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Chapter 1

Systems of Linear Equations

1.1 Direct Methods – Gaussian Elimination

1.1.1 Forward Elimination

(k-th step):

a
[k]
ij = a

[k−1]
ij − a[k−1]

k−1,jℓ
[k−1]
i,k−1, i = k, . . . , n, j = k − 1, . . . , n

ℓ
[k−1]
i,k−1 =

a
[k−1]
i,k−1

a
[k−1]
k−1,k−1

, k = 2, . . . , n i = k, . . . , n

b
[k]
i = b

[k−1]
i − b[k−1]

k−1 ℓ
[k−1]
i,k−1, i = k, . . . , n

In n− 1 steps:








a
[1]
11 a

[1]
12 . . . a

[1]
1n

0 a
[2]
22 . . . a

[2]
2n

...
...

. . .
...

0 0 . . . a
[n]
nn
















x1
x2
...
xn







=









b
[1]
1

b
[2]
2
...

b
[n]
n









or

Ux = b

Operations Count

n−1∑

j=1




(n− j)
︸ ︷︷ ︸

divisions

+2 (n− j) (n− j + 1)
︸ ︷︷ ︸

multiply and sum




 =

2n3

6
+
n2

2
− 7n

6

Where we have used
m∑

j=1

j =
m (m+ 1)

2
,

m∑

j=1

j2 =
m (m+ 1) (2m+ 1)

6

Backward Substitution

xi =
1

a
[i]
ii



b
[i]
i −

n∑

j=i+1

a
[i]
ij xj





1
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Operation Count

n∑

i=1




 2 (n− i)

︸ ︷︷ ︸

Multiplication and Subtraction

+ 1
︸︷︷︸

division




 = n2

Matrix Representations

Define:

Lk =














1 0 . . . . . . . . . . . . . . . . 0

0
. . . 0 . . . . . . 0

0 . . . 1 0 . . . 0

0 . . . −ℓ[k]k+1,k 1 . . . 0
...

...
. . .

0 . . . −ℓ[k]nk 0 . . . 1














Note that:

L−1
k =














1 0 . . . . . . . . . . . . . . 0

0
. . . 0 . . . . . . 0

0 . . . 1 0 . . . 0

0 . . . ℓ
[k]
k+1,k 1 . . . 0

...
...

. . .

0 . . . ℓ
[k]
nk 0 . . . 1














Lemma 1.1.1

A[2] = L1A
[1], b[2] = L1b

[1]
(

A[1] = A, b[1] = b
)

Therefore,

A[n] = U = Ln−1Ln−2 · · ·L1A

or

A = L−1
1 L−1

2 · · ·L−1
n−1U = LU

Proposition 1.1.2

L = L−1
1 · · ·L−1

n−1

is a lower triangular matrix with unit diagonal.

Definition A Permutation matrix is a matrix that has exactly one nonzero entry in each row and column, and
this entry is equal to 1. The elementary permutation matrix (EPM) is defined as a matrix produced from the
identity matrix by interchanging exactly one pair k,m of its columns. We denote it as Pkm

︸︷︷︸

k<m

= Pk.

For example:

P23 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







Proposition 1.1.3 If A ∈ Rn×n and Pk,m ∈ Rn×n is EPM, then Pk,mA differs from A by an interchange of
rows k and m. APk,m differs from A by an interchange of columns k and m.
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1.2 Gaussian Elimination with Pivoting

A[n] = U = Ln−1Pn−1 . . . L1P1A

Where U is upper triangular, Lk is defined as before, and Pk = Pkm with m ≥ k. Equivalently,

A = P1L
−1
1 P2L

−1
2 · · ·Pn−1L

−1
n−1

︸ ︷︷ ︸

L∗

U

Lemma 1.2.1 If i ≥ j > k and Pj = Pji then PjL
−1
k Pj is produced form L−1

k by interchanging the j-th and
i-th entry in the k-th column.

Proof

















. . .

1
...

. . .

ℓ
[k]
jk 1
...

. . .

ℓ
[k]
ik 1
...

. . .


















PjL
−1
k====⇒


















. . .

1
...

. . .

ℓ
[k]
ik 0 1
...

. . .

ℓ
[k]
jk 1 0
...

. . .


















PjL
−1
k

Pj

=====⇒


















. . .

1
...

. . .

ℓ
[k]
ik 1
...

. . .

ℓ
[k]
jk 1
...

. . .


















Theorem 1.2.2 Consider P = Pn−1 . . . P1. Then P is a permutation matrix and PA = PL∗U = LU , with L
being a lower triangular matrix with unit diagonal.

Proof

PL∗ = PP1L
−1
1 P2L

−1
2 · · ·Pn−1L

−1
n−1 =

Pn−1Pn−2 · · ·P1P1
︸ ︷︷ ︸

I

L−1
1 P2L

−1
2 · · ·Pn−1L

−1
n−1 =

Pn−1Pn−2 · · ·P2L
−1
1 P2 P3 · · ·Pn−1Pn−1 · · ·P3

︸ ︷︷ ︸

I

L−1
2 · · ·Pn−1L

−1
n−1 =

L−1
1∗ Pn−1 · · ·P3L

−1
2 P3 · · ·Pn−1L

−1
n−1 = · · · = L−1

1∗ L
−1
2∗ · · ·L−1

n−2∗L
−1
n−1 = L

Definition If A ∈ Rn×n and 1 ≤ k ≤ n then

Âk =








a11 . . . a1k
a21 . . . a2k
...

. . .
...

ak1 . . . akk








is called the kth principle sub-matrix of A

Theorem 1.2.3 The pivot entries a
[k]
kk, k = 1, 2, . . . , n − 1 are nonzero if and only if Âk are non-singular for

k = 1, . . . , n− 1 (note that Ân = A and we assume that A is nonsingular since otherwise the linear system is
ill-posed).

Proof (i) Suppose first that all a
[k]
kk 6= 0, k = 1, . . . , n − 1. Then since Âk = L̂kÛk it follows that det(Âk) =

det(Ûk) = a
[k]
11 . . . a

[k]
kk 6= 0

(ii) Now suppose that det(Âk) 6= 0, k = 1, . . . , n− 1. Then, using a induction argument, we have:
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(a) a
[1]
11 = Â1 and therefore a

[1]
11 6= 0.

(b) Assume that a
[1]
11 , . . . , a

[k]
kk 6= 0. If Â

[k+1]
k+1 is the k+1 principle sub-matrix of A[k+1] then it is easy to see that

Â
[k+1]
k+1 = (L̂k)k+1 . . . (L̂1)k+1Â

[1]
k+1 where we again assume that (L̂m)k+1,m = 1, . . . , k are the k+1 principle sub

matrices of Lm and Â
[1]
k+1 is the k+1 principle sub matrix of A[1] = A. Therefore, det(Â

[k+1]
k+1 ) = det(Âk+1) 6= 0.

But Â
[k+1]
k+1 is upper triangular i.e.

Â
[k+1]
k+1 =









a
[1]
11 a

[1]
12 . . . a

[1]
1,k+1

0 a
[2]
22 . . . a

[2]
2,k+1

...
...

. . .
...

0 0 . . . a
[k+1]
k+1,k+1









,

and then det(Â
[k+1]
k+1 ) = a

[1]
11 . . . a

[k+1]
k+1,k+1. This, together with the induction hypothesis yields that a

[k+1]
k+1,k+1 6= 0

which completes the proof.

Definition A matrix is strictly diagonally dominant if

|aii| >
∑

j 6=i

|aij |

Corollary 1.2.4 If a matrix is strictly diagonally dominant then no pivoting is necessary.

Follows from theorem 1.2.3 and the following theorem due to Gershgorin:

Theorem 1.2.5 The spectrum of A ∈ Cn×n, S(A), is enclosed in the set:

(
n⋃

i=1

Di

)

,

where:

Di =






z ∈ C : |z − aii| ≤

∑

j 6=i

|aij |







Definition Matrix A is symmetric positive definite (spd) if

1. A = AT

2. vTAv ≥ 0 for all v ∈ Rn

3. vTAv = 0 if and only if v ≡ 0

Corollary 1.2.6 If a matrix is spd then no pivoting is necessary.

Follows from the following theorem.

Theorem 1.2.7 If A ∈ Rn×n is symmetric the following statements are equivalent

1. A is positive definite,

2. S (A) contains only positive real numbers, and

3. Every principle sub-matrix is positive definite.
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1.3 Special Cases

1.3.1 Cholesky Decomposition

Theorem 1.3.1 If A ∈ Rn×n is spd then there exists a lower triangular matrix C such that CCT = A.
Furthermore, the diagonal entries of C are positive.

Proof Use induction on n:
n = 1 : C = [c11] =

√
a11

Assume the theorem holds for all matrices in Rn×n.

A =

[
An a
aT an+1,n+1

]

where an+1,n+1 > 0. By the induction hypothesis:

An = CnC
T
n

Now try to find [X ] such that

CCT =

[
Cn 0
XT c

] [
CT

n X
0 c

]

=

[
An a
aT an+1,n+1

]

or such that
CnX = a ⇒ X = C−1

n a

and

XTX + c2 = an+1,n+1 ⇒ c =
√

an+1,n1 −XTX

But, is c > 0?

XTX =
[
C−1

n a
]T
C−1

n a = aT
[
C−1

n

]T
C−1

n a = aTA−1
n a

therefore
an+1,n+1 − aTA−1

n a = an+1,n+1 −XTX

Then define x :=
[[
A−1

n a
]T
,−1

]T

6= 0 so that

xTAx = an+1,n+1 − aTA−1
n a > 0

Cholesky Algorithm

1. c11 ←
√
a11

2. For i = 2, 3, . . . , n

3. ci1 ← ai1/c11

4. End i

5. For j = 2, 3, . . . , n− 1

6.

cjj ←

√
√
√
√ajj −

j−1
∑

k=1

c2jk

7. For i = j + 1, . . . , n
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8.

cij ←
1

cjj

(

aij −
j−1
∑

k=1

cikcjk

)

9. End i

10. End j

11.

cnn ←

√
√
√
√ann −

n−1∑

k=1

c2nk

12. End

1.3.2 Thomas Algorithm

Definition A band matrix is of the form

























a11 a1,2 . . . a1,l 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

a21
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
ak,1 . . . ak,k−1 akk ak,k+1 . . . ak,k+l−1 0 . . . 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . . an−l+1,n

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . an−1,n

0 . . . . . . . . . . . . . . . . . . . . . . . . . . 0 an,n−k+1 . . . an,n−1 an,n


























A band matrix may be stored compactly as an l + k − 1× n matrix of the form:












k−1
︷ ︸︸ ︷

0 . . . 0 a11 a12 . . . a1l
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ak1 . . . ak,k−1 akk ak,k+1 . . . ak,k+l−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an,n−k+1 . . . an,n−1 ann 0 . . . 0

︸ ︷︷ ︸

l−1













Thomas Algorithm

For the linear system















b1 c1 0 . . . . . . . . . . . . . . . . 0
a2 b2 c2 0 . . . . . . . . . . . 0
0 a3 b3 c3 0 . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . an−1 bn−1 cn−1

0 . . . . . . . . . . . . 0 an bn























x1
x2
...
xn







=








d1
d2
...
dn
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1.

b
[f ]
j = bj − aj

c
[f ]
j−1

b
[f ]
j−1

and d
[f ]
j = dj − aj

d
[f ]
j−1

b
[f ]
j−1

, for j = 2, . . . , n

2.
xj−1 = d

[f ]
j−1 − b

[f ]
j xj , for j = n, . . . , 2

1.4 Matrix Norms

Definition If A ∈ Rn×n then the mapping Rn×n → R is called a norm of A := ||A|| if and only if:

1. ||A|| ≥ 0 and ||A|| = 0 if and only if A = 0,

2. ||λA|| = |λ| ||A|| for all λ ∈ R,

3. ||A+B|| ≤ ||A||+ ||B||.
If in adddition, ||AB|| ≤ ||A|| ||B|| the norm is called multiplicative. In the sequel, we make use of multiplicative
norms only, and therefore, the notion of a norm presumes a multiplicative norm.

Definition If A ∈ R
n×n, then for a vector norm ||·|| : R

n → R,

||A|| := sup
||x||6=0

||Ax||
||x||

is called a subordinate matrix norm.

Theorem 1.4.1 Let A ∈ Rn×n. Then,

1.

||A||∞ := sup
||x||

∞
6=0

||Ax||∞
||x||∞

= max
1≤i≤n

n∑

j=1

|aij |

2.

||A||1 := sup
||x||1 6=0

||Ax||1
||x||1

= max
1≤j≤n

n∑

i=1

|aij |

3.

||A||2 := sup
||x||2 6=0

||Ax||2
||x||2

=
√

ρ (ATA)

Proof

||Ax||∞ = max
1≤i≤n

∣
∣
∣
∣
∣
∣

n∑

j=1

aijxj

∣
∣
∣
∣
∣
∣

≤



 max
1≤i≤n

n∑

j=1

|aij |





(

max
1≤j≤n

|xj |
)

=M ||x||∞

therefore,
||A||∞ ≤M

Let I be the index for which

max
1≤i≤n

n∑

j=1

|aij | =M

is achieved. Choose x = {xj}nj=1

xj :=

{
aIj/ |aIj | : aIj 6= 0
0 : aij = 0.

Then ||x||∞ = 1 and ||Ax||∞ =M . Therefore,

||A||∞ =M
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1.5 Error Estimates

Consider two vectors x1 and x2 where

Ax1 = b and Ax2 = b+ r

then
x1 = A−1b and x2 = A−1 (b+ r)

and it follows immediately that
||x2 − x1|| =

∣
∣
∣
∣A−1r

∣
∣
∣
∣

Then,
||x2 − x1||
||A|| ||x1||

≤ ||x2 − x1||||Ax1||
=

∣
∣
∣
∣A−1r

∣
∣
∣
∣

||b|| ≤
∣
∣
∣
∣A−1

∣
∣
∣
∣ ||r||

||b||
Therefore,

||x2 − x1||
||x1||

≤ ||A||
∣
∣
∣
∣A−1

∣
∣
∣
∣

︸ ︷︷ ︸

c(A)

||r||
||b||

This provides means of estimating the error introduced in the solution of a linear system due to roundoff errors
or uncertainty in the right-hand-side or the matrix of the system. The number c(A) is called the condition
number of A with respect to the norm ‖.‖.

1.6 Iterative Method Preliminaries

Definition If xk ∈ Rn then the sequence {xk}∞k=1 converges to x ∈ Rn in a norm ||·|| i.e.

lim
k→∞

xk = x

if
lim
k→∞

||x− xk|| = 0.

Definition If Ak ∈ Rn×n then the sequence {Ak}∞k=1 converges to A ∈ Rn×n in a norm ||·|| i.e.

lim
k→∞

Ak = A

if
lim
k→∞

||A−Ak|| = 0.

Consider the matrix power series

∞∑

k=0

akA
k. (1.1)

It is convergent if and only if

lim
K→∞

K∑

k=0

akA
k = f (A) ,

where f(A) is some matrix with a finite norm. In the following we will also need to consider the numerical
power series

f (λ) ∼
∞∑

k=0

akλ
k. (1.2)
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Theorem 1.6.1 The matrix power series (1.1) is convergent if for all λi ∈ S (A) |λi| < ρ, where ρ is the radius
of convergence of (1.2) and S (A) is the spectrum of A. It is divergent if |λi| > ρ for some i.

Proof From Jordan’s theorem, there exists nonsingular C such that A can be transformed as follows:

B = C−1AC, B = diag (Bi) , Bi =











λi 1 0 . . . 0
0 λi 1 . . . 0
...

. . .
. . .

. . .
...

. . .
. . . 1

0 . . . . . . . 0 λi











where Bi ∈ Rni×ni and ni is the multiplicity of the eigenvalue λi. Then,
∑∞

k=0 akA
k is convergent if and only if

∞∑

k=0

akB
k =

∞∑

k=0

akC
−1AkC = C−1

( ∞∑

k=0

akA
k

)

C

is convergent as well. Note that Bk = diag
(
Bk

i

)
since B is a block-diagonal matrix. Now, consider the powers

Bk
i of the i-th block of B. It can be shown by induction that:

B2
i =







λ2i 2λi 1 . . . 0
0 λ2i 2λi . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . λ2i






, . . . , Bk

i =







λki
(
k
1

)
λk−1
i . . . . . . . . . . . . .

(
k

ni−1

)
λk−ni+1
i

0 λki
(
k
1

)
λk−1
i . . .

(
k

ni−2

)
λk−ni+2
i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . . . . . . . . λki







so that the i-th block of the m-th partial sum of
∞∑

k=0

akB
k is

fm (Bi) =
m∑

k=0

akB
k
i =








fm (λi)
1
1!f

′
m (λi) . . . 1

(ni−1)!f
(ni−1)
m (λi)

0 fm (λi) . . . 1
(ni−2)!f

(ni−2)
m (λi)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 fm (λi) .








Therefore, fm (B) is convergent if and only if

fm (λi) =

m∑

k=0

akλ
k
i

(and therefore f
(l)
m (λi)) is convergent for i = 1, . . . , n and l = 1, . . . , ni. fm (λi) is convergent if |λi| is smaller

than ρ, the radius of convergence of (1.2).

Corollary 1.6.2
f (A) = I +A+A2 + · · ·+Am + · · ·

is convergent if and only if |λk| < 1 for all k = 1, . . . , n and A ∈ Rn×n.

Corollary 1.6.3 Since |λk| ≤ ||A|| for any subordinate norm ||·|| then f (A) is convergent if ||A|| < 1.

1.7 Iterative Methods

1.7.1 Matrix Splitting Methods

Consider
Ax = b



10 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

If A = B + C, so that det(C) 6= 0,then

Ax = b ⇔ x = x+ C−1 (b−Ax)

and in this form we may solve the problem iteratively:

xk+1 = xk + C−1
(
b−Axk

)
(1.3)

or equivalently:

Cxk+1 = b−Bxk. (1.4)

The last form clarifies why such methods are called matrix-splitting methods. Note, that C can be any non-
singular matrix but not every choice is a good choice, of course. The essence of various iterative methods is
in the choice of the matrix C that allows for the fast computation of a good approximation to the solution. If
C is the identity matrix, the corresponding iteration is called simple (or Richardson) iteration. It is seldom a
good choice. The form ( 1.3) suggests that the closer C is to A, the faster the convergence. On the other hand,
the iteration requires the solution of a linear system with C and therefore, C should be such that this solution
requires much less resources than the solution of the original system. These are very contradictory requirements
and the choice of C depends on the properties of A and some other contraints like computer resources.

Theorem 1.7.1 The iteration (1.3) is convergent if and only if ρ
(
I − C−1A

)
< 1.

Proof

xk+1 =
(
I − C−1A

)

︸ ︷︷ ︸

D

xk + C−1b = D2xk−1 + (I +D)C−1b = . . .

= Dk+1x0 +
(
I +D +D2 + . . .+Dk

)
C−1b

I +D + . . .+Dk + . . . is convergent iff ρ
(
I − C−1A

)
< 1. Also, if it is convergent then

Dk −→
k→∞

0

Definition R (D) = − log10 ρ (D) is called the convergence rate of the iteration.

Jacobi’s Method

C = diag (A)

D = I − C−1A =






0 −a12

a11
−a13

a11
· · · −a1n

a11

...
. . .

...
− an1

ann
− an2

ann
− an3

ann
· · · 0






Theorem 1.7.2 If A is strictly diagonally dominant then Jacobi is convergent.

Proof

||D||∞ = max
i

∑

j 6=i

∣
∣
∣
∣

aij
aii

∣
∣
∣
∣
< 1.

Then for any eigenvalue λi of D we have:

|λi| ≤ ||D||∞ < 1 .
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Gauss-Seidel (GS) Iteration

C = L =






a11 0
...

. . .

a1n . . . ann






B = U = A− L
xk+1 = xk + C−1

(
b− Axk

)

Theorem 1.7.3 If A is strictly diagonally dominant the Gauss-Seidel iteration is convergent.

Proof The formula for the i-th component of the k + 1 iterate xk+1 is:

xk+1
i = −

∑

j<i

aij
aii
xk+1
j −

∑

j>i

aij
aii
xkj +

bi
aii

The exact solution clearly is a fixed point of the iteration i.e.

xi = −
∑

j<i

aij
aii

xj −
∑

j>i

aij
aii

xj +
bi
aii

Therefore the error of the k + 1 iteration, ǫk+1 = xk+1 − x, must satisfy:

ǫk+1
i = −

∑

j<i

aij
aii
ǫk+1
j −

∑

j>i

aij
aii

ǫkj

then
∣
∣ǫk+1

i

∣
∣ ≤

∑

j<i

∣
∣
∣
∣

aij
aii

∣
∣
∣
∣

∣
∣ǫk+1

j

∣
∣+
∑

j>i

∣
∣
∣
∣

aij
aii

∣
∣
∣
∣

∣
∣ǫkj
∣
∣ (1.5)

Using induction on i, it is straightforward to show that:

∣
∣ǫk+1

i

∣
∣ ≤




∑

j 6=i

∣
∣
∣
∣

aij
aii

∣
∣
∣
∣




∣
∣
∣
∣ǫk
∣
∣
∣
∣
∞ <

∣
∣
∣
∣ǫk
∣
∣
∣
∣
∞ .

Indeed, assuming that
∣
∣ǫk+1

j

∣
∣ <

∣
∣
∣
∣ǫk
∣
∣
∣
∣
∞ , ∀j < i, and substituting this into (1.5) yields that

∣
∣ǫk+1

i

∣
∣ <

∣
∣
∣
∣ǫk
∣
∣
∣
∣
∞.

Therefore,
∣
∣
∣
∣ǫk+1

∣
∣
∣
∣
∞ <

∣
∣
∣
∣ǫk
∣
∣
∣
∣
∞

so that the error must strictly decrease with each iteration. Then the error must go to zero because the exact
solution is the unique fixed point of the iteration (why is it unique?).

Successive Over-relaxation (SOR) Method

Suppose ω ∈ R and consider the iteration:

xk+1 =
(
ω−1D + L

)−1 (
b−

((
1− ω−1

)
D + U

)
xk
)
.

Here C = L+ 1
ωD,D = diag (A), and being L the lower triangular part of A, not including the main diagonal.

Then clearly A = C +B, where B = (1− 1
ω )D+U , U being the strictly upper triangular part of A (with zeros

on the main diagonal). This iteration is similar to the GS iteration but has a free parameter that allows to
better control the convergence rate.

Theorem 1.7.4 (Ostrowski-Reich) If A ∈ Rn×n is spd then SOR is convergent iff 0 < ω < 2.
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1.7.2 Optimization-based Methods

From now on, until the end of this section we assume that the matrix A is s.p.d.

Theorem 1.7.5 If A ∈ Rn×n is spd then u is a solution to the linear system Au = b if and only if u minimizes
the function:

F (v) =
1

2
vTAv − bT v

Proof Let u be the solution of the linear system i.e. Au = b. Then for any v ∈ R we have that:

F (v)− F (u) =
1

2
vTAv − bTv − 1

2
uTAu + bTu

=
1

2
vTAv − uTAv + 1

2
uTAu =

1

2
(v − u)T A (v − u) ≥ 0

then
1

2
(v − u)T A (v − u) = 0 ⇔ v = u

so that F (v) ≥ F (u) and
F (v) = F (u) ⇔ v = u

Definition If A is spd then for any two vectors u, v ∈ Rn, uTAv defines the energy inner product induced by
A denoted by:

〈u, v〉A = uTAv.

Note that in the rest of the notes at some occasions (u, v)A is also used to denote the energy inner product.

Steepest Descent Method

Note that any iteration for finding a solution to a linear system Au = b can be written in the form:

uk+1 = uk + αkpk

where αk ∈ R is called iteration step, pk ∈ Rn is called the search direction. For example, in the case of matrix
splitting methods the search direction is chosen to be pk = C−1rk, with rk = b−Auk being called the residual
of the iterate uk, and αk = 1. The step does not need to be constant and the gradient-type methods choose it at
each iteration step so that this choice minimizes the function F (v). The basic gradient-type iterative algorithm
therefore can be written as:

1. Choose an initial search direction
p0 = r0 = b−Au0

2. For k = 1, 2, 3, . . . do:

(a) Find αk ∈ R such that
uk+1 = uk + αkpk

minimizes F over the line uk + αpk

(b) New iterate
uk+1 = uk + αkpk

(c) The new residual is
rk+1 = b−Auk+1

(d) Find the new search direction pk+1.

(e) Let k = k + 1 and repeat item 2 until convergence.
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To find αk we minimize F along the search direction pk:

d

dαk
F
(
uk + αkpk

)
= ∇F

(
uk + αkpk

)
· d

dαk

(
uk + αkpk

)

=
[
A
(
uk + αkpk

)
− b
]T
pk =

[
Auk − b

]T
pk + αkp

T
kApk

= −rTk pk + αkp
T
kApk = 0

so that

αk =
rTk pk
pTkApk

Note that for this choice of αk we have:



Auk+1 − b
︸ ︷︷ ︸

−rk+1





T

pk =




A
(
uk + αkpk

)

︸ ︷︷ ︸

uk+1

−b






T

pk = −rTk pk + αkp
T
kApk = 0 (1.6)

or (1.7)

−rTk+1pk = ∇F (uk+1) pk = 0 (1.8)

In the steepest descent method we choose

pk = rk = b−Auk.

Because this is the direction of the negative gradient of F (v), this function is clearly non-increasing in this
direction. Unfortunately, this choice of search direction is not optimal in some sense that will be elucidated in
the next section.

Conjugate Gradient Method (CGM)

Definition uk is optimal with respect to direction p 6= 0 iff F
(
uk
)
≤ F

(
uk + λp

)
for all λ ∈ R.

Lemma 1.7.6 uk is optimal with respect to p iff

pT rk = 0.

Proof uk is optimal with respect to p iff F
(
uk + λp

)
has a minimum at λ = 0, i.e.

∂F

∂λ

(
uk + λp

)
∣
∣
∣
∣
λ=0

= pT
(
Auk − b

)

︸ ︷︷ ︸
−rk

+ λpTAp
∣
∣
λ=0

= 0. (1.9)

(Note that ∂2F
∂λ2 = pTAp > 0.)

(1.9) is obviously satisfied iff pT rk = 0.

We know that the choice of αk guarantees that uk+1 is optimal with respect to pk and this applies in
particular to the steepest descent method for which pk = rk. However, uk+2 may not be optimal with respect
to pk i.e. the next iteration can undo some of the minimization work of the previous iteration. Indeed:

uk+2 = uk+1 + αk+1rk+1

which gives

rk+2 = rk+1 − αk+1Apk+1 ⇒ pTk rk+2 = pTk rk+1
︸ ︷︷ ︸

=0

−αk+1p
T
kApk+1 ⇒ pTk rk+2 = −αk+1p

T
kApk+1.
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For the steepest descent method pm = rm and therefore, since rTk rk+1 = 0 (see (1.8)), rTk Ark+1 6= 0, unless
A = cI.

To find a different search direction pk+1 that maintains the optimality of uk+2 w.r.t. pk, we need that:

0 = pTk rk+2 = αk+1p
T
kApk+1 = 0.

For the conjugate gradient method we require that uk+2 is also optimal with respect to pk i.e. we choose the
search direction pk+1 from this condition.

Definition If u, v ∈ Rn are such that 〈u, v〉A = 0 for some s.p.d. A then u, v are called A-conjugate.

This means that pk+1 should be A-conjugate to pk. We search for pk+1 in the form pk+1 = rk+1 + βkpk, for

some βk ∈ R, and then from the condition pTkApk+1 = 0 we easily obtain that βk = −〈rk+1, pk〉A
||pk||2A

Algorithm (Basic CGM procedure) If A ∈ Rn×n is spd and u0 is an initial guess:

1. r0 ← b− Au0

2. p0 = r0

3. For k = 1, 2, . . . ,m:

4. αk−1 ← rTk−1pk−1/ ||pk−1||2A
5. uk ← uk−1 + αk−1pk−1

6. rk ← rk−1 − αk−1Apk−1

7.

pk ← rk −
〈rk, pk−1〉A
||pk−1||2A

pk−1

8. Next k

9. End

As it will be demonstrated below, if all arithmetic operations are exact, the algorithm computes the exact
solution in a finite number of steps (finite termination property).

Later, we will show that the error decreases as:

∣
∣
∣
∣u− uk

∣
∣
∣
∣
A
=
∣
∣
∣
∣ǫk
∣
∣
∣
∣
A
≤ 2 ||ǫ0||A

[√

c (A)− 1
√

c (A) + 1

]k

If c (A) ≫ 1 then the convergence is slow. Therefore, the algorithm is often modified by formally multiplying
the original system by a matrix that has a spectrum close to the spectrum of A and performing the CG method
on the modified system which has the same solution as the original one. This process is called preconditioning.

Preconditioning

Instead of Au = b we solve Ãũ = b̃ where

Ã =
(
B−1

)T
AB−1, ũ = Bu, b̃ =

(
B−1

)T
b

Since the preconditioner BTB must be an approximation to the matrix A, a natural choice for B should be an
approximation to the square root of A. Since A is s.p.d. its square root is also s.p.d. and therefore we assume
that BT = B. The preconditioner B2 must satisfy somewhat contradicting requirements since on one hand it



1.7. ITERATIVE METHODS 15

should be a good approximation of A and on the other, it should be much easier to solve a linear system with
a matrix B2 than with A. The second requirement follows from the fact that, as it will become clear below, on
each iteration of the CG method with preconditioning, we will need to solve one system with B2.

For the system Au = b we know that

u : F (u) = min
v∈Rn

F (v)

Now, if ṽ = Bv then

F (v) =
1

2
vTAv − bT v =

1

2

[
B−1ṽ

]T
A
[
B−1ṽ

]
− bT

(
B−1ṽ

)

=
1

2
ṽT B−1AB−1
︸ ︷︷ ︸

Ã

ṽ −
(
B−1b

)T

︸ ︷︷ ︸

b̃T

ṽ = F̃ (ṽ)

The preconditioned method should compute the new iterate from: ũk = ũk−1+α̃k−1p̃k−1, with α̃k−1 =
r̃Tk−1p̃k−1

||p̃k−1||Ã
.

The search direction for the preconditioned method should be computed as p̃k = β̃k−1p̃k−1+r̃k where the residual

r̃k is given by r̃k = r̃k−1 − α̃k−1Ãp̃k−1, and β̃k = − 〈r̃k+1,p̃k〉Ã
||p̃k||2Ã

. These formulae are not convenient for practical

computations since they require to somehow compute the inverse of the preconditioner, (B2)−1. Fortunately,
it appears that the preconditioned method can be implemented almost exactly as the original CGM modifying
only the computation of the search direction to:

pk =
(
B2
)−1

rk
︸ ︷︷ ︸

zk

−






zk
︷ ︸︸ ︷
(
B2
)−1

rk






T

Apk−1

pTk−1Apk−1
pk−1, (1.10)

and defining the initial iterate as u0 = B−1ũ0 and the initial search direction as p0 = (B2)−1r0. With this
modification, the residuals rk, r̃k, search directions pk, p̃k, and iterates uk, ũk, of the modified CG algorithm
and the preconditioned CG algorithm, verify the relations: rk = Br̃k, pk = B−1p̃k, u

k = B−1ũk. Indeed, using
the assumption that rk−1 = Br̃k−1, pk−1 = B−1p̃k−1, and uk−1 = B−1ũk−1 (these assumptions are trivially
verifiable at k = 1), we obtain that:

α̃k−1 =
r̃Tk−1p̃k−1

||p̃k−1||2Ã
=

rTk−1B
−1Bpk−1

(Bpk−1)
T
B−1AB−1Bpk−1

=
rTk−1pk−1

||pk−1||2A
= αk−1,

and subsequently that: rk = Br̃k and uk = B−1ũk. For example,

ũk = ũk−1 + α̃k−1p̃k−1 = B(uk−1 + αk−1pk−1) = Buk.

This immediately yields that rk = Br̃k. Then, if pk is computed from (1.10) we obtain, multiplying it by B,
that:

Bpk = B−1rk −
rTk B

−1B−1AB−1Bpk−1

pTk−1BB
−1AB−1Bpk−1

Bpk−1,

or, using the induction assumptions:

Bpk = r̃k −
〈r̃k, p̃k−1〉Ã
||p̃k−1||2Ã

p̃k−1 = p̃k

Thus, using an induction argument we establish that rk = Br̃k, pk = B−1p̃k, u
k = B−1ũk, and therefore,

α̃k = αk, for all positive integer k, Then, it is clear that the modified CG algorithm does not require the
knowledge of Ã to proceed. It needs only one extra step for the computation of the new search direction.
Instead of using rk for its computation, we need to use zk that is a solution of the system B2zk = rk. The
conjugate gradient method with preconditioning is given by:
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Algorithm Preconditioned CGM:

1. k← 0

2. r0 ← b− Au0

3. p0 = (B2)−1r0

4. For k = 1, 2, . . . ,m:

5. αk−1 ← rTk−1pk−1/ ||pk−1||2A
6. uk ← uk−1 + αk−1pk−1

7. rk ← rk−1 − αk−1Apk−1

8. if ||rk||2 ≥ τ then

9. solve B2zk = rk

10.

pk ← zk −
〈zk, pk−1〉A
||pk−1||2A

pk−1

11. k = k + 1

12. Go to (5)

13. End if

14. End

Analysis of the CGM

Lemma 1.7.7 If A ∈ Rn×n is spd, then for m = 0, 1, 2, . . . we have

span {p0, p1, . . . , pm} = span {r0, r1, . . . , rm} = span {r0, Ar0, . . . , Amr0}

Proof 1. For m = 0, this is trivial.

2. Suppose that for m = k we have

span {p0, p1, . . . , pk} = span {r0, r1, . . . , rk} = span
{
r0, Ar0, . . . , A

kr0
}
.

3. To complete the proof we should show that the same is true for m = k + 1 i.e.

span {p0, p1, . . . , pk+1} = span {r0, r1, . . . , rk+1} = span
{
r0, Ar0, . . . , A

k+1r0
}
.

We have shown that

rk+1 = rk − αkApk

pk ∈ span
{
r0, Ar0, . . . , A

kr0
}

Apk ∈ span
{
Ar0, A

2r0, . . . , A
k+1r0

}

this implies
rk+1 ∈ span

{
r0, Ar0, . . . , A

k+1r0
}

so that
span {r0, r1, . . . , rk+1} ⊂ span

{
r0, Ar0, . . . , A

k+1r0
}

(1.11)
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Now,

Akr0 ∈ span {p0, p1, . . . , pk}
Ak+1r0 ∈ span {Ap0, Ap1, . . . , Apk}
rk+1 = rk − αkApk

So that

Ak+1r0 ∈ span







Ap0
︸︷︷︸

(r1−r0)/α0

, Ap1
︸︷︷︸

(r2−r1)/α1

, . . . , Apk−1
︸ ︷︷ ︸

(rk−rk−1)/αk−1

, rk+1 − rk







⊂ span {r0, r1, . . . rk+1} .

Therefore
Ak+1r0 ∈ span {r0, r1, . . . , rk+1}

and by induction
span

{
r0, Ar0, . . . , A

k+1r0
}
⊂ span {r0, . . . rk+1} .

The last inclusion together with (1.11) prove that:

span {r0, Ar0, . . . , Amr0} = span {r0, . . . rm} , ∀m ≥ 0.

span {p0, p1, . . . , pm} = span {r0, . . . , rm}
is proven using

pm = rm + βm−1pm−1

and similar arguments as above.

Definition Km := span {r0, r1, . . . , rm−1} is the m-th Krylov space of A.

Theorem 1.7.8 If A is spd then:

(A) 〈pk, pm〉A = 0 for m 6= k and

(B) rTk rm = 0 for m 6= k.

Proof 1. For k,m ≤ 1:

rT1 r0 = 0

〈p1, p0〉A = 0

2. Assume:

(a) 〈pk, pm〉A = 0 for k 6= m and k,m ≤ l
(b) rTk rm = 0 for k 6= m and k,m ≤ l

3. For m < l:
rTl pm = rTl (c0r0 + c2r2 + · · ·+ cmrm) = 0

from (b) and therefore

rTl+1pm = (rl − αlApl)
T
pm = 0.

For m = l we have
rTl+1pl = (rl − αlApl)

T
pl = rTl pl − αl 〈pl, pl〉A = 0
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by the definition of αl. But rm ∈ span {p0, . . . , pm} for m = 1, . . . , l and therefore

rTl+1rm = 0, m = 0, 1, . . . , l,

which proves (B).

To prove (A), we use:

pl+1 = rl+1 + βlpl

〈pl+1, pm〉A = 〈rl+1, pm〉A + βl 〈pl, pm〉A ; 〈pl, pm〉A = 0, m = 0, . . . , l − 1.

But
Apm ∈ span {r0, r1, . . . , rm+1}

and from (B),
〈rl+1, pm〉A = 0 ⇒ 〈pl+1, pm〉A = 0 for m = 0, 1, . . . , l− 1.

By the choice of pl+1 in the CGM,
〈pl+1, pl〉A = 0

and so (A) holds.

From this theorem we can conclude that
dimKn ≤ n.

Corollary 1.7.9 If A ∈ Rn×n is spd then for some m ≤ n, rm = 0.

Theorem 1.7.10 If A is spd then uk+1 minimizes the error u− uk+1 = ǫk+1 over Kk+1 in ||·||A i.e.

||ǫk+1||A = min
v∈Kk+1

||u− v||A (u : Au = b)

Proof Corollary 1.7.9 concluded that there exist some m + 1 ≤ n s.t. rm+1 = 0. Without loss of generality
we can assume that u0 = 0 since any change of the initial iterate can be interpreted as a change in the right
hand side vector b: A(u − u0) = b − Au0, and therefore it does not affect the estimates that follow. Then the

exact solution must be a linear combination of the search directions p0, . . . , pm i.e. u =
m∑

i=0

αipi. Consider some

v ∈ Kk+1, k < m+ 1. It must have the form v =
k∑

i=0

γipi. Then we have:

||u− v||2A = ||
k∑

i=0

(αi − γi)pi +
m∑

i=k+1

αipi||2A =

k∑

i=0

|αi − γi|2||pi||2A +

m∑

i=k+1

|αi|2||pi||2A,

since 〈pi, pj〉A = 0 if i 6= j. Therefore, ||u− v||A has its minimum for αi = γi, i = 1, . . . , k. But uk+1 =
k∑

i=0

αipi

which concludes the proof.

Definition Πl denotes the set of all polynomials up to order l:

Πl =
{
pl : alx

l + · · ·+ a0
}

Corollary 1.7.11 If A ∈ Rn×n is symmetric positive definite with a spectrum {λi}ni=1 then:

||ǫk+1||A ≤ ||ǫ0||A max
1≤j≤n

|q (λj)|

for all polynomials q ∈ Πk+1 such that q (0) = 1
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Proof From theorem 1.7.10 we have that:

||ǫk+1||A ≤ ||u− v||A , ∀v ∈ Kk+1.

But
v ∈ Kk+1 = span

{
r0, Ar0, . . . , A

kr0
}

Without loss of generality, we can assume that r0 = b i.e. u0 = 0 and then

v = α0b+ α1Ab+ · · ·+ αkA
kb = p (A) b.

Therefore
||ǫk+1||A ≤ ||u− p (A) b||A , ∀p (A) ∈ Πk

but u0 = 0, b = Au, and ǫ0 = u so that

||ǫk+1||A ≤
∣
∣
∣
∣ǫ0 − p (A)A

(
u− u0

)∣
∣
∣
∣
A
= ||ǫ0 (I − p (A)A)||A

≤ ||ǫ0||

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

I − p (A)A
︸ ︷︷ ︸

∈Πk+1

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
A

= ||ǫ0|| ||q (A)||A , ∀q (A) ∈ Πk+1 s.t. q (0) = 1.

Now we will prove that
||q (A)||A = max

j
|q (λj)| .

Since A is symmetric, there exists an orthonormal set of eigenvectors {vj}nj=1 of A i.e.

vTi vj =

{
0 if i 6= j
1 if i = j

Take x ∈ Rn then

x =

n∑

i=1

civi

and therefore ||x||2A =
n∑

i=1

c2iλi . Then we have

||q (A)||2A = sup
||x||A=1

||q (A)x||A
2 = sup

n∑

i=1

c2iλi=1

(

q (A)
n∑

j=1

cjvj

)T

A

(

q (A)
n∑

i=1

civi

)

=

sup
n∑

i=1

c2iλi=1

n∑

i=1

q2 (λi) c
2
i λi ≤ max

1≤i≤n
q2 (λi) .

If max
1≤i≤n

q2 (λi) is achieved for some index l then it is clear that the equality in the last relation would be achieved

if we take x = vl/
√
λl, and this concludes the proof of the corollary.

From corollary 1.7.11 it is clear that the sharpest error estimate would be obtained if we pick q to be such
that max

1≤j≤n
|q (λj)| is minimal with respect to q. Let us denote the minimum and maximum eigenvalues of A

by λmin and λmax correspondingly. Before we construct such a polynomial on the interval [λmin, λmax] we first
consider polynomials on [−1, 1] whose maximum is minimal among all possible polynomials of the same degree
i.e. polynomials with a minimal infinity norm. To remind you:

Definition The infinity norm of a polynomial on [−1, 1] is defined as

||p||L∞[−1,1] = sup
z∈[−1,1]

|p (z)|
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If p (0) = 1 then ||p||L∞[−1,1] ≥ 1 so the minimum for such polynomials would be 1.

The polynomials that have a unit infinity norm on [−1, 1] are the Chebyshev polynomials. They are defined
recursively as follows:

Definition

T0 (z) = 1

T1 (z) = z

Tn+1 (z) = 2zTn (z)− Tn−1 (z)

Alternatively, we may represent the Chebyschev polynomials as

Tk (z) =
1

2

[(

z +
√

z2 − 1
)k

+
(

z −
√

z2 − 1
)k
]

,

or

Tk (z) = cos(k arccos(z)).

The polynomials with a minimum infinity norm on [λmin, λmax], such that they equal 1 at 0, are given by the
Shifted Chebyshev polynomials:

Definition

T̃k (z) =
Tk

(

1− 2 z−λmin

λmax−λmin

)

Tk

(

1 + 2 λmin

λmax−λmin

)

Lemma 1.7.12 ∣
∣
∣

∣
∣
∣T̃k (z)

∣
∣
∣

∣
∣
∣
L∞[λmin,λmax]

= min
p∈Πk,p(0)=1

||p(z)||L∞[λmin,λmax]
.

Proof Since Tk (z) = cos(k arccos(z)) it is clear that Tk has k+1 extrema Tk(zi) = (−1)i, i = 0, 1, . . . , k in the
nodes zi = cos(iπ/k) i.e it has k + 1 alternating minima and maxima on [−1, 1]. T̃k is just a scaled and shifted
version of Tk so it must have exactly the same number of alternating maxima and minima on [λmin, λmax].

Now assume towards contradiction, that there is some pk(z) such that pk(0) = 1 and ||pk(z)||L∞[λmin,λmax]
<

∣
∣
∣

∣
∣
∣T̃k(z)

∣
∣
∣

∣
∣
∣
L∞[λmin,λmax]

. Then, pk − T̃k must also have at least the same number of alternating extrema as T̃k

on [λmin, λmax] since max |pk| < max |T̃k| on this interval. This means that pk − T̃k has at least k zeros on
[λmin, λmax]. But pk(0)− T̃k(0) = 0 and 0 < λmin. So we reach the contradiction that the polynomial of k-th
degree pk − T̃k has at least k + 1 zeros which concludes the proof.

From the corollary we have that

||ǫk||A ≤ ||ǫ0||A max
λi

|p (λi)|

for any p (x) ∈ Πk such that p (0) = 1. Therefore,

||ǫk||A ≤ ||ǫ0||A sup
λmin<z<λmax

|p (z)| = ||ǫ0||A ‖p‖L∞[λmin,λmax].

Since p can be any polynomial in Πk such that p (0) = 1, the sharpest estimate would be obtained for polynomials
with a minimum infinity norm i.e. shifted Chebishev polynomials:

||ǫk||A ≤ ||ǫ0||A max
λmin<z<λmax

∣
∣
∣T̃k (z)

∣
∣
∣
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Then,

max
λmin<z<λmax

∣
∣
∣T̃k (z)

∣
∣
∣ = max

∣
∣
∣
∣
∣
∣

Tk

(

1− 2 z−λmin

λmax−λmin

)

Tk

(

1 + 2 λmin

λmax−λmin

)

∣
∣
∣
∣
∣
∣

≤ 1
∣
∣
∣Tk

(

1 + 2 λmin

λmax−λmin

)∣
∣
∣

≤ 2

(√
λmax −

√
λmin√

λmax +
√
λmin

)k

where we have used

∣
∣
∣
∣
Tk

(
λmax + λmin

λmax − λmin

)∣
∣
∣
∣
=

1

2

((√
λmax +

√
λmin√

λmax −
√
λmin

)k

+

(√
λmax −

√
λmin√

λmax +
√
λmin

)k
)

≥ 1

2

(√
λmax +

√
λmin√

λmax −
√
λmin

)k

.

Then

||ǫk||A ≤ 2 ||ǫ0||A
(√

λmax −
√
λmin√

λmax +
√
λmin

)k

If A is spd then

c2 (A) = ||A||2
∣
∣
∣
∣A−1

∣
∣
∣
∣
2
=
λmax

λmin

and

||ǫk||A ≤ 2 ||ǫ0||A

(√

c2 (A)− 1
√

c2 (A) + 1

)k

.

Let p(γ) be the smallest integer k > 0 such that ||ǫk||A ≤ γ ||ǫ0||A. Then, from the estimate above (which is
sharp) it follows that

2

(
1− z
1 + z

)k

≤ γ, ∀z ∈ [0, 1), where z = 1/
√

c2(A),

or
2

γ
≤
(
1 + z

1− z

)k

.

Note that z = 0 corresponds to the limit c2(A)→∞. Then we get

ln
2

γ
≤ k ln 1 + z

1− z = 2k(z +
1

3
z3 +

1

5
z5 + . . . ), z ∈ [0, 1)

or
1

2z
ln

2

γ
≤ k(1 + 1

3
z2 +

1

5
z4 + . . . ) = k

arctanh(z)

z
.

But arctanh(z)/z is a monotonically increasing function on [0, 1) and its minimum is 1. Therefore, we have;

1

2

√

c2(A) ln
2

γ
≤ k,

which means that p(γ) ≤ 1/2
√

c2(A) ln(2/γ) + 1, i.e. for all practical purposes, we need of order of
√

c2(A)
iterations for satisfying the convergence condition ||ǫk||A ≤ γ ||ǫ0||A.



22 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS



Chapter 2

Solutions to Partial Differential
Equations

2.1 Classification of Partial Differential Equations

Suppose we have a pde of the form

φ

(

x, y, u,
∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂x∂y
,
∂2u

∂y2

)

= 0

then we classify the equation in terms of the second order derivatives, if they are not present we then classify
in terms of the first order derivatives.

2.1.1 First Order linear PDEs

α (t, x)
∂u

∂t
+ β (t, x)

∂u

∂x
= γ (t, x)

Let us try to reduce it to an ODE over some path (t (s) , x (s)) in the domain of the equation. We have that:

du

ds
=
∂u

∂t

dt

ds
+
∂u

∂x

dx

ds

If we can choose a path α = dt
ds and β = ∂x

∂s then

du

ds
= γ

These paths are called characteristics.

2.1.2 Second Order PDE

α
∂2u

∂x2
+ β

∂2u

∂x∂y
+ γ

∂2u

∂y2
= ψ

(

x, y, u,
∂u

∂x
,
∂u

∂y

)

We use a similar idea as in the first order case but now we try to reduce the equation to a system of ODEs for
the first derivatives of the solution i.e.

d

ds

(
∂u

∂x

)

=
∂2u

∂x2
dx

ds
+

∂2u

∂x∂y

dy

ds

d

ds

(
∂u

∂y

)

=
∂2u

∂x∂y

dx

ds
+
∂2u

∂y2
dy

ds
23
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Then we may write this system as





α β γ
dx
ds

dy
ds 0

0 dx
ds

dy
ds










∂2u
∂x2

∂2u
∂x∂y
∂2u
∂y2




 =






ψ
d
ds

(
∂u
∂x

)

d
ds

(
∂u
∂y

)






If we require, similarly to the first-order case, that the original equation is a linear combination of the two
equations for the first partial derivative, i. e. this system is linearly dependent, then

α

(
dy

ds

)2

− β dx
ds

dy

ds
+ γ

(
dx

ds

)2

= 0 and α

(
dy

dx

)2

− β dy
dx

+ γ = 0.

We classify the equations based on the discriminant

β2 − 4αγ > 0 ⇒ hyperbolic (2 real characteristics)

β2 − 4αγ = 0 ⇒ parabolic (1 real characteristic)

β2 − 4αγ < 0 ⇒ elliptic (0 real characteristics)

2.2 Difference Operators

Suppose that we have a grid of nodes in an interval [a, b], ∆ = {a = x0 < x1 < · · · < xN−1 < xN = b}. The
following mapping: uh : ∆→ R is called a grid function: uh = (uh,0, . . . , uh,N)T with uh,j = uh(xj). A classical
function u : [a, b] → R gives rise to an associated grid function and, abusing notation somewhat, we denote
this grid function by u and its value at a given node xj by uj . In addition we will make use of the following
operators on such functions, that are used to approximate the corresponding derivatives:

δ+uj =
1

hj+1
(uj+1 − uj) , hj+1 = xj+1 − xj

δ−uj =
1

hj
(uj − uj−1)

δuj+ 1
2
=

1

hj+1
(uj+1 − uj) ,

δ2uj =
1

hj+ 1
2

(
uj+1 − uj
hj+1

− uj − uj−1

hj

)

, hj+ 1
2
=

1

2
(hj + hj+1) .

We will also make use of the averaging operator:

uj+ 1
2
=

1

2
(uj + uj+1) .

Assuming that hj = h, ∀j, and enough regularity of the function u, and using Taylor expansions, we can derive
the following estimates for the error of these approximations:

δ+uj =
1

h
(uj+1 − uj) =

1

h

(

uj +
∂uj
∂x

h+
∂2uj
∂x2

h2

2
+ . . .− uj

)

=
∂uj
∂x

+ h
∂2uj
∂x2

+ . . . =
∂uj
∂x

+O (h)

δ−uj =
∂uj
∂x

+O (h)

δ2uj =
uj+1 − 2uj + uj−1

h2
=
∂2uj
∂x2

+O
(
h2
)

uj+ 1
2
=

1

2
(uj + uj+1) = u

(

xj+ 1
2

)

+O
(
h2
)
.

Similar estimates can be derived for non-constant grid size hj , however, in the rest of the notes we will consider
only equidistant grids. The non-equidistant case requires more careful examination.
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2.2.1 Poisson Equation

−∇2u (x, y) = f (x, y) , (x, y) ∈ (0, 1)× (0, 1) = Ω

u (x, y) = g (x, y) , (x, y) ∈ ∂Ω

Consider the grid:

Ω̄h = {(xj , yl) ;xj = jh, yl = lh, j, l ∈ 0, . . . , N}
Ωh = {(xj , yl) ;xj = jh, yl = lh, 1 ≤ j, l ≤ N − 1}
∂Ωh = Ω̄h \ Ωh,

where h = 1/N . A second order scheme for an approximation to the solution uh is given by:

−
(
δ2xuh,j,l + δ2yuh,j,l

)
= fh,j,l, (xj , yl) ∈ Ωh

uj,l = gh,j,l, (xj , yl) ∈ ∂Ωh

where fh,j,l = fj,l, (xj , yl) ∈ Ωh; gh,j,l = gj,l, (xj , yl) ∈ ∂Ωh So that

− (uh,j−1,l + uh,j,l−1 − 4uh,j,l + uh,j,l+1 + uh,j+1,l) = h2fh,j,l

The left hand side is a discretization of ∇2u on the following stencil

yl+1

yl

yl−1

xj+1xjxj−1










T I
I T I

. . .

I T I
I T



















uh,1
uh,2
...

uh,N−2

uh,N−1










= −h2










r1
r2
...

rN−2

rN−1










where

T ≡










−4 1
1 −4 1

. . .

1 −4 1
1 −4










, uh,j ≡








uh,j,1
uh,j,2

...
uh,j,N−1







, fj ≡








fj,1
fj,2
...

fj,N−1







, rj ≡ fj +

bj
h2

bj ≡










gj,0
0
...
0
gj,N










for j = 2, . . . , N − 2, b1 ≡










g0,1 + g1,0
g0,2
...

g0,N−2

g0,N−1 + g1,N










, bN−1 ≡










gN,1 + gN−1,0

gN,2

...
gN,N−2

gN,N−1 + gN−1,N
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2.2.2 Neumann Boundary Conditions

y1

y2

y3

y4

x
−1 x0

Suppose that we need to impose a Neumann condition

∂u

∂n

∣
∣
∣
∣
ij

= g|ij

on the left boundary of the domain sketched above. Then, we write the scheme for all nodes on this boundary
and discretize the Neumann condition using a central difference scheme, introducing an additional layer of points
(corresponding to level -1 in x direction)

uh,1,l − uh,−1,l

2h
= g0,l, uh,−1,l + uh,0,l−1 − 4uh,0,l + uh,0,l+1 + uh,1,l = −h2f0,l.

In order to eliminate the additional layer of points, we combine these results to get

uh,0,l−1 − 4uh,0,l + uh,0,l+1 + 2uh,1,l = −h2f0,l + 2hg0,l

2.3 Consistency and Convergence

Consider the continuous problem

Lu = f in Ω

u = g on ∂Ω

Now, consider the corresponding discrete problem

Lhuh = fh in Ωh

uh = gh on ∂Ωh.

fh, gh are some sort of approximations of f, g and in these notes we assume that fh = f, gh = g in the nodes of
the discretization grid.

Definition For a given φ ∈ C∞ (Ω) and xh ∈ Ωh

τh (xh) ≡ (L− Lh)φ (xh)

is called a truncation error of Lh. The scheme Lh is consistent with L if

lim
h→0

τh (xh) = 0

for all xh ∈ Ωh and φ ∈ C∞ (Ω). If τh (xh) = O (hp), then Lh is consistent to order p.
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Proposition 2.3.1

−∇2
h = −δ2x − δ2y

is consistent to order 2 with

−∇2 = − ∂2

∂x2
− ∂2

∂y2

in Ωh.

The consistency of a finite difference grid does not guarantee that the solution to the scheme is approximating
well the exact solution of the continuous problem. In order to measure how close the solution to the continuous
problem is to the solution of the discrete problem we introduce below the notion of convergence. Since the
solution of the continuous problem is a function defined everywhere in Ω and the one of the discrete problem
is known only in the set of nodes in Ω̄h and we need to compare them somehow, we can either extend the
definition of uh to the whole set of points inside Ω̄, or restrict somehow the function u to the nodes in Ω̄h. The
first approach requires the use of some interpolant of uh, and then we can compare the two solutions in some
continuous norm. In the second approach, we need to use some operator P from the space where u belongs,
to the vector space of uh. Assume that the grid Ω̄h contains the nodes xk, k = 0, . . . ,K. Then Pu is usually
identified with the vector of values of u in all nodes xk i.e. Pu = (u(x0), . . . , u(xK))T . To be more concise, we
often denote u(xk) by uk and abusing notations somewhat, we often identify u with Pu if it appears under a
discrete norm. Below we follow the second approach and in order to quantify the difference between u and uh
we introduce the notion of convergence as follows:

Definition uh converges to u in a given norm ||.|| if ǫh = Pu− uh satisfies

lim
h→0
||ǫh|| = 0.

If ||ǫh|| = O (hp), then p is the order of convergence.

In the section on finite difference methods we use exclusively the infinity (or maximum) norm: ||ǫh|| = max
j
|ǫh,j |.

Note that consistency does not guarantee that the difference between the solutions of the continuous and
discrete problems also tends to zero. It only guarantees that the action of the difference between the differential
and discrete operators on a smooth enough function tends to zero.

Let us go back to the boundary value problem for the Poisson equation

−∇2u = f in Ω

u = g in ∂Ω (2.1)

with the corresponding discrete problem

−∇2
huh = fh in Ωh

uh = gh in ∂Ωh. (2.2)

From the elliptic PDEs theory we know the following maximum principle: If ∇2u ≥ 0 in Ω then u achieves its
maximum on ∂Ω. Similarly the discrete Laplacian ∇2

h satisfies a Discrete Maximum Principle:

Theorem 2.3.2 (Discrete Maximum Principle) If

∇2
hvj,l ≥ 0

for all (xj , yl) ∈ Ωh, then

max
(xj,yl)∈Ωh

vj,l ≤ max
(xj,yl)∈∂Ωh

vj,l
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Proof

∇2
hvj,l =

vj+1,l + vj−1,l + vj,l+1 + vj,l−1 − 4vj,l
h2

≥ 0 ⇒ vj,l ≤
1

4
(vj+1,l + vj−1,l + vj,l+1 + vj,l−1) ∀(xj , yl) ∈ Ωh

Suppose that the maximum of v is achieved in an internal point (xJ , yL) ∈ Ωh, then:

vJ ,L ≥ vJ−1,L, vJ ,L ≥ vJ+1,L, vJ ,L ≥ vJ ,L−1, vJ ,L ≥ vJ ,L+1

so that

4vJ ,L ≥ vJ−1,L + vJ+1,L + vJ ,L−1 + vJ ,L+1 ⇒ 4vJ ,L = vJ−1,L + vJ+1,L + vJ ,L−1 + vJ ,L+1

Therefore, v must attain its maximum in all neighbouring points too. Applying this argument repeatedly to
the neighbours we eventually will reach a boundary point.

Corollary 2.3.3 The following two results follow from the discrete maximum principle:

1.

∇2
huh = 0 in Ωh

uh = 0 on ∂Ωh

has a unique solution uh = 0 in Ωh ∪ ∂Ωh.

2. For given fh and gh,

∇2
huh = fh in Ωh

uh = gh on ∂Ωh

has a unique solution.

Definition If
v : Ωh ∪ ∂Ωh → R

then

||v||Ω ≡ max
(xj ,yl)∈Ωh

|vj,l|

||v||∂Ω ≡ max
(xj ,yl)∈∂Ωh

|vj,l|

Lemma 2.3.4 If vj,l = 0 for all (xj , yl) ∈ ∂Ωh then

||v||Ω ≤M∆

∣
∣
∣
∣∇2

hv
∣
∣
∣
∣
Ω

for some M∆ > 0, that depends on Ω but not on h.

Proof Let
∣
∣
∣
∣∇2

hv
∣
∣
∣
∣
Ω
= ν ⇒ −ν ≤ ∇2

hv ≤ ν,
and consider the function

w : wj,l =
1

4

(
x2j + y2l

)
≥ 0.

Denote its norm on the boundary by M∆ i.e.

||w||∂Ω =M∆ > 0.
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Note that ∇2
hw = 1. Then

∇2
h (v + νw) ≥ 0
∇2

h (v − νw) ≤ 0

}

in Ω

From the maximum principle and since vh|∂Ωh
= 0 we have:

vj,l ≤ vj,l + νwj,l ≤ ν ||wj,l||∂Ω =M∆

∣
∣
∣
∣∇2

hvj,l
∣
∣
∣
∣
Ω

vj,l ≥ vj,l − νwj,l ≥ −ν ||wj,l||∂Ω = −M∆

∣
∣
∣
∣∇2

hvj,l
∣
∣
∣
∣
Ω

∀(xj , yl) ∈ Ωh

Theorem 2.3.5 (error estimate) Let u be the solution of the boundary value problem (2.1) and uh is a
solution to the discrete analog (2.2). Assuming that u ∈ C4

(
Ω̄
)
, then there exists a constant k > 0 such that:

||u− uh||Ω ≤ kMh2

where

M ≡ max

{∣
∣
∣
∣

∣
∣
∣
∣

∂4u

∂x4

∣
∣
∣
∣

∣
∣
∣
∣
L∞(Ω)

,

∣
∣
∣
∣

∣
∣
∣
∣

∂4u

∂y4

∣
∣
∣
∣

∣
∣
∣
∣
L∞(Ω)

}

Proof From the proposition:

(
∇2

h −∇2
)
uj,l =

h2

12

[
∂4u

∂x4
(ξj , yl) +

∂4u

∂y4
(xj , ηl)

]

for some ξj , ηl s.t. xj−1 ≤ ξj ≤ xj+1, yl−1 ≤ ηl ≤ yl+1. Taking into account that u is the exact solution we
have:

−∇2
huj,l = fj,l −

h2

12

[
∂4u

∂x4
(ξj , yl) +

∂4u

∂y4
(xj , ηl)

]

Subtract −∇2
huh,j,l = fh,j,l = fj,l and note that u− uh = 0 on ∂Ωh. Then

∇2
h (uj,l − uh,j,l) =

h2

12

[
∂4u

∂x4
(ξj , yl) +

∂4u

∂y4
(xj , ηl)

]

From the Lemma we get

||u− uh||Ω ≤M∆

∣
∣
∣
∣∇2

h (u− uh)
∣
∣
∣
∣
Ω
≤ 2M∆

12
︸ ︷︷ ︸

=k

Mh2 = kMh2

2.4 Advection Equation

Consider the initial value problem

∂u

∂t
+ v

∂u

∂x
= 0, −∞ < x <∞, t > 0

with v > 0, u (0, x) = f (x) for −∞ < x <∞. The exact solution is given by

u (t, x) = f (x− vt)

Consider a grid ∆ ≡ ∆t ×∆x:

∆t ≡ {nk : n = 0, 1, 2, . . .}
∆x ≡ {jh : j = 0,±1,±2, . . .}
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One possible discretization is

(
δ+t + vδ−x

)
unh,j =

unh,j − un−1
h,j

k
+ v

un−1
h,j − un−1

h,j−1

h
= 0

or equivalently

unh,j = un−1
h,j − C

(

un−1
h,j − un−1

h,j−1

)

This is called the FB (Forwards Backwards) scheme where the Courant number is defined as

C ≡ vk

h

t

x

h

2h

3h

4h

5h

...

k 2k 3k

C = 1

C > 1

Assume for simplicity that v = 1. As suggested by the exact solution u (t, x) = f (x− t), the solution at any
point (t, x) depends only on the value of the initial condition at the point where the characteristic (having a
slope of 1) crosses the vertical axes (see the figure above). The characteristic curve therefore is called a domain
of dependance of the solution. On the other hand, the numerical solution at each point (tn, xj) depends only of
the solution at (tn−1, xj−1) and (tn−1, xj). These values themselves depend on values at time tn−2 etc, so that
the value at (tn, xj) depends on the values in a right angle triangle whose hypothenuse has a slope of C (see
again the same figure), called numerical domain of dependance. Clearly, if the Courant number C is greater
than 1, the numerical domain of dependance will not contain the point where the characteristic crosses the
x−axes i.e. it will not account for the initial data that determines the exact solution at a given point. This
should create troubles with the numerical solution and these troubles are quantified by the notion of stability.
Informally speaking, the solution is stable if the numerical domain of dependance contains the exact domain of
dependance. We will formally illustrate these concepts below.

Define S (shift operator) such that
Sunh,j = unh,j+1

unh,j =
(
1− C + CS−1

)
un−1
h,j =

(
1− C + CS−1

)2
un−2
h,j = · · · =

(
1− C + CS−1

)n
u0h,j =

(
1− C + CS−1

)n
fj

=

n∑

m=0

(
n

m

)

(1− C)m
(
CS−1

)n−m
fj =

n∑

m=0

(
n

m

)

(1− C)m Cn−mfj−n+m

Now, suppose that the initial condition is perturbed with an error ǫj i.e. instead of fj the initial condition is

given byf̂j = fj + ǫj . Then, the perturbed solution ûh is given by:

ûh,j =

n∑

m=0

(
n

m

)

(1− C)m Cn−m (fj−n+m + ǫj−n+m)
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and we have

∣
∣unh,j − ûnh,j

∣
∣ =

∣
∣
∣
∣
∣

n∑

m=0

(
n

m

)

(1− C)mCn−mǫj−n+m

∣
∣
∣
∣
∣

≤
n∑

m=0

(
n

m

)

|1− C|m Cn−m |ǫj−n+m| ≤ ||ǫ||∞
n∑

m=0

(
n

m

)

|1− C|m Cn−m = ||ǫ||∞ (|1− C|+ C)
n

So that
∣
∣unh,j − ûnh,j

∣
∣ ≤ ||ǫ||∞ (|1− C|+ C)

n

Then, if C ≤ 1:
∣
∣unh,j − ûnh,j

∣
∣ ≤ ||ǫ||∞

However, if C > 1:
∣
∣unh,j − ûnh,j

∣
∣ ≤ ||ǫ||∞ (|1− C|+ C)

n
= ||ǫ||∞ (2C − 1)

n n→∞→ ∞

Theorem 2.4.1 If C ≤ 1 and u ∈ C2 ((0, t]× R) then the FB scheme is convergent. That is

En = ||un − unh||∞ ≤ tnO (k + h)

where tn = kn.

Proof

δ+t u (t
n, xj) =

∂u

∂t
(tn, xj) +

k

2

∂2u

∂t2
(η, xj)

δ−x u (t
n, xj) =

∂u

∂x
(tn, xj)−

h

2

∂2u

∂x2
(tn, ξ)

δ+t u+ vδ−x u = −τk,h (tn, xj) = O (k + h)

δ+t u
n
h,j + vδ−x u

n
h,j = 0

and letting ǫh = u− uh we get the following estimate:

∣
∣
∣ǫn+1

h,j

∣
∣
∣ ≤

∣
∣(1− C) ǫnh,j

∣
∣+ C

∣
∣ǫnh,j−1

∣
∣+ k |τk,h (tn, xj)|

Let
En = ||ǫnh||∞ , T n = max

j
|τk,h (tn, xj)|

Then from the last inequality we can conclude that:

En+1 ≤ (1− C)En + CEn + k |τk,h (tn, xj)| ≤ En + kT n ≤ En−1 + kT n + kT n−1 ≤ E0 + k

n∑

m=1

Tm

If E0 = 0 then

En+1 ≤ k
n∑

m=1

Tm ≤ nk max
1≤m≤n

Tm = tn max
m

Tm = tnO (k + h)

2.5 Von Neumann Stability Analysis

Definition Discrete L2 norm:

||v||22 ≡ h
∞∑

j=−∞
|vj |2
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Definition A FD (Finite Difference) scheme for a time dependent PDE is stable if for any time T > 0, there
exists K > 0 such that for any initial data u0h, the sequence {unh} satisfies:

||unh||2 ≤ K
∣
∣
∣
∣u0h
∣
∣
∣
∣
2

for 0 ≤ nk ≤ T . The constant K is independent of the time and space mesh size!

Consider the following grid on the real axes

∆x = {. . . ,−2h,−h, 0, h, 2h, . . .} .

Then the Fourier Transform of a given grid function v is defined as

(Fv) (τ) ≡ h√
2π

∞∑

j=−∞
e−ijhτvj

Inverse transform:

vj =
1√
2π

∫ π
h

−π
h

eijhξ (Fv) (ξ) dξ

Theorem 2.5.1 (Parseval Identity)

||Fv||2L2[−π
h
,π
h ]

:=

∫ π
h

−π
h

(Fv)2 dξ = ||v||22

Corollary 2.5.2 A finite difference scheme is stable if and only if ∃K > 0, independent of k, h, s.t.:

||Funh||L2[−π
h
,π
h ]
≤ K

∣
∣
∣
∣Fu0h

∣
∣
∣
∣
L2[−π

h
,π
h ]

Consider the forward backwards scheme. Since we have:

unh,j = (1− C)un−1
h,j + Cun−1

h,j−1

unh,j =
1√
2π

∫ π
h

−π
h

eijhξ (Funh) (ξ) dξ

un−1
h,j−1 =

1√
2π

∫ π
h

−π
h

ei(j−1)hξ
(
Fun−1

h

)
(ξ) dξ,

we obtain:
Funh =

(
1− C + Ce−ihξ

)

︸ ︷︷ ︸

Amplification Factor

(
Fun−1

h

)
(ξ)

A (hξ) = 1− C + Ce−ihξ

Then, since we have

||Funh||2L2[−π
h
,π
h ]

=

∫ π
h

−π
h

A (hξ)2
(
Fun−1

h

)2
dξ,

if |A (hξ)| ≤ 1, we obtain that:
||Funh||L2[−π

h
,π
h ]
≤
∣
∣
∣
∣Fun−1

h

∣
∣
∣
∣
L2[−π

h
,π
h ]

and recursive application gives:
||Funh||L2[−π

h
,π
h ]
≤
∣
∣
∣
∣Fu0h

∣
∣
∣
∣
L2[−π

h
,π
h ]
.
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Since
A (θ) = 1− C + Ce−iθ

|A (θ)|2 = (1− C + C cos θ)2 + (−C sin θ)2

= 1− 2C + C2 + 2C cos θ − 2C2 cos θ + C2 cos2 θ + C2 sin2 θ

= 1− 2C (1− cos θ) + 2C2 (1− cos θ) = 1 + 2C (1− cos θ) (C − 1)

≤ 1 + 4C (C − 1)

it follows that if C > 1 then |A (θ)| > 1, and if C ≤ 1 then |A (θ)| ≤ 1. Also,
∣
∣
∣
∣1− C + Ce−iθ

∣
∣
∣
∣ ≤ |1− C|+ C

If a numerical scheme requires a solution of a linear system with a non-diagonal matrix then we call it an implicit
scheme, otherwise it is called an explicit scheme.

Consider the following “Backwards Backwards” scheme

unh,j − un−1
h,j

k
+ v

unh,j − unh,j−1

h
= 0

(1 + C) unh,j − Cunh,j−1 = un−1
h,j

This is an implicit scheme.
In order to study its stability (and the stability of any other FD scheme), it is enough, instead of considering

the full Fourier transform of the solution, to consider the ”action” of the scheme on a single mode of the form:

wneijhξ

then plugging into the BB scheme:

wn
[
1 + C

(
1− e−ihξ

)]

︸ ︷︷ ︸

A−1(hξ)

= wn−1

wn = A (hξ)wn−1

A (θ) =
[
1 + C

(
1− e−iθ

)]−1

Then,
∣
∣1 + C

(
1− e−ihξ

)∣
∣ ≥ |1 + C| −

∣
∣Ce−ihξ

∣
∣ = 1

so that
|A (θ)| ≤ 1 ∀θ

therefore the BB scheme is unconditionally stable.
We may outline a procedure for von Neumann stability analysis:

1. Consider a single mode wneijhξ.

2. Derive conditions for A to satisfy |A (hξ)| ≤ 1

2.6 Sufficient Conditions for Convergence

More generally, if we approximate the solution of a well-posed initial-boundary or boundary value problem
comprised by the equation:

Lu = f in Ω

and some initial and/or boundary conditions:
lu = g,
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by a numerical scheme with a grid size h (this can be a vector of grid sizes in each direction of discretization):

Lhuh = fh in Ωh

lhuh = gh
(2.3)

we need to generalize the notion of stability as follows. Assume that uh, fh, and gh belong to three Banach
spaces B1

h, B
2
h, and B3

h, with norms ‖.‖h,1, ‖.‖h,2, and ‖.‖h,3 correspondingly. Then we have the following
generalized definition of stability:

Definition (Stable scheme) If the scheme (2.3) has a unique solution uh, it is stable if ∃C1, C2 > 0, independent
of h, s.t.:

‖uh‖h,1 ≤ C1‖fh‖h,2 + C2‖gh‖h,3.
The essence of this definition is that it guarantees that a small perturbation in the data of the problem i.e. in
fh, gh leads to a small perturbation in the solution uh.

We can also generalize the notion of consistency as follows. Suppose that P 1 is an operator from a given
Banach space B1, containing the solution of the continuous problem u, into B1

h. Then the discrete operators
Lh and lh are consistent with the continuous counterparts if:

Lh(P
1u− uh) = φh in Ωh

lh(P
1u− uh) = ψh,

(2.4)

and
‖φh‖h,2 −→

|h|→0
0, ‖ψh‖h,3 −→

|h|→0
0.

Note that h can be a vector of grid sizes, if the problem involves more than one variable. If φh = O(|h|m), ψh =
O(|h|k), then the scheme is consistent to order min(k,m). Note that this definition is consistent with the
previous definition that we used, provided that the the data of the discrete problem exactly matches the data
of the continuous problem in the points of the grid.

The following theorem states that consistency and stability are sufficient for obtaining convergence.

Theorem 2.6.1 Given a scheme that is consistent in a norm ‖.‖h,1, then it is convergent in this norm, if it is
stable. If the scheme is consistent to order k then it is convergent to order k.

Proof If the scheme is consistent we have that:

Lh(P
1u− uh) = φh in Ωh

lh(P
1u− uh) = ψh.

The stability guarantees that:
‖P 1u− uh‖h,1 ≤ C1‖φh‖h,2 + C2‖ψh‖h,3,

and this immediately yields convergence in the norm ‖.‖h,1.

It appears that the stability and consistency are also necessary conditions for convergence, as stated in the
following theorem due to P. Lax. We will skip the proof in these notes.

Theorem 2.6.2 (Lax Theorem) Given a consistent scheme for a well-posed initial boundary value problem,
then stability is a necessary and sufficient condition for convergence.

2.7 Parabolic PDEs – Heat Equation
{

∂u
∂t = D ∂2u

∂x2 , (t, x) ∈ (0, T ]× R

u (0, x) = f (x) , x ∈ R

Which has the solution

u (t, x) =
1√
4πDt

∫ ∞

−∞
f (ξ) e−

(x−ξ)2

4Dt dξ
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2.7.1 FC Scheme

This is an explicit scheme.

δ+t u
n
h,j −Dδ2xunh,j = 0

un+1
h,j = (1− 2ΓD)unh,j + ΓD

(
unh,j+1 + unh,j−1

)
, Γ =

k

h2

where Γ is called a grid ratio.

tn+1

tn

tn−l

xj+1xjxj−1

The consistency error is found using

∂tu− δ+t u = O (k)

∂xxu− δ2xu = O
(
h2
)

so that

τk,h = O
(
k + h2

)
.

Stability is a central concern of parabolic and hyperbolic PDEs. Using the Neumann analysis idea we substitute
the Fourier mode:

vnj = wneijθ

into the scheme to get:
1

k

(
wn+1 − wn

)
eijθ =

D

h2
(
wneiθ − 2wn + wne−iθ

)
eijθ

This gives:

wn+1 =

(

1− 4DΓ sin2
θ

2

)

︸ ︷︷ ︸

A(θ)≤1

wn

So that

0 < DΓ ≤ 1

2
⇔ |A (θ)| ≤ 1 ⇒ stability

and we require:
Dk

h2
≤ 1

2
⇒ k ≤ 1

2

h2

D

and we note that k and h are not of the same order. So, this is a conditionally stable scheme, but it is explicit
and this is to be expected.

In this problem the domain Ω is the entire real axes and therefore it is convenient to use for measuring the
error the following ∞-norm: ||vh||Ω = max

−∞<j<∞
|vh,j|. Then the following theorem provides the convergence

estimate for the FC scheme.
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Theorem 2.7.1 If DΓ ≤ 1
2 , the exact solution u is sufficiently smooth, and if uh satisfies exactly the initial

condition then:

||u− uh||Ω = ||ǫh||Ω = O
(
k + h2

)

Proof From the scheme, if the exact solution u is sufficiently smooth∗, we have:

un+1
j = DΓunj−1 + (1− 2DΓ)unj +DΓunj+1 +O

(
k2 + kh2

)

so that:

ǫn+1
h,j = DΓ

︸︷︷︸

≥0

ǫnh,j−1 + (1− 2DΓ)
︸ ︷︷ ︸

≥0

ǫnh,j + DΓ
︸︷︷︸

≥0

ǫnh,j+1 +O
(
k2 + kh2

)

by the triangle inequality,

∣
∣
∣
∣ǫn+1

h

∣
∣
∣
∣
Ω
≤ ||ǫnh||Ω +O

(
k2 + kh2

)
≤
∣
∣
∣
∣ǫ0h
∣
∣
∣
∣
Ω
+ (n+ 1)O

(
k2 + kh2

)
= (n+ 1)k
︸ ︷︷ ︸

tn+1

O
(
k + h2

)
.

Note that the the right hand side of this estimate will blow up as t→∞ for fixed k, h.

2.7.2 BC scheme

tn+1

tn

tn−l

xj+1xjxj−1

δ−t u
n+1
h,j = Dδ2xu

n+1
h,j

This is a O
(
k + h2

)
consistent scheme. It can be rewritten as:

−DΓun+1
h,j−1 + (1 + 2ΓD)un+1

h,j −DΓun+1
h,j+1 = unh,j

So we must invert a tridiagonal matrix. Now we will study its stability. Substituting

vnj = wneijθ

into the scheme we have:

wn+1 − wn = DΓ
(
eiθ − 2 + e−iθ

)
wn+1

So that:

wn+1 =
1

1 + 4DΓ sin2 θ
2

︸ ︷︷ ︸

A(θ)≤1

wn.

So, it is clear that the BC scheme is unconditionally stable.

∗This term is used to require enough of the derivatives of the exact solution to be bounded, so that the coefficients in the

function O
(

k
2 + kh

2
)

appearing in the consistency estimate below to be finite.
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2.7.3 Crank-Nicolson Scheme

It is given by

δ−t u
n+1
h,j =

1

2
D
(

δ2xu
n+1
h,j + δ2xu

n
h,j

)

,

or

un+1
h,j − unh,j

k
=

D

2h2

(

un+1
h,j−1 − 2un+1

h,j + un+1
h,j+1 + unh,j−1 − 2unh,j + unh,j+1

)

Consistency:

D

2

(
δ2xu

n+1
j + δ2xu

n
j

)
=
D

2

(

∂2u

∂x2

∣
∣
∣
∣

n+1

j

+O
(
h2
)
+
∂2u

∂x2

∣
∣
∣
∣

n

j

+O
(
h2
)

)

= D
∂2u

∂x2

∣
∣
∣
∣

n+ 1
2

j

+O
(
k2 + h2

)

un+1
j − unj

k
=
∂u

∂t

∣
∣
∣
∣

n+ 1
2

j

+O
(
k2
)

tn+1

tn

tn−l

xj+1xjxj−1

Neumann stability analysis: First, rewrite the scheme in the following two-stage form

u
n+ 1

2

h,j − unh,j
k
2

= D
unh,j−1 − 2unh,j + unh,j+1

h2
→ A1 (θ) = 1− 4D

Γ

2
sin2

θ

2

un+1
h,j − u

n+ 1
2

h,j

k
2

= D
un+1
h,j−1 − 2un+1

h,j + un+1
h,j+1

h2
→ A2 (θ) =

1

1 + 4D Γ
2 sin2 θ

2

.

Then,

wn+ 1
2 = A1 (θ)w

n wn+1 = A2 (θ)w
n+ 1

2 = A1A2
︸ ︷︷ ︸

A(θ)

wn

So that A (θ) ≤ 1, so the system is unconditionally stable, and O
(
h2 + k2

)
.
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2.7.4 Leapfrog Scheme

tn+1

tn

tn−l

xj+1xjxj−1

As we use central difference in both directions, the scheme is O
(
k2 + h2

)
. We may write the scheme as:

un+1
h,j − un−1

h,j

2k
= D

unh,j−1 − 2unh,j + unh,j+1

h2

Now we preform stability analysis: vnj = wneijθ

wn+1 − wn−1 = 2DΓ
(
e−iθ − 2 + eiθ

)
wn

Then, assume that:

wn = A (θ)wn−1 and wn+1 = A (θ)wn

so that
(
A2 − 1

)
wn−1 = 4DΓ (cos θ − 1)Awn−1

this gives

A1,2 = −4DΓ sin2
θ

2
±
√

1 + 16D2Γ2 sin4
θ

2

clearly |A2| ≥ 1, and |A2| > 1 for some θ, so the scheme is unconditionally unstable.

2.7.5 DuFort-Frankel Scheme

δtu
n
h =

D

h2

[

unh,j+1 −
(

un+1
h,j + un−1

h,j

)

+ unh,j−1

]

Since
1

2

(

un+1
h,j + un−1

h,j

)

= unh,j +O
(
k2
)

this scheme can be considered as a stabilized version of the Leapfrog scheme. The truncation error is then:

τk,h (t, x) = 2

(
k

h

)2
∂2u

∂t2
(tn, xj) +

k3

3

∂2u

∂t2
(tn, xj)−

h2

12

∂2u

∂x2
(tn, xj) +O

(
k3 + h3

)

and the system is conditionally consistant if k
h → 0. If k, h go to zero but k

h → c2, then DF is consistent with:

∂u

∂t
+ c2

∂2u

∂t2
= D

∂2u

∂x2
.

The stability analysis reveals that this scheme is unconditionally stable.
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2.8 Advection-Diffusion Equation

∂u

∂t
+ v

∂u

∂x
= D

∂2u

∂x2
(t, x) ∈ (0, T ]× (0, L)

and v,D > 0. Then define τ = vt
L , ξ = x

L , and Peclet number Pe = vL
D . So the PDE becomes:

∂u

∂τ
+
∂u

∂ξ
=

1

Pe

∂2u

∂ξ2
, (τ, ξ) ∈

(

0,
vT

L

]

× (0, 1)

2.8.1 FC Scheme

un+1
h,j − unh,j

k
+
unh,j+1 − unh,j−1

2h
− 1

Pe

unh,j−1 − 2unh,j + unh,j+1

h2
= 0

This scheme is consistant to O
(
k + h2

)
. Now preform stability analysis: vnj = wneijθ

wn+1 − wn + k
eiθ − e−iθ

2h
wn − 1

Pe
k
e−iθ − 2 + eiθ

h2
= 0

wn+1 = wn

(

−Ci sin θ + 2Γ

Pe
(cos θ − 1) + 1

)

︸ ︷︷ ︸

A(θ)

So we may write,

|A (θ)|2 =

(

1− 4
Γ

Pe
sin2

θ

2

)2

+ C2 sin2 θ

If Γ/Pe ≤ 1/2 the first term ≤ 1 and since C2 = kΓ then C2 sin2 θ ≤ Pek/2 =Mk,M > 0, i.e.

|A|2 ≤ 1 +Mk

Theorem 2.8.1 The FC scheme is stable if Γ ≤ Pe/2 i.e. if |A (θ)|2 ≤ 1 +Mk for some M > 0.

Proof
(Funh)

2 (ξ) = A2 (hξ)
(
Fun−1

n

)2
(ξ) = A2n (hξ)

(
Fu0h

)2
(ξ) ≤ (1 +Mk)n

(
Fu0h

)2
(ξ)

Therefore,

||Funh||22 ≤ (1 +Mk)
n ∣∣
∣
∣Fu0h

∣
∣
∣
∣
2 ≤ (1 +Mk)

nkM
kM

∣
∣
∣
∣Fu0h

∣
∣
∣
∣
2

2
=
(

(1 +Mk)
1

kM

)Mtn ∣
∣
∣
∣Fu0h

∣
∣
∣
∣
2

2
≤ eMtn

∣
∣
∣
∣Fu0h

∣
∣
∣
∣
2

2
,

where tn = nk.

Theorem 2.8.2 Assume:
Γ

Pe
≤ 1

2

Then the solution of the FC scheme satisfies the maximum principle:

max
j

∣
∣
∣un+1

h,j

∣
∣
∣ ≤ max

j

∣
∣unh,j

∣
∣

for all n ≥ 1, if and only if h ≤ 2
Pe

†.
†Here we tacitly disregard the boundary conditions that are required since the equation involves a second derivative in space.

It is quite clear, however, that the boundary conditions should be non-increasing functions of time. For example, if at the left edge

of the domain we need to satisfy a Dirichlet condition that is an increasing function of time, and the approximation satisfies it

exactly, then it cannot satisfy such a maximum principle in time.
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Proof Let h ≤ 2
Pe , then:

∣
∣
∣un+1

h,j

∣
∣
∣ ≤ Γ

Pe

(

1 +
1

2
hPe

)
∣
∣unh,j−1

∣
∣+
(
1− 2ΓPe−1

) ∣
∣unh,j

∣
∣+

Γ

Pe

(

1− 1

2
hPe

)
∣
∣unh,j+1

∣
∣ ≤ max

j

∣
∣unh,j

∣
∣

because h ≤ 2
Pe ,

Γ
Pe ≤ 1

2 .
Now, assume that

max
j

∣
∣
∣un+1

h,j

∣
∣
∣ ≤ max

j

∣
∣unh,j

∣
∣ .

Aiming towards a contradiction, assume that h > 2
Pe . Then, choose the initial data as follows

u0h,j =

{
1, j = 0, 1
0, j > 1

so that

u1h,1 =
Γ

Pe

(

1 +
1

2
hPe

)

+ 1− 2
Γ

Pe
>

Γ

Pe

(

1 +
1

2

2

Pe
Pe− 2

)

+ 1 = 1

and this gives:
max

j

∣
∣u1h,j

∣
∣ > 1 = max

j

∣
∣u0h,j

∣
∣

so, by contradiction, the theorem holds.

Since violation of the maximum principle leads to unphysical solution then we must choose h ≤ 2/Pe and so,
if the Peclet number Pe is very large then we need to use very small h, of the order of Pe−1. This corresponds
to problems with boundary layers that need to be resolved by h. However, it is known from the properties of
the corresponding boundary value problem that the thickness of such boundary layers is of the order of Pe−1/2

i.e. it can be resolved by h being of order of Pe−1/2. So, this scheme requires the use of a spatial step h much
less than what is needed to resolve the actual solution. The next scheme cures this problem at the expense of
loss of accuracy.

2.8.2 Upwinding Scheme (FB)

un+1
h,j − unh,j

k
+
unh,j − unh,j−1

h
=

1

Pe

unh,j−1 − 2unh,j + unh,j+1

h2

Theorem 2.8.3 Assume that Γ
Pe ≤ 1

2 . Then the FB scheme satisfies a maximum principle provided that:

2
Γ

Pe
+ C ≤ 1,

(

C =
k

h

)

The proof is left as an exercise. This theorem implies that the maximum principle is satisfied if k ≤ (Peh2)/(2+
Peh). Note that in the limit Pe→∞, this restriction on k tends to h. On the other hand, the stability condition
k ≤ Peh2/2 implies that if Pe→∞ but Peh2 → const (i.e. h = O(Pe−1/2)), k is restricted by a constant. In
conclusion, if the Peclet number Pe is very large, the scheme guarantees that the solution satisfies a maximum
principle, similar to the exact solution, and is stable if k ≤ h, but k can be of the order of h. And this is true
even if h = O(Pe−1/2) that is sufficient to resolve boundary layers.

The scheme has a consistency error
τk,h (t, x) = O (k + h)

as

δ+t u
n
j =

∂u

∂t
(tn, xj) +O (k)

and

δ−x u
n
j =

∂u

∂x
(tn, xj)−

h

2

∂2u

∂x2
(tn, xj) +O

(
h2
)
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and

δ2xu
n
j =

∂2u

∂x2
(tn, xj) +O

(
h2
)
.

Combining these results we have:

δ+t u
n
j + δ−x u

n
j −

1

Pe
δ2xu

n
j =

∂u

∂t
+
∂u

∂x
−
(

1

Pe
+
h

2

)
∂2u

∂x2
+O

(
k + h2

)

i.e. up to terms that are O(k + h2), the scheme is consistent with the equation

∂u

∂t
+
∂u

∂x
−
(

1

Pe
+
h

2

)
∂2u

∂x2
= 0.

This means that the scheme adds an extra diffusion term that is of order of h. If the leading order term in
the spatial error is proportional to a derivative of an even order, we call the scheme dissipative since such
schemes usually dissipate sharp changes (large gradients) of the solution. If the leading order term of the error
is proportional to a derivative of an odd order, the scheme is called dispersive. This is because odd derivatives
in PDEs lead to the so called dispersion in the solution. In terms of a Fourier decomposition of the solution,
this effect is manifested in the fact that due to the presence of odd derivatives different Fourier modes travel
with a different speed.
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Chapter 3

Introduction to Finite Elements

3.1 Weighted Residual Methods

3.1.1 Sobolev spaces

Sobolev space:

H
m (Ω) ≡

{

v : Ω→ R :

∫

Ω

(

v2 +
(

v(1)
)2

+ . . .+
(

v(m)
)2
)

<∞
}

then

H
0 (Ω) = L2 (Ω)

and H
m (Ω) is a Hilbert space:

(u, v)m =

∫

Ω

(

uv + u(1)v(1) + . . .+ u(m)v(m)
)

dx

and

||u||m =

√
∫

Ω

(

u2 + . . .+
(
u(m)

)2
)

dx

Proposition 3.1.1 1. H
m+1 (Ω) ⊂ H

m (Ω)

2. If v ∈ Hm (Ω) then:

||v||2m = ||v||20 +
∣
∣
∣

∣
∣
∣v(1)

∣
∣
∣

∣
∣
∣

2

0
+ . . .+

∣
∣
∣

∣
∣
∣v(m)

∣
∣
∣

∣
∣
∣

2

0

3. ||v||m+1 ≥ ||v||m and ||v||m+1 ≥
∣
∣
∣
∣v(1)

∣
∣
∣
∣
m
.

4. If v, w ∈ Hm (Ω) then |(v, w)m| ≤ ||v||m ||v||m, this is the Cauchy-Schwartz inequality.

5. If v, w ∈ Hm (Ω) then

||v + w||m ≤ ||v||m + ||w||m

Proof We will prove the Cauchy-Schwartz inequality

|(u, v)m| ≤ ||u||m ||v||m

for u, v ∈ Hm (Ω). For any s ∈ R we have

0 ≤ (u− sv, u− sv)m = ||u||2m + s2 ||v||2m − 2s (u, v)m .

43
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Choose

s =
(u, v)m
||v||2m

so that:

0 ≤ (u− sv, u− sv)m = ||u||2m +
(u, v)

2
m

||v||2m
− 2

(u, v)
2
m

||v||2m
= ||u||2m −

(u, v)
2
m

||v||2m
and, upon rearranging, we have:

(u, v)m ≤ ||u||m ||v||m

3.1.2 Weighted Residual Formulations

Consider
Lu = f, in Ω

with
u = 0, on ∂Ω

where

L = − d2

dx2

so that:

−d
2u

dx2
= f in Ω = (0, 1)

with
u = 0, on x = 0, 1

Define the “trial function” space, for example it can be chosen to be

U =
{
u : u ∈ H

2 (Ω) , u = 0 on ∂Ω
}

and we introduce the “weight functions” (also called test) space, for this choice of U it can be chosen to be

W =
{
w : w ∈ L2 (Ω) , w = 0 on ∂Ω

}

Now, find u ∈ U such that
∫

Ω

(
d2u

dx2
+ f

)

w dΩ = 0, f ∈ L2 (Ω)

for all w ∈W . This is one “weighted residual formulation” of the original problem. This particular formulation
is also usually called a strong formulation. It still defines a continuous problem and in order to discretize it
we need to discretize the corresponding functional spaces i.e. to define appropriate approximations for each
function in them. We select a subset Uh of U :

Uh ⊂ U, Uh = span {φ0, . . . , φn−1}
and Wh, a subset of W :

Wh ⊂W, Wh = span {ψ0, . . . , ψn−1}
and then, search for the discrete approximation uh in the form:

uh =

n−1∑

i=0

ciφi

so that:
∫

Ω

(

d2

dx2

n−1∑

i=0

ciφi − f
)

ψj dΩ = 0 ⇒
n−1∑

i=0

ci

∫

Ω

d2φi
dx2

ψj =

∫

Ω

fψj dΩ, j = 0, 1, . . . , n− 1

This is a linear algebraic system Lc = F where:

Lij =

∫

Ω

d2φi
dx2

ψj dΩ, Fi =

∫

Ω

fψi dΩ
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3.1.3 Collocation Methods

Let

ψj (x) = δ (x− xj)

so that: Lij =
d2φi

dx2 (xj) and Fj = f (xj) . Note that ψj are not in L2 however the formulation still makes sense

if φi ∈ C0 because the integrals are well defined. Next, we may approximate d2

dx2 ∼ δ2x, and this gives us a
finite difference method or we may select Uh as the space spanned by certain sets of orthogonal polynomials
(Legendre, Chebyshev etc.), and this gives us spectral collocation.

3.2 Weak Methods

By far, the most popular weighted residual methods are based on the so called weak formulation of the classical
problem. To obtain it we start from

∫

Ω

(
d2u

dx2
+ f

)

w dΩ = 0 ∀ w ∈W

and choose the discrete test functions space to be

W =
{
w : w ∈ H

1
0 (Ω)

}
.

Here we define

H
1
0 (Ω) =

{
u ∈ H

1 (Ω) , u = 0 on ∂Ω
}
.

Then,

−
∫

Ω

du

dx

dw

dx
+

∫

∂Ω

du

dx
w ds

︸ ︷︷ ︸
=0

= −
∫

Ω

fw dΩ

Then the problem is reformulated as: Find u ∈ U such that:

∫

Ω

du

dx

dw

dx
=

∫

Ω

fw dΩ

A natural choice for U which makes all integrals well defined and incorporates the Dirichlet boundary conditions
in the solution is U =W . Such formulation is called a Galerkin formulation. The space U can be discretized by
means of piecewise polynomial functions, orthogonal polynomials, trigonometric polynomials, spline functions
etc. These choices yield various weak methods. In the remainder of the notes we will focus on the piecewise
polynomial approximations which yield the so called finite element methods.

Before we proceed with the discretization we shall prove some important results for the continuous Galerkin
formulation: Find u ∈ U = H1

0(Ω) such that

∫

Ω

u′v′ dΩ =

∫

Ω

fv dΩ, ∀ v ∈ U.

Theorem 3.2.1 If u is a solution of the classical formulation

−u′′ = f in Ω

u = 0 on ∂Ω

then u is a solution of the Galerkin formulation. If u is a solution to the Galerkin Formulation then it is a
solution to the classical formulation if u ∈ C2 ([0, 1]) and f ∈ C0 ([0, 1]).
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Proof Suppose that u solves the differential formulation:

−u′′ = f

then take v ∈ U so that:

−
∫

Ω

u′′v dΩ =

∫

Ω

fv dΩ

∫

Ω

u′v′ dΩ =

∫

Ω

fv dΩ

(u′, v′)0 = (f, v)0

Suppose that u solves the Galerkin formulation so that:

(u′, v′) = (f, v)

then ∫

Ω

(u′v′ − fv) dΩ = 0 ⇒
∫

Ω

(u′′ + f) v dΩ = 0

Assume towards contradiction that u′′ + f 6= 0 in some point x ∈ Ω. However, u′′ ∈ C0 (Ω) and f ∈ C0 (Ω).
Therefore,

u′′ + f ∈ C0 (Ω) =⇒ u′′ + f 6= 0

in an entire open interval contained in Ω. Therefore, there exists (x0, x1) ⊂ Ω such that u′′ + f > 0 for all
x ∈ (x0, x1) or u′′ + f < 0 for all x ∈ (x0, x1). We consider the first possibility and the second one can be
considered in exactly the same way. Let us choose

v =

{
− (x− x0) (x− x1) in (x0, x1)

0 otherwise.

For this choice it is clear that v ∈ H1
0 (Ω) and v ≥ 0 in Ω. Now since u′′ + f > 0 in (x0, x1) then

(u′′ + f, v) > 0

but this contradicts the fact that u is a solution to (u′′ + f, v) = 0 for all v ∈ U . Therefore, u′′ + f = 0.

Example Consider the deformation of a rod from its equilibrium position under a given load f :

u

f (x)

Then

E (u) =
1

2
(u′, u′)0 − (f, u)0

is the total energy of the system.

Therefore, E is called the energy functional of any system described by a second order elliptic differential
equation.

Theorem 3.2.2 u ∈ H1
0 (Ω) is a solution to the Galerkin formulation if and only if u minimizes E (v) over

H
1
0 (Ω). That is, E (u) ≤ E (v) for all v ∈ H

1
0 (Ω).
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Proof 1. Suppose that u is a solution to the Galerkin formulation so that: (u′, v′)0 = (f, v)0 for all v ∈ H1
0 (Ω)

so that:

E (v) = E (u+ w) =
1

2

(
(u+ w)

′
, (u+ w)

′)
0
−(f, u+ w)0 =

1

2
(u′, u′)0−(f, u)0+

1

2
(w′, w′)0−(f, w)0+(u′, w′)0

Since
(u′, w′)0 = (f, w)0

we have

E (v) = E (u) +
1

2
||w′||20 ≥ E (u)

2. Suppose that E (u) ≤ E (v) for all v ∈ H1
0 (Ω). Then if we take s ∈ R, E (u+ sw) has a min at s = 0, and

therefore:
d

ds
E (u+ sw)

∣
∣
∣
∣
s=0

= 0

which we expand as:

d

ds

(
1

2

(
(u+ sw)

′
, (u+ sw)

′)
0
− (f, u+ sw)0

)∣
∣
∣
∣
s=0

= 0

d

ds

(

E (u) + s (u′, w′)0 − s (f, w)0 +
1

2
s2 (w′, w′)

)∣
∣
∣
∣
s=0

= (u′, w′)0 − (f, w)0 + s (w′, w′)
︸ ︷︷ ︸

=0

∣
∣
∣
∣
∣
∣
s=0

= 0

So that:
(u′, w′)0 = (f, w)0

for all w ∈ H1
0 (Ω). Therefore, u solves the Galerkin Formulation.

Consider a Hilbert space V equipped with the product (·, ·)V i..e. V is complete with respect to the norm
||·||V induced by this product. Now, consider the mapping a : V × V → R (further called a bilinear form) such
that:

1. a (αu+ βv, w) = αa (u,w) + βa (v, w),

2. a (w,αu + βv) = αa (w, u) + βa (w, v),

3. there exists β > 0 such that |a (u, v)| ≤ β ||u||V ||v||V (such bilinear form is called bounded w.r.t. ||.||V ),
and

4. there exists ρ > 0 such that
a (u, u) ≥ ρ ||u||2V

(such bilinear form is called coercive w.r.t. ||.||V )

Now, suppose that G (v) is a functional such that:

1. G (αu+ βv) = αG (u) + βG (v) (such a functional is called linear) and

2. there exists δ > 0 such that |G (u)| ≤ δ ||u||V (such functional is called bounded).

The following theorem is one version of a very well known result from functional analysis.

Theorem 3.2.3 (Riesz Theorem) If V is a Hilbert space with a given inner product (., .)∗ and if G (v) is a
bounded linear functional on V (w.r.t. the norm induced by its inner product), then there is a unique element
û ∈ V such that (û, v)∗ = G (v) for all v ∈ V .

This theorem almost directly yields the proof of a somewhat restricted version of the following fundamental
result in PDE theory and their numerical analysis.
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Lemma 3.2.4 (Lax-Milgram) If a (u, v) and G (v) satisfy the six conditions stated above then there exists a
unique solution û ∈ V for the following problem: Find u ∈ V s.t.

a (u, v) = G (v) ∀v ∈ V

If a (u, v) = a (v, u) (symmetric form) then û is the minimizer of

E (v) =
1

2
a (v, v)−G (v)

Proof We shall consider only the case where a (u, v) = a (v, u).

• The proof of the first claim is a direct consequence of the Riesz theorem if we prove that a (u, v) defines
an inner product on V . We know that:

a (u, u) ≥ ρ ||u||2V
which guarantees that √

a (u, u) = ||u||a
is a norm on V . It is not difficult then to verify that a(u, v) defines an inner product on V . Also, it is
straightforward to show that the norm ||.||a is equivalent to ||.||V i.e.:

√
ρ ||u||V ≤ ||u||a ≤

√

β ||u||V .

Therefore, since V is complete with respect to ||·||V then it is complete with respect to the norm ||.||a i.e.
V is a Hilbert space with respect to the product a(., .). As G (v) is bounded with respect to ||·||V , G (v)
is bounded with respect to ||·||a. Since a(., .) is an inner product on V and G (v) is bounded w.r.t. the
norm induced by this inner product, the Riesz theorem implies the first claim of the lemma.

• Next we show that û minimizes E (v) = 1
2a (v, v)−G (v).

E (v) = E (û+ w) = E (û) + 1/2 a (w,w)
︸ ︷︷ ︸

≥0

≥ E (û)

Example
{
−∇2u = f in Ω
u = 0 on ∂Ω

.

Its Galerkin formulation reads: Find u ∈ H1
0(Ω) s.t.:

(∇u,∇v)0 = (f, v)0 ∀v ∈ H
1
0 (Ω) . (3.1)

Below we prove the so-called Poincaré inequality which will guarantee that a(u, v) = (∇u,∇v)0 defines a bilinear
form satisfying the conditions of the Lax-Milgram lemma.

Lemma 3.2.5 (Poincaré Inequality) If Ω is a bounded domain and v ∈ H1
0 (Ω) then ∃C > 0, depending only

on the domain Ω, such that
||v||20 ≤ C ||∇v||

2
0 .

Proof Consider first v ∈ C1
0(Ω) i.e. v is a continuously differentiable function defined on Ω that vanishes on

its boundary. We can always find a ∈ R large enough so that the cube Q = {x ∈ R
n : |xj | < a, 1 ≤ j ≤ n}

contains Ω. Integrating by parts in the x1 direction and taking into account that the surface integral vanishes
since v = 0 on ∂Ω we obtain:

||v||20 =
∫

Ω

v2dx =
∫

Ω

1 · v2dx = −
∫

Ω

x1
∂v2

∂x1
dx

= −2
∫

Ω

x1v
∂v
∂x1

dx ≤ 2a
∫

Ω

|v|
∣
∣
∣
∂v
∂x1

∣
∣
∣ dx.
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Using the Cauchy-Schwarz inequality for the L2 inner product on Ω, we obtain:

||v||20 ≤ 2a
∫

Ω

|v|
∣
∣
∣
∂v
∂x1

∣
∣
∣ dx ≤ 2a‖v‖0‖ ∂v

∂x1
‖0 ≤ 2a‖v‖0‖∇v‖0.

Dividing by ‖v‖0 gives the desired result with C = (2a)2 and v ∈ C1
0(Ω). Due to some classical results in

functional analysis (see for example Ern, A. and Guermond, J.-L., Theory and Practice of Finite Elements,
Applied Mathematical Sciences, v. 159, Springer, 2004, p. 485), we can claim that for each v ∈ H1

0(Ω) we can
choose a sequence of functions in {vk}∞k=1 ⊂ C

1
0(Ω) such that the sequence converges to v in the H

1Ω) norm
i.e. ‖v − vk‖0 ≤ ‖v − vk‖1 → 0 as k → ∞ and similarly ‖∇v −∇vk‖0 ≤ ‖v − vk‖1 → 0. Using the triangular
inequality in the form ‖u−w‖0 ≥ ‖u‖0−‖w‖0 yields that ‖vk‖0 → ‖v‖0 and ‖∇vk‖0 → ‖∇v‖0. This allows us
to take the limit in the Poincaré inequality for vk ∈ C

1
0(Ω) to derive the inequality for any function in H

1
0(Ω).

Using this inequality we easily prove the following proposition.

Proposition 3.2.6 a (u, v) = (∇u,∇v)0 is a bilinear, bounded, and coercive form in H1
0 (Ω); G (v) = (f, v)0 is

bounded in H1
0 (Ω) if ||f ||0 <∞.

Proof

|a (u, v)| =

∣
∣
∣
∣
∣
∣

∫

Ω

∇u∇vdx

∣
∣
∣
∣
∣
∣

≤ ||∇u||0 ||∇v||0 ≤ ||u||1 ||v||1

as ||u||1 = ||∇u||0 + ||u||0 ≥ ||∇u||0. Then,

a (u, u) = (∇u,∇u) = ||∇u||20 =
1

2

(

||∇u||20 + ||∇u||
2
0

)

≥ 1

2

(

||u||20 + ||∇u||
2
0

)

=
1

2
||u||21

The last proposition guarantees that the bilinear form a (u, v) =
∫

Ω

∇u∇vdx and the functional G (v) =

(f, v)0 satisfy the conditions of the Lax-Milgram lemma if ||f ||0 < ∞. This automatically guarantees that the
corresponding weak formulation (3.1) has a unique solution in H1

0 (Ω).

3.3 Finite Element Method (FEM)

Let us define a grid:

∆ = {x0, . . . , xM}
and the following linear space of continuous piecewise linear functions on ∆:

M1
0 (∆) = span {l0, l1, . . . , lM} ∈ H

1 (Ω)

where

li =







x−xi−1

xi−xi−1
, xi−1 ≤ x ≤ xi

x−xi+1

xi−xi+1
, xi ≤ x ≤ xi+1

0 otherwise.

.

Define the discrete space:

Vh =
{
v ∈M1

0 (∆) , v (0) = v (1) = 0
}
⊂ H

1
0 (Ω)

which is equivalent to
Vh = span {l1, . . . , lM−1}

Let us now consider the following discrete problem: Find uh ∈ Vh such that:

(u′h, v
′
h)0 = (f, vh)0
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for all vh ∈ Vh. It is clear that:

uh =

M−1∑

j=1

ujlj

and

(u′h, l
′
i)0 = (f, li)0 , 1 ≤ i ≤M − 1

so that: 



M−1∑

j=1

uj l
′
j , l

′
i





0

= (f, li)0 ⇒
M−1∑

j=1

uj
(
l′j , l

′
i

)

0
= (f, li)0 , 1 ≤ i ≤M − 1.

The last set of equations clearly constitute a linear algebraic system:

Auh = F

where Aij =
(
l′i, l

′
j

)

0
, Fi = (f, li)0 , and uh,i = ui.

Now, as

0 ≤ (v′h, v
′
h)0 =





M−1∑

i=1

vil
′
i,

M−1∑

j=1

vj l
′
j





0

=

M−1∑

i=1

M−1∑

j=1

vi
(
l′i, l

′
j

)

0
vj = vTAv

the Lax-Milgram lemma guarantees that this system has a unique solution if f(x) ∈ L2(Ω).

3.4 Gaussian Quadrature

We may approximate the integral of function φ (x) over the range x ∈ (−1, 1) using Gaussian integration:

∫ 1

−1

φ (x) dx ≈
n∑

i=1

A
(n)
i φ

(

x
(n)
i

)

where A
(n)
i are the weights and x

(n)
i are the nodes of the quadrature. n is a positive integer that controls

the accuracy. The weights and nodes are determined from the condition that the quadrature is exact for all
polynomials of the highest possible degree. We have 2n undetermined coefficients (n weights and n nodes) and
so we can make the quadrature exact for polynomials of 2n− 1 degree (that have 2n coefficients).

The following table contains the weights and Gauss points for the first fourGauss quadratures:

n A
(n)
i x

(n)
i 2n− 1

1 2 0 1

2 1, 1 − 1√
3
, 1√

3
3

3 5
9 ,

8
9 ,

5
9 −

√
3
5 , 0,

√
3
5 5

4 0.347854, 0.652145, 0.347854, 0.652145 −0.861136, −0.339981, 0.339981, 0.861136 7

.

Remark We may approximate the integral over arbitrary bounds a and b using Gaussian Quadrature by
applying the substitution:

x
a b

y
−1 1

y (x)
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y (x) =
2

b− ax+
a+ b

a− b
So that y (a) = −1, y (b) = 1, and dx = b−a

2 dy. Therefore:

∫ b

a

φ (x) dx =
b− a
2

∫ 1

−1

φ

(
(b− a) y + a+ b

2

)

dy

3.5 Error Estimates

Theorem 3.5.1 If uh is the finite element approximation to the exact solution u of the boundary value problem

−u′′ = f, u (0) = u (1) = 0

then there exists k > 0 such that:

||u− uh||1 ≤ k ||u− vh||1
for all vh ∈ Vh.

Proof u is the exact solution, so that

a (u,wh) = (f, wh)

for all wh ∈ Vh, and
a (uh, wh) = (f, wh)

So that

a



u− uh
︸ ︷︷ ︸

ǫh

, wh



 = 0 ⇒ a (ǫh, wh) = 0

Then,

1

2
||ǫh||21 ≤ a (ǫh, ǫh) + a (ǫh, wh) ≤ a (ǫh, ǫh + wh) = a (ǫh, u− uh + wh) = a (ǫh, u− vh) ≤ ||ǫh||1 ||u− vh||1

So that

||ǫh||1 ≤ 2 ||u− vh||1

Corollary 3.5.2 If u and uh are as in the theorem, then we have

||u− uh||1 ≤ ch

where c > 0 is independent of h.

Proof For the time being we will assume that u ∈ C2 (Ω) i.e. u is a solution to the classical problem for

f ∈ C0(Ω). Let û be the piecewise linear interpolant of u in Vh i.e. û =
∑M−1

i=1 uili, where ui are the values
of u in the nodes of the grid xi. Using Taylor expansion it is possible to prove the following estimate for the
interpolation error:

||u′ − û′||L∞ ≤ ||u′′||L∞ h

Recall that:

||u− uh||21 ≤ 4 ||u− v||21
for all v ∈ Vh and as û ∈ Vh we have:

||u− uh||21 ≤ 4 ||u− û||21 = 4
(

||u− û||20 + ||u′ − û′||
2
0

)

≤ 8 ||u′ − û′||20
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where, in the last step, we applied the Poincaré inequality. Continuing, we have:

||u− uh||21 ≤ 8

∫ 1

0

(u′ − û′)2 dx ≤ 8 ||u′ − û′||2L∞ ≤ 8 ||u′′||2L∞ h2

where we have used the interpolation estimate ||u′ − û′||2L∞ ≤ ||u′′||2L∞ h2. This yields

||u− uh||1 ≤
√
8 ||u′′||L∞ h = O (h) .

Applying Poincaré’s inequality, we also have that:

||u− uh||21 = ||u− uh||20 + ||u′ − u′h||
2
0 ≥ 2 ||u− uh||20

so that we obtain the estimate in the L2 norm:

||u− uh||0 ≤ ch ||u′′||L∞ .

This is a suboptimal estimate because from interpolation theory we know that u can be approximated with a
piecewise linear function with a second order accuracy in the L2 norm.

3.6 Optimal Error Estimates

Lemma 3.6.1 If û is the finite element interpolant of u ∈ H2 (Ω), i.e. û =
∑M−1

j=1 u(xj)lj, then:

1. ||u− û||0 ≤
(
h
π

)2 ||u′′||0
2. ||u′ − û′||0 ≤ h

π ||u′′||0
Proof The domain is subdivided into elements at points:

x0 = 0, x1, x2, . . . xi−1, xi, . . . xM−1, xM = 1

Consider the difference
u− û in [0, h] = [x0, x1]

and define η (x) = u− û ∈ H1 ([0, h]). Clearly,

η (0) = η (h) = 0.

Since η ∈ C0[0, h] it can be expanded in a uniformly convergent Fourier sine series:

η (x) =
∞∑

n=1

ηn sin
(nπx

h

)

Then, using the Parseval identity,
∫ h

0

η2 dx = ||η||2L2[0,h] =
h

2

∞∑

n=1

η2n.

Differentiating term wise we get:

η′ (x) =
∞∑

n=1

ηn
nπ

h
cos
(nπx

h

)

⇒ ||η′||2L2[0,h] =
h

2

∞∑

n=1

(

ηn
nπ

h

)2

and differentiating again we have:

η′′ (x) = −
∞∑

n=1

ηn
n2π2

h2
sin
(nπx

h

)

⇒ ||η′′||2L2[0,h] =
h

2

∞∑

n=1

η2n

(nπ

h

)4
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So that

||η′||2L2[0,h] =
h

2

∞∑

n=1

η2n

(nπ

h

)2 (nπ

h

)2 h2

n2π2
≤ h2

π2

h

2

∞∑

n=1

η2n

(nπ

h

)4

=
h2

π2
||η′′||2L2[0,h] =

h2

π2
||u′′||2L2[0,h]

and

||η||2L2[0,h] =
h

2

∞∑

n=1

η2n ≤
h2

π2

h

2

∞∑

n=1

η2n

(nπ

h

)2

=
h2

π2
||η′||2L2[0,h] ≤

(
h

π

)4

||u′′||2L2[0,h]

Applying the same for any subsequent subinterval and summing the resulting inequalities we complete the
proof.

Corollary 3.6.2 1. ||u− û||1 ≤ h
√
2

π ||u′′||0

2. ||u− uh||1 ≤
√
8h
π ||u′′||0

Proof 1.

||u− û||21 = ||u− û||20 + ||u′ − û′||
2
0 ≤ 2 ||u′ − û′||20 ≤ 2

(
h

π

)2

||u′′||20

2. for all vh ∈ Vh in the finite element space we have:

||u− uh||1 ≤ 2 ||u− vh||1

Take vh = û, then:

||u− uh||1 ≤ 2 ||u− û||1 ≤
h
√
8

π
||u′′||0

So that
||u− uh||1 ≤ Ch ||u′′||0

where C > 0 is independent of h.

Theorem 3.6.3 (L2 lifting theorem) If uh ∈ Vh is the Galerkin finite element approximation of:

u :

{
−u′′ = f (x) , x ∈ (0, 1)
u (0) = u (1) = 0

then there exists Γ > 0 such that
||u− uh||0 ≤ Γh2 ||u′′||0

Proof Define:
ǫh = u− uh

then,
(u′, v′h)0 = (f, vh)0

for all vh ∈ Vh or,
a (u, vh) = (u′, v′h)0

so that
a (u, vh) = (f, vh)0
a (uh, vh) = (f, vh)0

}

a (ǫh, vh) = 0 (3.2)

Now, consider the auxiliary problem
{
−φ′′ = ǫh, 0 < x < 1
φ (0) = φ (1) = 0
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Then,
||ǫh||20 = (ǫh, ǫh)0 = − (ǫh, φ

′′)0 = (ǫ′h, φ
′)0 = a (ǫh, φ)

Now, taking vh = φ̂ in (3.2), we get:

a
(

ǫh, φ̂
)

= 0,

and subtracting it from the above equation we obtain:

||ǫh||20 = a (ǫh, φ) = a (ǫh, φ)− a
(

ǫh, φ̂
)

= a
(

ǫh, φ− φ̂
)

=
(

ǫ′h, φ
′ − φ̂′

)

0
=

∫ 1

0

ǫ′
(

φ′ − φ̂′
)

dx

≤ ||ǫ′h||0
∣
∣
∣

∣
∣
∣φ′ − φ̂′

∣
∣
∣

∣
∣
∣
0
≤ ||ǫ′h||0

∣
∣
∣

∣
∣
∣φ− φ̂

∣
∣
∣

∣
∣
∣
1
≤ ||ǫ′h||0

√
2h

π
||φ′′||0 = ||ǫ′h||0

h
√
2

π
||ǫh||0

≤ ||ǫh||1
h
√
2

π
||ǫh||0 ≤ Γh2 ||u′′||0 ||ǫh||0

So that
||ǫh||0 ≤ Γh2 ||u′′||0

for some Γ > 0, independent of h.

3.6.1 Other Boundary Conditions

Let us consider an elliptic problem with more general boundary conditions:

{
−u′′ (x) = f, 0 < x < 1
u (0) = β1, u′ (1) = β2.

Since we need to satisfy non-homogeneous boundary conditions of Dirichlet and Neumann type, this time we
discretize the solution with the expansion:

uh = β1l0 (x) +

M∑

j=1

uj lj (x) (3.3)

so that
uh (0) = β1l0 (0) = β1.

Now, consider the original equation:
−u′′ = f

multiply it by v ∈ V = H1 (Ω), and integrate over Ω to obtain:

(−u′′, v)0 = (f, v)0 ⇒ (u′, v′)0 + u′ (0) v (0)− u′ (1) v (1) = (f, v)0 .

If we approximate u with (3.3) and take the test functions to be vh ∈ Vh = span {l1, . . . , lM}, we have:

(
u′h, l

′
j

)

0
− u′h (1) lj (1) = (f, lj)0 , j = 1, . . . ,M,

or (

β1l
′
0 +

M∑

n=1

unl
′
n, l

′
j

)

0

− β2lj (1) = (f, lj)0 .

This yields:
(

β1l
′
0 +

M∑

n=1

unl
′
n, l

′
1

)

0

= (f, l1)0 ,
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(
M∑

n=1

unl
′
n, l

′
j

)

0

= (f, lj)

for j = 2, . . . ,M − 1 and finally,
(

M∑

n=1

unl
′
n, l

′
M

)

0

− β2 = (f, lM )0 .

3.7 Transient Problems

Consider the Initial Boundary Value Problem given by:







∂u
∂t − ∂

∂x

[
a (x) ∂u

∂x

]
= f (x) for (t, x) ∈ (0, T ]× (0, 1)

u (t, 0) = u (t, 1) = 0 for t > 0
u (0, x) = g (x) for x ∈ (0, 1)

For a (x) ∈ C1
(
Ω̄
)
such that 0 < α ≤ a (x) ≤ A <∞ and ||f (x) ||0 ≤ L <∞.

The Galerkin formulation of the problem is given by: Find u ∈ H1
0 (Ω) such that

(
∂u

∂t
, v

)

0

+ b (u, v) = (f (x) , v)0

for all v ∈ H
1
0 (Ω), where b (u, v) =

(
a (x) ∂u

∂x ,
∂v
∂x

)

0
. Note that b(u, v) is a coercive and bounded bilinear form on

H1
0 (Ω) (why?). In order to discretize it we define

Vh = span {l1, l2, . . . lM−1}

and search for uh (t, x) =
∑M−1

j=1 uj (t) lj (x) ∈ Vh such that:

(
∂uh
∂t

, vh

)

0

+ b (uh, vh) = (f, vh)0

for all vh ∈ Vh. Then, taking into account that lj form a basis of Vh, it is sufficient to take vh = lj , j =
1, . . . ,M − 1 and we obtain the linear system

∂

∂t
(Muh) + Suh = F

where

Aij =

∫

Ω

(li, lj) dx

︸ ︷︷ ︸

mass matrix M

+

∫

Ω

a (x)
∂li
∂x

∂lj
∂x

dx

︸ ︷︷ ︸

stiffness S

for each i, j = 1, . . . ,M − 1, and

Fj =

∫

Ω

flj dx, j = 1, . . . ,M − 1; uh = (u1(t), . . . , uM−1(t))
T .

Then, as M is time-independent,

M
∂

∂t
(uh) + Suh = F

We may discretize this ODE system using for example a backward difference scheme (a good choice for such
problems, as we know from the previous section) to obtain the final linear system that yields the solution at
time level n:

M
un
h − un−1

h

k
+ Sun

h = Fn.
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Define

A =

(
M

k
+ S

)

,

where :

Mij =

∫

Ω

lilj

and

Sij =

∫

Ω

a (x)
∂li
∂x

∂lj
∂x

dx ≥ α
∫

Ω

∂li
∂x

∂lj
∂x

dx.

M,A are spd (why?). If u is the exact solution, then

∂u

∂t
− ∂

∂x

(

a (x)
∂u

∂x

)

= f

Now we multiply by vh ∈ Vh and integrate:

(
∂u

∂t
, vh

)

0

+ b (u, vh) = (f, vh)0

Adding and subtracting
(

un−un−1

k , vh

)

0
, we get:

(
un − un−1

k
, vh

)

0

+ b (un, vh)0 = (fn, vh)0 −
(
∂u

∂t

n

, vh

)

0

+

(
un − un−1

k
, vh

)

0

which we may rewrite as:

(
un − un−1

k
, vh

)

0

+ b (un, vh) = (fn, vh)0 + (τk, vh)0 ,

where τk = −∂u
∂t

n

+
un − un−1

k
is the truncation error of the backward difference approximation of the first

derivative in time.
On the other hand the finite element approximation to the solution satisfies:

(
unh − un−1

h

k
, vh

)

0

+ b (unh, vh) = (fn, vh)0 .

Letting

un − unh = ǫnh

and subtracting the two preceding equations equations, we get:

(
ǫnh − ǫn−1

h

k
, vh

)

+ b (ǫnh, vh) = (τk, vh)0

Now, define wh such that

b (wh, vh) = b (u, vh) (3.4)

for all vh ∈ Vh. wh is called the elliptic projection of u onto Vh. Then we split the error ǫnh into ǫnh = ηn + ξn

where ηn = un − wn
h is the error of the elliptic projection of u. Therefore, as we have already established for

the solution of (3.4)

||un − wn
h ||0 ≤ Γh2

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂x2

∣
∣
∣
∣

∣
∣
∣
∣
0
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But then, as ∂wh

∂t is the elliptic projection of ∂u
∂t onto Vh,

∣
∣
∣
∣

∣
∣
∣
∣

(
∂u

∂t

)n

−
(
∂wh

∂t

)n∣
∣
∣
∣

∣
∣
∣
∣
0

≤ Γh2
∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂t∂2x

∣
∣
∣
∣

∣
∣
∣
∣
0

Now,
(
ξn − ξn−1, vh

)

0
+ kb (ξn, vh) = k (τnk , vh)0 −

(
ηn − ηn−1, vh

)

0
− kb (ηn, vh)

But, as ξn ∈ Vh,
(
ξn − ξn−1, ξn

)

0
+ kb (ξn, ξn) = k (τnk , ξ

n)0 −
(
ηn − ηn−1, ξn

)

0
− kb (ηn, ξn)

and, since since b (ξn, ξn) ≥ 0 and b (ηn, ξn) = 0, this leads to the inequality:
(
ξn − ξn−1, ξn

)

0
≤ k (τnk , ξn)0 −

(
ηn − ηn−1, ξn

)

0

which we may rewrite as:

||ξn||20 ≤
(
ξn−1, ξn

)

0
+ k (τnk , ξ

n)0 −
(
ηn − ηn−1, ξn

)

0
. (3.5)

Lemma 3.7.1
(
ξn−1, ξn

)

0
≤ 1

2

∣
∣
∣
∣ξn−1

∣
∣
∣
∣
2

0
+

1

2
||ξn||20

Proof
0 ≤

∣
∣
∣
∣ξn − ξn−1

∣
∣
∣
∣
2

0
= ||ξn||20 − 2

(
ξn, ξn−1

)

0
+
∣
∣
∣
∣ξn−1

∣
∣
∣
∣
2

0

Upon rearranging, this yields the desired result.

Theorem 3.7.2 (Young Inequality)

(u, v)0 ≤ α2 ||u||20 +
1

4α2
||v||20

Lemma 3.7.3

k (τnk , ξ
n) ≤ k2

2

∫ nk

(n−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+
k

2
||ξn||20

Proof

k (τnk , ξ
n) ≤ k

2
||τnk ||20 +

k

2
||ξn||20 .

Now using the integral form of the truncation error: τnk =
∂un

∂t
− un − un−1

k
=

1

k

∫ nk

(n−1)k

[t− (n− 1) k]
∂2u

∂t2
dt,

and the Cauchy-Schwartz inequality for the integral in time, we obtain:

||τnk ||20 =

∣
∣
∣
∣

∣
∣
∣
∣

∂un

∂t
− un − un−1

k

∣
∣
∣
∣

∣
∣
∣
∣

2

0

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

k

∫ nk

(n−1)k

[t− (n− 1) k]
∂2u

∂t2
dt

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

0

≤

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1

k

√
∫ nk

(n−1)k

[t− (n− 1) k]
2
dt

√
∫ nk

(n−1)k

(
∂2u

∂t2

)2

dt

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

0

≤

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

√
k3

k

√
∫ nk

(n−1)k

(
∂2u

∂t2

)2

dt

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

0

= k

∫

Ω

∫ nk

(n−1)k

(
∂2u

∂t2

)2

dt dx

= k

∫ nk

(n−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt
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So then,

k
(
τkk , ξ

n
)

0
≤ k

2
||τnk ||20 +

k

2
||ξn||20 ≤

k2

2

∫ nk

(n−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

dt+
k

2
||ξn||20

Lemma 3.7.4
∣
∣
(
ηn − ηn−1, ξn

)

0

∣
∣ ≤ Γ2h4

2

∫ nk

(n−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂t∂x2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+
k

2
||ξn||20

Proof Using the Cauchy-Schwartz inequality for the integral in time and subsequently, the Young’s inequality
we obtain

∣
∣
(
ηn − ηn−1, ξn

)

0

∣
∣ =

∣
∣
∣
∣
∣

(
∫ nk

(n−1)k

∂η

∂t
dt, ξn

)

0

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
∣





√
∫ nk

(n−1)k

(
∂η

∂t

)2

dt,
√
kξn





0

∣
∣
∣
∣
∣
∣

≤ 1

2

∫

Ω

∫ nk

(n−1)k

(
∂η

∂t

)2

dt+
k

2
||ξn||20 =

1

2

∫ nk

(n−1)k

∫

Ω

(
∂η

∂t

)2

dt+
k

2
||ξn||20

=
1

2

∫ nk

(n−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂η

∂t

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+
k

2
||ξn||20

Then, applying the result

∣
∣
∣
∣

∣
∣
∣
∣

∂wh

∂t
− ∂u

∂t

∣
∣
∣
∣

∣
∣
∣
∣

2

0

≤ Γ2h4
∣
∣
∣
∣

∣
∣
∣
∣

∂2

∂x2

(
∂u

∂t

)∣
∣
∣
∣

∣
∣
∣
∣

2

0

= Γ2h4
∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂x2∂t

∣
∣
∣
∣

∣
∣
∣
∣

2

0

,

we obtain the final claim of the lemma.

Lemma 3.7.5 Let k ≤ 1
4 , then:

||ξn||20 ≤ 2
∣
∣
∣
∣ξ0
∣
∣
∣
∣
2

0
+ 2k2

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T,L2(Ω))

+ 2h4Γ2

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂x2∂t

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T,L2(Ω))

+ 4k
n−1∑

m=0

||ξm||20

Where we define

||f (t, x)||L2(0,T,L2(Ω)) =

∫ T

0

∫

Ω

f2, f ∈ L2 ((0, T )× Ω) .

Proof Subbing the results of the last three lemmas into (3.5) we easily obtain:

1

2
||ξm||20 ≤

1

2

∣
∣
∣
∣ξm−1

∣
∣
∣
∣
2

0
+
k2

2

∫ mk

(m−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+
Γ2h4

2

∫ mk

(m−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂x2∂t

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+ k ||ξm||20 ,

or:

||ξm||20 ≤
∣
∣
∣
∣ξm−1

∣
∣
∣
∣
2

0
+ k2

∫ mk

(m−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+ Γ2h4
∫ mk

(m−1)k

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂x2∂t

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+ 2k ||ξm||20 .

Now we sum for m = 1, . . . , n to get:

||ξn||20 ≤
∣
∣
∣
∣ξ0
∣
∣
∣
∣
2

0
+ k2

∫ nk

0

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+ Γ2h4
∫ nk

0

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂t∂x2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+ 2k

n−1∑

m=1

||ξm||20 + 2k ||ξn||20

(1− 2k) ||ξn||20 ≤
∣
∣
∣
∣ξ0
∣
∣
∣
∣
2

0
+ k2

∫ nk

0

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

+ Γ2h4
∫ nk

0

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂x2∂t

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+ 2k

n−1∑

m=1

||ξm||20 .
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Since k ≤ 1/4 then 1− 2k ≥ 1/2 we obtain:

||ξn||20 ≤ 2
∣
∣
∣
∣ξ0
∣
∣
∣
∣
2

0
+ 2k2

∫ nk

0

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

0

+ 2Γ2h4
∫ nk

0

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂x2∂t

∣
∣
∣
∣

∣
∣
∣
∣

2

0

dt+ 4k

n−1∑

m=0

||ξm||20 .

and this competes the proof.

Lemma 3.7.6 (Gronwall Lemma) If the sequence {ξn}Nn=1 satisfies

|ξn| ≤ ν + µ

n−1∑

m=0

|ξm| , ν, µ ≥ 0

then,
|ξn| ≤ eµN

(
ν + µ

∣
∣ξ0
∣
∣
)
, ∀n ∈ {1, . . . , N}

Proof Consider the sequence zn defined by

zn = ν + µ

n∑

m=0

|ξm| ⇒ zn − zn−1 = µ |ξn|

so that,

zn ≤ (1 + µ) zn−1

zn−1 ≤ (1 + µ) zn−2 ≤ . . . ≤ (1 + µ)
(n−1)µ

µ z0 ≤ eµ(n−1)z0 ≤ eµNz0

because:
(1 + µ)

1
µ ≤ e.

Then,
|ξn| ≤ zn−1 ≤ eµNz0 = eµN

(
ν + µ

∣
∣ξ0
∣
∣
)

for n = 1, . . . , N .
Now let µ = 4k and

ν = 2
∣
∣
∣
∣ξ0
∣
∣
∣
∣
2

0
+ 2k2

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T ;L2(Ω))

+ 2Γ2h4
∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂t∂x2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T ;L2(Ω))

.

Denoting the final time instant by T = nk and using the results of lemma 3.7.5 we find that

||ξn||20 ≤ e4T
(

3
∣
∣
∣
∣ξ0
∣
∣
∣
∣
2

0
+ 2k2

∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T ;L2(Ω))

+ 2h4Γ2

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂t∂x2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T ;L2(Ω))

)

Let’s choose u0h = w0
h i..e.

b
(
u0h, vh

)
= b (g, vh)

for all vh ∈ Vh. Then ξ0 = 0. Therefore,

||ξn||20 ≤ e4T
(

2k2
∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T ;L2(Ω))

+ 2Γ2h4
∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂t∂x2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T ;L2(Ω))

)

= O
(
k2 + h4

)

Theorem 3.7.7 Consider the scheme:

M
un − un−1

k
+Aun = f

If k < 1
4 and u0h = w0

h, then

||ǫnh||0 ≤ O
(
k + h2

)



60 CHAPTER 3. INTRODUCTION TO FINITE ELEMENTS

Proof
||ξn||20 ≤ a2k2 + b2h4 ≤

(
ak + bh2

)2

where we define:

a2 = 2e4T
∣
∣
∣
∣

∣
∣
∣
∣

∂2u

∂t2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T ;L2(Ω))

b2 = 2e4TΓ2

∣
∣
∣
∣

∣
∣
∣
∣

∂3u

∂t∂x2

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(0,T ;L2(Ω))

Then,

||ǫnh ||0 ≤ ||ηn||0 + ||ξn||0 ≤
√
2e2T

∣

∣

∣

∣

∣

∣

∣

∣

∂2u

∂t2

∣

∣

∣

∣

∣

∣

∣

∣

L2(0,T ;L2(Ω))
k + h

2Γ

[

max
0≤n≤N

∣

∣

∣

∣

∣

∣

∣

∣

∂2un

∂x2

∣

∣

∣

∣

∣

∣

∣

∣

0

+
√
2e2T

∣

∣

∣

∣

∣

∣

∣

∣

∂3u

∂t∂x2

∣

∣

∣

∣

∣

∣

∣

∣

L2(0,T ;L2(Ω))

]

3.8 Finite Elements in Two Dimensions

Consider the model problem:
{− (pux)x − (puy)y + qu = g in Ω

u = γ on ∂Ω

1 2

3
4 7 9

5 6 8 10

e1

e2

e3

e4

e5

e6

e7

e8

This is the global numbering, the local numbering (for i = 1, 2, 3) is:

3→ i
k
3

i
k
1 ← 1 2→ i

k
2

where k is the element number and ikj is the global number of the j-th local point in the k-th element.
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3.8.1 Finite Element Basis Functions

With each global node i we associate one basis funcion φi (x, y). If Nj is the j-th point in the grid, we require:

φi (Nj) = δij

where φj |ek ∈ P
1, the space of all first degree polynomials. Then,

Vh = span {φ1, . . . , φM}
where M is the total number of points in the grid.

uh (x, y) =

M∑

i=1

uiφi (x, y)

r©

ek

1

φ
(k)
r© (x, y)

Ni

ek

1

φi (x, y)

where ikr = Ni and r can be 1, 2, or 3 (local numbers).

ξ

η

1

11©

2©

3©

ekTk

y

x

Now, we define:

Tk ≡
{
x = x (ξ, η) = a1ξ + a2η + a3
y = y (ξ, η) = b1ξ + b2η + b3

Then,
φk1© (ξ, η) = 1− ξ − η, φk2© (ξ, η) = ξ, φk3© (ξ, η) = η

So that:
∫

Ω

φi (x, y)φj (x, y) dΩ =

Ke∑

k=1

∫

ek

φi (ξ, η)φj (ξ, η) dek

Where Ke is the total number of finite elements, dek = |JTk
| dξdη, and JTk

is the Jacobian of Tk.
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3.8.2 Discrete Galerkin Formulation

Find uh ∈ Vh such that: ∫

Ω

puh,xvh,x +

∫

Ω

puh,yvh,y +

∫

Ω

quhvh =

∫

Ω

gvh

and, for simplicity, we choose γ ≡ 0, p = constant and q = constant. Then, substitutiting

uh =
M∑

i=1

uiφi

and vh = φj for j = 1, . . . ,M yields the linear system:

(pS+ qM)uh = G

where:

Sij = p

∫

Ω

∇φi · ∇φj dΩ (the stiffness matrix)

Mij = q

∫

Ω

φiφj dΩ (the mass matrix)


