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Abstract

In this paper, we present a development of the fictitious domain method proposed in Ref. [C. Diaz-Goano, P. Minev, K.
Nandakumar, A fictitious domain/finite element method for particulate flows, J. Comput. Phys. 192 (2003) 105]. The main
new feature of the modified method is that after a proper splitting, it avoids the need to use Lagrange multipliers for impo-
sition of the rigid body motion and instead, it resolves the interaction force between the two phases explicitly. Then, the
end-of-step fluid velocity is a solution of an integral equation. The most straightforward way to resolve it is via an iteration
but a direct extrapolation is also possible. If the latter approach is applied then the fictitious domain formulation becomes
fully explicit with respect to the rigid body constraint and therefore, the corresponding numerical procedure is much
cheaper. Most of the numerical results presented in this article are obtained with such an explicit formulation.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In Ref. [1] we proposed a Lagrange multiplier based fictitious domain method which used a global (non-
distributed) Lagrange multiplier to enforce the rigid body constraint. It is a development of the distributed
Lagrange multiplier method of Glowinski and co-workers (see Refs. [2–6]), the major difference being that
the Lagrange multiplier was approximated in the same way as the fluid velocity field and that the rigid body
constraint is enforced in an weighted H1 norm. In the present paper we show that using the same starting
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fictitious domain formulation it is possible to explicitly impose the rigid body motion on the discretized in time
and split original set of PDEs and therefore we can get rid of the Lagrange multiplier. The resulting equation
for the end-of-step velocity is an integral equation which can be resolved either directly (which is in general
quite expensive) or iteratively. Since the integral that comes in the equation depends only on the curl of the
fluid velocity in the domain occupied by the particles, the iterative method usually converges very fast. The
method can also be made fully explicit by approximating the angular velocity of the particle from the previous
time steps.

Non-Lagrange multiplier fictitious domain methods have been used for a long time. The most prominent
example probably is the immersed boundary method of Peskin (see, for example [7]). It uses Dirac d functions
to enforce certain behaviour on boundaries immersed in a fluid. In the present work, the rigid body motion in
the domain occupied by the particles gives rise to Heaviside functions in the right hand side of the momentum
equations for the fluid. Unlike the d function, if the problem is solved by a Galerkin method, it is not necessary
to fit the grid to the boundary of the particles in order to obtain an optimal approximation. A scheme similar
to the present one, has been proposed in Ref. [8,9]. It also eliminates the distributed Lagrange multiplier from
the formulation, but there are some differences between the two schemes which will be highlighted in the next
section.

The present method is validated on a number of problems involving rigid particles for which experimental
data exists: a settling of a single particle in a container, and a single particle in a 3D Poiseuille’s flow. Finally,
results for the settling of an array of many particles in a container are shown.

2. Fictitious domain formulation and discretization

2.1. Formulation

Let us suppose that the fluid occupies a domain X1 and has a constant density q1 and a viscosity l1. Sup-
pose also that within the fluid there are n rigid particles with constant densities q2,i which occupy a domain
X2 ¼ [n

i¼1X2;i (the non-constant density case can be easily considered by a generalization of the formulation
below). Let us denote the interface between X1 and X2 by R and the entire domain filled with the fluid and
the particles by X = X1 [ X2. The momentum equations for the fluid are the Navier–Stokes equations:

Dû1

Dt
¼ �rp̂1 þ

1

Re
r2û1; r � û1 ¼ 0 in X1: ð1Þ

Note that the gravity term is absorbed into the pressure gradient and the Reynolds number Re is defined using
the fluid density and viscosity q1 and l1. The equations of motion of the ith rigid particle are given by

q2;i
dUi

dt
¼ ðq2;i � q1Þ

1

Fr
eg þ

q1

V i
Fi; ð2Þ

Ii
dxi

dt
þ xi � Iixi ¼ Ti: ð3Þ

Here Fr is the Froude number, eg is the unit vector in the direction of gravity, Vi is the volume of the particle,

Fi ¼
R

oX2;i
r̂1nds is the total hydrodynamic force acting on the particle, r̂1 ¼ �p̂1dþ 1=Reðrû1 þ ðrû1ÞTÞ is the

stress tensor of the fluid, n is the unit normal pointing out of the particle, Ii is its tensor of inertia, and Ti is the
hydrodynamic torque about its center of mass. Note, that the factor q1 of Fi comes from the non-dimension-
alization of the equation and that the similar factor in the angular velocity equation is absorbed into the tensor
of inertia.

The key idea of the fictitious domain approach is to extend the equations of the fluid into X2 so that we can
discretize them without remeshing X1 each time when the particles move which is the major disadvantage of
the ALE methods. This would allow to resolve the flow using a relatively simple (in most cases structured) grid
which allows for an easy parallelization. This approach also significantly simplifies the implementation of the
method. The Lagrange multiplier methods further impose the rigid body motion as a side constraint using
Lagrange multipliers. Ref. [2] suggests a method based on a Lagrange multiplier distributed on each particle,
which is discretized by means of separate grids covering each of the particles. They also use an unified vari-
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ational starting formulation for the fluid particle mixture (see Ref. [2] for details). In Ref. [1] we proposed to
use a global Lagrange multiplier which is approximated in the same space where the fluid velocity is approx-
imated. We also derived a set of fictitious domain PDEs/ODEs that govern the fluid and the particles. Here,
we start with the same idea but instead of using a Lagrange multiplier to impose the rigid body constraint we
derive an explicit equation for the interaction force between the two phases. This equation can be explicitly
resolved and so, the interaction force can be eliminated from the system. Thus, we start, similarly to the der-
ivation in Ref. [1], by extending the stress r̂1 ¼ �p̂1dþ 1=Reðrû1 þ ðrû1ÞTÞ to the entire domain X. Let us
denote the extension by r1 = �p1d + 1/Re($u1 + ($u1)T) with u1 being the extension of û1 to the entire domain
X. Then an application of the Gauss theorem gives that the total dimensionless hydrodynamic force acting on
the ith particle is

Fi ¼
Z

oX2;i

r̂1n̂ids ¼
Z

X2;i

r � r1dX; ð4Þ

where n̂i is the outward normal to the particle surface. Then the momentum equation for this particle becomes:

q2;i

q1

dUi

dt
¼

q2;i � q1

q1

1

Fr
eg þ

1

V i

Z
X2;i

r � r1dX: ð5Þ

Similarly to Ref. [1] we define the interaction force,

F̂ ¼ � Du1

Dt þ 1
Rer

2u1 �rp1; in X2;i; i ¼ 1; . . . ; n

0; in X1

(
ð6Þ

which allows us to extend the Navier–Stokes equations to the entire domain X as

Du1

Dt
¼ �rp1 þ

1

Re
r2u1 � F̂; r� u1 ¼ 0 in X: ð7Þ

Then the particle momentum equation can be written as

q2;i

q1

dUi

dt
� 1

V i

Z
X2;i

D

Dt
u1dX ¼ 1

V i

Z
X2;i

q2;i � q1

q1

1

Fr
eg þ F̂

� �
dX: ð8Þ

Since the fluid in X2,i should accelerate as if it is a rigid particle, we can impose the condition:

dUi

dt
¼ 1

V i

Z
X2;i

D

Dt
u1dX ð9Þ

and therefore rewrite the equation in the form,

q2;i � q1

q1

dUi

dt
¼

q2;i � q1

q1

1

Fr
eg þ

1

V i

Z
X2;i

F̂dX: ð10Þ

In a fictitious domain formulation it is more convenient to redefine the interaction force F̂ by

F ¼
1
Fr eg þ q1

q2;i�q1
F̂; in X2;i; i ¼ 1; . . . ; n

0; in X1

(
ð11Þ

and rewrite the set of equations in the form

Du1

Dt
¼ �rp1 þ

1

Re
r2u1 þ

q2;i � q1

q1

G� Fð Þ; r � u1 ¼ 0 in X ð12Þ

dUi

dt
¼ 1

V i

Z
X2;i

FdX ð13Þ

where

G ¼
1
Fr eg; in X2;i; i ¼ 1; . . . ; n

0; in X1:

�
ð14Þ
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Note that unlike the momentum equation in Ref. [9] (their equation 21), there is no density jump in Eq. (12)
which can lead to a bad conditioning of the pressure Poisson’s equation in case of large density differences
between the fluid and the particles.

As suggested in Ref. [1], the angular velocity of the ith particle, xi, can be computed from the no-slip
boundary condition on the surface of the ith particle. It reads

Ui þ xi � ðx� XiÞ ¼ u1; on oX2;i:

Then clearlyZ
oX2;i

ðxi � ðx� XiÞÞ � nds ¼
Z

oX2;i

ðu1 �UiÞ � nds

which yields,

xi ¼
1

2V i

Z
X2;i

r� u1dX; i ¼ 1; . . . ; n: ð15Þ

The interaction force is to be determined from the condition that enforces the rigid body motion in X2,i, i.e.

Ui þ xi � ðx� XiÞ ¼ u1; in X2;i; i ¼ 1; . . . ; n: ð16Þ
Since this condition does not contain the interaction force itself, it is a side constraint for the two momen-

tum equations and therefore it is natural to impose it via Lagrange multipliers. It turns out, however, that an
explicit equation for the interaction force can be derived as shown below.

The final system of equations is given by Eqs. (12), (13), (15) and (16), the condition (9) which follows from
(16), and the equation for the position of the center of mass of each particle which reads

oXi

ot
¼ Ui; i ¼ 1; . . . ; n:

2.2. Discretization

It is almost universally accepted now a days that such problems should be discretized in time using an oper-
ator splitting procedure. Here we adhere to the second-order pressure-correction version of the procedure
described in Ref. [1]. In case of a single-phase incompressible flow the pressure correction scheme is sec-
ond-order accurate in time as proved in Ref. [10]. In the present case only a formal second-order accuracy
can be claimed because of the fictitious domain formulation of the problem.

� Advection-diffusion substep

The center of mass of the ith particle is predicted explicitly by

Xp;nþ1
i ¼ Xn�1

i þ 2dtUn
i ; ð17Þ

where dt is the time step. Then we solve for u�1 from

s0u�1 �
1

Re
r2u�1 ¼ �s1~u

n
1 � s2~u

n�1
1 �rpn

1 þ
q2;i � q1

q1

G; in X

u�1 ¼ 0 on oX
ð18Þ

where s0 = 3/(2dt),s1 = �2/dt,s2 = 1/(2dt), and ~un
1, ~un�1

1 are the velocities from time levels n, n � 1 which
are advected alongside an approximation of the characteristics (see Ref. [11] for details). To compute
them we first approximate the foots of the characteristic at any given point x(tn+1), denoted by
x(tn�i), i = 0,1, from the following discretization of the characteristic equation:
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xðtn�iÞ ¼ xðtnþ1Þ � ðiþ 1Þdtunþ1
e ; i ¼ 0; 1 ð19Þ

where unþ1
e ¼ 2un

1 � un�1
1 is a second order extrapolation for the velocity at x(tn+1) at time tn+1. Then the

advected velocity is given by ~un
1ðxÞ ¼ un

1ðxÞ; ~un�1
1 ðxÞ ¼ un�1

1 ðxÞ.
Since at this substep the rigid body constraint is not taken into account (i.e. F = 0) Eq. (13) would yield a
zero guess for the particle velocities Ui. A better prediction for them can be obtained if they are com-
puted from Eq. (9) which can be obtained by differentiating the rigid body constraint (16) in time and
integrating the result over X2,i(t

n+1). Its discretization is given by

s0U�i þ s1Un
i þ s2Un�1

i ¼ 1

V i

Z
X2;iðtnþ1Þ

ðs0u�1 þ s1~u
n
1 þ s2~u

n�1
1 ÞdX: ð20Þ

At the last substep, this prediction for Ui will be corrected using (13).
� Projection substep

On the next substep we impose the incompressibility constraint by solving:

s0ðu��1 � u�1Þ ¼ �rðpnþ1
1 � pn

1Þ in X

r � u��1 ¼ 0 in X

u��1 � n ¼ 0 on oX;

ð21Þ

n being the outward normal to oX.
� Rigid body constraint

On the last substep we impose the rigid body motion in X2,i. In Refs. [4,1] this is done by means of an
iterative procedure which is somewhat in contradiction with the spirit of the splitting procedure and
makes the overall algorithm quite inefficient. Indeed, on the previous substep it was possible to derive
an explicit equation for the pressure which is a Lagrange multiplier for the incompressibility constraint
while on this substep, [4,1] compute the Lagrange multiplier iteratively. Below we show how to derive an
equation for F. Following the Marchuk/Yanenko splitting idea, the next substep should read:

s0ðunþ1
1 � u��1 Þ ¼ �

q2;i � q1

q1

F in X;

s0 Unþ1
i �U�i

� �
¼ 1

V i

Z
X2;iðtnþ1Þ

FdX;

unþ1
1 � Unþ1

i þ xnþ1
i � ðx� Xp;nþ1

i Þ
� �

¼ 0 in X2;iðtnþ1Þ; i ¼ 1; . . . ; n:

ð22Þ

Subtracting the first two equations and imposing the rigid body motion as formulated in the last equa-
tion, we obtain:

�
q2;i � q1

q1

F� 1

V i

Z
X2;iðtnþ1Þ

FdX ¼ s0 U�i � u��1
� �

þ s0

2V i

Z
X2;iðtnþ1Þ

r � unþ1
1 dX

 !
� ðx�Xp;nþ1

i Þ in X2;iðtnþ1Þ;

i ¼ 1; . . . ; n: ð23Þ

Integrating over X2,i(t
n+1) (note that the integral of the last term in Eq. (23) is equal to zero) we get:

Z
X2;iðtnþ1Þ

FdX ¼ q1

q2;i
s0

Z
X2;iðtnþ1Þ

u��1 �U�i
� �

dX: ð24Þ
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Using Eqs. (23) and (24) we obtain the following equation for the interaction force:

�
q2;i � q1

q1

F ¼
Xn

i¼1

s0 U�i � u��1
� �

þ s0

2V i

Z
X2;iðtnþ1Þ

r � unþ1
1 dX

 !
� x�Xp;nþ1

i

� �
þ s0

V i

q1

q2;i

Z
X2;iðtnþ1Þ

u��1 �U�i
� �

dX

" #
1X2;i ;

ð25Þ
where

1X2;i ¼
1; in X2;i

0; in X n X2;i:

�
ð26Þ

is the characteristic function of X2,i. Substituting this expression into the first equation of Eqs. (22) and
(24) into the second equation of (22) we finally obtain the following set of equations for u1 and Ui,
i = 1, . . .,n,

unþ1
1 ¼ u��1 þ

Xn

i¼1

U�i �u��1
� �

þ 1

2V i

Z
X2;iðtnþ1Þ

r�unþ1
1 dX

 !
�ðx�Xp;nþ1

i Þ þ 1

V i

q1

q2;i

Z
X2;iðtnþ1Þ

u��1 �U�i
� �

dX

" #
1X2

in X;

Unþ1
i ¼ 1

V i

q1

q2;i

Z
X2;iðtnþ1Þ

u��1 dXþ 1� q1

q2;i

� �
U�i : ð27Þ

The first equation contains a non-local term in the right hand side which depends on unþ1
1 and therefore

its spatial discretization would yield a non-sparse matrix. One way to avoid this problem is to approx-
imate r� unþ1

1 by r� u��1 and so to impose the rigid body constraint fully explicitly. The other possi-
bility is to solve the equation iteratively.
Note that if instead of computing U�i from Ref. (20) we do it, as suggested by Ref. [9], from U�i ¼

R
Xi

u��1
and ifr� unþ1

1 is extrapolated byr� u��1 then Eq. (27) yields the same velocity in the rigid body domain
as the one resulting from the explicit procedure suggested in Ref. [9]. However, Eq. (27) can also be used
for an iteration to refine the computation of the rigid body/fluid velocities as well.
Finally, the position of each particle is corrected according to

Xnþ1
i ¼ Xn

i þ 0:5dtðUnþ1
i þUn

i Þ: ð28Þ
The set of Eqs. (18), (21) and (27) are discretized in space by means of P2–P1 tetrahedral finite elements
(see [1] for details). The resulting linear systems are solved using a conjugate gradient solver. A parall-
elized version of the method has also been developed using the PETSc libraries.
The integrals over the domain occupied by the particles, which appear in Eqs. (15), (20) and (27) can be
approximated by the usual Gaussian quadratures used in finite element algorithms. However, this approx-
imation can be very inaccurate in some cases because the functions to be integrated can be discontinuous
within the elements intersected by the particle surfaces. Therefore, we developed a procedure that subdi-
vides such elements into sub-elements which are exactly aligned with the particle surfaces (more details
on this procedure can be found in Ref. [12]). This new grid is used only for the computation of these integrals
and the Gaussian quadrature on such a grid is exact. It can significantly improve the accuracy of the overall
algorithm. The results on the particle migration in a channel which are presented below are computed with
this improved integration procedure.

2.3. Collision mechanism

One of the most difficult problems in the numerical modelling of particulate flows is the modelling of the
collision of a particle with other particles and the walls of the container. When the distance between the bodies
becomes very small, a thin fluid film between them is formed and a new spatial scale related to the film thick-
ness appears in the problem. In order to resolve this scale, a tremendous grid refinement (in space and time) is
required which is impossible even using modern supercomputers. Therefore, the only available option is to use
a subgrid modelling approach which results in some sort of a lubrication force. For the collision of a particle
with a plane wall we used the lubrication force suggested by Ref. [13]:

F w
i ¼

�6priU?l1
ri

ĥ
� ri

h

	 

; if ĥ < h

0; otherwise

(
ð29Þ
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where ri is the radius of the particle, U^ is its velocity component perpendicular to the wall, h is the grid size,
and ĥ is the gap between the wall and the particle. This force is used to correct the velocity of the particle that
is used to predict/correct the particle position in Eq. (17)/(28).

For the collision between two particles we used the procedure suggested by Ref. [1]. It can be summarized
as follows:

1. Estimate the particle’s position Xi with the velocity calculated from Eq. (17) or (28).
2. Calculate the separation distance between particles and detect possible collisions.

si;j ¼ jXi � Xjj � ðri þ rjÞ ð30Þ

where si,j is the separation distance between two spherical particles i, j, Xi and Xj are the centroidal coor-
dinates of the ith and jth particles and ri and rj are their radii.

3. Update the particles positions. If si,j is less than a minimum separation distance (the maximum allowed
thickness of the film between any two particles) � then the ith (respectively jth) particle is moved away

at a distance Dri ¼ Mjð��si;jÞ
MiþMj

(respectively Drj ¼ Mið��si;jÞ
MiþMj

), alongside the line connecting the centroids.

These are quite primitive models and obviously there is a need for better subgrid modelling. One possible
approach is to derive some sort of a solution (or an approximation to the solution) for the velocity of the film
drainage problem and compute the interaction force from it.

2.4. Numerical results

In all simulations for sedimentation of particles presented below, the angular velocity at time level n + 1 in
(27) is extrapolated according to r� unþ1

1 ¼ r� u��1 . In all simulations for the migration of neutrally buoyant
particles, the average of two simple iterations are performed with respect to the angular velocity of the particle.

The first problem that we considered is about the sedimentation of a single particle with a density
q2 = 1120 kg/m3 in a container. It is well documented experimentally in Ref. [13]. The container has dimen-
sionless size 7 · 7 · 11 which is very close to the size of the container used in the experiment. We used two
different structured grids: a coarser grid of 134139 velocity nodes with a grid size in the vicinity of the particle
equal to 0.2, and a finer grid of 467261 velocity nodes with a grid size in the vicinity of the particle equal to 0.1
(see Fig. 1). The Reynolds number is based on the particle diameter and the terminal velocity u1 of such a
particle measured in the experiments of Ref. [13]. Table 1 provides a detailed information about the param-
eters used in this test problem.

In Fig. 2 we show the results for the vertical component of the centroidal velocity of a settling particle for a
variety of Reynolds numbers, using the finer grid and three different time steps: 0.05, 0.01 and 0.005. They are
compared to the corresponding experimental results from Ref. [13]. The terminal velocities match the exper-
imental data quite well. Also, there is a clear convergence towards the experimental results with the decrease of
the time step. The deviation that occurs at small Reynolds numbers and large times is due to the fact that the
numerical speed of the particle is consistently greater than the experimental data and this causes the particle to
reach the bottom faster. Another reason is the expression (29) for the interaction force between the particle
and the bottom wall of the container which is quite heuristic. Obviously, a more sophisticated model is needed
and this is a subject of our future studies. At first glance these results seem to be worse than the simulation
results obtained by Ref. [13] with a lattice-Boltzmann method. However, it should be taken into account that
these authors used a calibration procedure which computes an effective sphere radius which is computed from
an analytic expression for the drag force at low Reynolds numbers at a given volumetrically averaged fluid
velocity. This is in fact a fitting procedure used to compensate the numerical error in unresolved simulations.
Without this procedure, as indicated in Ref. [13], the velocity of the particle can be up to 20% different from
the experimental values. Our simulations do not include any fitting parameters except for the lubrication force
(29) which acts only at the very end of the simulations. They also clearly show the need for the use of a finer
grid and smaller time step which require very heavy computations and therefore we did not attempt them.

C. Veeramani et al. / Journal of Computational Physics 224 (2007) 867–879 873
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However, the convergence of the results with respect to the time step is obvious. In Fig. 3, we compare the
computed centroidal velocities on the two different grids using a time step of 0.01. Obviously, the grid reso-
lution improves the results only at relatively high Reynolds numbers and the error is still dominated by the
time step.

Finally, the results obtained with the present algorithm which is direct and explicit in the sense of the rigid
body constraint, are compared to the results for the same problem obtained with the iterative method pro-
posed in Ref. [1] (see also [12]) in Fig. 4. The iterative method performs on an average between 2 and 11 iter-
ations per time step (for an accuracy of 0.01 in a maximum norm, depending on the Reynolds number).
Moreover, the results with the present method are somewhat better which is probably due to the better initial

Fig. 1. Vertical (upper graphs) and horizontal cross sections (lower graphs) of the two structured grids used in the sedimentation
simulations.

Table 1
Parameters for the sedimentation problem

q1 (kg/m3) l1 (Ns/m2) u1 (m/s) Re ¼ qf u1dp

lf
(–) Fr ¼ u2

1
gdp

(–)

970.0 0.373 0.038 1.5 0.0098
965.0 0.212 0.060 4.1 0.0245
962.0 0.113 0.091 11.6 0.0563
960.0 0.058 0.128 31.9 0.1114
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guess for the end-of-step fluid velocity. The reason for the better guess is that in the present algorithm the
gravity which is the dominant driving force, is transferred into the Navier–Stokes equations which signifi-
cantly improves the initial guess for the particle velocity. Thus, the present method is much more efficient than
the rigid body iteration suggested in Ref. [1].

In Fig. 5 we present snapshots from the simulation of the sedimentation of 64 equally sized spherical par-
ticles in a box of dimensions 6 · 15 · 6. The Reynolds number (based on the diameter of the particles) is
Re = 10, the Froude number is Fr = 0.1, and the ratio of the particle to fluid densities is q2/q1 = 2.18. We used
a uniform grid containing 494371 velocity nodes and 73036 pressure nodes with a mesh size (the size of P2–P1

elements) of 0.2 in x, y and z directions. The time step was fixed to 0.01. The particle cloud clearly develops a
Rayleigh–Taylor instability with the particles around the cross section of the container traveling faster than
the peripheral particles. Then the initial square wave is dispersed and diffused. The wave evolution can be
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Fig. 2. Comparison of experimental (symbols) and numerical (lines) results for the vertical component of the particle velocity at four
different Reynolds numbers: Re = 1.5 (r), 4.1 (d), 11.6 (j), 31.9 (m). dt = 0.05 (solid lines), dt = 0.01 (dashed lines) and dt = 0.005
(dotted lines). All results are produced on a fine grid of 467261 nodes.
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Fig. 3. Comparison for numerical results on fine mesh (467261 nodes, dashed lines) and coarse mesh (134139 nodes, solid lines) with
experimental results (symbols) for the vertical component of the particle velocity at four different Reynolds numbers viz. Re = 1.5 (r),
4.1 (d), 11.6 (j), 31.9 (m). The numerical results are for time step of dt = 0.01.

C. Veeramani et al. / Journal of Computational Physics 224 (2007) 867–879 875



Aut
ho

r's
   

pe
rs

on
al

   
co

py

clearly seen in Fig. 6 where we present the average velocity of the cloud of particles as well as the standard
deviation of the centroids of the particles given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxc � xiÞ2

n

s
:
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Fig. 4. Comparison the vertical component of the particle velocity of numerical (lines) and experimental (symbols) results on a coarse
mesh (134139 nodes) using old iterative method (dashed lines) and new direct method (solid lines) with time step size dt = 0.01.
Experimental results are at Re = 1.5 (r), 4.1 (d), 11.6 (j), 31.9 (m).
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Fig. 5. Snapshots from the sedimentation of 64 particles in 3D. Re = 10, Fr = 0.1, q2/q1 = 2.18, dt = 0.01. The first frame corresponds to
the initial configuration at t = 0 and the time interval between two subsequent frames is 1.
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The next validation problem that we considered is about the migration of a neutrally buoyant sphere in a
3D Poiseuille’s flow. The well known experiments of Segré and Silberberg [14] show that the particles tend to
migrate towards a position which 0.6 radii away from the centerline of the pipe. Pan and Glowinski [15] stud-
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Fig. 6. Sedimentation of 64 particles in 3D. Re = 10, Fr = 0.1, q2/q1 = 2.18, dt = 0.01. Left graph: the average velocity of the cloud as a
function of time. Right graph: the standard deviation of the centroids as a function of time. n denotes the vertical component, and s and
· denote the two horizontal components.
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ied this problem numerically using their version of the fictitious domain method. Here, we are comparing our
results with theirs in case of a single particle. The geometry of the problem is sketched in Fig. 7. The viscosity
of fluid is equal to 1 and the densities of the fluid and solid are also equal to 1. The steady values of the vertical
component of the particle velocity Uy and the z-component of its angular velocity Xz are very close to the
results obtained with the DLM method and the ALE results of Ref. [16] (see Table 2). The evolution towards
the steady solutions is also quite similar as long as the starting position of the particle is close to the wall but
deviates more from the DLM/ALE results when the starting position is close to the centre of the pipe (see
Fig. 8). We used a grid of 1.07 · 106 velocity nodes and a P2–P1 approximation so the resolution is certainly
comparable to the resolution of Ref. [15] (2.16 · 106 velocity nodes and an iso-P2–P1 approximation). The rea-
son for the deviation seem to be the larger time steps that we used (dt = 0.01, 0,005). However, it is clear from
Fig. 8 that our results converge to the results of Ref. [15] which are computed with a time step equal to 0.001.
The use of such a time step would result in prohibitively expensive computations and therefore we did not
perform them.

3. Conclusions

In the present article, we present a modified fictitious domain formulation which should be classified as a
non-Lagrange multiplier formulation. It does not introduce explicitly a Lagrange multiplier but rather com-
putes directly the interaction force between the two phases which yields a non-local term in the Navier–Stokes
equations. In this term only the curl of the fluid velocity is at the upper time level and it can be extrapolated
using the velocity at the previous substep of the splitting algorithm. As a result, we can avoid the potentially
costly iterations for imposition of the rigid body constraint and the method becomes much more efficient. The
accuracy of the method is verified on two difficult flows involving rigid balls. The results compare very well to
available experimental and numerical data.
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