∈ (τexit,∞), (1.5)

where τexit is defined by the equality
∫ τexit

0 a(s) ds = 0. Hence, the time at which the
solution is repelled from the equilibrium u = 0 is given by τexit, which is greater than
the time τ∗ at which the equilibrium loses its stability should a(τ ) be considered as a
fixed (time-independent) parameter.

Finite-time evolution of a dynamic instability is thus characterized by two char-
acteristic times, the “turning” time τ∗ and the “exit” time τexit. This discussion is
developed further in Sect. 2.1 and Appendix 1.
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While dynamic bifurcations and delays are reasonably well understood in finite
dimensions, as discussed above and elsewhere (Eckhaus 1983; Mandel and Erneux
1987; Neishtadt 1987, 1988, 2009; Baer et al. 1989; Lythe 1996; Guckenheimer 2004),
much less is known about the corresponding phenomena in extended systems. We
argue below that, while many of the stability results from finite-dimensional sys-
tems carry over to the infinite-dimensional case, new effects arise in the latter in
both linear and nonlinear regimes owing to the presence of spatial structure (Maess-
chalck et al. 2009). To incorporate spatial effects we study these phenomena within
two nonlinear infinite-dimensional systems—the dissipative (Sect. 2) and conserva-
tive (Sect. 3) complex Swift–Hohenberg equation—and extract from their behavior
lessons that apply generally to (nonconserved) PDEs on time-dependent domains.
The Swift–Hohenberg equation has already proved to be immensely valuable as a
reliable guide to the behavior of a wide variety of phenomena ranging from fluid
flows (Bergeon et al. 2008; Schneider et al. 2010) to laser systems (Lega et al. 1994,
1995), and we anticipate here that this is the case on time-dependent domains as
well.

2 Dissipative Swift–Hohenberg Model

Suppose one wishes to develop a low-dimensional phenomenological model capturing
the crown behavior qualitatively. Since the reduction from the Navier–Stokes equations
is a prohibitive task due to the time-dependent and complex geometry of the base
state—the evolving rim of the crown—even when it is flat and no spikes are present, we
develop an amplitude equation model based on experimental observations, which tell
us that spikes may grow, appear, and disappear, and travel along the rim. Let us consider
first evolution on a time-independent domain and assume that, as a simplest case, a
steady-state bifurcation is present corresponding to a growing mode u ∼ eλt+ikx ,
where x refers to the azimuthal coordinate along the rim. This instability is described
by a dispersion relation of the form λ = λ(k, μ). Owing to translation and reflection
symmetries w.r.t. x , the growth rate λ is an even function of k. If the instability is long-
wave, λ = a0+a2k2+. . ., so that, at lowest order, λ = μ−k2. In this case, k = 0 is the
most unstable wavenumber. In order to obtain a nonzero critical wavenumber k0 one
needs to increase the order of λ(k), and thus one is naturally led to a quartic dispersion
relation which reproduces (the linear part of) the Swift–Hohenberg equation. Note
that, while in the linear picture the spikes do not move, they can move as a result of
nonlinear mechanisms identified earlier by Dangelmayr (1986) and Armbruster et al.
(1988) for systems with O(2) symmetry.

In view of the above argument and the requirement of translation invariance, we
are led to consider the supercritical complex Swift–Hohenberg equation (Gelens and
Knobloch 2010), hereafter CSHE, as a model for dissipative dynamics on a one-
dimensional domain. If the domain is time dependent, i.e., the spatial variable is
defined on x ∈ 	(t) = [0, 2π L(t)], it can be scaled to [0, 2π ] by the transformation
x → L(t)x , leading to

ut = μ u − Lx u − |u|2u, with Lx =
(

1

L2(t)
∂2

x + k2
0

)2

, (2.1)

123



J Nonlinear Sci (2014) 24:493–523 501

where u(t, x) : R
+ × R(mod 2π) → C is a complex field periodic on 	(t), k0

represents an intrinsic wavenumber (i.e., a time-independent inverse length scale),
and μ is a parameter. Because of the periodicity and finite size (at finite time) of the
domain, the spatial structure of the solution can be represented in terms of Fourier
harmonics eimx , m ∈ Z. PDEs over C such as (2.1) are not uncommon in models of
physical phenomena, and arise from PDEs over R such as the Navier–Stokes equations
for a real field v(t, x) via v = u eikcx + u e−ikcx , where kc is the critical wavenumber.

The examples given in Sect. 1.2 explain why advection and dilution terms are not
included in the formulation (2.1)—in this and subsequent problems the dynamical
quantities of interest (amplitude, order parameter, etc.) are not conserved, and their
evolution is not governed by a conservation law (unlike material concentration, for
example).

2.1 Linear Stability of Spatially Homogeneous Base State u0(t)

In what follows we use Lyapunov’s definition of stability, i.e., we explore the evolution
of a perturbation in a “ball” centered on the base state u0(t) even though the latter is
time dependent. This is as opposed to the intuitive “convective” approach u(t, x) =
u0(t)(1 + u′(t, x)), in which u′ = const. would imply stability, but from Lyapunov’s
point of view the solution is carried away from the base state a distance ∼ u0(t) and
the base state u0(t) is therefore unstable.

Base state. Equation (2.1) admits a real nonmodulated solution u0(t) = R(t) ∈ R,
which is independent of the domain size L(t) and satisfies the Landau equation

Rt = (μ − k4
0)R − R3. (2.2)

This equation has fixed points R0 = 0 and R2
0 = μ−k4

0 provided μ > k4
0. The former

is stable w.r.t. spatially homogeneous perturbations when μ < k4
0 and unstable when

μ > k4
0; the latter is stable w.r.t. such perturbations whenever it exists but may be

unstable w.r.t. spatially inhomogeneous perturbations.
Stability of the homogeneous base state. We write u(t, x) = u0(t)+u′(t, x), where

u0(t) ≡ R(t) is real, and linearize Eq. (2.1), obtaining

∂u′

∂t
= μ u′ − Lx u′ − u2

0

(
2u′ + u′) , (2.3)

where u′ is the complex conjugate of u′. Let us represent the perturbation as

u′(t, x) = αn(t)einx + βn(t)e−inx , (2.4)

where αn, βn ∈ C. Substituting this expression into Eq. (2.3) yields the equations

dαn

dt
= μαn − L̂nαn − R2

(
2αn + βn

)
, (2.5a)

dβn

dt
= μβn − L̂nβn − R2 (2βn + αn) , (2.5b)
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with the “Fourier-transformed” operator Lx given by

L̂n =
(

n2

L2(t)
− k2

0

)2

= k4
0(γn − 1)2, (2.6)

where γn ≡ n2/k2
0 L2(t). Adding and subtracting equations for αn and βn , we obtain

evolution equations for an ≡ αn + βn and bn ≡ αn − βn :

dan

dt
= (

μ − L̂n
)

an − R2 (2an + an) , (2.7a)

dbn

dt
= (

μ − L̂n
)

bn − R2
(
2bn − bn

)
. (2.7b)

Writing an = aR
n + iaI

n now leads to

daR
n

dt
= (

μ − L̂n − 3R2
)

aR
n , (2.8a)

daI
n

dt
= (

μ − L̂n − R2
)

aI
n . (2.8b)

The growth rate of any instability is therefore determined by the expressions in brack-
ets: if they are positive, then the perturbation grows. Similarly, writing bn = bR

n + ibI
n ,

one arrives at the same set of equations (2.8) with the only difference that aR
n → bI

n
and aI

n → bR
n . Note that, if R(t) grows monotonically, which is the case for initial

conditions R(0) < R0 ≡
√

μ − k4
0, μ − k4

0 > 0, then the mode aI
n (and thus bR

n ) is
the “least stable.”

Let us first discuss the instability from the point of view of the long-time behavior.
The integrand in (2.8b) behaves as

μ − L̂n − R2 → k4
0γn(2 − γn) as t → ∞ (since R2 → μ − k4

0 as t → ∞),

(2.9)

which is positive if 2 − γn > 0. If L grows without bound, the latter condition is
always satisfied, but the growth rate saturates at zero. Suppose now that the state R0
is set up on a faster timescale than the one on which L(t) varies, and that L(t) grows
from L0 such that 2 − γn < 0 to L∞ such that 2 − γn > 0, i.e., 2 − γn changes sign.
Then this case will exhibit bifurcation delay as discussed in Sect. 1.3. For finite times,
however, Eqs. (2.2) and (2.8b) must be integrated simultaneously.

Finally, the natural question one may ask is: under which conditions may a time-
periodic domain lead to instability? A partial answer is given in Example 3 for a
scalar equation, which tells us that, even if the “eigenvalue” oscillates periodically
between positive and negative values, the cumulative effect may lead to the growth
of the perturbation (as long as the time integral of the positive part of the eigenvalue
outweighs the negative one). In higher dimensions one can get instability due to the
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time-varying domain even if the time-frozen eigenvalues are always negative, as can
be seen from the following example.

Example 4 Consider the particular two-dimensional system (Knobloch and Merry-
field 1992):

(
ẋ
ẏ

)

=
(−1 − 9 cos2 6t + 6 sin 12t 12 cos2 6t + 9

2 sin 12t
−12 sin2 6t + 9

2 sin 12t −1 − 9 sin2 6t − 6 sin 12t

)(
x
y

)

. (2.10)

It is easy to see that the eigenvalues of the 2 × 2 matrix are independent of time and
equal to λ1,2 = −1,−10, while Eq. (2.10) has the particular solution

x(t) = e2t (cos 6t + 2 sin 6t), y(t) = e2t (2 cos 6t − sin 6t), (2.11)

which grows exponentially.

2.2 Linear Stability of Spatially Inhomogeneous Base State u0(t, x)

Base state. Equation (2.1) also admits a complex modulated solution u0(t, x) =
Rm(t) eimx , m ∈ Z, with a real amplitude Rm(t) obeying

dRm

dt
=

[
μ − k4

0 (γm − 1)2
]

Rm − R3
m . (2.12)

Short-time behavior of Rm(t). Linearization of (2.12) shows that, for short times,

Rmt = Rm(0) exp

[

(μ − k4
0)t + k4

0

∫ t

0
γm (2 − γm) dτ

]

. (2.13)

Thus, for m = 0 the solution grows if μ > k4
0, while for m 
= 0 the solution grows if

μ − k4
0 + k4

0γm (2 − γm) > 0, (2.14)

from some time t∗ on to infinity. We anticipate that, as μ increases, the mode numbers
m such that γm ≈ 1, i.e., m 
= 0, will grow first. In the following we identify such
states with a growing m-spike crown in the drop-splash problem: as the domain grows
in the original (unscaled) physical variable, the wavelength grows in proportion to
2π L(t)/m.

Long-time behavior of Rm(t). To determine the long-time behavior of Rm(t) we
analyze (2.12) from the energy point of view: with Em = R2

m(t) and am(t) ≡ μ −
k4

0 (γm − 1)2, Eq. (2.12) takes the form

1

2

dEm

dt
= am Em − E2

m . (2.15)
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While (2.15) does not allow separation of variables, it is of Bernoulli type and thus
can be integrated in quadratures. With Em(0) = Em0 at t = 0, the exact solution reads

E−1
m (t) = F−1

m (t)

(

2
∫ t

0
Fm(t) dt + E−1

m0

)

, Fm(t) = exp

(

2
∫ t

0
am(t)dt

)

,

(2.16)

showing that the solution depends on the cumulative effect of the time-dependent coef-
ficient am(t), as should be the case in problems with bifurcation delay. As discussed
in Example 3, there are two characteristic times at the linear level of description—the
turning time t∗, at which am(t) changes sign from negative to positive, and the exit time
texit, at which the integral

∫ t
0 am(t) dt in Fm(t) changes sign from negative to positive.

These effects remain when the first term on the right side of (2.16), responsible for
the nonlinear effects, is neglected so that Em(t) = Em0 Fm(t). The nonlinear term, in
turn, leads to the saturation of the instability, characterized by a third time scale tsat.

In the case when L(t) and thus Rm(t) evolve on a slow timescale τ = ε t , the base
state satisfies the equation

ε
dRm

dτ
=

[
μ − k4

0 (γm − 1)2
]

Rm − R3
m, (2.17)

which can be solved in terms of an asymptotic series, Rm(τ ) = Rm0(τ )+ εRm1(τ )+
. . ., where either Rm0 = 0 or

R2
m0(τ ) = μ − k4

0 (γm − 1)2 , and Rm1 = − 1

2R2
m0

dRm0

dτ
. (2.18)

Thus Rm0 = 0 is repelling for μ > k4
0 (γm − 1)2, while the nontrivial solution Rm0 is

attracting, much as in the case discussed in Sect. 2.1. This result confirms our intuition
that the mode with γm ≈ 1 will set in first.

Stability of the modulated base state. When the base state has spatial structure,
as in the crown problem, it may be subject to Eckhaus instability (Eckhaus 1965;
Raitt and Riecke 1995; Hoyle 2006), responsible for wavelength-changing processes.
This instability generates phase slips (Kramer and Zimmermann 1985) which may
result in the insertion of a new spike during time evolution. In the following we write
u(t, x) = u0(t, x) + u′(t, x), where u0(t, x) = Rm(t)eimx . Here, R2

m ≡ μ − L̂m

and L̂m is defined by (2.6). Thus Rm varies on the same timescale as the domain.
Linearization of Eq. (2.1) in u′(t, x) now yields

∂u′

∂t
= μ u′ − Lx u′ −

(
2|u0|2u′ + u2

0u′) . (2.19)

In order to study Eckhaus instability of the base state u0(t, x), let us represent the
perturbation as

u′(t, x) = αn(t)ei(m+n)x + βn(t)ei(m−n)x with αn, βn ∈ C, (2.20)
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which implies that the perturbation not only affects the amplitude of the base state u0
but may also change its wavenumber m. Substitution of this representation into (2.19)
and collection of terms in front of the independent exponentials ei(m±n)x yields

dαn

dt
= μαn − L̂m+nαn − R2

m

(
2αn + βn

)
, (2.21a)

dβn

dt
= μβn − L̂m−nβn − R2

m (2βn + αn) . (2.21b)

When the domain length L(t) evolves on a sufficiently slow time scale, we may
ignore its time dependence and look for solutions of the form (αn(t), βn(t)) ∝
(αn(0), βn(0)) exp σnt , where σn is the growth rate. This growth rate satisfies the
quadratic equation

[

σn−μ+2R2
m+

(

k2
0−m2 + n2

L2

)2

+4m2n2

L4

]2

−16m2n2

L4

(

k2
0−m2 + n2

L2

)2

−R4
m = 0.

(2.22)
When the perturbation wavenumber n is small, |n| � |m|, one of the roots of this
equation (the phase eigenvalue) is also small while the other (the amplitude eigen-
value) remains O(1) and negative. The phase instability that occurs when the former
eigenvalue becomes positive is called the Eckhaus instability. In the limit n � m we
can take σn = σn2 + O(n4) with m/L = O(1) and obtain

σ = 2

L2

μ

(

k2
0 − 3m2

L2

)

−
(

k2
0 − m2

L2

)2(

k2
0 − 7m2

L2

)

μ −
(

k2
0 − m2

L2

)2 + O(n2). (2.23)

Thus Eckhaus instability is present whenever σ > 0, and this instability leads to the
growth of perturbations with wavenumber m ± n; on a periodic domain, the growth
of the instability leads to the appearance of discrete mode numbers m ± 1. This
calculation should be compared with that for the Ginzburg–Landau equation ut =
μu + uxx − |u|2u, for which the base state u = Rm eimx is stable with respect to
long-wavelength perturbations when μ > 3m2 and unstable when m2 < μ < 3m2

(Eckhaus 1965; Hoyle 2006).
We emphasize that the above calculation is valid only when the growth rate of the

Eckhaus instability is faster than the timescale on which the domain length changes.
Since the instability is slow near threshold, this requirement provides a serious con-
straint on the usefulness of the prediction (2.23) for time-dependent domains.

In order to retain the effects of time dependence, we assume as in (2.17) that the base
state evolves on a slow timescale τ = ε t and consider the case when the instability
wavenumber n corresponds to a shorter wavelength, i.e., n = ε1/2n̂, where n̂ = O(1).
Thus

L̂m±n = L̂0
m±n + ε1/2 L̂1/2

m±n + ε L̂1
m±n + . . . , (2.24)
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where

L̂0
m+n = L̂0

m−n = k4
0(γm − 1)2, (2.25a)

L̂1/2
m+n = −L̂1/2

m−n = 4k2
0 m n̂

L2 (γm − 1), (2.25b)

L̂1
m+n = L̂1

m−n = 2k2
0 n̂2

L2 (3γm − 1), (2.25c)

and we seek a solution of Eqs. (2.21) in the form

αn = α0
n + ε1/2α

1/2
n + εα1

n + . . . , (2.26a)

βn = β0
n + ε1/2β

1/2
n + εβ1

n + . . . . (2.26b)

Taking into account that R2
m = R2

m0 +2εRm0 Rm1 + . . . along with the relations (2.25),
and collecting terms of the same order, we find

ε0 : α0
n + β

0
n = 0, (2.27a)

ε1/2 : L̂1/2
m+nα0

n = −R2
m0

(
α

1/2
n + β

1/2
n

)
, (2.27b)

L̂1/2
m−nβ0

n = −R2
m0

(
β

1/2
n + α

1/2
n

)
, (2.27c)

ε1 : dα0
n

dτ
= −L̂1

m+nα0
n − 2Rm0 Rm1α

0
n − L̂1/2

m+nα
1/2
n − R2

m0

(
α1

n + β
1
n

)
,

(2.27d)

dβ0
n

dτ
= −L̂1

m+nβ0
n − 2Rm0 Rm1β

0
n + L̂1/2

m+nβ
1/2
n − R2

m0

(
α1

n + β1
n

)
.

(2.27e)

In view of the O(ε0) constraint, the O(ε1) equations yield

2R2
m0

(
α1

n + β
1
n

)
= L̂1/2

m+n

(
β

1/2
n − α

1/2
n

)
. (2.28)

As a result, with the use of the O(ε1/2) equation, the linear amplitude equation for α0
n

becomes

dα0
n

dτ
= −L̂1

m+nα0
n + 1

R2
m0

(
L̂1/2

m+n

)2
α0

n − 2Rm0 Rm1α
0
n, (2.29)

where Rm0(τ ) and Rm1(τ ) are given by Eq. (2.18). Equation (2.29) retains full time
dependence of the perturbation amplitude on the domain dynamics.

At this point one can perform finite-time analysis of (2.29), i.e., based on the behav-
ior of the exponent

∫ τ

0 a(τ ′) dτ ′, as well as long-time analysis based on the behavior of
the time-dependent coefficient a(τ ) on the right side of (2.29), i.e., dα0

n/dτ = a(τ )α0
n .
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Note that all the terms on the right side of (2.29) may be positive under certain condi-
tions and thus contribute to the growth of the amplitude α0

n , which means that Eckhaus
instability takes place.

Example 5 Let us state the conditions under which all the terms on the right side of
(2.29) are positive. First, Rm1 < 0, which implies based on (2.18) that dRm0/dτ > 0.
The latter is true if γm < 1 and dγm/dτ < 0, thus requiring that L(τ ) grows with
time monotonically. In this case the condition 3γm − 1 < 0 is satisfied, thus making
L̂1

m+n < 0 as required.

2.3 Nonlinear Evolution of the Eckhaus Instability

In this section, we extend the analysis in the previous section into the nonlinear regime
by deriving a nonlinear evolution equation for the pattern wavenumber. The derivation
is done on an infinite domain—the only difference for a finite domain is that the
wavenumber spectrum is discrete, so that the Eckhaus instability generates states with
wavenumbers m ± 1. We begin by extending the standard analysis of the Eckhaus
instability for the complex Ginzburg–Landau equation on an infinite domain x ∈ R

in (Eckhaus 1965; Hoyle 2006) to the time-dependent domain case. Guided by the
characteristic scales for the Eckhaus instability identified in the previous section, we
introduce the slow scales τ = ε2t and ξ = εx and write the amplitude equation in the
spatial variable ξ scaled by the time-dependent domain size L(τ ),

ε2uτ = μ u + ε2

L2(τ )
uξξ − |u|2u. (2.30)

Under these conditions one may seek a solution in the Wentzel–Kramers–Brillouin–
Jeffreys (WKBJ) form (Bender and Orszag 1999)

u(τ, ξ) = R(τ, ξ)eiφ(τ,ξ)/ε, (2.31)

where without loss of generality we assume that R, φ ∈ R. The form (2.31) is designed
to capture both the base state and its perturbation, i.e., it should reflect the time evo-
lution of a general initial condition varying on the scale ξ = O(1). Substituting the
Ansatz (2.31) into (2.30) and collecting terms of the same order gives

O(1) : μ − R2 = φ2
ξ /L2, (2.32a)

O(ε) : R2φτ = 1

L2

∂

∂ξ

(
R2φξ

)
. (2.32b)

In terms of the wavenumber k ≡ φξ Eqs. (2.32) become

kτ = 1

L2

∂

∂ξ

⎡

⎣
μ − 3k2

L2

μ − k2

L2

kξ

⎤

⎦ . (2.33)
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This equation corresponds to nonlinear diffusion of porous medium type, θt =
∇ · (D(θ)∇θ) (Pattle 1959; Heaslet and Alksne 1961; Shampine 1973; Aronson
1986), which arises in a number of different fields (Vázquez 2006). It is known that
these problems have a rich variety of solutions, including solutions with compact sup-
port and steep fronts (Pattle 1959). Moreover, negative powers n in D(θ) = θn are
not uncommon (King 1991) and for certain forms of D(θ) may lead to self-similar
solutions (Dresner 1983).

The factor 1/L2 on the right side of (2.33) can be absorbed in a definition of the effec-

tive wavenumber κ ≡ k/L . The diffusion coefficient D(k) ≡
(
μ − 3k2

L2

)
/
(
μ − k2

L2

)

is singular when μ = κ2 = k2/L2 (the existence boundary) and vanishes when
μ = 3κ2 ≡ 3k2/L2 (the Eckhaus boundary), as obtained from linear stability the-
ory Hoyle (2006), and is positive in the Eckhaus-stable regime and negative in the
Eckhaus-unstable regime. Equation (2.33) indicates that, as the domain grows, the
effective wavenumber κ may be pushed across the Eckhaus stability boundary, thereby
triggering instability. Equation (2.33) describes the evolution of this instability while
the amplitude of the perturbation remains slaved to the evolution of the phase. The
slaving breaks down near locations where the amplitude R(τ, ξ) vanishes, and the
phase φ(τ, ξ) becomes undefined. The formation of such a singularity results in a
phase slip (Kramer and Zimmermann 1985), i.e., the insertion of a new spike into
the crown, followed by wavelength readjustment. As the domain continues to expand,
repeated phase slips triggered by the Eckhaus instability may take place.

With the introduction of the effective wavenumber κ , Eq. (2.33) becomes

κτ + Lτ

L
κ = 1

L2

∂

∂ξ

[
μ − 3κ2

μ − κ2 κξ

]

; (2.34)

thus the presence of time-dependent L introduces an advective contribution to the
wavenumber evolution. Near the time-independent Eckhaus instability threshold μ =
3κ2

0 we may write κ = κ0 + κ ′, κ0 > 0, and find that κ ′ satisfies a driven porous
medium equation:

κ ′
τ = − 3

L2

∂

∂ξ

[
κ ′κ ′

ξ

κ0

]

− Lτ

L
κ0. (2.35)

This equation describes the slow (compared with the original time scale t) drift of the
system through the Eckhaus instability boundary arising from the time dependence
of the domain: the effective diffusivity is positive when κ ′ < 0 (Eckhaus stable) but
is negative when κ ′ > 0 (Eckhaus unstable). When the forcing term on the right side
is small (namely, if the time dependence of L is too slow), this equation describes
the generation of a phase slip in finite time. When this is not the case and both L
and κ evolve on the same time scale τ , the situation is less clear. While it is likely
that a sufficiently rapid variation of L may suppress the generation of a phase slip
altogether, the fact that a phase slip generally forms in finite time suggests that the
time scale on which κ changes decreases rapidly as the instability starts to develop
and hence that the forcing on the right side ultimately becomes subdominant, and the
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phase slip proceeds to completion. Traditional derivations of the phase equation near
the Eckhaus boundary employ a scaling that brings in κ ′

ξξξξ to regularize the solution
(Hoyle 2006), resulting in the Kuramoto–Sivashinsky equation; this equation remains
valid provided phase slips (R = 0) do not take place.

Since φx = εL(τ )κ and the jump in φ across a periodic domain is 2π N , where
N is an integer, we see that, in the absence of phase slips that change the integer
N , the wavenumber κ ∝ L−1, i.e., the wavelength of the pattern is stretched. This
stretching ultimately carries the wavenumber κ across the Eckhaus boundary into the
Eckhaus-unstable regime. When this is the case, the Eckhaus instability leads, after
a delay, to a localized growth of κ , and hence a local decrease in the amplitude of
the wavetrain, as described by Eq. (2.32), i.e., R2 = μ − κ2. Once κ is so large that
R falls to zero, the phase φ ceases to be well defined and a phase slip occurs that
inserts a new wavelength or spike into the pattern at the location of the phase slip. The
pattern then relaxes, resulting in a new pattern with more or less uniform but shorter
wavelength. When this wavelength falls in the Eckhaus-stable region, the stretching
takes over and the above process repeats; when it does not, a further phase slip will be
triggered until the wavelength falls in the Eckhaus-stable regime. Since the phase slips
occur on a fast timescale (the Eckhaus instability is subcritical), the number of phase
slips that will occur before stability is restored depends on the delay in triggering the
instability. Thus, the time dependence of the domain plays a new and fundamental
role in the evolution of the pattern. See Ma et al. (2010) and Ma and Knobloch (2012)
for numerical studies of this process.

The same scaling assumptions as in Eq. (2.30) can also be applied to the CSHE
(2.1), yielding

ε2uτ = μ u − Lx u − |u|2u, with Lx =
(

ε2

L(τ )2 ∂2
x + k2

0

)2

. (2.36)

The WKBJ Ansatz (2.31) now leads to the following equation for the evolution of the
(scaled) wavenumber κ:

κτ + Lτ

L
κ = − 2

L2

∂

∂ξ

[
μ(k2

0 − 3κ2) − (k2
0 − 7κ2)(k2

0 − κ2)2

μ − (k2
0 − κ2)2

κξ

]

. (2.37)

As in the complex Ginzburg–Landau equation case, the diffusion coefficient D(κ) ≡
(μ(k2

0 −3κ2)−(k2
0 −7κ2)(k2

0 −κ2)2)/(μ−(k2
0 −κ2)2) is singular when μ = (k2

0 −κ2)2

(the existence boundary of the base state Rm) and vanishes when μ = (k2
0 −7κ2)(k2

0 −
κ2)2/(k2

0 − 3κ2) [the Eckhaus boundary (2.23)], with D > 0 in the Eckhaus-stable
and D < 0 in the Eckhaus-unstable region, respectively.

2.4 Coarsening

Domain growth also exerts considerable effect on pattern coarsening. To show this
we derive the Cahn–Hilliard equation governing the evolution of small-wavenumber
perturbations of the homogeneous state within the complex Swift–Hohenberg equation
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(2.1) on a time-dependent domain. Following a similar derivation by Gelens and
Knobloch (2010), we write

u(t, x) = Rs

(
1 + ε2u(τ, ξ)

)
ei φ(τ,ξ), (2.38)

where Rs =
√

μ − k4
0, ξ = εx , τ = ε4t , and 0 < ε � 1 is an ordering parameter that

may be taken as the wavenumber of the perturbation. The phase φ(τ, ξ) is formally
O(1), but its gradient is small, φx = εv, where v ≡ φξ is O(1). We anticipate that the
phase will be a slow variable and hence assume that the perturbation u is slaved to it;
i.e., we assume that u = α v2 + O(ε2) with α = O(1).

We begin by setting u(t, x) = R(t, x)ei φ(t,x) and writing (2.1) as a pair of equations
for the amplitude R and wavenumber k ≡ φx :

Rt = μR − R3 − 2k2
0

L2 Rxx −
(

k2
0 − k2

L2

)2

R + 6k2

L4 Rxx

+12kkx

L4 Rx + 3k2
x

L4 R + 4kkxx

L4 R − 1

L4 Rxxxx , (2.39a)

kt = −4k2
0

L2

[
k Rx

R

]

x
− 4

L4

[
k Rxxx

R

]

x
− 6

L4

[
kx Rxx

R

]

x
− 4

L4

[
kxx Rx

R

]

x

+ 4

L4

[
k3 Rx

R

]

x
− 2k2

0

L2 kxx − 1

L4 kxxxx + 2

L4 (k3)xx . (2.39b)

We next write an equation for the perturbation u(τ, ξ) of the steady state Rs introduced
in (2.38):

ε4uτ = −2R2
s u + 2k2

0

L2 v2 + ε2
[

−3R2
s u2 + 2k2

0

L2 uv2 + 3v2
ξ

L4

+4vvξξ

L4 − v4

L4 − 2k2
0

L2 uξξ

]

+ h.o.t.

Thus α = k2
0/(L2 R2

s ) and the expression for the phase reduces to

ε2vτ = − 1

L2

[

2k2
0v + ε2

L2 vξξ + ε2σ

L2 v3
]

ξξ

+ O(ε3), (2.40)

where σ ≡ 8
3

k4
0

R2
s

− 2. For consistency we therefore require that k0 ∼ ε � 1, and

in this regime σ ≈ −2. Thus, when the intrinsic length scale 2π/k0 is large and
the domain size fixed, we expect coarsening as described by the autonomous Cahn–
Hilliard equation (2.40) with L = 1, cf. Fig. 2a. Coarsening is not expected, however,
for smaller values of this length scale when structures develop oscillatory tails and
lock to one another, thereby arresting the coarsening process (Gelens and Knobloch
2010).
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Fig. 2 Coarsening in the complex Swift–Hohenberg equation on (a) a time-independent domain, L = 1
and (b) a time-dependent domain, L = 1 + (L(0) − 1)e−t/tc , where tc = 5000. The domain varies on the
same timescale as the coarsening process in the time-independent case. Periodic boundary conditions are
used with parameters μ = 1.0 and k0 = 0.05 (color figure online)

A different type of freezing out occurs when the domain length L varies on the
coarsening timescale. Figure 2b shows that in this case the expansion of the domain
also arrests the coarsening process. However, once the expansion timescale becomes
longer than the coarsening timescale, the coarsening process resumes abruptly. Equa-
tion (2.40) with ε = 0.05 should capture transitions of this type.

The above derivation applies to long-wave modulation of a homogeneous state,
R = Rs. A similar calculation may be made for the quasistationary m-spike state
R = Rm(τ ), where

R2
m(τ ) = μ −

(
m2

L2(τ )
− k2

0

)2

with τ = εt. (2.41)

In the following we write R = Rm + δu, k = m + δv with 0 < δ � 1 and
suppose that u = u(T, τ, ξ), v = v(T, τ, ξ), where ξ = δx and the slow time T is
determined below. Once again we expect the amplitude perturbation to be slaved to
the slow evolution of the wavenumber perturbation v:

u = Av + δBv2 + δ2 Dv3 + δ2 Fvξξ + . . . (2.42)

Substituting this Ansatz into Eq. (2.39a), we obtain expressions for the coefficients A,
B, D, and F . These depend on the time τ through the domain length L(τ ). With this
result, Eq. (2.39b) yields

vt = −[δ2αv + δ3βv2 + δ4γ vξξ + δ4νv3]ξξ + . . . , (2.43)

where

α = 8m2

R2
m

(
m2

L4 − k2
0

L2

)2

− 6m2

L4 + 2k2
0

L2 , (2.44)
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with similar expressions for the remaining coefficients. It follows that as L varies
the diffusion coefficient α(τ) may pass through zero, leading to destabilization of the
m-spike state. In the regime where α = O(δ) the (nonlinear) evolution of the system
occurs on the timescale T = δ3t and nontrivial dynamics, including bifurcation delay,
are expected when δ3 ∼ ε. However, on this timescale the instability does not saturate.
Equation (2.43) shows that, on the longer time scale T = δ4t , two new terms enter
the dynamics, leading to Cahn–Hilliard-like dynamics and saturation whenever the
coefficient γ (τ) remains positive. See Gelens and Knobloch (2010) for a discussion
of the L ≡ 1 case.

3 Conservative Swift–Hohenberg Model

It is also possible to formulate the crown formation problem within ideal hydro-
dynamics. The corresponding model problem must also be conservative, and we
adopt here a nonlinear Schrödinger-type equation with higher-order dispersion as
a model for conservative dynamics on a one-dimensional time-dependent domain
x ∈ 	(t) = [0, 2π L(t)]. After rescaling the spatial variable x we obtain

i ut = μ u −
(

1

L2(t)
∂2

x + k2
0

)2

u − |u|2u, (3.1)

where, as in Eq. (2.1), u(t, x) : R
+ × R(mod 2π) → C, k0 represents an intrinsic

wavenumber (i.e., a time-independent inverse length scale), and μ is a parameter.

3.1 Benjamin–Feir Instability

Models of the type (3.1) also exhibit crown-like behavior and undergo long-wave
instabilities leading to wavenumber changes via sideband instabilities. In the context
of water waves such instability goes under the name of Benjamin–Feir instability
(Benjamin and Feir 1967; Knobloch et al. 1994), and we consider here the onset of
the corresponding instability on a growing domain.

Let us consider the spatially homogeneous base state u0(t) satisfying

i u0t = (μ − k4
0)u0 − |u0|2u0. (3.2)

Thus |u0|2 = R2
0, where R0 is a constant, and hence u0(t) = R0 exp i	t , where

	 = −(μ − k4
0) + R2

0 (3.3)

is a constant. This solution is analogous to the Stokes solution of the nonlinear
Schrödinger equation; we identify the half-period of u0(t) with the evolution of the
rim in the drop-splash problem, as it first grows and then collapses, with the crown-
forming instability developing on top of this time-dependent base state (Krechetnikov
and Homsy 2009).
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An infinitesimal perturbation u′(t, x) superposed on the complex base state u0(t)
evolves according to the linearization of Eq. (3.1),

i
∂u′

∂t
= μ u′ − Lx u′ − 2|u0|2u′ − u2

0u′, (3.4)

where u′ is the complex conjugate of u′. We write the perturbation as

u′(t, x) = αn(t)ei	t+inx + βn(t)ei	t−inx with αn, βn ∈ C, (3.5)

obtaining the equations

i
dαn

dt
= (μ + 	)αn − L̂nαn − 2R2

0αn − R2
0βn, (3.6a)

i
dβn

dt
= (μ + 	)βn − L̂nβn − 2R2

0βn − R2
0αn, (3.6b)

where L̂n is defined as in (2.6).
To solve these equations in the case of slowly varying L(t) we look for solutions

of the form
(
αn(t), βn(t)

)∝ (
αn(0), βn(0)

)
exp

(
i
∫ t

0 ω(t ′) dt ′
)

and find that the fre-
quency ω(t) satisfies the dispersion relation

ω2 = (R2
0 − k4

0 + L̂n)2 − R4
0 . (3.7)

Thus, when L ≡ 1, the solution is stable (ω2 > 0) whenever R2
0 < (k4

0 − L̂n)/2 and
unstable (ω2 < 0) whenever R2

0 > (k4
0 − L̂n)/2. However, if L(t) increases, the fre-

quency ω(t) may transition from being real to being imaginary, thereby triggering the
Benjamin–Feir instability. This instability also experiences delay, and we surmise that
it will manifest itself only once its growth rate exceeds that of the domain. Right after
this instant, corresponding to a particular crown radius, the growth of the instability
is expected to become explosive, and lead rapidly to an irregular crown.

3.2 Nonlinear Schrödinger Equation

We begin first with the nonlinear Schrödinger equation in the form

εiuτ = μ u + ε2

L2(τ )
uξξ − |u|2u, (3.8)

where τ = εt and ξ = εx . The use of these scales is motivated by the characteristic
scales for the Benjamin–Feir instability identified above. Under these conditions one
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may again seek a solution in the WKBJ form (2.31). This time we obtain

O(1) : φτ = −μ + R2 + φ2
ξ

L2 , (3.9a)

O(ε) : Rτ = 1

R L2

∂

∂ξ

(
R2φξ

)
. (3.9b)

In terms of the wavenumber k ≡ φξ Eqs. (3.9) become

kτ = ∂

∂ξ

(
k2

L2 + ρ

)

, ρτ = 2

L2

∂

∂ξ
(ρk), (3.10)

where ρ ≡ R2. This pair of conservation laws describes the evolution of the wavenum-
ber k(τ, ξ) and amplitude R(τ, ξ) of the solution of (3.8).

Despite their nonlinear character, Eqs. (3.10) can be solved analytically. Indeed, let
us rewrite (3.10) as a system in vector form:

A
∂�

∂τ
+ B

∂�

∂ξ
= 0, � =

[
k

ρ

]

, A =
[

1 0
0 1

]

, B = −
[ 2k

L2 1

2ρ

L2
2k
L2

]

. (3.11)

The characteristic type of this system is determined from the following eigenvalue
problem (Courant and Hilbert 1989):

φ B = λ φ, (3.12)

which yields the eigenvalues and left eigenvectors

λ1,2 = − 2k

L2 ±
√

2ρ

L
, φ1,2 =

[

∓
√

2ρ

L
, 1

]

, (3.13)

respectively. Since both eigenvalues are real, the system is hyperbolic. With the knowl-
edge of the left eigenvectors, we can bring the system (3.11) into the normal form

−
√

2ρ

L

[
∂k

∂τ
+ λ1

∂k

∂ξ

]

+
[

∂ρ

∂τ
+ λ1

∂ρ

∂ξ

]

= 0, (3.14a)

√
2ρ

L

[
∂k

∂τ
+ λ2

∂k

∂ξ

]

+
[

∂ρ

∂τ
+ λ2

∂ρ

∂ξ

]

= 0. (3.14b)

Next, introducing characteristic coordinates α(τ, ξ) and β(τ, ξ) such that

−ατ

αξ

= dξ

dτ
= λ1, (3.15a)

−βτ

βξ

= dξ

dτ
= λ2, (3.15b)
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system (3.14) becomes

−
√

2ρ

L

∂k

∂β
+ ∂ρ

∂β
= 0, (3.16a)

√
2ρ

L

∂k

∂α
+ ∂ρ

∂α
= 0. (3.16b)

The characteristic curves can be interpreted as representing “sound waves” propagating
with velocity

dξ

dτ
= λ1,2. (3.17)

Generic properties of Eqs. (3.16) include shock formation similar to gas dynamics,
which can be described by identifying the Riemann invariants r(k, ρ) and s(k, ρ), i.e.,
functions constant along the characteristics

dr

dα
= 0,

ds

dβ
= 0. (3.18)

These Riemann invariants are determined from

rk =
√

2ρ

L
g, rρ = g, (3.19a)

sk = −
√

2ρ

L
l, sρ = l, (3.19b)

and the compatibility conditions rkρ = rρk and skρ = sρk ; here g(k, ρ) and l(k, ρ) are
integrating factors. Solutions of (3.19) are given by r = r(k + L

√
2ρ) and s = s(k −

L
√

2ρ), respectively, indicating that along characteristics, i.e., curves k ± L
√

2ρ =
const., the wavenumber stretches or compresses as L increases, depending on the
direction of the wave and the behavior of the amplitude. For example, along the
characteristic k − L

√
2ρ = const., the wavelength shrinks as L increases whenever

the amplitude ρ remains constant. This illustrates an interesting property—evolution
of the pattern wavelength 2π/k with L depends on the time rate of change of the
amplitude ρ, which is in turn dictated by the initial conditions.

One can also get an idea of the type of solutions described by Eqs. (3.10) by
considering the case |k| � 1 and taking ρ = ρ0 +ρ′, where |ρ′| � ρ0. The linearized
equations that result can be combined into a wave equation for the wavenumber k,

kττ = c2
0(τ ) kξξ , (3.20)

where c2
0(τ ) ≡ 2ρ0/L2(τ ) > 0. Existing studies of the wave equation on time-

dependent domains (Lee 1966; Rogak 1966; Borgnis and Papas 1972; Garcia and
Minzoni 1981; Dittrich et al. 1998), though limited, reveal that energy may grow or
decay. This is in contrast to the fixed domain case, which is a conservative problem.
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The time-dependent sound speed in (3.20) may result in the presence of parametric
resonance (Cooper 2000; Ueda 2011), as can be seen by taking the Fourier transform
of (3.20) in ξ , resulting in Hill’s equation whenever L varies sinusoidally in time. The
latter, depending on the exact shape of c(τ ), may have solutions bounded for all time
or growing exponentially. Time-dependent sound speed is in fact used to control the
solutions of the wave equation (Chambolle and Santosa 2002).

3.3 Conservative CSHE

In the case of the conservative CSHE:

εiuτ = μ u − Lx u − |u|2u, with Lx =
(

ε2

L2(τ )
∂2
ξ + k2

0

)2

, (3.21)

the WKBJ Anzatz (2.31) produces

O(1) : φτ = −μ + R2 +
(

φ2
ξ

L2 − k2
0

)2

, (3.22a)

O(ε) : Rτ = 2

R L4

∂

∂ξ

(
R2φ3

ξ

)
− 2k2

0

R L2

∂

∂ξ

(
R2φξ

)
. (3.22b)

In terms of the wavenumber k ≡ φξ and ρ ≡ R2, Eqs. (3.22) become

kτ = ∂

∂ξ

[(
k2

L2 − k2
0

)2

+ ρ

]

, ρτ = 4

L4

∂

∂ξ
(ρk3) − 4k2

0

L2

∂

∂ξ
(ρk). (3.23)

In the limit |k| � |k0| one obtains

kττ = −c2
0(τ ) kξξ , (3.24)

where c2
0(τ ) ≡ 4k2

0ρ0/L2, indicating the presence of a long-wave instability. In con-
trast, in the case k = k0 L + k′, ρ = ρ0 + ρ′, where |k′| � k0 L and |ρ′| � ρ0,
we obtain for L ≡ 1 the wave equation kττ − 8ρ0k2

0 kξξ = 0, indicating propagative
dynamics.

4 Conclusions

In this paper we have described several new types of behavior associated with evolution
and pattern formation on time-dependent domains. Our discussion was limited to the
case where the domain dynamics are prescribed, i.e., the domain size is an external
parameter, as opposed to systems in which the domain size is an internal parameter,
i.e., the domain grows in response to the dynamics taking place within it. Both types
of situation arise frequently in applications. As examples of the former we mention
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fluid flow in an expanding bubble or in an expanding universe (Knobloch 1978), in
which the expansion of the domain is determined to a large extent by overpressure,
with the internal dynamics contributing little to the domain dynamics. In contrast,
processes such as tumor growth and solidification processes (Vasil and Proctor 2011),
in which the domain grows in response to processes within it, constitute examples of
systems in which the domain size is an internal parameter. In fact, the system which
motivated this study—the drop-splash problem in which the perimeter of the crown
grows rapidly and exhibits instabilities that may or may not coarsen in time—belongs
to the latter class, but an externally imposed domain growth can be considered as a
first approximation to the true dynamics.

With the help of the CSHE model we have seen two types of effects of time depen-
dence. First, when the domain grows on a slow timescale, the wavelength of any
pattern or structure within it is stretched, thereby pushing the pattern wavenumber out
of the Eckhaus-stable regime. When this occurs, Eckhaus instability generates a phase
slip that inserts a new cell into the pattern. If the resulting pattern, after wavelength
readjustment, is still Eckhaus unstable, further phase slips take place. This process
is typically fast compared with the timescale on which the domain evolves. Thus the
gradual growth of the domain will lead to repeated phase slips as the pattern tries to
keep its wavelength in the preferred, Eckhaus-stable, range. This type of behavior has
recently been observed in localized patterns outside of the so-called pinning interval
(Ma et al. 2010; Ma and Knobloch 2012): in this regime the fronts bounding the struc-
ture on either side move apart, triggering repeated phase slips in the structure between
them. In fact, in some regimes the phase slip frequency and the front motion may be
closely coupled. In such cases the domain size becomes an internal parameter. Second,
we have also seen that the growth of the domain may suppress pattern coarsening if
the timescale for domain growth is faster than the coarsening timescale. On the other
hand, once the growth timescale exceeds the coarsening timescale, coarsening may
resume in a dramatic fashion (Fig. 2). Thus domain growth may lead to the “freezing”
of the structure, much as occurs in the presence of oscillatory tails in time-independent
systems (Raitt and Riecke 1995; Gelens and Knobloch 2010). A similar wavelength-
changing instability, the Benjamin–Feir instability, is present in conservative systems,
but coarsening of the above type is not expected to occur.

Throughout this paper we have focused on systems in which dilution effects are
absent. These effects are typically present in reaction–diffusion equations on a growing
domain (Crampin et al. 1999) but in many studies appear to play a subordinate role
(Ueda and Nishiura 2012). We do not expect dilution to be important in the phase
instabilities we have focused on, except insofar as they reduce the amplitude of the
solution and so potentially shorten the time to phase slip. These effects will be described
in detail in a follow-up paper.

Our work suggests a number of interesting directions for further study. The prop-
erties of the nonautonomous nonlinear diffusion equations (2.33) and (2.37) govern-
ing wavenumber evolution in growing domains remain to be studied. Of particular
interest is the behavior of these equations near the singularity in the nonlinear diffu-
sion coefficient D(κ) leading to phase slips. Likewise, the nonlinear evolution of the
Benjamin–Feir instability, as described by the conservation laws (3.10) and (3.23),
requires further exploration. On the pattern coarsening side of the story, detailed prop-
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erties of the Cahn–Hilliard equation (2.40) on an evolving domain are of great interest.
From a broader perspective, the relation between systems with an externally prescribed
domain size and systems in which the domain size is an intrinsic variable remains to
be elucidated. The latter would necessitate the development of methods for analyzing
problems with an intrinsic time-varying domain size. Also, the connection between
the stability picture on evolving domains and dynamic bifurcations, bifurcation delay,
canard solutions, and phase slips needs to be understood in greater detail.

Finally, time variation of the domain size suggests a new way to control instability
phenomena in the context of PDEs. Traditionally (Burns and Kang 1991; Krstic 1999;
Krstic et al. 2008), stabilization of equilibrium solutions of PDEs is achieved via
control of boundary conditions with control actions either distributed over the entire
spatial domain (or a part), or applied at the boundary of the spatial domain (boundary
controls), or active only at specified points within the domain (point controls). The
proposed study of the effects of time dependence of the domain size provides new
avenues for the control of equilibria of PDEs.
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Appendix 1: Hopf Bifurcation with Delay

Consider the Hopf bifurcation in (truncated) normal form, but with the bifurcation
parameter μ evolving on a slow timescale (Lobry 1991):

θ̇ = 1, (5.1a)

ρ̇ = ρ(μ − ρ2), (5.1b)

μ̇ = ε, (5.1c)

where ε � 1. In the case ε = 0, the bifurcation occurs at μ = 0; i.e., below it there
is only one fixed point, the origin ρ = 0, which is attracting. For μ > 0 one finds
an attracting limit cycle of radius ρ = √

μ, while the origin becomes unstable. Now,
let us consider the evolution of (5.1) when ε 
= 0 in the case where the parameter μ

starts from μ0 < 0 and the solution from ρ0 is close enough to the origin that one can
neglect the cubic term in (5.1). For convenience, we transform (5.1) using y = ln ρ,
so that the equation for ρ becomes

ẏ = μ − e2y . (5.2)

If the last term stays small over the time interval of interest, which will be verified
a posteriori, the solution can be written as

μ = μ0 + ε t, y = y0 + μ0t + ε t2

2
, (5.3)
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where y0 is chosen such that ρ0 = e2y0 � 1. Clearly, at the time t∗ = −μ0/ε, when
μ vanishes, y(t∗) = y0 − μ2

0/(2ε), which brings ρ = ey even closer to the origin
compared with where the initial condition started. If we evaluate the solution at the
time t = −2μ0/ε > 0, which produces y = y0 (and therefore the term e2y is still
negligible) and μ = −μ0 > 0, we find that the solution is as close to the origin as
it was at the initial time, but the (dynamic) bifurcation parameter μ is now positive
and finite. This illustrates the phenomenon of bifurcation delay (Mandel and Erneux
1987; Neishtadt 1987, 1988, 2009; Baer et al. 1989; Lythe 1996).

Appendix 2: Amplitude Equation

Suppose that the physical system at hand is such that there is a nonzero critical
wavenumber q0 corresponding to the instability of the trivial, u = 0, base state,
i.e., the equation is of the SHE type:

ut = μ u − (∂2
x + q2

0 )2 u − u3, (6.1)

where the spatial coordinate x is as yet unscaled. Consider first the case when x ∈
[0, 2π L(τ )] with τ = ε2 t , i.e., the domain size develops on the same time scale as
the “envelope structure.” As is standard in the derivation of the amplitude equation,
we introduce the slow scales τ = ε2 t and ξ = ε x , in addition to the independent
variables t and x , and write

∂x → 1

L(τ )

(
∂x + ε∂ξ

)
, ∂t → ∂t + ε2∂τ . (6.2)

In addition we assume

μ = ε2μ2, u = ε u0 + ε2u1 + ε3u2 + · · · , (6.3)

resulting in the following system of equations:

O(ε) : u0t +
(

1

L2(τ )
∂2

x + q2
0

)2

u0 = 0, (6.4a)

O(ε2) : u1t +
(

1

L2(τ )
∂2

x + q2
0

)2

u1 = − 4

L2(τ )
∂x∂ξ

(
1

L2(τ )
∂2

x + q2
0

)

u0, (6.4b)

O(ε3) : u2t +
(

1

L2(τ )
∂2

x + q2
0

)2

u2 = − 4

L2(τ )
∂x∂ξ

(
1

L2(τ )
∂2

x + q2
0

)

u1

−
[

∂τ − μ2 + u2
0 + 4

L4(τ )
∂2

x ∂2
ξ + 2

L2(τ )
∂2

x

(
1

L2(τ )
∂2

x + q2
0

)]

u0.

(6.4c)
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Equations (6.4a) and (6.4b) admit the solutions

u0,1 = A0,1(ξ, τ ) eiq0 L(τ )x + c.c., (6.5)

i.e., the effective wavenumber is q0 L(τ ). The solvability condition at O(ε3) yields

A0τ + iq0x Lτ (τ )A0 = μ2 A0 + 4q2
0

L2(τ )
A0ξξ − 3|A0|2 A0, (6.6)

indicating that A evolves on both the assumed slow scale ξ and the fast scale x , contrary
to the original assumption.

Consequently we consider a different scaling, which is also relevant to propagating
fronts in physical systems on an infinite domain, i.e., instead of (6.2) we use

∂x → ∂x + ε

L(τ )
∂ξ , ∂t → ∂t + ε2∂τ , (6.7)

where only the amplitude variable ξ is stretched. This Ansatz leads to the self-
consistent amplitude equation

A0τ = μ2 A0 + 4q2
0

L2(τ )
A0ξξ − 3|A0|2 A0, (6.8)

and thus provides the correct description of the weakly nonlinear regime of the Swift–
Hohenberg equation. Therefore, Eq. (6.8) is relevant to the near-critical behavior of
systems with a finite critical wavenumber such as the crown formation problem.
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