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Abstract

The complex roots of the chromatic polynomial PG(x) of a graph G have
been well studied, but the p-adic roots have received no attention as yet.
We consider these roots, specifically the roots in the ring Zp of p-adic
integers. We first describe how the existence of p-adic roots is related to
the p-divisibility of the number of colourings of a graph—colourings by
at most k colours and also ones by exactly k colours. Then we turn to
the question of the circumstances under which PG(x) splits completely
over Zp, giving some generalities before considering in detail an infinite
family of graphs whose chromatic polynomials have been discovered, by
Morgan [10], to each have a cubic abelian splitting field.
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1 Introduction
The chromatic polynomial PG(x) of a graph, being a monic polynomial with
integer coefficients, has naturally attracted attention for its potential algebraic
properties. The roots of PG(x) in C, called chromatic roots, are algebraic integers
in the sense of algebraic number theory, and of course generate finite extensions
of Q, i.e., number fields.

Chromatic roots are known to be dense in the complex plane by a theorem
of Sokal [14]. Cameron’s conjecture that every algebraic integer differs from
a chromatic root by a natural number has been proven for algebraic integers
of degree 2 and of degree 3—see [3] and [1] respectively. The Galois groups
of chromatic polynomials have been worked out for several infinite families of
graphs—in [4] and [10], for example. Intriguingly, the coefficients of chromatic
polynomials have homological interpretations [6, 7].

Missing so far from the study of chromatic polynomials is consideration of
their p-adic roots. The fields of p-adic numbers—by definition, the completions
of Q at the non-archimedean absolute values—are central to algebraic number
theory and appear in many other areas of mathematics besides. The p-adic
numbers play a role in number theory akin to the role of power series in analysis
and are therefore indispensible.

To the best of our knowledge, the present paper is the first to consider the
p-adic roots of chromatic polynomials. We begin by briefly introducing p-adic
numbers, and in particular the ring Zp of p-adic integers. We then describe how
the p-adic roots of a chromatic polynomial are related to the p-divisibility of
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PG(k), i.e., the number of colourings of G by (at most) k colours, and also to the
p-divisibility of the number of colourings by exactly k colours (Proposition 2).
These relationships are straightforward but worth mentioning for completeness.

In the rest of the paper, we consider the question of when PG(x) has as
many p-adic roots as possible for a polynomial of its degree. In other words, we
consider when PG(x) splits completely over Zp. The question of when a polyno-
mial with integer coefficients splits completely over Zp has a well-known general
interpretation (Theorem 8), but inspired by a certain family of graphs studied
by Morgan [10] whose chromatic polynomials have abelian splitting fields, we
focus on the abelian case. Here, results from class field theory may be brought
to bear, and after describing some general consequences for chromatic polyno-
mials in Section 5.1, we examine Morgan’s family in detail in Section 5.2. In
Theorem 19, we establish that the graphs in Morgan’s family are chromatically
contained (see Definition 15) in explicitly determined cycle graphs. From this
fact we deduce certain results on the splitting over Zp of the chromatic polyno-
mials in Morgan’s family.

Very few infinite families of graphs have been found in which the chromatic
polynomials all have abelian Galois group. Examples are cycle graphs, certain
rings of cliques where quadratic integers come into play [3], Morgan’s family
just referred to, and one more family of Morgan, but aside from cycle graphs,
the proofs that they have abelian Galois groups are all quite recent. This paper
treats splitting over Zp for all these except for the quadratic case, but it is clear
how the methods of this paper can be applied in that case.

There is hope that new families with abelian Galois groups will be found
soon. Delbourgo and Morgan [5] have very recently described an algorithm to
produce a (d,N)-biclique for which the splitting field of the chromatic polyno-
mial is the splitting field of a given monic polynomial of degree d ≤ 4, if such a
biclique exists. (Bohn [1] had an earlier algorithm in the case d = 3.)

2 Notation and key concepts

2.1 Vertex colourings
Throughout,G will be a simple graph, i.e., it will have no loops or multiple edges.
We denote its chromatic polynomial by PG(x). Then for a positive integer k,
PG(k) is the number of (proper) vertex colourings of G by a set of k colours.

We will also consider the notion of colourings with colour indifference, as
Read [12] puts it. Under this notion, two colourings are considered the same if
one may be obtained from the other simply via a permutation of the colours.
Thus, a colouring with colour indifference is a partition of the vertex set such
that adjacent vertices are in different sets. Further, if k is a positive integer, we
will denote by cG,k the number of colourings, with colour indifference, that use
exactly k colours. Thus, cG,k is the number of vertex partitions of size exactly
k where adjacent vertices are in different sets.
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As Read shows,

PG(x) =

n∑
k=1

cG,k(x)k,

where n is the number of vertices in G and (x)k = x(x−1)(x−2) · · · (x−k+1).

2.2 p-Adic integers
We provide a brief overview of the basics of p-adic integers and p-adic numbers.
For a fuller account, the reader may consult the book by Koblitz [8], for example.

Let p be a prime number. A p-adic integer may be thought of as an infinite
sum

a0 + a1p+ a2p
2 + · · · (1)

where an ∈ {0, 1, . . . , p−1} for each n. The set of all p-adic integers is denoted Zp
(not to be confused with the integers mod p). It forms a ring in which addition
and multiplication are defined rather like in the ring of power series in a variable
x, except that if adding or multiplying coefficients results in a number greater
than or equal to p, then we leave the remainder mod p where it is and carry
everything else over to the next term along.

The usual ring of integers Z is a subring of Zp. Any non-negative element of
Z may be considered to be a sum as in (1) where all the an after some aN are
zero. A negative integer −a ∈ Z is the infinite sum resulting from multiplying
the finite sum representing a ≥ 0 by the infinite sum

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + · · · .

We will also need the field Qp of p-adic numbers. It is the field of fractions
of Zp, and its elements are the infinite sums

α =

∞∑
n=N

anp
n (2)

where now N may be negative. Being the field of fractions of Zp, which contains
Z, Qp contains the field Q of rational numbers, the field of fractions of Z.

Other constructions of Zp and Qp exist. For example, one often constructs Qp
as the completion of Q with respect to the p-adic absolute value |a|p = p−vp(a),
where vp denotes the p-adic valuation on Q. The p-adic valuation (along with
the p-adic absolute value) extends to Qp by continuity, and then for α as in (2),
vp(α) = N if aN 6= 0.

Because Qp is a field containing Q, we may evaluate polynomials in Q[x]
at p-adic numbers and, in particular, p-adic integers. Of special significance are
the monic polynomials in Z[x], since any root in Qp of such a polynomial is
necessarily in Zp.

Polynomials that do not have rational roots may nonetheless have p-adic
roots for various p. For example, the polynomial x2 + 1 has two roots α, β ∈ Z5,
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beginning as follows:

α = 2 + 5 + 2 · 52 + 53 + 3 · 54 + · · ·
β = 3 + 3 · 5 + 2 · 52 + 3 · 53 + 54 + · · · .

In fact, x2 + 1 has roots in Zp if and only if p ≡ 1 mod 4. One may compute
p-adic roots of a polynomial in Z[x] using Hensel’s Lemma [9, Chap. II, Sect. 2,
Prop. 2].

Let us consider our first example arising from a graph. If C4 is the cycle graph
on 4 vertices, then PG(x) = x(x − 1)(x2 − 3x + 3). This polynomial certainly
has the p-adic roots 0 and 1, but for infinitely many primes p it has two more,
the roots of x2 − 3x + 3 in Zp. For example, in Z7 this factor has roots α, β
beginning

α = 4 + 4 · 7 + 6 · 72 + 3 · 73 + 2 · 74 + · · ·
β = 6 + 2 · 7 + 3 · 72 + 6 · 73 + 4 · 74 + · · · .

The factor x2 − 3x+ 3 has roots in Zp if and only if p ≡ 1 mod 3.
Of special importance is the group of units in the ring Zp, denoted Z×p . It

consists of all those p-adic integers a0 +a1p+ · · · where a0 ∈ {1, . . . , p− 1}, i.e.,
a0 6= 0. Equivalently, a p-adic integer α is in Z×p if and only if vp(α) = 0.

We also extend the notion of congruence to Zp. If r ≥ 0 and α, β ∈ Zp,
we say that α ≡ β mod pr if pr |α − β, i.e., vp(α − β) ≥ r. For example,
2 + 7 + 5 · 72 + 4 · 73 + · · · and 2 + 7 + 5 · 72 + 6 · 73 + · · · are congruent to each
other mod 73 but not mod 74.

3 Interpreting the p-adic roots of a chromatic
polynomial

Suppose α = a0+a1p+a2p
2+· · · is a root of PG(x) in Zp. A first approximation

shows that p divides the number of a0-colourings of G. Indeed, in Z/pZ,

PG(a0) = PG(a0)

= PG(α)

= PG(α)

= 0,

where β is the residue class mod p of an element β ∈ Zp. Given any r ≥ 1, we
may extend this idea to find a positive integer br such that pr divides the number
of br-colourings of G. If we define br =

∑r−1
k=0 akp

k, then br ≡ α mod pr, so the
same calculation as above, performed this time in Z/prZ, shows that pr |PG(br).

We remark in passing that we may use this simple argument to make the
following observation.

Proposition 1. If a ∈ Zr{0, 1, . . . , χ − 1}, where χ is the chromatic number
of G, then there are at most finitely many primes p such that PG(x) has a root
in Zp congruent to a mod p.
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Proof. If PG(x) has a root α ∈ Zp such that α ≡ a mod p, then p |PG(a) by
the same argument as above. But our assumption on a implies that PG(a) is
non-zero, so only finitely many primes divide it.

Recall from Section 2.1 that cG,k is the number of colourings of G, with
colour indifference, that use exactly k colours (k ≥ 1). Of course, cG,k = 0 if
k < χ or k > n, where χ is the chromatic number of G and n is the number of
vertices.

We have the following relationship between p-adic roots of PG(x) and the
numbers cG,k.

Proposition 2. Let G be a graph with chromatic number χ, and suppose p is
a prime and r is a positive integer. Assume that, for some I with χ ≤ I < p,
there are roots αχ, αχ+1, . . . , αI of PG(x) in Zp such that αi ≡ i mod pr for
χ ≤ i ≤ I. Then pr | cG,i for χ ≤ i ≤ I.

Before proving this proposition, we illustrate it with some examples.

Example. Let G be the graph obtained by identifying a vertex in C8 with a
vertex in K5. Then PG(x) = 1

x (x)5PC8
(x), and χ = 5. The chromatic polyno-

mial of G has roots in Z29 congruent to 5, 6, and 7 mod 29, so according to
Proposition 2, 29 should divide cG,5, cG,6, and cG,7. And indeed, we have the
following prime factorizations:

cG,5 = 22 · 29 · 113

cG,6 = 11 · 29 · 163

cG,7 = 2 · 3 · 29 · 353.

It is possible to have arbitrarily large integers I appear in the proposition,
as the following example shows.

Example. Let G = Cp, where p ≥ 5 is prime. Then p | cG,3, cG,4, . . . , cG,p−1.
To see how this follows from the proposition, observe that PCp

(x) = Qp(x− 1),
where Qp(y) = yp − y, so Fermat’s Little Theorem implies that every integer is
a root of PCp

(x) mod p. Therefore, for each i ∈ {0, . . . , p− 1}, there is a root αi
of PCp

(x) in Zp congruent to i mod p by Hensel’s Lemma. We may now apply
the proposition, observing that the chromatic number χ of G is equal to 3. The
prism graph (or circular ladder graph) on 2p vertices plays out the same way.

Strictly speaking, we did not need to invoke Hensel’s Lemma in the above
example. Proposition 2 remains true if we replace the assumption that each αi be
a root of PG(x) by the weaker assumption that pr |PG(αi). Therefore, because
we are taking r = 1 in this example, we could have chosen simply αi = i.

There is nonetheless an advantage in formulating the proposition in terms
of p-adic roots rather than simply divisibility by pr. All of the divisibilities
pr |PG(α) are of course true for a p-adic root α, so if we have p-adic roots αi in
hand, then all we have to do to apply the proposition is check the congruence
conditions αi ≡ i mod pr.
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Remark. Although more rare, examples exist where r ≥ 2 in Proposition 2, so
the greater generality of allowing r ≥ 1 rather than just r = 1 is not redundant.

Example. We give a slightly more interesting example, involving theta graphs.
For positive integers a1, a2, a3, let θa1,a2,a3 be the graph obtained by taking
three disjoint paths of lengths a1, a2, a3 respectively and then identifying the
three initial vertices with one another and also identifying the three terminal
vertices with one another. The chromatic polynomials of these theta graphs
(and their natural generalization that takes arbitrarily many paths) have been
calculated already; see [2]. If p ≥ 7 is prime, then the chromatic polynomial of
G = θp−2,p−1,p has roots in Zp congruent to all integers mod p. Indeed, PG(x) is
divisible by the polynomial (x− 1)p− (x− 1), as demonstrated in [4, Section 2],
for example. Therefore, since the chromatic number of G is 3, Proposition 2
shows that p divides cG,3, cG,4, . . . , cG,p−1.

We now turn to the proof of Proposition 2. For a polynomial f(x) ∈ Q[x] of
degree n, the factorial representation of f(x) is the representation of it as a sum

f(x) =

n∑
k=0

ck(x)k

with ck ∈ Q, where (x)k = x(x− 1)(x− 2) · · · (x− k + 1). The numbers ck are
uniquely determined by f(x). As we remarked in the introduction, the factorial
representation of PG(x) is

PG(x) =

n∑
k=1

cG,k(x)k,

where n is the number of vertices in G.
Our proof of Proposition 2 rests on the following lemma. The symbol 6 |means

does not divide.

Lemma 3. Let f(x) ∈ Z[x] be monic of degree n, and let f(x) =
∑n
k=0 ck(x)k

be its factorial representation. Choose a prime p and an integer r ≥ 1, and let
l be least such that pr 6 | cl. If l < p and α ∈ Zp is congruent to l mod pr, then
pr 6 | f(α).

Proof. Note that a least l such that pr 6 | cl exists because cn = 1, f(x) being
monic. Now, because α ≡ l mod pr, we have (α)k ∈ prZp for k > l. Further,
ck ∈ prZp for k < l by assumption, so

f(α)− cl(α)l =
∑
k 6=l

ck(α)k ∈ pZp.

It therefore remains to show that cl(α)l 6∈ prZp. By definition of l, cl 6∈ prZp. As
for (α)l, the l factors α, α−1, . . . , α− l+ 1 are congruent mod p to l, l−1, . . . , 1
respectively, none of which is congruent to 0 mod p because l < p. Therefore,
(α)l ∈ Z×p , so cl(α)l 6∈ prZp.
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Example. Let p = 5 and r = 2, and suppose f(x) is a monic degree-6 polyno-
mial in Z[x] whose factorial representation has coefficients ck with the following
5-adic valuations:

k 0 1 2 3 4 5 6
v5(ck) ∞ 3 4 1 1 1 0

(The symbol ∞ for v5(c0) indicates that c0 = 0.) The least l such that 52 does
not divide cl is l = 3. Therefore, because 3 < 5, i.e., l < p, any 5-adic integer
α ≡ 3 mod 52 satisfies 52 6 | f(α).

Our proof of Proposition 2 is now finished as follows. Suppose that we have
αχ, αχ+1, . . . , αI as in the statement of the proposition, so that αi is a root of
PG(x) in Zp congruent to i mod pr, and let αi = i for i ∈ {0, . . . , χ− 1}. Then
PG(αi) = 0 for i ∈ {0, . . . , I}. In particular, pr |PG(αi) for i ∈ {0, . . . , I}.

Let l be least such that pr 6 | cG,l. We claim that I < l. If not, then we would
have the following:

(i) l ≤ I < p.

(ii) αl ≡ l mod pr.

(iii) pr |PG(αl).

But this contradicts Lemma 3 with f(x) = PG(x) and α = αl. (In applying the
lemma, we use the fact that the numbers cG,k are the coefficients in the factorial
representation of PG(x).) Therefore, I < l, so pr | cG,i for all i ≤ I.

4 Background on class field theory
The results in Section 5 concerning the splitting of chromatic polynomials over
Zp rely on some algebraic number theory.

4.1 Principal results from class field theory
We first collect together the main results we will use from class field theory. All
we will need is class field theory over Q.

Theorem 4 (Kronecker–Weber). Every finite abelian extension of Q is con-
tained in a cyclotomic field, i.e., a field Q(ζ) where ζ is a root of unity.

We typically denote a primitive nth root of unity by ζn. The particular
choice rarely matters. If L/Q is an abelian extension, the smallest n such that
L ⊆ Q(ζn) is called the conductor of L/Q. A prime p ramifies in L/Q if and
only if it divides the conductor.

For each prime residue class a ∈ (Z/nZ)×, there is a unique automorphism
ϕa ∈ Gal(Q(ζn)/Q) satisfying ϕa(ζn) = ζan, and the map

(Z/nZ)× → Gal(Q(ζn)/Q)

a 7→ ϕa
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is an isomorphism. Therefore, via Galois theory, the subfields of Q(ζn) are in
bijection with the subgroups of (Z/nZ)×. If L ⊆ Q(ζn), let Hn

L be the corre-
sponding subgroup of (Z/nZ)×, i.e., the subgroup consisting of prime residue
classes a mod n such that ϕa is the identity on L.

A prime p is said to split completely in an extension L/Q of finite degree
d if the ideal pOL in the ring of integers OL of L factorizes as a product of
d distinct prime ideals, the maximum number possible in such a factorization.
The following is a special case of [11, Chap. VI, Theorem 7.3].

Theorem 5. Let L/Q be an abelian extension contained in Q(ζn). If p 6 |n is
a prime, then p splits completely in L/Q if and only if the class of p mod n is
in Hn

L. If n is divisible only by the ramified primes (for example, if n is the
conductor), then the primes that split completely in L/Q are precisely those
whose residue classes are in Hn

L.

Example. Let L = Q(α), where α is a root of f(x) = x3−3x+1. By considering
the discriminant 92 of the polynomial f(x), we find that L/Q is abelian with
conductor 9 and is therefore contained in Q(ζ9). Because (Z/9Z)× is cyclic
of order 6, it has a unique subgroup of index 3, namely, {1, 8} = {1,−1}.
Therefore, H9

L = {1,−1}, which is to say that L is the fixed field in Q(ζ9) of
the automorphism ζ9 7→ ζ−19 . By Theorem 5, a prime splits completely in L/Q
if and only if it is congruent to ±1 mod 9.

In the case where L is itself a cyclotomic field, Theorem 5 gives the following.

Proposition 6. If n ≥ 3, then a prime p splits completely in Q(ζn)/Q if and
only if p ≡ 1 mod n.

Definition 7. If f(x) ∈ Z[x] is a monic polynomial and p a prime, we will say
that f(x) splits completely over Zp if it is the product of linear factors x − α
where each α is in Zp.

A version of the following theorem holds for polynomials over the ring of
integers of any number field. Since we need only the case of polynomials with
coefficients in Z, we give only this simplified version. The advantage is that not
as much technical background is required to state the theorem in this form.

Theorem 8. Let f(x) ∈ Z[x] be a monic irreducible polynomial, and L the
extension of Q generated by a chosen root of f(x). For a given prime p, the
following are equivalent:

(i) f(x) splits completely over Zp.

(ii) p splits completely in L/Q.

(iii) p splits completely in the splitting field Kf(x) of f(x).

If, in addition, L ⊆ Q(ζn) where n is a positive integer divisible only by primes
that ramify in L/Q, then (i)–(iii) are equivalent to each of the following:

Paul Buckingham p-Adic Roots of Chromatic Polynomials | 8



(iv) f(x) has a root in Zp.

(v) p is coprime to n, and its residue class mod n lies in Hn
L.

Proof. The equivalence of (ii) and (iii) is simply a result of the fact that a prime
that splits completely in each of two extensions E/Q and F/Q splits completely
in the compositum [11, Chap. I, Sect. 8, Exercise 3]. For the equivalence of (i) and
(ii), note that f(x) splits completely over Zp if and only if it splits completely
over Qp, since it is monic with coefficients in Z. Now use the fact that the
irreducible factors in the factorization of f(x) over Qp correspond bijectively to
the primes of L above p [11, Chap. II, Prop. 8.2].

Now assume that L ⊆ Q(ζn) for n of the type specified in the second half of
the theorem. (For example, n could be the conductor.) The equivalence of (v)
and (ii) is Theorem 5. We will therefore be done once we show that, if f(x) has
a root in Zp, then it has all its roots in Zp. If α0 is a root of f(x) in Zp, then
Q(α0)/Q is abelian (because L/Q is), so Q(α0) contains all the roots of f(x).
Since Q(α0) ⊆ Qp and f(x) ∈ Z[x] is monic, we are done.

Corollary 9. If f(x) ∈ Z[x] is monic (but not necessarily irreducible), then
f(x) splits completely over Zp if and only if p splits completely in the splitting
field Kf(x) of f(x).

Proof. Apply the theorem to each of the irreducible factors in f(x).

We will also use the next result, which is [11, Chap. VII, Prop. 13.9].

Proposition 10. If E/K and F/K are extensions of number fields and E/K
is Galois, then E ⊆ F if and only if every prime that splits completely in F/K
also splits completely in E/K.

4.2 Additional class-field-theoretic results
We remind the reader that, if m is a positive integer, a Galois extension is said
to have exponent m if its Galois group does, i.e., if σm = 1 for all σ in the Galois
group and m is least with this property.

Lemma 11. Let L/Q be an abelian extension of exponent m and conductor
dividing n. If p 6 |n is a prime congruent to an mth power mod n, then p splits
completely in L/Q. In particular, if p has prime-to-m order in (Z/nZ)×, then
p splits completely.

Proof. Let H = Hn
L be the subgroup of G = (Z/nZ)× corresponding to the

subextension L/Q of Q(ζn)/Q. Then G/H ' Gal(L/Q), so G/H has exponent
m. Therefore, if p is an mth power in G, then p ∈ H, so p splits completely by
Theorem 5.

For the last assertion, just note that in any group G, if x ∈ G has order t
coprime to some natural number m, then writing 1 = am + bt, we have x =
xam+bt = (xa)m, so x is an mth power in G.
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The following lemma is useful for Proposition 13.

Lemma 12. Let G be a finite abelian group and H a subgroup of prime index `.
If J is a cyclic subgroup of G of order divisible by `, then H contains the index-`
subgroup of J . Further, H contains every subgroup of G of order coprime to `.

Proof. If g generates J , then because |G : H| = `, we have (gH)` = H, i.e.,
g` ∈ H. But g` generates the unique index-` subgroup of J .

The second statement is also clear: If g has order coprime to ` in G, then
the order of gH in G/H is coprime to ` but also divides `, so g ∈ H.

If n is a positive integer, then we will denote by Zn the cyclic group of order
n.

Proposition 13. Let ` be a prime and L/Q a Z`-extension. Then the conductor
of L/Q is equal to `cr for some squarefree integer r ≥ 1 divisible only by primes
congruent to 1 mod `, where c ∈ {0, 2, 3} if ` = 2 and c ∈ {0, 2} otherwise.

Proof. Choose n such that L ⊆ Q(ζn), and write

n = `s

(
k∏
i=1

paii

) m∏
j=1

q
bj
j

 ,

where pi ≡ 1 mod `, qj 6≡ 1 mod `, and ai, bj ≥ 1. Let G = Gal(Q(ζn)/Q), and
let H = Gal(Q(ζn)/L), which has index ` in G.

First take p = pi and a = ai for some i, and let J = Gal(Q(ζn)/Q(ζn′)),
where n′ = n/pa. Then J ' Gal(Q(ζpa)/Q) and is therefore cyclic of order
(p−1)pa−1. Further, by assumption, ` | p−1 so ` divides |J |. Hence, by Lemma 12,
H contains the subgroup of J of index `. But then H also contains the subgroup
of J of index p − 1, which is Gal(Q(ζn)/Q(ζn′p)) because [Q(ζn′p) : Q(ζn′)] =
[Q(ζp) : Q] = p− 1. Thus, L ⊆ Q(ζn′p).

Next, if q = qj , b = bj , and n′ = n/q
bj
j , then Gal(Q(ζn)/Q(ζn′)) ' Gal(Q(ζqb)/Q),

which has order coprime to `, so H contains Gal(Q(ζn)/Q(ζn′)) by Lemma 12
again, i.e., L ⊆ Q(ζn′).

We now turn to the subgroup J = Gal(Q(ζn)/Q(ζn′)) where n′ = n/`s.
First assume that ` 6= 2. If s ≤ 1, then J has order coprime to ` (specifically,
order 1 or ` − 1), so H contains J , i.e., L ⊆ Q(ζn′). Assume now that s ≥ 2.
Then J ' Gal(Q(ζ`s)/Q), which is cyclic of order (` − 1)`s−1 because ` 6= 2.
By Lemma 12, H contains the subgroup of J of index `. Therefore, H also
contains the subgroup of J of index (` − 1)`, which is Gal(Q(ζn)/Q(ζn′`2))
because [Q(ζn′`2) : Q(ζn′)] = [Q(ζ`2) : Q] = (`− 1)`. Thus, L ⊆ Q(ζn′`2).

To deal with the case ` = 2, we make some observations on the structure of
groups of the form X = Z/2Z×Z/2dZ with d ≥ 1. Such a group has more than
one subgroup of index 4 (if d ≥ 2), but there is a unique one X ′ that is contained
in three subgroups of index 2. Equivalently, by the third and fourth isomorphism
theorems, X ′ is the unique subgroup of X such that X/X ′ ∼= Z/2Z × Z/2Z.
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Importantly, X ′ is also characterized by the fact that it is generated by 2g
(writing X additively) where g is any element of X of order 2d.

Let J = Gal(Q(ζn)/Q(ζn′)) where n′ = n/2s. Everything in the case ` = 2
is the same as in the general case except when s ≥ 3. We therefore assume
s ≥ 3. Note that J ' Gal(Q(ζ2s)/Q), which takes the form of the group X in
the previous paragraph. Choose g ∈ J of order 2s−2. Because H has index 2
in G, it follows that (gH)2 = H in G/H, so H contains the element g2 and
therefore contains the subgroup 〈g2〉 of J . By the general remarks we have just
made, 〈g2〉 is the unique subgroup J ′ of J such that J/J ′ ∼= Z/2Z× Z/2Z. But
J/Gal(Q(ζn)/Q(ζ8n′)) ' Gal(Q(ζ8n′)/Q(ζn′)) ' Gal(Q(ζ8)/Q) ∼= Z/2Z×Z/2Z,
so 〈g2〉 = Gal(Q(ζn)/Q(ζ8n′)). Thus, because H contains 〈g2〉, we see that
L ⊆ Q(ζ8n′).

Putting all of the above together, and using the fact that the conductor
divides all N such that L ⊆ Q(ζN ), we are done.

Proposition 14. Assume that f(x) = x3 +a2x
2 +a1x+a0 ∈ Z[x] is irreducible

and has square discriminant. If a prime p satisfies p | a0, a1, a2 and p3 6 | a0, then
p ramifies in the extension generated by a root of f(x).

Proof. Let the roots of f(x) be α, β, γ, and let L be the extension generated
by any one of these. In fact, L/Q is an A3-extension because f(x) has square
discriminant, so L contains all the roots of f(x).

Assume that p is unramified in L/Q. If p is a prime of L above p, and v is the
p-adic valuation of L, then v(p) = 1 by assumption. Therefore, 1 ≤ v(a0) ≤ 2,
which is to say

1 ≤ v(α) + v(β) + v(γ) ≤ 2.

Hence, at least one of α, β, γ is a p-adic unit, γ say, and at least one is not, α
say.

Next,
1 ≤ v(a1) = v(αβ + βγ + γα) = v(βγ + α(β + γ)).

From here, we deduce that v(β) ≥ 1, for if not, we would have v(βγ+α(β+γ)) =
0 because v(α) ≥ 1.

Since we now have v(α), v(β) ≥ 1 and v(γ) = 0, it follows that v(α+β+γ) =
0. But this contradicts that v(a2) ≥ 1. Thus, p ramifies in L/Q.

5 Splitting of PG(x) over Zp
In Section 3, we related the existence of certain p-adic roots of PG(x) to the
divisibility by p of the numbers cG,k associated to G.

Of especial interest is the situation where PG(x) has as many roots in Zp
as possible for a polynomial of its degree, i.e., the situation where PG(x) splits
completely over Zp. This is the situation we now turn to, considering conditions
under which this complete splitting occurs.

Definition 15. Let G be a graph.
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(i) We denote by LG the splitting field of PG(x), i.e., the field generated by
the roots of PG(x) in C.

(ii) We will say that a graph H is chromatically contained in G if LH ⊆ LG.

There is nothing special about the choice of field C in this definition. We
could replace it by any algebraically closed field Ω containing Q, so long as Ω
remains fixed throughout the whole discussion.

The significance of the notion of chromatic containment for the p-adic roots
of a chromatic polynomial will become clear throughout the remainder of the
paper.

The new results, where we analyze a certain infinite family of graphs in-
troduced by Morgan [10], will be presented in Section 5.2. But first, in Sec-
tion 5.1, we provide some generalities that are reformulations, into the language
of graphs, of some of the class-field-theoretic results above. Although it is inter-
esting to see what these results say for graphs, and although we are not aware
of them having been considered in this graph-theoretic context elsewhere, we
take no credit for the statements in Section 5.1, as they are, at their core, long-
standing number-theoretic results.

5.1 Generalities
Proposition 16. If G and H are graphs, then the following are equivalent:

(i) H is chromatically contained in G.

(ii) For every prime p such that PG(x) splits completely over Zp, PH(x) also
splits completely over Zp.

Proof. This is Theorem 8 together with Proposition 10.

The following result is a restatement in graph-theoretic language of the
Kronecker–Weber Theorem, i.e., that every finite abelian extension of Q is con-
tained in a cyclotomic field.

Proposition 17. If G is a graph for which LG/Q is an abelian extension, then
G is chromatically contained in a cycle graph.

The graph-theoretic input in the proof of this is the well-known fact that
LCn

is the cyclotomic field Q(ζn−1) generated by a root of unity ζn−1 of order
n− 1. The rest is the Kronecker–Weber Theorem.

When LG/Q is abelian, the question of precisely which cycle graphs chro-
matically contain G is related to the p-adic roots of PG(x) via the following
fact.

Proposition 18. If LG/Q is an abelian extension and n ≥ 4 is an integer, then
the following are equivalent:

(i) G is chromatically contained in the cycle graph Cn.
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(ii) PG(x) splits completely over Zp for every prime p ≡ 1 mod n− 1.

Proof. Use Proposition 16 together with Proposition 6 and the fact that LCn
=

Q(ζn−1).

5.2 Results on Morgan’s Zn-families of graphs
We now turn to some new results concerning an infinite family of graphs G3,q,r+q

studied by Morgan [10], where q ≥ 0 and r = d2 + d + 8 for an integer d.
Equivalently, r = 1

4 (s2 + 27) + 1 for some odd integer s. This description of r
will be more convenient for our calculations later. The graph G3,q,r+q is defined
as follows: Take a copy of the complete graphKr+q−1, and add three new vertices
v1, v2, v3, joining each vi to each of the r+ q−1 vertices in Kr+q−1. Then add a
final vertex w and join it to v1, v2, v3, as well as to q of the vertices in Kr+q−1.
The family of such graphs G3,q,r+q (with r of the form d2 + d+ 8) will be called
Morgan’s Z3-family, because the Galois group of each chromatic polynomial is
the cyclic group Z3 of order 3; see [10, Theorem 4].

The key results in this section are Theorem 19 and its cousin, Proposition 24.

Theorem 19. Let G3,q,r+q be one of the graphs in Morgan’s Z3-family. Then
G3,q,r+q is chromatically contained in the cycle graph Cr.

We begin our proof by reminding the reader that, because LCr = Q(ζr−1),
the aim is to show that LG ⊆ Q(ζr−1) where G = G3,q,r+q. The numbers
r = d2 + d+ 8 that appear in Morgan’s Z3-family are exactly those of the form
t + 1, where t = 1

4 (s2 + 27) with s an odd integer. We will find the numbers
s and t easier to work with than r and d, so we will shift to this notation for
the rest of the proof. Also, for any q ≥ 0, G3,q,r+q is the join of G3,0,r and Kq,
so PG3,q,r+q (x) = (x)qPG3,0,r (x− q). As a result, LG3,q,r+q = LG3,0,r , so we may
assume that q = 0.

By [10, Theorem 1],

PG3,0,t+1
(x) = (x)t+1((x− t− 1)3 + t(x− t)2),

so LG3,0,t+1 is the field generated by the roots of the cubic polynomial

ft(x) = (x− t− 1)3 + t(x− t)2.

Consider the following changes of variable:

gt(x) = ft(x+ t) = (x− 1)3 + tx2,

ht(x) = −x3gt(1/x) = (x− 1)3 − tx,
jt(x) = ht(x+ 1) = x3 − tx− t. (3)

Each change of variable produces a polynomial with the same splitting field as
the previous one, so LG3,0,r

= Lt, the splitting field of jt(x). Now, we see from
the equality t = 1

4 (s2 + 27) in terms of the odd number s that t also is odd.
Therefore, the polynomial x3− tx− t is irreducible over Q, because its reduction
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mod 2 is the irreducible cubic x3 + x + 1. Further, the discriminant of jt(x) is
t2(4t− 27) = t2s2, which is square, so Lt/Q is cyclic of degree 3. (Morgan uses
the same argument on ft(x) itself, but we feel jt(x) is easier to work with than
ft(x).)

Our goal is to show that the conductor of Lt/Q divides t = r−1. Equivalently,
we need to show that the discriminant ∆t of Lt divides t2, since the discriminant
of a cubic abelian extension of Q is the square of its conductor.

However, the foregoing calculations only give us ∆t | t2s2. The key difficulty
is obtaining ∆t | t2, for which we have to work a bit harder.

Proposition 20. If t = 1
4 (s2 +27), where s is an odd integer, then the discrim-

inant of the splitting field Lt of jt(x) = x3 − tx− t divides t2. Equivalently, the
conductor of the abelian extension Lt/Q divides t.

Proof. Let α be a root of x3 − tx− t, and let

β =
1

s

(
α2 +

1

2
(s− 3)α+

1

2
(s− 9)

)
.

Explicit computation shows that β is a root of the polynomial

̂s(x) = x3 − 1

2
(3 + s)x2 − 1

2
(3− s)x+ 1, (4)

which has integral coefficients because s is odd. The polynomial ̂s(x) must in
fact be the minimal polynomial of β over Q, because β 6∈ Q. Alternatively, it
is irreducible because its reduction mod 2 is either x3 + x + 1 or x3 + x2 + 1,
depending on the residue class of s mod 4, and both these polynomials are
irreducible over F2. Hence, β is an algebraic integer in Lt such that the powers
1, β, β2 are linearly independent. Therefore, the discriminant of Lt divides the
discriminant of the order Z[β], which is the discriminant of the polynomial ̂s(x),
which is easily computed to be t2.

The proof of Theorem 19 is now complete, because Lt has conductor dividing
t by Proposition 20 and is therefore contained in Q(ζt), i.e., LG ⊆ Q(ζr−1).

Corollary 21. Let G = G3,q,r+q be one of the graphs in Morgan’s Z3-family.
If p 6 | r − 1 is a cube mod r − 1, then PG(x) splits completely over Zp.

Proof. By Corollary 9, PG3,q,r+q (x) splits completely over Zp if and only if p
splits completely in LG3,q,r+q

= LG3,0,r
= Lt, where t = r − 1 and Lt is the

splitting field of x3− tx− t. The conductor of Lt/Q divides t by Proposition 20,
so we may apply Lemma 11 with m = 3 to get the result.

Example. Consider the graph G3,0,20 (here, r = d2 + d + 8 with d = 3). Ac-
cording to the corollary, the chromatic polynomial PG3,0,20(x) splits completely
over Zp for any prime congruent mod 19 to

1, 7, 8, 11, 12, 18,
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because these are the cubes mod 19. In fact, this list is complete: If p is a prime
such that PG3,0,20(x) splits completely over Zp, then p is congruent mod 19 to
one of the numbers in this list.

The list that Corollary 21 generates may not always be complete for other
graphs G3,q,r+q. For example, the list of residue classes mod 63 arising from the
corollary in the case of the graph G3,0,64 is

1, 8, 55, 62,

telling us that PG3,0,64
(x) splits completely over Zp for any prime congruent to

one of these four numbers mod 63. But the full list of residue classes of the
primes p such that PG3,0,64(x) splits completely over Zp is

1, 5, 8, 11, 23, 25, 38, 40, 52, 55, 58, 62.

We now provide a result that tells us under what circumstances Corollary 21
gives us the full set of primes p such that PG3,q,r+q

(x) splits completely over Zp.

Proposition 22. Let G = G3,q,r+q be one of the graphs in Morgan’s Z3-family.
If r − 1 is a power of a prime, then the primes p appearing in Corollary 21 are
all of the primes such that PG(x) splits completely over Zp. Otherwise, there are
infinitely many more primes for which this happens.

Proof. Let t = r−1 again, and suppose t = `k is a prime power. Then the 3-rank
of (Z/tZ)× is at most one, but in fact it has to be exactly one because (Z/tZ)×

contains the subgroup H of index 3 corresponding to the cubic extension Lt,
the field generated by a root of x3 − tx− t. Hence, the subgroup J of (Z/tZ)×

consisting of the cubes has index 3 and is therefore equal to H.
Now, Proposition 20 tells us that the conductor f of the extension Lt/Q

divides t = `k, so f and t have the same support {`}. Therefore, any prime p
that splits completely in Lt is necessarily coprime to t, and then by Theorem 5
its class in (Z/tZ)× lies in H. But as we said above, H = J , the subgroup of
cubes.

Conversely, suppose t is not a power of a prime, so that t has at least two
distinct prime divisors. By Lemma 23 below, the prime divisors of t are congru-
ent to 0 or 1 mod 3. If two of them, `1 and `2 say, are congruent to 1 mod 3,
then (Z/tZ)× contains a subgroup isomorphic to Z/(`1− 1)Z×Z/(`2− 1)Z and
therefore has 3-rank at least two. Otherwise, t is divisible by 3 and at least one
prime ` ≡ 1 mod 3. But then 3 | s, where s and t are related as above by the
equation s2 = 4t − 27, so in fact 9 | t. Therefore, (Z/tZ)× contains a subgroup
isomorphic to Z/3Z×Z/(`− 1)Z so again has 3-rank at least two. Thus, in the
case where t is not a prime power, the subgroup J of cubes in (Z/tZ)× has index
divisible by 9 and therefore is a proper subgroup of H.

Lemma 23. Suppose t = 1
4 (s2 + 27), where s is an odd integer. Then every

prime divisor of t is congruent to 0 or 1 mod 3.
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Proof. Let p 6= 3 be a prime divisor of t. Then p 6 | s, so letting
(
·
p

)
denote the

Legendre symbol, we have

1 =

(
s2

p

)
=

(
4t− 27

p

)
=

(
−27

p

)
=

(
−3

p

)
=

(p
3

)
,

the last equality by quadratic reciprocity. Thus, p ≡ 1 mod 3.

Before stating the next proposition, we remind the reader that if PG(x)
has abelian Galois group, then the conductor f of the abelian extension LG/Q
tells us the smallest cycle graph in which G is chromatically contained: G is
chromatically contained in Cf+1 but no smaller cycle graph.

Proposition 24. Let G = G3,q,r+q be one of the graphs in Morgan’s Z3-family,
so that r − 1 = 1

4 (s2 + 27) for some odd integer s. Then the conductor of the
extension LG/Q is equal to km, where m is the product of the primes p 6= 3
such that 3 6 | vp(r − 1), and

k =

{
9 if v3(s) ∈ {1, 2}
1 otherwise.

Before proving Proposition 24, let us consider how one may use it.

Example. If G = G3,0,64, then from the factorizations r − 1 = 63 = 32 · 7 and
s = 15 = 3 · 5, we see that the conductor of LG/Q is 9 · 7 = 63. Thus, G is
chromatically contained in C64 but no smaller cycle graph.

Example. We contrast the previous example with the following, in which G =
G3,0,4564. Here, we have the factorizations r−1 = 4563 = 33 ·132 and s = 135 =
33 ·5, showing that the conductor is 13. Therefore, G is chromatically contained
in C14 but no smaller cycle graph.

Proof. (Proposition 24) Let t = r−1 = 1
4 (s2 +27). We remind the reader of the

polynomials jt(x) and ̂s(x), defined in (3) and (4) respectively, as both reappear
in this proof. As in the proof of Theorem 19, the field LG is equal to Lt, the
splitting field of jt(x). By Proposition 13, the conductor of Lt/Q takes the form
km, where k ∈ {1, 9} and m is a squarefree natural number not divisible by 3.
It therefore remains to determine which primes ramify in Lt/Q.
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We first consider primes p 6= 3. Our claim is that p ramifies in Lt/Q if and
only if 3 6 | vp(t). Write t = p3k+la, where a, k, and l are non-negative integers
with p not dividing a and with l ∈ {0, 1, 2}. We then consider the polynomial

1

p3k
jt(p

kx) = x3 − pk+lax− pla. (5)

If 3 6 | vp(t), so that l ∈ {1, 2}, then p ramifies by Proposition 14 applied to this
polynomial. Suppose instead that 3 | vp(t). In this case, l = 0 and the polynomial
in (5) is x3 − pkax − a, which has discriminant a2(4p3ka − 27). If k = 0, then
p 6 | t so p is unramified by Proposition 20, and if k > 0, then p does not divide
the discriminant a2(4p3ka− 27), so again p is unramified.

Now we consider the prime 3. We transition between t and s via the equality
t = 1

4 (s2 + 27). If v3(s) = 0, then v3(t) = 0 also, so 3 is unramified by Propo-
sition 20. Next, if v3(s) = 1, then v3(t) = 2, so 3 ramifies by Proposition 14
applied to jt(x).

For the remaining cases, where v3(s) ≥ 2, observe that v3(t) = 3, so t = 27c
for some integer c not divisible by 3. Consider the polynomial

ˆ̂s(x) = ̂s(x+ 1
6 (3 + s)) = x3 − t

3
x− st

27
= x3 − 9cx− sc.

If v3(s) = 2, then Proposition 14 shows that 3 ramifies. If instead v3(s) ≥ 3, so
that s = 27d for some integer d, then we pass finally to the polynomial

1

27
ˆ̂s(3x) = x3 − cx− cd.

Its discriminant is c2(4c− 27d2), not divisible by 3, so 3 is unramified.

Remark. The fields LG3,0,r arising from Morgan’s Z3-family may occasionally
share a conductor. However, we point out that, for a given f , there can be at
most finitely many graphs of the form G3,0,r in Morgan’s family such that the
conductor of LG3,0,r

is equal to f . This is essentially because of the fact that,
for each a ∈ N, the equation y2 = 4ax3 − 27 has at most finitely many integral
solutions (x, y). See [13, Chap. IX, Theorem 4.3], for example.

It seems especially rare for two of the fields LG3,0,r to be the same. Some of
the fields agree for very small r, and after that there is a notable exception in the
pair of graphs G3,0,14 and G3,0,4564, whose chromatic polynomials both have the
same splitting field, namely, the unique cubic subfield of Q(ζ13). Such examples
are very likely the result of pure coincidence.

Morgan also found, in the same article [10], a second infinite family of graphs
in which each chromatic polynomial has cyclic splitting field, this time cyclic of
degree 4. The graphs are denoted G4,q,6+q, the definition being the same as that
for G3,q,r+q above except that now the three vertices denoted v1, v2, v3 become
v1, v2, v3, v4.

Proposition 25. For all q ≥ 0, G4,q,6+q is chromatically contained in C6. In
fact, LG4,q,6+q

= LC6
.
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Proof. As in the case of the Z3-family, we have LG4,q,6+q = LG4,0,6 for all q ≥ 0,
becauseG4,q,6+q is the join ofG4,0,6 andKq. Now, as Morgan shows, the splitting
field L is cyclic of degree 4 over Q and generated by a root of the irreducible
quartic

g(x) = x4 − 19x3 + 141x2 − 489x+ 671,

which has discriminant 53 · 112. There are only two Z4-extensions of Q of dis-
criminant dividing 53 ·112, and they can be distinguished by the splitting of the
prime 19. Indeed, in one of the fields, 19 splits completely, while in the other,
Q(ζ5), it does not. Since g(x) has no roots mod 19, we see that the former does
not occur, so L = Q(ζ5) = LC6 .

6 Concluding remarks
While the study of p-adic roots of chromatic polynomials should by no means
be limited to the case of abelian extensions of Q, this case is nonetheless a good
starting point because of the simple way in which primes split under the abelian
assumption.

That said, graphs whose chromatic roots generate abelian extensions of Q
appear to be rare, and a challenge in this direction is to find new families of such
graphs. The algorithm of Delbourgo and Morgan [5] mentioned earlier may lead
to new families yielding quartic abelian extensions, since any quartic polynomial
may be taken as input to the algorithm. One might hope that, if the algorithm
is given a natural family of polynomials with quartic splitting fields, the graphs
it outputs would also form some natural family, although there is no guarantee
of this.

Approaching the problem from the opposite direction, one could instead con-
sider families of graphs defined in terms of parameters, compute the chromatic
polynomials, and see how to choose the parameters such that the extensions
generated are all abelian over Q. For example, among all the graphs G3,q,r+q

discussed in Section 5.2, the ones where r = d2 + d+ 8 with d ∈ Z have abelian
splitting fields—this is Morgan’s family.

We make a final comment, concerning why it might be appropriate to view
chromatic polynomials in a p-adic context, and therefore why it might seem
reasonable to pursue the connection further. The natural numbers, being those
numbers that we use to count, are central to graph theory (and to combinatorics
more generally). The chromatic polynomial is defined purely in terms of count-
ing, namely, the counting of proper colourings by a given number of colours. It
is perhaps significant, then, that Zp stands in special relationship to the set N of
natural numbers: Zp is a compact ring in which N is dense. By contrast, C, where
chromatic roots have historically been considered, has no such relationship with
N.

We hope that the relevance of p-adic roots of chromatic polynomials will
become better understood in the future.
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