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Chapter 1

Systems of Linear Equations

1.1 Direct Methods — Gaussian Elimination

1.1.1 Forward Elimination

(k-th step):
all =l AN =k, =k -1,
g1
Ol =5 k=2...n i=k...n
Ap_1k—1
k k—1 k—1] y[k—1 .
R o
In n — 1 steps:
1 1 1 1
ail ay oap] [ o ol
a[222] . a[QQ,JL T2 b[22]
0 0 alil| L @n by
or
Uz=5b
Operations Count
ot an3 n?  Tn
(n-j)+2m-—j+1) =T+ -
= ——

divisions  multiply and sum

Where we have used

. m(m+1) N, m(m+1)(2m+1)
2 =T M- 6

Backward Substitution

Ll S~
xi =7 (b Z 045 Tj
Q44 j=it+1

1
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Operation Count

Z 2(n—1) + 1 =n?
Z:1 v d B
Multiplication and Subtraction V™"
Matrix Representations
Define: ) )
1 0 o 0
0 0o ... 0
0 1 0 0
b= 0 _égckj-l,k 1 0
o o
Note that: ) )
1 0 .. 0
0 0o ...... 0
o 10 0
Ly = 1o o1 0
0 M 1)

Lemma 1.1.1
AR — Al 2 = gl (Am — Al = b)

Therefore,
AN =U =1L, L, »---L,A

or
A=L'Lyt - LN\ U=LU
Proposition 1.1.2
L=Li' L}

is a lower triangular matrixz with unit diagonal.

Definition A Permutation matriz is a matrix that has exactly one nonzero entry in each row and column, and
this entry is equal to 1. The elementary permutation matrix (EPM) is defined as a matrix produced from the
identity matrix by interchanging exactly one pair k, m of its columns. We denote it as Py, = Pk.

~—~

k<m

For example:

Pz =

S oo
o= o o
o o= O
= o o O

Proposition 1.1.3 If A € R"*" and Py, € R"*" is EPM, then Py A differs from A by an interchange of
rows k and m. APy ., differs from A by an interchange of columns k and m.
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1.2 Gaussian Elimination with Pivoting
APl =U =1L, P,_,...[PA
Where U is upper triangular, L is defined as before, and Py = Py, with m > k. Equivalently,

A=PL7'PL;t - P, LN U

L*

Lemma 1.2.1 Ifi > j > k and P; = Pj; then PjL,;le is produced form L;l by interchanging the j-th and
i-th entry in the k-th column.

Proof
1 1 !
W nal | o |zEm gy
¥ 1 4’;] 10 4}2]

Theorem 1.2.2 Consider P = P,_1...P;. Then P is a permutation matriz and PA = PL*U = LU, with L
being a lower triangular matriz with unit diagonal.

Proof

PL* = PP LT'PLy - P, LY =
Py 1Py o PPLLT' oLyt Py L)L =
N——

I
Py 1Py o P LT'PyP3y--- Py Py Py Lyt Py L =
I
Ly Pyy- PLy Py Py Lty = o= Ly Lo) - Ly Lt =L ]
Definition If A € R™*™ and 1 < k < n then
ai ... ik
N asy ... G2k
Ay =
ary ... gk
is called the k*" principle sub-matrix of A
Theorem 1.2.3 The pivot entries agg,l, k=1,2,...,n—1 are nonzero if and only if Ay, are non-singular for
k=1,....,n—1 (note that A, = A and we assume that A is nonsingular since otherwise the linear system is

ill-posed).

Proof (i) Suppose first that all aggk,i #0,k=1,...,n—1. Then since A, = LU}, it follows that det(A;) =
det(Uy) = a[lkl] e agflj #0

(ii) Now suppose that det(flk) #0,k=1,...,n — 1. Then, using a induction argument, we have:
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(a) a[lll} = A, and therefore a o ;é 0.

(b) Assume that a[lll], . akk 75 0. If Agckjll is the k+1 principle sub-matrix of A**1 then it is easy to see that
Agfflll = (Lk)k+1 (il)kHAkH where we again assume that (A Ye+1,m =1,..., k are the k41 principle sub
matrices of L,, and AEHl is the k4 1 principle sub matrix of Al = A. Therefore, det(AEckjll ) = det(Ajy1) # 0.

But A%:l is upper triangular i.e.

1] [ 1
aly a%% aHHl
0 ad ... a
k+1] 22 2,k+1
AE““ I ; ’
o ' k+1
0 0 Echl ]k+1

and then det(flgffll]) = a[lll] agfflllk 41- This, together with the induction hypothesis yields that akk:f]k 70
which completes the proof.

Definition A matrix is strictly diagonally dominant if

laiil > > lai|

J#i
Corollary 1.2.4 If a matrixz is strictly diagonally dominant then no pivoting is necessary.

Follows from theorem 1.2.3 and the following theorem due to Gershgorin:

Theorem 1.2.5 The spectrum of A € C"*™, S(A), is enclosed in the set:
i=1

D;=2¢€C: a“|<Z|a”|
J#i

where:

Definition Matrix A is symmetric positive definite (spd) if
1. A= A"
2. vTAv >0 for all v € R"
3. vTAv =0if and only if v =0
Corollary 1.2.6 If a matrix is spd then no pivoting is necessary.
Follows from the following theorem.
Theorem 1.2.7 If A € R"*" is symmetric the following statements are equivalent
1. A is positive definite,
2. S (A) contains only positive real numbers, and

3. Bvery principle sub-matriz is positive definite.
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1.3 Special Cases

1.3.1 Cholesky Decomposition

Theorem 1.3.1 If A € R™ " is spd then there exists a lower triangular matriz C such that CCT = A.
Furthermore, the diagonal entries of C' are positive.

Proof Use induction on n:
n=1 : C = [011] = \/a_u
Assume the theorem holds for all matrices in R™*™.

D

a an+1,n+1

Now try to find [X] such that

cct = {Cn o} [CZ X] _ [An a }

T T
X c a An+1,n+1

or such that
ChX=a = X:C’;la

and

XTX + CQ = Un+1,n+1 = C=1/An41ny — XTXx
But, is ¢ > 07

XTx = [C’;la]T C’;la =aT [Cgl}T C;la = aTAgla
therefore

Up4+1,n+1 — aTA;IG/ = An+1,n+1 — XTX
T T
Then define z := [[A;la} ,—1] # 0 so that
2T Ax = pt1,m+1 — a’Ata>0

Cholesky Algorithm
1. c11 + /a1

2. Fori=2,3,...,n
3. ci1<—ai1/011
4. End ¢

5. Forj=2,3,...,n—1

7. Fori=35+1,...,n
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8. ‘
1 =
Cij < — | Qij — CikCjk
€ii k=1
9. End i
10. End j
11.
Cpn <
12. End

1.3.2 Thomas Algorithm

Definition A band mairiz is of the form

ail ai 2 ail 0 0 ]
a21
a1 Qkk—1 Qkk Qkk+1 --- Qkkti—1 0 0
0
anflJrl,n
: - Ap—1,n
L O 0  apn—k+1 Onn—1 ann |
A band matrix may be stored compactly as an [ + k£ — 1 X n matrix of the form:
_ 1 -
PN
0 0 an a2 ayy
ak1 Ak, k—1 gk Ok,k+1 Ak, k+1—1
Apn—k+1 Upn—1 GQnn 0 ‘e 0
—_———
L l_l -
Thomas Algorithm
For the linear system
_bl C1 0 e 0 1
a9 bg Co 0 ... ... 0
0 as b3 Cc3 0 0 T dl
i) d2
0 :
Tp dn,
Gn—1 bnfl Cn—1
L0 0 an by |
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1.
[f] i 1 [f] h 1
b; *bj—ajbfT and d; dJ_an[JT’ for 7=2,....n
j—1 j—1
2. '
xj_lzdgjl—bgj]x], for j=mn,...,2

1.4 Matrix Norms

Definition If A € R"*" then the mapping R"*™ — R is called a norm of A := ||A4]| if and only if:
1. ||A]| > 0 and ||A]| = 0 if and only if A =0,
2. [|AA]] = |A]]|4]] for all A € R,
3. [[A+ Bl < [|A][ + [|B]]

If in adddition, ||AB|| < ||A]|||B]| the norm is called multiplicative. In the sequel, we make use of multiplicative
norms only, and therefore, the notion of a norm presumes a multiplicative norm.

Definition If A € R™*", then for a vector norm ||-|| : R™ — R,
Az

1] = sup 1421

||| |70 [|]]

is called a subordinate matrix norm.

Theorem 1.4.1 Let A € R™*™. Then,

1.
A n
A = su [[A]]o = max ai;
o0 p : J
ol o0 12lloe  1Sisni=
2. .
A
4y = sup 1Al S gy
(]|, 0 |||, Isjsn =
> |4z
X
|A]ly == sup 2 =/p (AT 4)
l|2]|, 70 [
Proof
n n
el = e [y < | e Sl | (s ol ) = 01 sl
Jj=1 j=1
therefore,

Al < M
Let I be the index for which

n

max Z la;;| = M
1<i<n £
J:

is achieved. Choose z = {z;}"_
JJ5=1

oo Jari/lagl o ar #0
7 0 LA = 0.

Then ||z||,, =1 and |[Az|| = M. Therefore,
Al =M 1
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1.5 Error Estimates
Consider two vectors x1 and zo where
Axi=b and Axx=b+r

then
r1=A"' and a9 =A"'(b+7)

and it follows immediately that

|lz2 — 21| = ||[A7r]|
Then,
llwo — @]l _ Jlzz =2l _ [[A7M]] _ [lATM] Il
AT = [ Aa]] o = 1l
Therefore, i | Il
To — T 1 '
Tl S”L”U;)l_ullbll

This provides means of estimating the error introduced in the solution of a linear system due to roundoff errors
or uncertainty in the right-hand-side or the matrix of the system. The number ¢(A) is called the condition
number of A with respect to the norm ||.||.

1.6 Iterative Method Preliminaries

Definition If 2, € R™ then the sequence {x},-, converges to x € R™ in a norm ||-|| i.e.
lim zp =x
k—o0
if
lim ||z — 2x|| = 0.
k—o0
Definition If A, € R"*" then the sequence {Ay},-, converges to A € R™" in a norm ||| i.e.
lim Ak =A
k—o0
if

lim ||A — Ay|| = 0.
k—o0

Consider the matrix power series

> ap A" (1.1)
k=0
It is convergent if and only if
K
i 3t = 104

where f(A) is some matrix with a finite norm. In the following we will also need to consider the numerical
power series

fN) ~ iak)\k. (1.2)
k=0
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Theorem 1.6.1 The matriz power series (1.1) is convergent if for all \; € S (A) |\i| < p, where p is the radius
of convergence of (1.2) and S (A) is the spectrum of A. It is divergent if |\;| > p for some i.

Proof From Jordan’s theorem, there exists nonsingular C such that A can be transformed as follows:

No1o0 .00
0 N 1 ... 0
B=C"1'AC, B=diag(B;), B;i=|: . .~
S
0 oovn.. 0 N

where B; € R™*™ and n; is the multiplicity of the eigenvalue A;. Then, 220:0 ap A* is convergent if and only if

i apBF = i apyC~tAFC = 7! <§: akAk> C
k=0 k=0 k=0

is convergent as well. Note that B*¥ = diag (Bf) since B is a block-diagonal matrix. Now, consider the powers
BF of the i-th block of B. It can be shown by induction that:

Mo2y 1 ..o P DV (,F ) aEmmtt
g2_ |0 A22)\ 0 . Bt - 0 AF (*)Ar (nikiQ)/\i_cfnﬂrQ
g ¢ S )\f ......

so that the i-th block of the m-th partial sum of } a,B* is

k=0
i PO Hf ) w0
fuB) =S aBf=| 0 () Y ()
k_o ...(.) ......... '..-' ...... b -------- ..]c;n.’-(-)\.lj. .....

Therefore, f,, (B) is convergent if and only if
Im (/\Z) = Z ak/\i‘c
k=0

(and therefore fﬁ) (N\;)) is convergent for i = 1,...,nand | = 1,...,n;. fn, (\;) is convergent if |);| is smaller
than p, the radius of convergence of (1.2). |

Corollary 1.6.2
fA =T+A+A+ A"+

is convergent if and only if | M| <1 for allk=1,...,n and A € R"*",

Corollary 1.6.3 Since |\i| < ||A|| for any subordinate norm ||-|| then f (A) is convergent if ||A|] < 1.

1.7 TIterative Methods

1.7.1 Matrix Splitting Methods

Consider
Ax

Il
S8
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If A= B+ C, so that det(C) # 0,then
Az=b & x=x+C"'(b— Ax)
and in this form we may solve the problem iteratively:
Fl =gk 4 o1 (b—Azk) (1.3)
or equivalently:
CxFtl = b — BaP. (1.4)

The last form clarifies why such methods are called matrix-splitting methods. Note, that C' can be any non-
singular matrix but not every choice is a good choice, of course. The essence of various iterative methods is
in the choice of the matrix C' that allows for the fast computation of a good approximation to the solution. If
C' is the identity matrix, the corresponding iteration is called simple (or Richardson) iteration. It is seldom a
good choice. The form ( 1.3) suggests that the closer C is to A, the faster the convergence. On the other hand,
the iteration requires the solution of a linear system with C and therefore, C' should be such that this solution
requires much less resources than the solution of the original system. These are very contradictory requirements
and the choice of C' depends on the properties of A and some other contraints like computer resources.

Theorem 1.7.1 The iteration (1.3) is convergent if and only if p (I — C7'A) < 1.
Proof

= (I-C'A) " +C =DM+ (I+D)C =
N————’

=D""2’ + (I+D+D*+...+D*)C™"b
I+D+ ...+ DF+...is convergent iff p (I - C’lA) < 1. Also, if it is convergent then
DF — 0 |
k—o0

Definition R (D) = —log;, p (D) is called the convergence rate of the iteration.

Jacobi’s Method

C = diag (A)
0 _Q12 __ a3 .. _%n
a1l ail aii
D=1-C'A=
_8n1 _ An2 _ G4n3 0
Ann QAnn Ann

Theorem 1.7.2 If A is strictly diagonally dominant then Jacobi is convergent.

Proof
< 1.

1Dl = max Y

J#i

CLl'j
Qis

K22

Then for any eigenvalue \; of D we have:

Al <Dl <1 I
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Gauss-Seidel (GS) Iteration

a1 0
C=L=

A1p - - Qnp
B=U=A-1L

o =gk ot (b — Axk)
Theorem 1.7.3 If A is strictly diagonally dominant the Gauss-Seidel iteration is convergent.

Proof The formula for the i-th component of the k + 1 iterate z**1 is:

Qs Qs b,

x/_c-i-l:_}: leﬁ-l_}: le;_i__l

’ ai ? aii 7 ai
J<i J>i

The exact solution clearly is a fixed point of the iteration i.e.
s s b
xi:—Zin—Zin+—l
o i Qi Qi

Therefore the error of the k + 1 iteration, e*t1 = 2*+t1 — 2 must satisfy:

0 i
I oW
‘ ai; 7 ai;
j<i >
then
k
|eX| (1.5)

e+ 2

j>i

AEDD

j<i

CLl'j
Qg5

dij
Qi
Using induction on ¢, it is straightforward to show that:

BN DY

J#i

CLl'j

) e <11

Indeed, assuming that }e?“’ < HekHoo , Vj <, and substituting this into (1.5) yields that lef“’ < HekHoo.

Theref
11 < [l
o0 o0

so that the error must strictly decrease with each iteration. Then the error must go to zero because the exact
solution is the unique fixed point of the iteration (why is it unique?). |
Successive Over-relaxation (SOR) Method

Suppose w € R and consider the iteration:
= (D L) (- (1-w ) D+U) ).

Here C =L+ %D, D = diag (A), and being L the lower triangular part of A, not including the main diagonal.
Then clearly A = C + B, where B = (1 — 5)D + U, U being the strictly upper triangular part of A (with zeros
on the main diagonal). This iteration is similar to the GS iteration but has a free parameter that allows to
better control the convergence rate.

Theorem 1.7.4 (Ostrowski-Reich) If A € R™*™ is spd then SOR is convergent iff 0 < w < 2.
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1.7.2 Optimization-based Methods
From now on, until the end of this section we assume that the matrix A is s.p.d.

Theorem 1.7.5 If A € R"*" is spd then u is a solution to the linear system Au = b if and only if u minimizes
the function:

1
F(v)= §UTAU — by

Proof Let u be the solution of the linear system i.e. Au =b. Then for any v € R we have that:

1 1
F(v)—F(u) = §UTAU — by — EUTA’U, +bTu

%’UTA’U —ul Av + %UTAU = % (v—u) A(w—u)>0

then

so that F' (v) > F (u) and

Definition If A is spd then for any two vectors u,v € R”, u” Av defines the energy inner product induced by
A denoted by:
(u,v) , = ul Av.

Note that in the rest of the notes at some occasions (u,v) 4 is also used to denote the energy inner product.

Steepest Descent Method
Note that any iteration for finding a solution to a linear system Au = b can be written in the form:

k+1

U = u® + appy,

where o € R is called iteration step, pr € R™ is called the search direction. For example, in the case of matrix
splitting methods the search direction is chosen to be pp = C~'ry, with rp = b — Au* being called the residual
of the iterate u*, and a;, = 1. The step does not need to be constant and the gradient-type methods choose it at
each iteration step so that this choice minimizes the function F'(v). The basic gradient-type iterative algorithm
therefore can be written as:

1. Choose an initial search direction
po =10 = b— Aug

2. For k=1,2,3,... do:

(a) Find oy € R such that

uF T = uF 4 agpy

minimizes F over the line u* + apy,

(b) New iterate

uF = ub

(¢) The new residual is

Tey1 = b — AuFtt

(d) Find the new search direction pg41.

(e) Let k =k + 1 and repeat item 2 until convergence.
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To find a, we minimize F' along the search direction py:

d d
EF (v + agpr) = VF (u* + arpy) - don (u* + arpr)

= [A (uk + ozkpk) — b}Tpk = [Auk — b}Tpk + akpprk
= —ripr + arpf Apr, =0

so that
o = TkTpk
i Api
Note that for this choice of ay, we have:
7 T
k+1 k
Auftt — bl p=|A (u + ozkpk) =b| pr=—rLpr +arpFApr, =0 (1.6)
—Tk+1 wk+1
or (1.7

_T£+1pk =VF (upt1)pr =0
In the steepest descent method we choose
pr =1 = b — AuF.

Because this is the direction of the negative gradient of F(v), this function is clearly non-increasing in this
direction. Unfortunately, this choice of search direction is not optimal in some sense that will be elucidated in
the next section.

Conjugate Gradient Method (CGM)
Definition u* is optimal with respect to direction p # 0 iff F (uk) <F (u’C + )\p) for all A € R.

Lemma 1.7.6 u* is optimal with respect to p iff
plr, =0.
Proof u* is optimal with respect to p iff I/ (uk + )\p) has a minimum at A =0, i.e.

g—f (u® + Ap) =p" (Au* —b) + \p" Ap|,_, =0. (1.9)
A=0 S——

—T

(Note that ?;TI; =pTAp>0.)
(1.9) is obviously satisfied iff pry, = 0.

We know that the choice of aj guarantees that wiyq is optimal with respect to pi and this applies in
particular to the steepest descent method for which py, = . However, ©**t2 may not be optimal with respect
to pg i.e. the next iteration can undo some of the minimization work of the previous iteration. Indeed:

k+2 k+1
= T g
which gives
T T T T T
Tht2 = Tht1 — k1 APk+1 = PLTht2 = P Tht1 —Qk+1Pg APky1 = PpTht2 = —Qkt+1Dk APky1-
——

=0
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For the steepest descent method p,, = 7., and therefore, since T%Tk+1 = 0 (see (1.8)), r%ArkH # 0, unless
A=cl.

To find a different search direction py; that maintains the optimality of u*+2

w.r.t. pg, we need that:

0= pirhes2 = app1Pr Appy1 = 0.

For the conjugate gradient method we require that u*+2

search direction pgy1 from this condition.

is also optimal with respect to pg i.e. we choose the

Definition If u,v € R™ are such that (u,v), = 0 for some s.p.d. A then u,v are called A-conjugate.

This means that pgy1 should be A-conjugate to pr. We search for pgy1 in the form pri1 = rgr1 + Brps, for
<7”k+1,pk>,4

some 3 € R, and then from the condition p} Apy1 = 0 we easily obtain that £ = — T ||2
Pkl A

Algorithm (Basic CGM procedure) If A € R"*" is spd and u° is an initial guess:
1. 79 < b— Au°
2. po=r0
3. Fork=1,2,...,m:
4. agemy = 1ot/ |lpe-ally
5. uf — uF Tt + ap_1pr—1

6. 1 < Th—1 — k1 Apr_1

7.
Tks Dk—
Pk < Tk — qpk—l
llPe—1]la
8. Next k
9. End

As it will be demonstrated below, if all arithmetic operations are exact, the algorithm computes the exact
solution in a finite number of steps (finite termination property).

Later, we will show that the error decreases as:

Ve(4) -1

=L = [l < 2ol | Y

If ¢ (A) > 1 then the convergence is slow. Therefore, the algorithm is often modified by formally multiplying
the original system by a matrix that has a spectrum close to the spectrum of A and performing the CG method
on the modified system which has the same solution as the original one. This process is called preconditioning.

Preconditioning

Instead of Au = b we solve A@ = b where

A=BY'AB™', a=Bu, b=(B) b
Since the preconditioner BT B must be an approximation to the matrix A, a natural choice for B should be an
approximation to the square root of A. Since A is s.p.d. its square root is also s.p.d. and therefore we assume
that BT = B. The preconditioner B? must satisfy somewhat contradicting requirements since on one hand it
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should be a good approximation of A and on the other, it should be much easier to solve a linear system with
a matrix B2 than with A. The second requirement follows from the fact that, as it will become clear below, on
each iteration of the CG method with preconditioning, we will need to solve one system with B2.

For the system Au = b we know that

u: F(u)= min F (v)

veER™
Now, if v = Bv then
F(v) = L [B~'8]" A[B~'5] — T (B~'0)
2 2
1 -
=-i"B'AB 5 — (B™') o = F ()
2 ———
A BT
T ~
The preconditioned method should compute the new iterate from: ak =gk +Qp_1Pk—1, with ag_1 = ﬁ.
The search direction for the preconditioned method should be computed as py = Bk—l Pr—1+71, where the residual
Tk is given by 7 = Tp—1 — &k,lfif)k,l, and Bk = —%. These formulae are not convenient for practical
A

computations since they require to somehow compute the inverse of the preconditioner, (B?)~!. Fortunately,
it appears that the preconditioned method can be implemented almost exactly as the original CGM modifying
only the computation of the search direction to:

Zk

-1
(B*) " | Apr—

Pk = (BQ)_lTk— Dk—1, (1.10)
——

2k

p£71Apk—1

and defining the initial iterate as u° = B~'a° and the initial search direction as py = (B?)"!rg. With this
modification, the residuals ry, 7z, search directions py, Py, and iterates u¥,@", of the modified CG algorithm
and the preconditioned CG algorithm, verify the relations: ry = By, pr = B~ P, uF = B~1i*. Indeed, using
the assumption that r,_1 = Bfy_1,pp—1 = B 'pr_1, and uk—1 = p-lgh-1 (these assumptions are trivially
verifiable at k = 1), we obtain that:

T = T —1 T
Gy = Tk—1Pk—1 Ty_1 B Bpr_1 _ Tg—1Pk—1

CBe-ill3 (Bpe_1)" BTABBpey |lmlh

and subsequently that: 7, = B and u* = B~14*. For example,

Op—1,

@ ="+ ag_1pr_1 = B(uF ' + ag_1pr_1) = BuF.
This immediately yields that r, = Bfy. Then, if py is computed from (1.10) we obtain, multiplying it by B,
that:
rgB_lB_lAB_prk_l
p;f_lBBflABlepk,l

Bpy = B~ 'ry, Dk—1,

or, using the induction assumptions:

_ ThyPk—1)  ~ _
Bpy, =7 — %pk—l = Pk
l1Pe—111%

Thus, using an induction argument we establish that ry = Bfy,pr = B~ 'pp,u* = B4, and therefore,
ar = «g, for all positive integer k, Then, it is clear that the modified CG algorithm does not require the
knowledge of A to proceed. It needs only one extra step for the computation of the new search direction.
Instead of using r for its computation, we need to use zj that is a solution of the system B2z, = rp. The
conjugate gradient method with preconditioning is given by:
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Algorithm Preconditioned CGM:
1. k<0

2. 19+ b— Au®

3. po=(B?)"'ro
4. For k=1,2,...,m:
5. an—1 i ype-1/ |lpe-al;
6. uk — uF "t + o 1pp_1
T Tk Tp—1 — ar—1Apr_1
8. if ||rk||y > 7 then
9. solve B2z, = rk
10.
Pk < 2k — Mmq
llPe-114
11. k=k+1
12. Go to (5)
13. End if
14. End

Analysis of the CGM
Lemma 1.7.7 If A € R"*™ s spd, then for m =0,1,2,... we have

span {po, p1, ..., Pm} = span{ro,r1,..., m} = span {rg, Arg,..., A"rq}
Proof 1. For m = 0, this is trivial.
2. Suppose that for m = k we have
span {po,p1,...,pr} = span{ro,r1,...,r} = span{rg, Arg,... ,Akro} .
3. To complete the proof we should show that the same is true for m =k + 1 i.e.
span {po,p1, ..., Pks1} = span{ro,r1,...,mes1} = span {ro, Arg, . .. ,AkHro} .
We have shown that

Tht1 = Tk — apApg
pr € span {ro, Arg, ..., Akro}
Apk € span {A’I”(), AQT(), R ,AkJrlTo}
this implies
Tk4+1 € Span {To, Arg, ..., AkJrlTo}

so that
span {ro,r1,...,re41} C span {ro, Aro, ..., AkHro} (1.11)
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Now,

AkTO € span {pOapla v 7pk}

AFtlrg € span {Apo, Ap1, ..., Apr}

Thyl = Tk — QR ADE

So that
AF+lry € span Apo , Ap1 ...,  App—1  ,Tk41 — 7k ¢ Cspan{ro, T,
~—~ ~— ——
(ri—ro)/ao (r2—r1)/a1 (re—Tk—1)/ok—1

Therefore

AFHlrg € span {ro,m1, .-, Tkt1}
and by induction

span {ro, Arg, ..., Ak+1r0} C span{ro,... k41 } -

The last inclusion together with (1.11) prove that:

span{rg, Arg, ..., A™ro} = span{rg,...rm}, VYm>0.

Span {p07p17 e 7pm} = Span {7‘07 e 7Tm}
is proven using
Pm = Tm + ﬁm—lpm—l
and similar arguments as above. |}
Definition K, :=span{ro,r1,...,7m—_1} is the m-th Krylov space of A.
Theorem 1.7.8 If A is spd then:
(A) (Pk,pm) 4 =0 for m # k and
(B) rEry,, =0 form # k.
Proof 1. For k,m < 1:
TlTTO =0

<p1,po>A

I
o

2. Assume:

(a) (PrsPm)4 =0for k # m and k,m <1
() L7, =0 for k #m and k,m <1
3. Form < I:
rl pm =1 (coro + carz + -+ + Cmrm) =0
from (b) and therefore
TzT+1Pm =(r - alApl)TPm =0.
For m = [ we have
T _ T  _ T _
riap = (ri—agApy)” pr =1 pr — oy (pi,pi) , =0

...Tk+1}.

17
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by the definition of «;. But 7, € span{po,...,pm} for m =1,...,1 and therefore
rﬁlrm =0, m=0,1,...,1,

which proves (B).

To prove (A), we use:

Pi+1 = Ti+1 + Bipi
<pl+17pm>A = <Tl+1;pm>A + ﬁl <plap’m>A ; <pl;pm>A = 07 m = Oa s 7l -1
But
App, € span{ro,r1, ..., "'my1}
and from (B),
<Tl+1;pm>A:0 = <pl+17pm>A:O for mzoalv"'al_l'
By the choice of p;11 in the CGM,
(Pi41,11) 4 =0

and so (A) holds.

From this theorem we can conclude that
dim K,, < n.

Corollary 1.7.9 If A € R™*"™ js spd then for some m <n, ry, = 0.

k+1

Theorem 1.7.10 If A is spd then u**1 minimizes the error u — u* ™' = ex 11 over Kyy1 in |||, i-e.

= mi — s Au=b
lewally = i flu=lly (o Au=0)

Proof Corollary 1.7.9 concluded that there exist some m + 1 < n s.t. 7,+1 = 0. Without loss of generality
we can assume that u = 0 since any change of the initial iterate can be interpreted as a change in the right
hand side vector b: A(u —u®) = b — Au, and therefore it does not affect the estimates that follow. Then the

m
exact solution must be a linear combination of the search directions py, ..., pm i.e. u = > a;p;. Consider some
i=0

k
v € Kiy1,k <m+ 1. It must have the form v = Y v;p;. Then we have:

i=0
k m
fu =l = 11> (i —w)pi + >, cupily =
i=0 i=k+1
k m
D olei = wlPllpadla + D lealPllpallh,
i=0 i=k+1
k
since (p;,pj) , = 0 if @ # j. Therefore, ||[u — v|[4 has its minimum for a; = v;,4 = 1,..., k. But ubtt =" a;p;
i=0

which concludes the proof.
Definition II; denotes the set of all polynomials up to order I:
II; = {pl : al:vl—l—---—i—ao}
Corollary 1.7.11 If A € R™ ™ is symmetric positive definite with a spectrum {\;}!_, then:

llerr1ll4 < lleolla pax lg (A7)l

for all polynomials q € M1 such that ¢ (0) =1



1.7. ITERATIVE METHODS 19

Proof From theorem 1.7.10 we have that:
lent1lla < [lu—vll4, Y0 € Kia.

But
v € K1 = span {TO,ATO, cee Akro}

Without loss of generality, we can assume that ro = b i.e. u® =0 and then
v = a0b+a1Ab—|—-~-—|—ozkAkb:p(A)b.

Therefore
lersalla < llu—p(A)bll4,Vp(A) €11k
but ©® =0, b = Au, and €y = u so that

||€k+1||,4 < Hﬁo —p(A)A(U—UO)HA = |leo (I_p(A)A)”A

< lleoll {|Z —p (A) A]| = lleoll[lg (A)l]4,Vq(A) € Hpy1 s.t. q(0) = 1.
—————
€llg41 A

Now we will prove that
llg (A)[] 4 = max]g (4;)]

Since A is symmetric, there exists an orthonormal set of eigenvectors {v; }?:1 of Ai.e.

Uj:{o if i#j

v

e

1 if i=j
Take z € R™ then

n
xr = E C;U;
=1

n
and therefore ||z||3 = 3 ¢2A; . Then we have

i=1

T
la (A% = suwp lg(A)a]l,* = sup (wn;l cm) A(Q(A)Zcivi)—

z|| ,=1 n
l1ell.a 3 etni=t
i=

sup > 2 () 2\ < max ¢ (\).
i Cf)\lzl
i=1

If max q? (\;) is achieved for some index [ then it is clear that the equality in the last relation would be achieved
<i<n

if we take x = v;/v/A;, and this concludes the proof of the corollary.

From corollary 1.7.11 it is clear that the sharpest error estimate would be obtained if we pick ¢ to be such
that max lg (A;)] is minimal with respect to ¢g. Let us denote the minimum and maximum eigenvalues of A
<j<n

by Amin and Apq. correspondingly. Before we construct such a polynomial on the interval [Amin, Amaz] we first
consider polynomials on [—1, 1] whose maximum is minimal among all possible polynomials of the same degree
i.e. polynomials with a minimal infinity norm. To remind you:

Definition The infinity norm of a polynomial on [—1, 1] is defined as

||p||L°°[71,1]: sup [p (2)]
z€[—1,1]
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If p(0) = 1 then ||p||L°°[—1,1] > 1 so the minimum for such polynomials would be 1.

The polynomials that have a unit infinity norm on [—1, 1] are the Chebyshev polynomials. They are defined
recursively as follows:

Definition

Ty (2)
T1 (Z)
Thi (Z)

1
22T, (2) = Ty (2)

Alternatively, we may represent the Chebyschev polynomials as

5= 3 [+ VD) (v

2

or

T (z) = cos(k arccos(z)).

The polynomials with a minimum infinity norm on [Apin, Amaz], such that they equal 1 at 0, are given by the
Shifted Chebyshev polynomials:

Definition
R
Ty (2) = .
T (1+ 252 —)
Lemma 1.7.12
HTk (Z)H = min p(2) Lo n i A -

Loo[)\mML;)Wnaz] per,p(O)zl

Proof Since T}, (z) = cos(k arccos(z)) it is clear that Ty has k + 1 extrema Ty (z;) = (—1)*,i =0,1,..., k in the
nodes z; = cos(im/k) i.e it has k + 1 alternating minima and maxima on [—1, 1]. T} is just a scaled and shifted
version of Ty so it must have exactly the same number of alternating maxima and minima on [Anin, Amaz]-
Now assume towards contradiction, that there is some py(2) such that py,(0) = 1 and ||px(2)|| s
HTk(z) [ g Then, pr — Tk must also have at least the same number of alternating extrema as Tk
Lo°[Amin;Amax
on [Amin, Amaz| since max |pg| < max |Tx| on this interval. This means that py — T}, has at least k zeros on

[Armin,s )\m,w].~ But pr(0) — T, (0) = 0 and 0 < Apipn. So we reach the contradiction that the polynomial of k-th
degree pp — T} has at least k + 1 zeros which concludes the proof.

minsAmaz]

From the corollary we have that
letl s < llol s max o ()

for any p (z) € IIj, such that p (0) = 1. Therefore,

||€k||A < ||€0||A sup lp(2)] = ||€0||A HPHLDO[,\mm,,\mw]-

Amin <2<Amax

Since p can be any polynomial in IT, such that p (0) = 1, the sharpest estimate would be obtained for polynomials
with a minimum infinity norm i.e. shifted Chebishev polynomials:

llerll4 < lleoll.o i 2o\ e
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Then,

- Tk (1 _2>\z_>:&in. )
Tk (Z)’ — max max min
Tk} (1 + 2 X Amin )

max
Amin <2<Amax

max — Amin

! <2<wm;—¢m;y
’Tk(1+2/\%)’ ="\ + Vi

max_>\min

IN

where we have used

ﬂ(%w+%mﬂzé<(WE;+¢EEY+(¢E;—VEEY>

/\max - )\min \% /\max -V )\min \% /\max + v )\min
1 <\//\max+ \//\min)k
-2 V /\max Y Amin .

Then .
Vv /\max -V /\min
llexlla < 2lleolls | A=
/\max + /\min
If A is spd then

)\max
2 (4) = 1Al |47, = S

k
mmAswmm<;%%%}3

Let p(7y) be the smallest integer k > 0 such that ||ex||, < 7 ||€o]| 4. Then, from the estimate above (which is
sharp) it follows that

and

k
2 (1 — Z) <%,Vz €[0,1), where z = 1/+/ca(4),

1+ 2
2_(1+= ’“'
¥y~ \1l-=z

Note that z = 0 corresponds to the limit c2(A) — co. Then we get

or

1 1 1
+Z:2k(z+—z3—|——z5+...), z €10,1)

lnzgkln
ol 1—2 3 )

or

1.2 1 1 arctanh(z)
—In= <k(l4 =22+ =244 ) =kb—=.
g Shltgeitgzis.) z

But arctanh(z)/z is a monotonically increasing function on [0, 1) and its minimum is 1. Therefore, we have;

1 2
5\/ CQ(A) ln; S k,

which means that p(v) < 1/24/c2(A)In(2/7) + 1, i.e. for all practical purposes, we need of order of /c2(A)
iterations for satisfying the convergence condition ||ex|| 4, < v|l€o]| 4-
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Chapter 2

Solutions to Partial Differential
Equations

2.1 Classification of Partial Differential Equations

Suppose we have a pde of the form

¢( ou Ou 0%*u 0%u BQu) B

Y% 5 5 55 A A 7S

Ox’ Oy’ 0z2’ 0z0y’ Oy?

then we classify the equation in terms of the second order derivatives, if they are not present we then classify
in terms of the first order derivatives.

2.1.1 First Order linear PDEs
ou Ju
a(t,x) e + B (t,x) E =~ (t,x)
Let us try to reduce it to an ODE over some path (¢ (s),z (s)) in the domain of the equation. We have that:
du Oudt Oudz

@ otds  owds

If we can choose a path a = % and g = % then

du
ds

These paths are called characteristics.

2.1.2 Second Order PDE

&—Fﬂ 32u + @ —d; @ @
Y oz2 Oxdy ’Y(“)y?_ R Ox’ Oy

We use a similar idea as in the first order case but now we try to reduce the equation to a system of ODEs for
the first derivatives of the solution i.e.

d (0Ou 782udx 0%u dy

a(%%%a*m%

d (Ou) 0%u dx  O%*udy

d—<a—y>—a—ayd—+@d—
23
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Then we may write this system as

2
a B v g—%;é ()
do  dy u | _ | 4 (O_U)
ds ds ozxdy | — ds \Ox
I d (ou
ds ds yZ ds \ 9y

If we require, similarly to the first-order case, that the original equation is a linear combination of the two
equations for the first partial derivative, i. e. this system is linearly dependent, then

dy 2 dx dy dz\? dy 2 dy
—_— —_— —_— —_— = d _— —_ _— =
a(ds) dsds+ﬁy(ds> 0 and dz p :C+FY

We classify the equations based on the discriminant

% —4day >0 = hyperbolic (2 real characteristics)
B? —4day =0 = parabolic (1 real characteristic)
B2 —4day <0 = elliptic (0 real characteristics)

2.2 Difference Operators

Suppose that we have a grid of nodes in an interval [a,b], A = {a =2z < 21 < --- < axy-1 < y = b}. The
following mapping: uy, : A — R is called a grid function: up = (up0,...,unn)? with up ; = up(z;). A classical
function w : [a,b] — R gives rise to an associated grid function and, abusing notation somewhat, we denote
this grid function by u and its value at a given node z; by ;. In addition we will make use of the following
operators on such functions, that are used to approximate the corresponding derivatives:

1

0 uj = o (ujyr —ug),  hjy =200 —
J
_ 1
07wy = o (uj — uj-1)
J
1
Oujps = T (uj1 —uy),
1 Uip] — Ui Ui — Ui_1 1
52 R J+ J 9 J h . = — (h; h; .
U Myt ( Fjn h; 5 j+1 2( i+ i)

We will also make use of the averaging operator:
1
Uiy = 5 (W5 + ujpn).

Assuming that h; = h,Vj, and enough regularity of the function u, and using Taylor expansions, we can derive
the following estimates for the error of these approximations:

1 1 ou, 0%u; h?

Oz 0z? 2
Ou; 0%u ou;
— 20 .p J 77 h

8x+ 8:62+ 8x+0()

O
5*uj:%+0(h)
o 7u-+1—2u-+u-,1782u- 9
Py = U hZJ j _ax2j+o(h)

1
ujry = 5 (U +uj) =u (%‘%) +0 (h%).

Similar estimates can be derived for non-constant grid size h;, however, in the rest of the notes we will consider
only equidistant grids. The non-equidistant case requires more careful examination.
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2.2.1 Poisson Equation

Consider the grid:

Qn = {(z5,0) ;25 = jh, y =1h, j,1€0,...,N}
o, = Qn \ Qn,

where h = 1/N. A second order scheme for an approximation to the solution uy, is given by:

(xjvyl) € Qh
(xjvyl) € th

— (82up g1 + 5§Uh,j,l) = fnji,

Uil = Ghjis
where fr, ;1= fii (x5, 0) € Qs gnji = 95,0, (x5, y1) € 0, So that
2
— (Uhj—1,0 + Un j1—1 — 4Unj1 + Unji+1 + Unjr10) = D fji

The left hand side is a discretization of V?u on the following stencil

Yi—1
T1 Up,1 r1
1T I Uh,2 T2
. : = —h2
1 TI Up,N—2 TN_2
IT | |upnN-1 TN-1
where
(—4 1
Upjn fia
1 41
Uh,j,2 fiz b;
T = . , Up = , fi= . , rjzfj—f—ﬁ
1 -4 1 . f
i 1 —4 h,j,N—1 iN—-1
[g5.0 go,1 T 91,0 gN1+gN-1,0
0 90,2 gN 2
bjE fOI'j:2,...,N—2, by = , by_o1= .
0 go,N -2 gN,N—2
| 95,N Jo,N—1+ 91,N gN,N-1+ gN—-1,N
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2.2.2 Neumann Boundary Conditions

y4 — o
yg — o
y2 —o

Y1 +——rt

r_1 Xo

Suppose that we need to impose a Neumann condition

ou _ 4l
on z'j_gij

on the left boundary of the domain sketched above. Then, we write the scheme for all nodes on this boundary
and discretize the Neumann condition using a central difference scheme, introducing an additional layer of points
(corresponding to level -1 in x direction)

Uh,1,0 — Uh,—1,1

2
5T, =go1, Uh,—1,0 + Un,0,—1 — 4Up,0,0 + Un,0,1+1 + Un,1,0 = —h" fo.

In order to eliminate the additional layer of points, we combine these results to get

2
UR,0,1—1 — 4Up,0,1 + Uh,0,141 + 2up,1,0 = —h* fo,1 + 2hgo,

2.3 Consistency and Convergence
Consider the continuous problem

Lu=f inQ
u=g on Jf)

Now, consider the corresponding discrete problem

Lhuh = fh in Qh
up = gn  on 0.

fn,gn are some sort of approximations of f, g and in these notes we assume that f, = f, g, = ¢ in the nodes of
the discretization grid.

Definition For a given ¢ € C* () and x;, € Q,
Tn (Tn) = (L — Ln) ¢ (zn)
is called a truncation error of Lj. The scheme Ly, is consistent with L if
}llll)% Th (il:h) =0

for all @y, € Qp, and ¢ € C>* (Q). If 73, (xr) = O (hP), then Ly, is consistent to order p.
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Proposition 2.3.1

2 2 2
Vi = =0z — 5y
is consistent to order 2 with
9 0? 0?
V2=_" _ 2
ox?  Oy?

m Qh.

The consistency of a finite difference grid does not guarantee that the solution to the scheme is approximating
well the exact solution of the continuous problem. In order to measure how close the solution to the continuous
problem is to the solution of the discrete problem we introduce below the notion of convergence. Since the
solution of the continuous problem is a function defined everywhere in €2 and the one of the discrete problem
is known only in the set of nodes in € and we need to compare them somehow, we can either extend the
definition of uy, to the whole set of points inside €, or restrict somehow the function u to the nodes in Q5. The
first approach requires the use of some interpolant of uj, and then we can compare the two solutions in some
continuous norm. In the second approach, we need to use some operator P from the space where u belongs,
to the vector space of uy,. Assume that the grid Qj, contains the nodes xy,k = 0,..., K. Then Pu is usually
identified with the vector of values of u in all nodes . i.e. Pu = (u(xo),...,u(zx))T. To be more concise, we
often denote u(xy) by ur and abusing notations somewhat, we often identify v with Pu if it appears under a
discrete norm. Below we follow the second approach and in order to quantify the difference between u and up
we introduce the notion of convergence as follows:

Definition uj converges to w in a given norm ||.|| if €, = Pu — uy, satisfies
lim ||ep|| = 0.
h—0

If ||en]| = O (hP), then p is the order of convergence.

In the section on finite difference methods we use exclusively the infinity (or maximum) norm: ||ex|| = max |ep, ;|-
j

Note that consistency does not guarantee that the difference between the solutions of the continuous and
discrete problems also tends to zero. It only guarantees that the action of the difference between the differential
and discrete operators on a smooth enough function tends to zero.

Let us go back to the boundary value problem for the Poisson equation

—V2u=f inQ
u = in 00 2.1
g

with the corresponding discrete problem

—V,Qluh = fh in Qh
Up = gh in th. (2.2)

From the elliptic PDEs theory we know the following maximum principle: If V2u > 0 in Q then u achieves its
maximum on Q. Similarly the discrete Laplacian V2 satisfies a Discrete Maximum Principle:

Theorem 2.3.2 (Discrete Maximum Principle) If
V%Uj)l >0

for all (zj,y;) € Qp,, then

max v < max  vjy
(z5,90) €2 (z5,91) €0
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Proof

Vi1, + V-1 + V41 +v5-1 — 4u5

2 —
vhvj;l - h2

>0 = wv;; < i (Wjs11 +vj—10 + 00401 +v50-1) V(x5 ) € Qp
Suppose that the maximum of v is achieved in an internal point (z7,yz) € Qp, then:
VT.L 2 VT-1,L, VT.LZVT+1,L, VF.L2VTL—1, UT,L 2 VT LH1
so that
g >v7-1c+tv741, +V7,-1 V71 = AgL=v71c+ 0741, V71 VT L1

Therefore, v must attain its maximum in all neighbouring points too. Applying this argument repeatedly to
the neighbours we eventually will reach a boundary point.

Corollary 2.3.3 The following two results follow from the discrete mazimum principle:

1.

V,%uh =0 1wn Qh
up =0 on 0y,
has a unique solution up = 0 in Qp U OQy,.
2. For given fn and gn,
Viuh = fh m Qh
up =g on 0y

has a unique solution.

Definition If
v: Q,U00, - R

then
vllo = max |vu;
|| ||Q (Ijﬁyl)em| ]7l|
||U||aQ = max |”j7l|

(w5,1) €00,
Lemma 2.3.4 Ifv;; =0 for all (xj,y1) € 0, then
o]l < Ma |[Vivl]g
for some Ma > 0, that depends on €2 but not on h.

Proof Let
HV%UHQ =v = —-rv< V%v <v,
and consider the function

w:owj = (xf—l—yf)z().

RN

Denote its norm on the boundary by Mx i.e.

[[wl]|gn = Ma > 0.
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Note that V3w = 1. Then
Vi(w+rvw)>0) .
V2 (v—vw) <0 in £

From the maximum principle and since vp| o, = 0 we have:

v S v+ rwi; S v ||wj7l||69 = Mn Hv}%v]}l”g

vjn > vj—vwiy > —vlwjillyg = —Ma || Vivil|g,
Y(xz;, ) € Qn

Theorem 2.3.5 (error estimate) Let u be the solution of the boundary value problem (2.1) and up is a
solution to the discrete analog (2.2). Assuming that u € C* (Q), then there exists a constant k > 0 such that:
llu = unllg < kMP?

M = max '
Lo (Q)

2 2 84 84
(Vh - v )uJ 12 81'4 (gj’yl) a 9.4 ('r]777l)

where
84
oyt

o
Ozt

< (Q) ’

Proof From the proposition:

for some &, s.t. i1 < & < xiq1,y—-1 < m < yig1. Taking into account that w is the exact solution we

have: i iy
_v%uj,l = f], 12 |:8 4 (gjuyl) 8 a4 ($]777l):|

Subtract —VZup ;1 = fn,j1 = f;; and note that u — up = 0 on 9€2,. Then

0*u o'u
V}% (ujg — unj1) = 2 {axél (&) + By a1 (%7771)}

From the Lemma we get

2M
llu—unllg < Ma||V3 (u—up)|g < =22 MA2 = kMh? |
\v./
=k
2.4 Advection Equation
Consider the initial value problem
Ou + Ou _ 0 <z< t>0
ot " or 0 0SS

with v > 0, u (0,2) = f (x) for —oo < x < co. The exact solution is given by
w(t,z) = f (v — vt)
Consider a grid A = Ay X Ay:

Ar={nk : n=0,1,2,...}
Ay ={jh : j=0,%+1,+2,..}
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One possible discretization is

n n—1 n—1 n—1
Yh,j — Unj j
+v

k h

(6 + 0o, )up; =

or equivalently
n _ ,n—1 n—1 n—1
Uhy = Up; —C (“h,j - “hyjfl)

This is called the FB (Forwards Backwards) scheme where the Courant number is defined as

vk
O:F

Assume for simplicity that v = 1. As suggested by the exact solution u (t,z) = f (z — t), the solution at any
point (¢,2) depends only on the value of the initial condition at the point where the characteristic (having a
slope of 1) crosses the vertical axes (see the figure above). The characteristic curve therefore is called a domain
of dependance of the solution. On the other hand, the numerical solution at each point (¢, z;) depends only of
the solution at ("7, z;_1) and ("', z;). These values themselves depend on values at time ¢"~2 etc, so that
the value at (¢, z;) depends on the values in a right angle triangle whose hypothenuse has a slope of C' (see
again the same figure), called numerical domain of dependance. Clearly, if the Courant number C' is greater
than 1, the numerical domain of dependance will not contain the point where the characteristic crosses the
r—axes i.e. it will not account for the initial data that determines the exact solution at a given point. This
should create troubles with the numerical solution and these troubles are quantified by the notion of stability.
Informally speaking, the solution is stable if the numerical domain of dependance contains the exact domain of
dependance. We will formally illustrate these concepts below.
Define S (shift operator) such that

uzyj = (1 - C+CS_1) uz;l = (1 — C+CS_1)2uZE2 =...= (1 _ C_i_csr—l)”u%’j _ (1 _ C—FCS_l)nfj
-y <m) (- (s g, _;<m) R e

Now, suppose that the initial condition is perturbed with an error €; i.e. instead of f; the initial condition is
given by f; = f; + €;. Then, the perturbed solution 1y, is given by:

ﬁ’hvj = Z <n) (1 - C)m crmm (fjfner + Ejfner)
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and we have

n ~N - n m mn—m
th — th g Z <m) (1 — O) C €j—nt+m
m=0
- n m ~n—m - n m n—m n
<Y (M- e gl <l X (1) 1= 0" e < el (1 - €]+ €)

m=0 m=0

So that

|up ;= i 5| < llell (11 = C|+C)"
Then, if C' < 1:

|upy ;= i 5| < llello

However, if C > 1:
n ~ T n n nN—oo
b ;= g ] < el (11 = Cl+C)" = [lello, 20 = 1)" "= 00

Theorem 2.4.1 IfC <1 and u € C*((0,t] x R) then the FB scheme is convergent. That is
B = lla — wfll.. <70 (k+ 1)

where t" = kn.

Proof
" ou , , k 0%u
o u (", x;) = Fn (", x5) + 302 (n,25)
ou h 0%u

Su+vi u= -1 (t" 2;) =0 (k+h)

(5,5+u2)j +wvd up ;=0

and letting €, = u — up, we get the following estimate:

G <11 = C ey +Clefyoa| + o (27 2)

Let
E" = leplle, T" =max|7gp (", 25)|
J

Then from the last inequality we can conclude that:

E"' < (1= C)E"+CE" +k|rin (t",2)| S E" + kT" < E" ' 4 KT + kT" ' < E°+k Y T™
m=1
If E° =0 then .
Entl <k Z T™ <nk max T™ =t"maxT™ =t"O (k+ h)

1<m<n m
m=1

2.5 Von Neumann Stability Analysis

Definition Discrete L2 norm:

oo
loll; =R Y ol

j=—o00



32 CHAPTER 2. SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS

Definition A FD (Finite Difference) scheme for a time dependent PDE is stable if for any time T > 0, there
exists K > 0 such that for any initial data u?, the sequence {u}} satisfies:

Ml < & [l ],
for 0 < nk < T. The constant K is independent of the time and space mesh size!
Consider the following grid on the real axes

A, ={...,—2h,—h,0,h,2h,...}.

Then the Fourier Transform of a given grid function v is defined as

E e—z]hr

]_—OO

(Fo)(

ﬁ\

Inverse transform:

I B L
J m/ (Fu) (€) de

Theorem 2.5.1 (Parseval Identity)

A

™

h
e A

ﬁ
Corollary 2.5.2 A finite difference scheme is stable if and only if AK > 0, independent of k, h, s.t.:

VPl p 5 < K| [

x T T T
h°'h T h'h

Consider the forward backwards scheme. Since we have:

u"-:(l—C)th —i—Cth 1

= = / eI (Fup) (¢) d

jus

h
s
h

uh,jfl \/—/_ =Dhg F n 1) (&) d¢,

:-::

we obtain:

Fup= (1-C+Ce ™) (Fup ") (&)

Amplification Factor
AhE) =1—C+Ce "%

Then, since we have
n 2
1Pupl 2oz 2 /_7,4 he)? (Fup )’ de,

if |[A(h&)] < 1, we obtain that:
E TR

and recursive application gives:
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Since ‘
AB)=1-C+Ce ™

|A(0)> = (1 —C + Ccos)? + (—Csinh)?
=1-2C 4 C? +2C cosf — 2C? cos § 4 C? cos® 6 4+ C?sin” 0
=1-2C(1—cosf)+2C%*(1 —cosfh) =14 2C (1 —cosf) (C —1)
<1+4C(C-1)

it follows that if C' > 1 then |A (0)| > 1, and if C' <1 then |A (0)] < 1. Also,
[t—Cc+cCe®||<1-C|+C

If a numerical scheme requires a solution of a linear system with a non-diagonal matrix then we call it an implicit
scheme, otherwise it is called an explicit scheme.
Consider the following “Backwards Backwards” scheme
-1
Uhg ~ Vg Mg T Yo
k h

=0

This is an implicit scheme.
In order to study its stability (and the stability of any other FD scheme), it is enough, instead of considering
the full Fourier transform of the solution, to consider the ”action” of the scheme on a single mode of the form:

wneijhﬁ
then plugging into the BB scheme:
w" [1 +C (1 — e_ihg)} =w"!

A1 (hE)

w, = A(h&)w" !
A@)=[1+C -]

Then, _ _
T+C(1—e™)|21+C|—|Ce ™| =1

so that
A@) <1 V8

therefore the BB scheme is unconditionally stable.
We may outline a procedure for von Neumann stability analysis:

1. Consider a single mode w™e%"¢.

2. Derive conditions for A to satisfy |A (h§)| <1

2.6 Sufficient Conditions for Convergence

More generally, if we approximate the solution of a well-posed initial-boundary or boundary value problem

comprised by the equation:
Lu= fin Q

and some initial and/or boundary conditions:
lu=yg,
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by a numerical scheme with a grid size h (this can be a vector of grid sizes in each direction of discretization):

Lpup = fp, in Q
nun = fn h (2.3)
lhun = gn
we need to generalize the notion of stability as follows. Assume that uy, fr, and g, belong to three Banach
spaces B}, B?, and B}, with norms |.|n1, ||.|ln2, and ||.||n,3 correspondingly. Then we have the following
generalized definition of stability:

Definition (Stable scheme) If the scheme (2.3) has a unique solution up, it is stable if 3Cy, C2 > 0, independent
of h, s.t.:

lunllng < Cillfalln2 4+ Callgnlln.s-
The essence of this definition is that it guarantees that a small perturbation in the data of the problem i.e. in
fn, gn leads to a small perturbation in the solution uy,.
We can also generalize the notion of consistency as follows. Suppose that P! is an operator from a given

Banach space B?, containing the solution of the continuous problem u, into Bi. Then the discrete operators

Ly, and [, are consistent with the continuous counterparts if:
Lh(Plu — uh) = ¢h in Qh (2 4)
(P —up) = ¥, .

and

0 —
5o 1¥n 0.3 e

Note that h can be a vector of grid sizes, if the problem involves more than one variable. If ¢y, = O(|h|™), ¥y, =
O(|h|¥), then the scheme is consistent to order min(k,m). Note that this definition is consistent with the
previous definition that we used, provided that the the data of the discrete problem exactly matches the data
of the continuous problem in the points of the grid.

The following theorem states that consistency and stability are sufficient for obtaining convergence.

Theorem 2.6.1 Given a scheme that is consistent in a norm ||.||n,1, then it is convergent in this norm, if it is
stable. If the scheme is consistent to order k then it is convergent to order k.

Proof If the scheme is consistent we have that:
Lh(Plu — uh) = ¢h in Qh
lh(Plu — uh) = wh-

The stability guarantees that:
[P'u — upllpy < C

and this immediately yields convergence in the norm |||z 1.

It appears that the stability and consistency are also necessary conditions for convergence, as stated in the
following theorem due to P. Lax. We will skip the proof in these notes.

Theorem 2.6.2 (Lax Theorem) Given a consistent scheme for a well-posed initial boundary value problem,
then stability is a necessary and sufficient condition for convergence.

2.7 Parabolic PDEs — Heat Equation

{ = DG, <t,x> (0.7] x R
uw(0,z) = f(x), zeR

Which has the solution )
=)

u(t,z) = \/m/ G
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2.7.1 FC Scheme

This is an explicit scheme.
+ n 2. n
575 uhd — D(Smuhd = O

“Z.,Jgr'l =(1-2I'D)uj; +I'D (“Z,Hl + UZ,J‘—J ) I'=-35

where T is called a grid ratio.

The consistency error is found using

Ou— 6 u=0(k)
Opzll — 5gu =0 (h2)

so that
Tin = O (k—l— h2) .

Stability is a central concern of parabolic and hyperbolic PDEs. Using the Neumann analysis idea we substitute
the Fourier mode:
’U;L = w"e?

into the scheme to get:

(wnJrl _ wn) eij@ — 2 (wnew — 2" + wnefie) eij@

> =

B2

This gives:
0
wt = <1 — 4DT sin? 5) w"
A(6)<1

So that )

0<Dl'sy ¢ |A(0)] <1 = stability
and we require:

h? — 2 - 2D

and we note that £ and h are not of the same order. So, this is a conditionally stable scheme, but it is explicit
and this is to be expected.
In this problem the domain € is the entire real axes and therefore it is convenient to use for measuring the

error the following oo-norm: ||vp|lo = max |vp;|. Then the following theorem provides the convergence
—oo<g<oo

estimate for the FC scheme.
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Theorem 2.7.1 If DT" < %, the exact solution u is sufficiently smooth, and if up satisfies exactly the initial
condition then:

llu —unllg = llenllg = O (k + h?)
Proof From the scheme, if the exact solution w is sufficiently smooth*, we have:

u*! = Drw} | + (1 - 2DT)u} + DT}y, + O (K + kh?)

so that:
n+1 n n n 2 2
eyt =DC e+ (1—=2D0) e+ DU ep oy + O (k* + kh?)
) N~~~ ’ ) ~—~ ’

by the triangle inequality,

||e’,;+1\|Q < |lepllg + O (k* + kR?) < \|62HQ+ (n+1)0 (K> +kh?®) = (n+1)k O (k+h?).

tn+1

Note that the the right hand side of this estimate will blow up as ¢t — oo for fixed k, h.

2.7.2 BC scheme

— n+1 __ 2
0y up = Déwuh_’j

n+1
This is a O (k + h2) consistent scheme. It can be rewritten as:

—Druggl_l + (14 2I'D) u;;jl - DI‘uZ:;ﬁrl =y

So we must invert a tridiagonal matrix. Now we will study its stability. Substituting

’U;l = w"e?

into the scheme we have:
w’n,Jrl _ wn — DF (e’ié’ _ 2 4 ef’ié’) wnJrl
So that: )
n+1 — — wn.
1+4DT sin 5
—_———
A(0)<1

So, it is clear that the BC scheme is unconditionally stable.

*This term is used to require enough of the derivatives of the exact solution to be bounded, so that the coefficients in the
function O (k2 + khz) appearing in the consistency estimate below to be finite.
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2.7.3 Crank-Nicolson Scheme
It is given by

1
6 st = 5D (2wt + 62 )

zh,j
or
n+1 n
uh, i uh., j D n n n n n n
J k J — W (uh-glfl - 2uh:;1 + uh,—;il + uh,j—l — 2uh7j + uh,j-’-l)
Consistency:
n+1 n
D o i 2. n D ([ 9%u|™" 2 &u 2
5(51% +6xuj)=§ el +O(h)+@j+(’)(h)
1
92y |" "2 9 9
=D +0 (K +h?)
J

t, - —&———e— -
| | |
| | |
| | |
| | |
e T S
| | |
Tj1 T Tjp1

Neumann stability analysis: First, rewrite the scheme in the following two-stage form

n+%

2

Up j° = Up Up joq — 2up Uy r . .6
— = . : : — A, () =1—-4D—sin” =
5 h? 1) 27 2
+l
Uyt~ Ung oty = 20w - 1
= =D 5 A (0) = ——F—575-
3 h 1+4D35sin” 5

Then,

Wt = A (O)w" wT = Ay (0) w"tT = Ay Ay w”
~——

A(0)

So that A (#) <1, so the system is unconditionally stable, and O (h2 + k2).

37
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2.7.4 Leapfrog Scheme

As we use central difference in both directions, the scheme is O (k2 + h2). We may write the scheme as:

n+1 n—1 n n n
Ung ~Ung  _ pUhig-1 = 2 T U

2k o h2

Now we preform stability analysis: v = w"e'/®

wtt — "t =2DT (eiie -2+ eie) w"
Then, assume that:
w" =A@)w" " and "t = A(H) w"

so that
(A? = 1) w" ™' =4DT (cosf — 1) Aw" ™"

this gives

0 0
A9 = —4DI sin® 5 + \/ 1+ 16D2T"2 sin? 3

clearly |Az| > 1, and |Az| > 1 for some 6, so the scheme is unconditionally unstable.

2.7.5 DuFort-Frankel Scheme

D
n __ n n+1 n—1 n
dyuy = 72 [uhwr1 - (uh)j + uj, ) + uh,j71:|
Since

1
5 (w5 uis) =i+ 0 ()

this scheme can be considered as a stabilized version of the Leapfrog scheme. The truncation error is then:

2 92 3 92 2 92
k) 0%u k3 0%u hautn,xj)+(9(k3+h3)

Ty (8 2) =2 (ﬁ 5 (tn, zj) + 392 (tn,zj) — 12022 (

and the system is conditionally consistant if % — 0. If &, h go to zero but % — ¢2, then DF is consistent with:

ou  ,0%u 0?u
v 2l _pZt
ot " or T Pow

The stability analysis reveals that this scheme is unconditionally stable.
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2.8 Advection-Diffusion Equation

E‘F’Ua—x:D@ (t,l’)E(O,T]X(O,L)
and v, D > 0. Then define 7 = %t, = 7, and Peclet number Pe = %. So the PDE becomes:

ou Ou 1 9%u T
EJra_g_ﬁa_g?’ (1,6) € (va:| x (0,1)

2.8.1 FC Scheme

n+1 n n n n n n
Ung T Uhg | Uhgat " Uhgor L Yhigo1 72U T UG

k 2h Pe h?

This scheme is consistant to O (k + h2). Now preform stability analysis: v} = wne?

1 —1i0 —10 0
e —e 1 e —2+e
wrtl -  k——— " _—

oh " Pe h2 =0

2r
wt = <—Ci sinf + Pe (cosf — 1)+ 1>

A(0)

So we may write,

2 L 50\ o
|A(0)]" = 1—4ﬁs1n 3 + C*sin* 0

If I'/Pe < 1/2 the first term < 1 and since C? = kI then C?sin? @ < Pek/2 = Mk, M > 0, i.e.
|A]> <1+ Mk

Theorem 2.8.1 The FC scheme is stable if T < Pe/2 i.e. if |A(0)|* <1+ Mk for some M > 0.

Proof
(Fup)? (€) = A% (he) (Ful™h)? (&) = A% (h€) (Fud)® (&) < (1 + ME)" (Ful)® (€)

Therefore,

nkM

PRI < (0 2" ||l < (1 2k 55 ([Pl 2 = (0 k)™ P2 < e a2,

where t" = nk.

Theorem 2.8.2 Assume: r )
< =
Pe = 2

Then the solution of the FC scheme satisfies the mazimum principle:

uz-ij-l‘ < mf)( ‘UZJ’

max
J

for alln > 1, if and only if h < ﬁT.

THere we tacitly disregard the boundary conditions that are required since the equation involves a second derivative in space.
It is quite clear, however, that the boundary conditions should be non-increasing functions of time. For example, if at the left edge
of the domain we need to satisfy a Dirichlet condition that is an increasing function of time, and the approximation satisfies it
exactly, then it cannot satisfy such a maximum principle in time.
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Proof Let h < %, then:

r 1 r 1
u;;ﬂ <+ (1 + 5hPe) |whjr| + (1= 20Pe™) [uh ;| + 5= (1 - §hPe> [up | < max u ;|

2 T
because h < &, £ < 1

Now, assume that

max uZ‘H‘ < mjax‘u’,;j’.
Aiming towards a contradiction, assume that A > 5-. Then, choose the initial data as follows
1, 7=0,1
0o _ y J i
g = {0, j>1
so that

T r T 12
1
14 —hPe)+1-2=—>— (14-—Pe—2)+1=1
Yh1 = Pe(+ e>+ Pe>Pe(+2Pee )+

and this gives:

max’u,lL ‘ >1 :max’u% ’
; J ; 2

so, by contradiction, the theorem holds.

Since violation of the maximum principle leads to unphysical solution then we must choose h < 2/Pe and so,
if the Peclet number Pe is very large then we need to use very small h, of the order of Pe~!. This corresponds
to problems with boundary layers that need to be resolved by h. However, it is known from the properties of
the corresponding boundary value problem that the thickness of such boundary layers is of the order of Pe~1/2
i.e. it can be resolved by h being of order of Pe~'/2. So, this scheme requires the use of a spatial step h much
less than what is needed to resolve the actual solution. The next scheme cures this problem at the expense of
loss of accuracy.

2.8.2 Upwinding Scheme (FB)

n+l _ no_ ,n n — n n
Up g  —Uhy Uy —up oy 1 up o = 2up s up g

k h Pe h?

Theorem 2.8.3 Assume that % < % Then the FB scheme satisfies a mazimum principle provided that:

r k
o<t (o=7)

The proof is left as an exercise. This theorem implies that the maximum principle is satisfied if k¥ < (Peh?)/(2+
Peh). Note that in the limit Pe — oo, this restriction on k tends to h. On the other hand, the stability condition
k < Peh?/2 implies that if Pe — oo but Peh? — const (i.e. h = O(Pe~'/?)), k is restricted by a constant. In
conclusion, if the Peclet number Pe is very large, the scheme guarantees that the solution satisfies a maximum
principle, similar to the exact solution, and is stable if k < h, but k can be of the order of h. And this is true
even if h = O(Pe~1/?) that is sufficient to resolve boundary layers.
The scheme has a consistency error
Tk,h (t,CC) =0 (k—F h)

as 5

u
i = o (tn,z;) + O (k)

and
ou h 0%u

0, ui = e (tn, xj) — 5922 (tn,z;) + O (h*)
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and )

QUi = W(tn,ﬂ?j)+@(h2)-

Combining these results we have:

2
ou Ou <1 h)8u+0(k+h2)

1
Stul + 6 uh — — 52y = — 4+ = [ —— 4+ 2 ) ==
UG 0 U Pe =i 8t+8x Pe+2 0z?

i.e. up to terms that are O(k + h?), the scheme is consistent with the equation

ou Ou 1 h\ 9%u B
8t+8x (Pe+2) 02

This means that the scheme adds an extra diffusion term that is of order of h. If the leading order term in
the spatial error is proportional to a derivative of an even order, we call the scheme dissipative since such
schemes usually dissipate sharp changes (large gradients) of the solution. If the leading order term of the error
is proportional to a derivative of an odd order, the scheme is called dispersive. This is because odd derivatives
in PDEs lead to the so called dispersion in the solution. In terms of a Fourier decomposition of the solution,
this effect is manifested in the fact that due to the presence of odd derivatives different Fourier modes travel
with a different speed.
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Chapter 3

Introduction to Finite Elements

3.1 Weighted Residual Methods

3.1.1 Sobolev spaces

Sobolev space:

H™ (2)

1l
—
<
2
1
=~
—
S
[

(S
_|_
/
S
N
o
_|_
_l’_
—~
<
&
N—
o
N—
AN
8
——

then

and H™ (Q) is a Hilbert space:
(u, ’U)m = / (uv —+ u(l)v(l) + ...+ u(m)U(m)) dw
Q

and

lull,, = \//Q (w2 4+ (um)?) da

Proposition 3.1.1 1. H™"1(Q) c H™ ()

2. Ifve H™ (Q) then:
2 2
vl> = U2—|— oV 4+ o™
m 0 0 0

3. 1llyury = ol and 0],y > |[0@]],

4. If v, w e H™ (Q) then |[(v,w),,| < ||v|l,, [|V]|,,, this is the Cauchy-Schwartz inequality.

5. Ifv, we H™ (Q) then
o +wll,, < vl + ]l

Proof We will prove the Cauchy-Schwartz inequality
(1, 0) | < el

m

for u, v € H™ (§2). For any s € R we have

2 2
0< (u—sv,u—sv), =|ull;, + |||, —2s(u,v),, .

43
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Choose
(),
|oll?,
so that: 9 9
U’U
0< (u—sv,u—sv), =, + & )—2( I |2, - et

(1, 0)y < |lully, 0]y,

and, upon rearranging, we have:

3.1.2 Weighted Residual Formulations

Consider
Lu=f, inQ
with
u=0, ondN)
where
d2
dx?
so that: P2
u .
—@:f 1DQ:(0,1)
with

u=0, onx=0,1
Define the “trial function” space, for example it can be chosen to be
U={u:ueH*(Q), u=0on 00}
and we introduce the “weight functions” (also called test) space, for this choice of U it can be chosen to be

W={w: weL*(Q), w=0on 0N}

d2
/< +f>wdQ_O, feL?(Q)
Q

for all w € W. This is one “weighted residual formulation” of the original problem. This particular formulation
is also usually called a strong formulation. It still defines a continuous problem and in order to discretize it
we need to discretize the corresponding functional spaces i.e. to define appropriate approximations for each
function in them. We select a subset U}, of U:

Uh C U; Uh :spa’n{gbOv"'v(bnfl}

Now, find w € U such that

and Wy, a subset of W:
WhCVVa Wh:SPan{¢0w--a¢n—1}

and then, search for the discrete approximation uy in the form:

n—1
Uh:zcszi
i=0
so that:
2 n—1 o
/(ddx2 cﬂ%—f)w]dﬂ_o = Zcz/d@ ‘z/fwde, j=0,1,....n—1
=0 Q

This is a linear algebraic system Lc = F' where:

o= [ 5 Ty a0, - | roiie
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3.1.3 Collocation Methods

Let
Vj(z) =06 (z - xj)

so that: L;; = % (z;) and Fj = f (x;). Note that t; are not in L? however the fzormulation still makes sense
if ¢; € C° because the integrals are well defined. Next, we may approximate % ~ 02, and this gives us a

finite difference method or we may select U, as the space spanned by certain sets of orthogonal polynomials
(Legendre, Chebyshev etc.), and this gives us spectral collocation.

3.2 Weak Methods

By far, the most popular weighted residual methods are based on the so called weak formulation of the classical
problem. To obtain it we start from
d2
/ (—Z+f)wd9_o VweWw
Q dx
and choose the discrete test functions space to be
W={w:weH)}.

Here we define
Hj () = {u e H" (), u=0o0ndQ}.

o dz dx o0 dr Q
N——

=0

Then,

Then the problem is reformulated as: Find u € U such that:

LT
q dz dx Q

A natural choice for U which makes all integrals well defined and incorporates the Dirichlet boundary conditions
in the solution is U = W. Such formulation is called a Galerkin formulation. The space U can be discretized by
means of piecewise polynomial functions, orthogonal polynomials, trigonometric polynomials, spline functions
etc. These choices yield various weak methods. In the remainder of the notes we will focus on the piecewise
polynomial approximations which yield the so called finite element methods.

Before we proceed with the discretization we shall prove some important results for the continuous Galerkin
formulation: Find u € U = H}(Q2) such that

/u’v’dQ: fvdQ, VYovel.
Q Q

Theorem 3.2.1 If u is a solution of the classical formulation

—u" =f inQ
u=0 on o

then u s a solution of the Galerkin formulation. If w is a solution to the Galerkin Formulation then it is a
solution to the classical formulation if u € C%([0,1]) and f € C°(]0,1]).
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Proof Suppose that u solves the differential formulation:

then take v € U so that:

—/u"de:/fde

Q Q
/u'v'dQ:/fde
Q Q

(v, U/)o = (f,v)y

Suppose that u solves the Galerkin formulation so that:

(ulv U/) = (f7 U)

then

/(u’v’—fv) =0 = (W' + flodQ2=0
Q Q

Assume towards contradiction that u” + f # 0 in some point z € Q. However, v” € C°(Q2) and f € C°(Q).
Therefore,

W+ el Q) =u"+f#0

in an entire open interval contained in Q. Therefore, there exists (zo,x1) C Q such that v’ + f > 0 for all
x € (mg,x1) or v’ + f < 0 for all © € (xp,21). We consider the first possibility and the second one can be
considered in exactly the same way. Let us choose

[~ @—w)(@—21) in (v,3)
{

0 otherwise.
For this choice it is clear that v € H{ (2) and v > 0 in Q. Now since " + f > 0 in (zq, 1) then
(" + f,v) >0
but this contradicts the fact that u is a solution to (u” + f,v) =0 for all v € U. Therefore, u” + f = 0.

Example Consider the deformation of a rod from its equilibrium position under a given load f:

\ ="

Then

is the total energy of the system.

Therefore, F is called the energy functional of any system described by a second order elliptic differential
equation.

Q) is a solution to the Galerkin formulation if and only if u minimizes E (v) over

Theorem 3.2.2 u € H} (
< E(v) for all v € H} (Q).

H} (Q). That is, E (u)
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Proof 1. Suppose that u is a solution to the Galerkin formulation so that: (u',v"), = (f,v), for all v € H{ (2)

so that:
1 li li 1 / / 1 / / !/ /
E(w)=FE@u+w)= B ((u—i—w) s (u+w) )0—(f,u—|—w)0 = 5(“ ,u)o—(f,u)0+§ (W', w")g—(f,w)o+(u',w'),
Since
(ulvw/)o = (fv U})O
we have

E@) =B+ W} > F )

2. Suppose that E (u) < E (v) for all v € H} (Q2). Then if we take s € R, E (u + sw) has a min at s = 0, and
therefore:

d
EE (u + sw)

s=0
which we expand as:

% (% ((u—l—sw)/,(u—i—sw)/)o - (f,u—i—sw)o) . =0
di(E(u)—i—s(u',w’)o—s(f,w)o—i——s (w',w')) = (W, w')y— (fyw)y + s (v, w) =0
S s=0 N—_——

=0 s=0

So that:
(u/7 w/)o = (f7 w)o

for all w € H} (Q). Therefore, u solves the Galerkin Formulation.

Consider a Hilbert space V' equipped with the product (-,-),, i..e. V is complete with respect to the norm
|||y, induced by this product. Now, consider the mapping a : V x V — R (further called a bilinear form) such
that:

1. a(au+ Bv,w) = aa (u,w) + Ba (v, w),
2. a(w,ou+ pv) = aa (w,u) + fa (w,v),

3. there exists 3 > 0 such that |a (u,v)| < B||ul|y ||v]|y, (such bilinear form is called bounded w.r.t. [|.||,),
and

4. there exists p > 0 such that
2
a (u,u) = plully

(such bilinear form is called coercive w.r.t. ||.[|,)
Now, suppose that G (v) is a functional such that:
1. G(au+ pv) = aG (u) + BG (v) (such a functional is called linear) and
2. there exists § > 0 such that |G (u)| < d||ul|;, (such functional is called bounded).
The following theorem is one version of a very well known result from functional analysis.

Theorem 3.2.3 (Riesz Theorem) IfV is a Hilbert space with a given inner product (.,.). and if G (v) is a
bounded linear functional on V' (w.r.t. the norm induced by its inner product), then there is a unique element

@ €V such that (4,v), = G (v) forallveV.

This theorem almost directly yields the proof of a somewhat restricted version of the following fundamental
result in PDE theory and their numerical analysis.
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Lemma 3.2.4 (Lax-Milgram) If a (u,v) and G (v) satisfy the siz conditions stated above then there exists a
unique solution 4 € V' for the following problem: Find u € V s.t.

a(u,v)=G(v) YweV
If a (u,v) = a (v,u) (symmetric form) then G is the minimizer of

E(v) = %a(v,v) -G (v)

Proof We shall consider only the case where a (u,v) = a (v,u).

e The proof of the first claim is a direct consequence of the Riesz theorem if we prove that a (u,v) defines
an inner product on V. We know that:
2
a(u,u) = pllully

v (u,u) = [lull,

is a norm on V. It is not difficult then to verify that a(u,v) defines an inner product on V. Also, it is
straightforward to show that the norm ||.||, is equivalent to ||.||v i.e.:

Vo llully < lull, < V/Bllully -

Therefore, since V' is complete with respect to [|-||,, then it is complete with respect to the norm ||.||, i.e.
V' is a Hilbert space with respect to the product a(.,.). As G (v) is bounded with respect to ||-||,,, G (v)
is bounded with respect to ||-||,. Since a(.,.) is an inner product on V' and G (v) is bounded w.r.t. the
norm induced by this inner product, the Riesz theorem implies the first claim of the lemma.

which guarantees that

e Next we show that @ minimizes E (v) = 1a (v,v) — G (v).

Ew)=FE(it+w)=FE(@G)+1/2a(w,w) > E(Q)
——

>0
Example
—Viu=f inQ
u=0 on 0f -
Its Galerkin formulation reads: Find u € H}(Q) s.t.:
(Vu, Vv)y = (f,v), Yo € H(Q). (3.1)

Below we prove the so-called Poincaré inequality which will guarantee that a(u,v) = (Vu, Vo), defines a bilinear
form satisfying the conditions of the Lax-Milgram lemma.

Lemma 3.2.5 (Poincaré Inequality) If( is a bounded domain and v € H} (Q) then 3C > 0, depending only
on the domain Q, such that , ,
llvllo < ClIVollg -

Proof Consider first v € C§(Q) i.e. v is a continuously differentiable function defined on €2 that vanishes on
its boundary. We can always find a € R large enough so that the cube Q = {z € R" : |z;] < a,1 < j < n}
contains 2. Integrating by parts in the x; direction and taking into account that the surface integral vanishes
since v = 0 on 02 we obtain:

||v||(2J = [vidz = [1 vidz = —fxl%dx
Q Q Q !
= —2({:171’088—;16117 < 2a§f2|v| 86—;1 dzx.
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Using the Cauchy-Schwarz inequality for the L? inner product on 2, we obtain:

ov

2
[lvllp < 2G§I;|v| Dar

dx < 2al|v]lo]| 2|0 < 2allv]lo][Vvlo-

Dividing by ||v]|o gives the desired result with C' = (2a)? and v € C§(Q2). Due to some classical results in
functional analysis (see for example Ern, A. and Guermond, J.-L., Theory and Practice of Finite Elements,
Applied Mathematical Sciences, v. 159, Springer, 2004, p. 485), we can claim that for each v € H}(Q2) we can
choose a sequence of functions in {vy}72,; C C§(£2) such that the sequence converges to v in the H'Q) norm
ie. |lv—wvkllo < |lv —vkll1 = 0 as k — oo and similarly [|[Vv — Vugllo < ||v — vkl]s — 0. Using the triangular
inequality in the form |lu —w||o > ||u|lo — ||w||o yields that |Jvk|o — [|v]lo and [[Vukllo — [|[Vv]|o. This allows us
to take the limit in the Poincaré inequality for vy € C3(€2) to derive the inequality for any function in H(€2).

Using this inequality we easily prove the following proposition.

Proposition 3.2.6 a(u,v) = (Vu, Vv), is a bilinear, bounded, and coercive form in H}(Q); G (v) = (f,v), is
bounded in Hg(Q) if || f|], < co.

Proof

la ()] = /wwdx < IVully [1V2lly < [full, [[o]l
Q
as [[ull, = [[Vully + [ully > [ Vully. Then,

1 1 1
a (u,u) = (Vu, V) = [[Vull§ = 5 (IVallg + 1Vull3) = 5 (Il + 19ulfF) = 5 llull?

The last proposition guarantees that the bilinear form a (u,v) = [ VuVuvdz and the functional G (v) =
Q

(f,v), satisfy the conditions of the Lax-Milgram lemma if || f||, < oo. This automatically guarantees that the
corresponding weak formulation (3.1) has a unique solution in H} ().

3.3 Finite Element Method (FEM)

Let us define a grid:
A= {I07"'7$M}

and the following linear space of continuous piecewise linear functions on A:

Mol (A) = span{lo,ll,.. ,ZM} S H! (Q)

where
T—Ti_1 ) )
Ti—Ti_1 Ti—1 S x S w;
— T—Tq41 . )
=9 7= <o <wi -
0 otherwise.

Define the discrete space:
Vi, ={veMy(A), v(0)=v(l)=0} C Hj(Q)

which is equivalent to
Vi, =span{ly,...,lp—1}

Let us now consider the following discrete problem: Find up € V}, such that:

(u;w v;z)o = (fv vh)o
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for all vy, € V},. It is clear that:
M—1

Up = E Ujlj
Jj=1

and
(Wh, 1o = (fili)y, 1<i<M—1
so that:
M—1 M—1
j=1 0 j=1
The last set of equations clearly constitute a linear algebraic system:
Auh =F
where Aij = (l;, Z_I])O y E = (f, ll)O y and Uh,i = Usj-
Now, as
M-1 M-1 M-1M-1
0 < (vp,v),)y = Z vl Z ;] Z Z vi (13,15)  vi = vT Av

i=1 j=1 o i=1 =1

the Lax-Milgram lemma guarantees that this system has a unique solution if f(z) € L?(Q).

3.4 Gaussian Quadrature

We may approximate the integral of function ¢ (x) over the range x € (—1,1) using Gaussian integration:

/_11 o (x) dx =~ iAZ(-n)(b (:zrz(n))

where AE") are the weights and :cgn) are the nodes of the quadrature. n is a positive integer that controls

the accuracy. The weights and nodes are determined from the condition that the quadrature is exact for all
polynomials of the highest possible degree. We have 2n undetermined coefficients (n weights and n nodes) and
so we can make the quadrature exact for polynomials of 2n — 1 degree (that have 2n coefficients).

The following table contains the weights and Gauss points for the first fourGauss quadratures:

[n [l ER [2n 1]
112 0 1
1 T
2 1,1 - = 3
31558 /2002 5
4 | 0.347854, 0.652145, 0.347854, 0.652145 | —0.861136, —0.339981, 0.339981, 0.861136 | 7

Remark We may approximate the integral over arbitrary bounds e and b using Gaussian Quadrature by
applying the substitution:
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(z) = 2 +a+b
yir _b—ax a—2b

So that y (a) = —1, y (b) = 1, and dz = %52 dy. Therefore:

/:qs(w) dwzb;a/tqs((b_m—;“”) dy

3.5 Error Estimates
Theorem 3.5.1 If uy is the finite element approximation to the exact solution u of the boundary value problem
—u" = f, w(0)=u(l)=0
then there exists k > 0 such that:
[lu —unlly < kllu—onll;
for all vy, € V.
Proof u is the exact solution, so that
a (uv ’LUh) = (fv ’LUh)

for all wy, € V4, and
a (U’hv ’LUh) = (fa wh)

So that

alu—up,wp| =0 = a(ep,wp) =0
——
en

Then,

1
3 llenl; < a(en,en) +alen,wn) < alen,en+wn)=alen,u—un+wy) =alenu—ovy) < |lenlly |lu— vl

So that
llenlly < 2[Ju—vnlly

Corollary 3.5.2 If u and uyp are as in the theorem, then we have
[lu—unlly < ch
where ¢ > 0 is independent of h.

Proof For the time being we will assume that u € C?(Q) i.e. u is a solution to the classical problem for
f € C°%9). Let @ be the piecewise linear interpolant of u in V}, i.e. 4 = Zf\i;l u;l;, where u; are the values
of v in the nodes of the grid x;. Using Taylor expansion it is possible to prove the following estimate for the
interpolation error:

[l = @] e < ||| oo P

Recall that:
2 2
lu = unlly < 4flu—olf;

for all v € V}, and as u € V;, we have:

2 ~112 ~112 NI ~/112
= unll} < 41w —all} =4 (|lu—all + ' = a|15) <8 |l = |3
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where, in the last step, we applied the Poincaré inequality. Continuing, we have:
1
= unll? <8 [ =) do <81l = e < 8[| R
0

where we have used the interpolation estimate ||u’ — ﬁ’||iw < ||u”||ioo h2. This yields
llu —unlly < V8[|l b= O ().
Applying Poincaré’s inequality, we also have that:
2 2 2 2
lw = unlly = [lu = unllo + [lu" = uhllo = 2[|u — unlly
so that we obtain the estimate in the L? norm:
[ = unlly < ch[[u”]] Lo -

This is a suboptimal estimate because from interpolation theory we know that u can be approximated with a
piecewise linear function with a second order accuracy in the L? norm.

3.6 Optimal Error Estimates

Lemma 3.6.1 If 4 is the finite element interpolant of u € H? (), i.e. 4 = Zﬁ;l u(z;)l;, then:

N 2
1 lu—ally < (£)" [1u"llg
2. |l =@y < &l
Proof The domain is subdivided into elements at points:
xo =0, 1, T2, ... Ti-1, Tiy - TM—1, Ty = 1

Consider the difference
u—14 in [0,h] = [z, 1]

and define n (z) = v — @ € H! ([0, h]). Clearly,

1(0) =n(h) =0.

Since n € C°[0, h] it can be expanded in a uniformly convergent Fourier sine series:

o0
. /nTT
1) =D msin (5)
n=1
Then, using the Parseval identity,

h [e%S)
h
2
| e =1l =5 Y2
0 n=1

Differentiating term wise we get:

> nmw nwx 2 h — nm\ 2
F0= S en () o i 55 ()
n=1

n=1

and differentiating again we have:

> n?r%  /nrx 2 h nmw\4
v @) == sin () = e = 5 2 ()
n=1 n=1
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So that

2 h g 5 nm\2 nm\2 h? h2h s~ 5 (nm\% h% o R,
1 1Zo00y = 5 2 m2 (50) (50) 5 < S35 o m2 (5) = S5 0" lzaio = = 16”1320,

n=1 n=1

and
) h & h2 h & nm\2 A%, , o A\* )
lEeon = 5 2om2 < =5 dom2 (5) = =5 In'lgeom < (=) 1011320,
n=1 n=1

Applying the same for any subsequent subinterval and summing the resulting inequalities we complete the
proof.

Corollary 3.6.2 1. |ju—al|, < hTﬂ "],

2. |lu—uplly < 2 |lu]],
Proof 1.

2
12 A2 112 2 h 2
=l = fh = alf + ' = @13 < 20— @1 <2 (2) gl

2. for all vy, € V}, in the finite element space we have:
|l —unlly < 2[[u—onll;

Take vy, = 4, then:
hv/8

=l < 2w = ally < 2 g

So that
|l — unll; < Chlu"|],

where C' > 0 is independent of h.

Theorem 3.6.3 (L? lifting theorem) If uj, € Vj, is the Galerkin finite element approzimation of:

u'{—u”:f(x), IE(O,l)
"lu(@)=u(l)=0

then there exists I' > 0 such that
|lu = unlly <TA?||u"||,

Proof Define:

€EpL = U — Up

then,

(u/=U;1)0 =(f, Uh)o
for all v, € V3, or,

a(u,vp) = (u',v3),

so that

a(u,vn) = (f,vp) -
@ (un, vn) = (£, vho)o} a(en,vn) =0 (3.2)

Now, consider the auxiliary problem
{—gb”_eh, 0<z<1
$(0)=0¢(1)=0
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Then,
llenlly = (ensen)g = — (en, 8")g = (€hs @)y = a (e, d)

Now, taking v, = ¢ in (3.2), we get:
a (6h7 é) = 07

and subtracting it from the above equation we obtain:

leall = a(ens9) = alené) —a(end) = a(eno—3) = (h¢/ =) = /01 (¢ -9) da
Vah hv3

1" T
1671l = llehllo —— llenllo

¢ — ¢

< liehllo| = leilo [l = 8|, < iehla

iy
h2
< lenll; — llenllo < TR [[u”]o [lenll

So that
llenllo < TH? [Ju”|]

for some I' > 0, independent of h.

3.6.1 Other Boundary Conditions

Let us consider an elliptic problem with more general boundary conditions:

{—U/I(,T):f, 0<x<l
u(0)=p1, v (1) =P

Since we need to satisfy non-homogeneous boundary conditions of Dirichlet and Neumann type, this time we
discretize the solution with the expansion:

M
un = Bilo () + Y ujl; () (3.3)
j=1

so that
up, (0) = B1lo (0) = Bi.

Now, consider the original equation:
_’LL/I _ f
multiply it by v € V = H! (Q2), and integrate over  to obtain:
(—u"v)g=(fiv)g =  @W,0)y+u (0)v(0) —u' (1)v (1) = (f,v),-
If we approximate v with (3.3) and take the test functions to be vy, € Vi, = span{ly,...,lp}, we have:
(uhs 1)y —up ()1 (1) = (f,13)g, G=1,..., M,

or

M

(ﬁllé + Z unl;, l;) - ﬁglj (1) = (f, lj)O .
n=1 0

This yields:

M
<ﬂ116+zunl;7,alll> = (fall)Oa
n=1

0
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(E unl;,l§> (f,15)
0
for j=2,..., M — 1 and finally,

M
<Z unll,, lﬁ\/[> — B2 =(f,lnm), -
n=1 0

3.7 Transient Problems

Consider the Initial Boundary Value Problem given by:

5 — o5 la(2) ] (¢) for (t,2)€(0,T]x (0,1)
u(t,0) = u(t,1) 1 for ¢t>0
u(0,z) =g () for x€(0,1)

For a (z) € C' (Q) such that 0 < a < a(z) < A < oo and [|f (z)[|o < L < oc.
The Galerkin formulation of the problem is given by: Find u € H} (€2) such that

(%) +b(u0) = (f () v)g

for all v € Hf (Q), where b (u,v) = (a(z) %, %)0. Note that b(u, v) is a coercive and bounded bilinear form on

H}(Q) (why?). In order to discretize it we define
Vh = Span {ll, lg, e l]W—l}

and search for uy, (¢, ) = Z;‘i}l uj (t)1; (z) € V}, such that:

ou
< 8th ’Uh)o + b (uh,vh) = (f, vh)o

for all v, € Vj,. Then, taking into account that I; form a basis of V3, it is sufficient to take v, = l;,j =
1,...,M — 1 and we obtain the linear system

g (Muy,) + Suy, =
where oL,
o 7. i Vb5
Az_] /Q (lz,l]) d:v +/ ( ) 8x 8I dw
mass matrix M stiffness s

foreach i, j=1,...,M — 1, and
Fj:/fljdx,jzl,...,M—l; uh:(ul(t),...,uM,l(t))T.
Q

Then, as M is time-independent,

8
Bt
We may discretize this ODE system using for example a backward difference scheme (a good choice for such

problems, as we know from the previous section) to obtain the final linear system that yields the solution at
time level n:

(uh) + Su, =F

n—1
up —u,

M
k

+ Sup =F".
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Define
A=),
where :
M;; :/lil]‘
Q
and

0l; 0l ol; 0l
i = — L dx > — L dz.
Sii /Qa(x)axax r=d q Oz Oz v

M, A are spd (why?). If u is the exact solution, then
ou 0 ou
5% (a(x)a—x) =f
Now we multiply by v, € V}, and integrate:
ou
(Eﬂjh) +b(u,vn) = (f,vn)y
0

—1

Adding and subtracting (“n 717;” ,vh) , we get:
0

u® — unfl " " 8’[1,” u® — unfl
(£ ) o= - (%) + (252 0)

which we may rewrite as:

u® — un—l N N
L » Uh +b(u ,’Uh) = (f 7vh)0+ (Tkavh)07
0

ou” u*—u!
JR— + J—
Ot k
derivative in time.

On the other hand the finite element approximation to the solution satisfies:

where 7, = — is the truncation error of the backward difference approximation of the first

n __ n—1
(M 0n) oGt = (7.
0

Letting

u" —up =€y

and subtracting the two preceding equations equations, we get:

n n—1
€ €
(7}1 kh ,Uh> + b (e, vn) = (Trsvn),

Now, define wy, such that
b (wp,vp) = b (u,vp) (3.4)

for all vy, € Vi, wy, is called the elliptic projection of u onto Vi,. Then we split the error €} into €} = n"™ + &7
where n"™ = u™ — w} is the error of the elliptic projection of u. Therefore, as we have already established for
the solution of (3.4)

0%u

2
||un_w2||0 <Th 972

0
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But then, as 8{;‘;’1 is the elliptic projection of %1; onto Vj,
n n 3
@ _ Owp, < Th? 0°u
ot ot o oto%x

Now,
(€7 =€ un) + kb (€7 0n) = ki (7 vn)g — (0™ = 0", on) o — Kb (1", vn)
But, as &" € Vj,
(€7 —€v7€), +hb(E,€") = k(T €M) — (" — 0" 1,€")  — kb (7, €7)

and, since since b (£™, &™) > 0 and b (n™,£™) = 0, this leads to the inequality:
(" =€ he"), Sk (T, %) — (" =" 1 €M),

which we may rewrite as:

16715 < (€71 €") g + R (T8, €M) — (0" =", €"), - (3.5)
Lemma 3.7.1 .

(€6, < 5l e+ 5 llenl e

Proof ) , )

0<[lgn =€ H[g= 11" — 2 (€7 ") + 1€ ]

Upon rearranging, this yields the desired result.

Theorem 3.7.2 (Young Inequality)

2 1 2
(u0)y < 0 [l + o5 1ol

Lemma 3.7.3 i )
k2 " 82’(1, k 2
k(r,&" S—/ — || dt+ ="
Proof L L
n o ¢n ni2 ni2
BT < 5 IR+ 2 g3
ou™ n_ ,n—1 1 nk 62
Now using the integral form of the truncation error: 7 = % — % =7 /(n_l)k [t—(n—1)k] 8—;; dt,
and the Cauchy-Schwartz inequality for the integral in time, we obtain:
oun ut —un L 1 /"k 0%u
ME=l— - —|| =||= t— -1k g
|| k||0 8t k 0 k (nfl)k[ ( ) ] 8t2 .

2

IN

nk
—- t—(n—1) % dt / dt
k \/w/(n 1k [ \/ (n—1)k 8t2

0

nk 2 2
< \/— / 2 dt :k// (8—;‘) dt dz
(n—1)k (f% . aJm-1k \ Ot

g /”k oull*
(n—1)k || O

dt




58 CHAPTER 3. INTRODUCTION TO FINITE ELEMENTS

So then,
k , k ) k2/"k 9%ul|? k )
E(rF, &™) < |13+ = [1€7]]F < — —— || dt+ =&
(ke <5l IetE <5 [ ||5a | @+ gens
Lemma 3.7.4 i
r2pt [m &3u
n _ ,n—1 ¢n < dt v n
=l <5 [ ]|, 4+ 5 G

Proof Using the Cauchy-Schwartz inequality for the integral in time and subsequently, the Young’s inequality

we obtain
n n—1 ¢en nh 877 n 877 n
=t = |( [ dt, ¢ / 91" at, Ve
(n—1)k at (n—1)k

0
1//”’“ (an> k ) 1/" /(an)2 k )
- D) odt e = S ) dt+ = e

1/”’“ anll® k 5
=_ dt + 5 11€"|
2 Jn—nyi || 0t ||y 2 0

IN

Then, applying the result

2

ow, _ dul” (0[P || 2
ot ot 0x? \ Ot dz20t ||,
we obtain the final claim of the lemma.
Lemma 3.7.5 Let k < %, then:
. 82 83u 2 n—1 .
€115 < 2[|€°][ +2#% || 5= +21'T || oo +4k D 11€m s
L2(0,T,L2()) r L2(0,T,L2()) =0

Where we define
T
1 Caloriman = [ [ £ Fe(@D)x ).

Proof Subbing the results of the last three lemmas into (3.5) we easily obtain:

k2 [mk %u|? [2pt [mk u
sl <slenih+ % [ (15| a5 [ dt+k||§m|| ,
0 2 H HO (mfl)k 8t2 0 2 (mfl)k 6$28t 0
or:
mk 2 2 mk 3
2 0%u 0°u
lem™)3 < [|emt +k2/ = dt+F2h4/ dt+2k||§m||
o <l o (m—1yk || 92 |, (m—1)k D20t 0
Now we sum for m =1,...,n to get:
nk 2 2 nk 3
ni2 0112 2 0%u 214 0°u m n
< k dt +T'“h dt 2k 2k
e < llello+ [ G| aerrent [ ||| e+ m§ :1||§ 12+ 2k e
nk 2 2 nk 3
0%u 0°u
1—2k) [|€™]? < |l kQ/ r2h4/ 7 dt 2% m
a-2mleg <l v [ 15| rrent [ ]| e }jn& 2.




3.7. TRANSIENT PROBLEMS

Since k < 1/4 then 1 — 2k > 1/2 we obtain:

2

nk
+ 212t /
0 0

Lemma 3.7.6 (Gronwall Lemma) If the sequence {5”}2;1 satisfies

3
020t

0%y

nk
" 2
1€ ||(2)§2||§0H0+2k2/0 12

2 n—1
dt+ 4k > (1€ 5.
0 m=0

and this competes the proof.

n—1

€M <vH+p Y €M, wp=0
m=0

then,
& < e N (v+ple]), vne{l,...,N}

Proof Consider the sequence z,, defined by

n
SM=vip) [ = -2 =plen
m=0

so that,
2t < (L4 p) 2t
TS ()< <1+ ,u)% 20 < et R0 < enN L0
because: )
(I+p)r <e.
Then,

|§n| SZ"71 < e,LLNZO :e,uN (V—F,u’fo‘)
forn=1,...,N.
Now let p = 4k and

2 2

u
Otox?

0%u

ot?

v =2|[¢°)|> + 2k + 202

L2(0,T;L2(Q)) L2(0,T5L2%(2)) '
Denoting the final time instant by 7' = nk and using the results of lemma 3.7.5 we find that

2

2 8%u P ||?
€112 < et ( 3]|€°]]° + 2k || = + 2nT2
’ Gl 082 || L20,:22(2)) 0102 || 12 (0,7, 2(00)
Let’s choose u?L = wg i..e.
b (uf,vn) =b(g,vn)
for all v, € Vj,. Then £° = 0. Therefore,
%ul|? O3u ||?
€l < e | 2k || s + 200" =0 (k* +n*
’ 082 || L20,m:22(52)) 0102 |[ 20,7, 2(0)) ( )
Theorem 3.7.7 Consider the scheme:
n _ 4n—1
M% f AU =f

If k < % and u) = w), then
llehllo < O (k + h?)

99
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Proof )
l€™|I2 < a2k? + b2h* < (ak + bR?)

where we define:

2

2
a? = 2T %
M || 20,7512 ()
3 2
p? = 2002 || 2 Y
Ot L2(0,T;L2(Q))
Then,
82'& 2, n aSu
en < n + n <\/§@2T v k+h2r max —H +\/§62T
|| h||0 = ||77 ||0 ||§ ||0 = a2 L2(O,T;L2(Q)) 0<nen || D2 o o2 L2(O,T;L2(Q))

3.8 Finite Elements in Two Dimensions

Consider the model problem:
{ = (puz), — (puy), +qu=g9 inQ

u=-y on 02
1 2
€1
€2
3 4 7 9
€3 €5 €7
€4 € €g
) 6 8 10

This is the global numbering, the local numbering (for ¢ = 1,2, 3) is:

'k
3 — i

K K
17— 1 2 — 13

where k is the element number and zf is the global number of the j-th local point in the k-th element.



3.8. FINITE ELEMENTS IN TWO DIMENSIONS

3.8.1 Finite Element Basis Functions

61

With each global node i we associate one basis funcion ¢; (x,y). If N; is the j-th point in the grid, we require:

¢i (N;) = 04
where (bjlek € P!, the space of all first degree polynomials. Then,

Vh :Span{¢17"'7¢M}

where M is the total number of points in the grid.

M
z,y) =Y wigs (x,y)
=1

where i¥ = N; and r can be 1, 2, or 3 (local numbers).

RS

1483
T},

Now, we define:
T = {zzz(&,n) =a1& + asn + a3
Ty =y (&) = b€ by + by
Then,

So that:
[ ooy o) ao - S [ o6y € des

k=1" ¢k

Where K, is the total number of finite elements, dey = |Jp, | dédn, and Jr, is the Jacobian of Tj.
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3.8.2 Discrete Galerkin Formulation

/puh,mvh,m+/puh,yvh,y+/ qURVR Z/gvh
Q Q Q Q

and, for simplicity, we choose v = 0, p = constant and g = constant. Then, substitutiting

M
up = Z Ui s
im1

and vy, = ¢; for j =1,..., M yields the linear system:

Find uj € V}, such that:

PS+qM)u, =G
where:

Sij = p/ Vi - Vo;dQY  (the stiffness matrix)
Q

M;; = Q/ $i¢; dQ  (the mass matrix)
Q



