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About these notes

These notes provide the core material for a second course in linear algebra taught at
the University of Alberta. Students in this course should use the notes as follows:

• Read the sections according to the schedule posted on eClass.

• Come to class having read the appropriate sections. In class, the instructor will
explain parts of the notes further and do some more examples.

• Refer to the notes when reviewing for exams, remembering as well that the exam-
ples done in class are crucial to your understanding of the course.

Proofs

With one exception, I have included proofs of all the results stated, although many of
the proofs appear in the Appendix rather than the main text. The exception is the
existence of a basis in a vector space that is not finitely generated; I prove the existence
of a basis only for finitely generated vector spaces. Occasionally, I prove a result after I
have first given some examples of the result’s use.

Correction of typos

There may be some typos in these notes. As the course unfolds, I will replace this
document from time to time with updated versions correcting typos. Please bear this
in mind if you intend to annotate the notes directly, for there will be no easy way to
transfer your annotations from one version of the notes to the next.

While I will correct typos and may make other very small changes, I will not make
any substantive changes to the notes during the course, so the content will be essentially
stable.

Notation

When a column vector would take up too much space on the page, I write it as a row
with commas. For example, 

3

5

−1

2


may be written (3, 5,−1, 2). This row with commas should not be confused with the
1× 4 matrix

(
3 5 −1 2

)
, which has no commas.

I will use the symbol ↔ for row equivalence of matrices. That is, for two m × n

matrices A and B, A↔ B signifies that A and B are row equivalent.
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(I) Vector Spaces
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I – 1 What is a vector space?

In math 125, we learned about the space Rn. It has two key properties: We can add
vectors in Rn, and we can scale vectors in Rn. Roughly speaking, a vector space is a
space in which we can perform both addition and scalar multiplication.

Here is the formal definition: A vector space (over R) is a non-empty set V together
with operations

V × V → V

(u,v) 7→ u+ v (addition)

R× V → V

(a,v) 7→ av (scalar multiplication)

satisfying the following properties:

(i) For all u,v,w ∈ V , (u+ v) +w = u+ (v +w). (Associativity)

(ii) For all u,v ∈ V , u+ v = v + u. (Commutativity)

(iii) There is 0 ∈ V such that, for all u ∈ V , u+ 0 = u. (Zero element)

(iv) For all u ∈ V , there is v ∈ V such that u+ v = 0. (Additive inverse)

(v) For all u,v ∈ V and all c ∈ R, c(u+ v) = cu+ cv. (Distributivity)

(vi) For all u ∈ V and all c, d ∈ R, (c+ d)u = cu+ du. (Distributivity)

(vii) For all u ∈ V and all c, d ∈ R, (cd)u = c(du)

(viii) For all u ∈ V , 1u = u.

Proposition 1.1. The vector 0 satisfying property (iii) is unique. We call it the zero
vector of V .

Proof. Suppose 0 and 0′ both satisfy property (iii). Then

0′ = 0′ + 0 by (iii) applied to 0 with u = 0′

= 0+ 0′ by (ii)

= 0 by (iii) applied to 0′ with u = 0.

Proposition 1.2. If u ∈ V , then the element v ∈ V satisfying u+v = 0, as in property
(iv), is unique.
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Proof. Let u ∈ V , and suppose v,v′ ∈ V satisfy (iv), that is, u+v = 0 and u+v′ = 0.
Then

v′ = v′ + 0 by (iii)

= v′ + (u+ v) because 0 = u+ v

= (v′ + u) + v by (i)

= (u+ v′) + v by (ii)

= 0+ v because u+ v′ = 0

= v + 0 by (ii)

= v by (iii).

The unique element v such that u+ v = 0 is called the additive inverse of u and is
written −u. If u,w ∈ V , then w + (−u) is abbreviated to w − u.

Linear combinations

If V is a vector space and v1, . . . ,vk ∈ V , then a linear combination of v1, . . . ,vk is an
expression of the form a1v1 + · · ·+ akvk with a1, . . . , ak ∈ R.

Vectors

In this course, the word vector simply means an element of a vector space. Therefore,
if V is a vector space, the statements “u is a vector in V ” and “u is an element of V ”
mean the same thing.
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I – 2 Examples of vector spaces

Example. math 125 was devoted to the study of the vector space V = Rn, together
with the usual addition and scalar multiplication given by

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

and
c(u1, . . . , un) = (cu1, . . . , cun).

Example. The vector space P consisting of all real-coefficient polynomials1

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

of any degree. For example, all of the following are elements of P:

2x2 − 1

−x3 + 4x2 + x− 10

x

5

0

We add and scale polynomials in the usual way.

Example. The vector space Pn consisting of all real-coefficient polynomials

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

of degree less than or equal to n. For example, all of the following are elements of P3:

7x3 + 1

x3 + x2 + x− 4

x2 + 2x

8

0

By contrast, the polynomial x4 + 7x2 is not in P3, although it is in P4.

Example. The space Mm,n(R) of m× n matrices with real entries. Some examples of
elements of M2,3(R) are(√

2 0 −π
1 2 1− 3

√
5

)
,

(
1 3 5

2 4 6

)
,

(
0 0 0

0 0 0

)
.

We add and scale m × n matrices in the usual way, as in math 125. We abbreviate
Mn,n(R) to just Mn(R). Thus, M4(R) is the space of 4× 4 real matrices.

1For a discussion of what we mean by a polynomial in this course, see Section 15 in the Appendix.
The discussion is technical and may safely be omitted.
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Example. The space F consisting of all functions f : R → R. Some examples of
functions from R to R are the following:

f1 : x 7→ ex

f2 : x 7→ sin(x) + cos(x)

f3 : x 7→ |x− 2|

Remember, every vector space has an operation of addition and an operation of scalar
multiplication. What are these operations for the vector space F? In other words, how
do we add two functions together, and how do we scale a function?

One intuitive description of addition, in terms of graphs, is as follows: If f, g ∈ F ,
then imagine drawing the graphs of f and g. At each point x along the horizontal axis,
take the y-values of the two graphs and add them together. Then plot this new value
above x. All these new values, once plotted, form the graph of f + g. More formally, the
function f + g is defined by

(f + g)(x) = f(x) + g(x).

Similarly, if f ∈ F and c ∈ R, then cf is the function whose graph is obtained by scaling
the entire graph of f by c. More formally,

(cf)(x) = c · f(x).

Example. The space S of sequences (a0, a1, a2, . . .) with entries ai ∈ R. We add and
scale sequences as follows:

(a0, a1, a2, . . .) + (b0, b1, b2, . . .) = (a0 + b0, a1 + b1, a2 + b2, . . .)

c(a0, a1, a2, . . .) = (ca0, ca1, ca2, . . .)

Another way to write a sequence is (an)n≥0, which we may abbreviate further to (an)n,
with the understanding that a sequence in this course always begins with the n = 0

term. In this notation, addition and scalar multiplication are given like this:

(an)n + (bn)n = (an + bn)n (2.1)

c(an)n = (can)n (2.2)

For example, consider the sequences

s = (n2)n

t = (2n+ 1)n

That is, s = (0, 1, 4, 9, 16, . . .) and t = (1, 3, 5, 7, 9, . . .). Then according to the rule in
(2.1),

s+ t = (n2)n + (2n+ 1)n = (n2 + 2n+ 1)n = ((n+ 1)2)n.

That is, s + t is the sequence whose nth term (starting at n = 0) is (n + 1)2. We can
see this by adding together the first few terms of (0, 1, 4, 9, 16, . . .) and (1, 3, 5, 7, 9, . . .):

(0, 1, 4, 9, 16, . . .) + (1, 3, 5, 7, 9, . . .) = (1, 4, 9, 16, 25, . . .).
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I – 3 Subspaces

A subspace of a vector space V is a non-empty subset U of V that is a vector space with
respect to the same operations of addition and scalar multiplication. Checking that a
subset is indeed a subspace would seem, at first, to require checking all of the properties
of a vector space, but in fact there is a much quicker way.

Proposition 3.1 (Subspace criterion). Let U be a subset of a vector space V . Then U

is a subspace of V if and only if all of the following hold:

(i) U is non-empty.

(ii) For all u,v ∈ U , u+ v ∈ U . (Closure under addition)

(iii) For all u ∈ U and all c ∈ R, cu ∈ U . (Closure under scalar multiplication)

For a proof, see Section 1 in the Appendix.

Example. Decide whether the set

U = {p ∈ P | p(2) = 0}

is a subspace of P. (Here, p(2) means the value of the polynomial when evaluated at 2.)

Solution:

(i) The set U is non-empty because the zero polynomial p0 = 0 satisfies p0(2) = 0

and therefore lies in U .

(ii) Suppose p, q ∈ U , which is to say p(2) = 0 and q(2) = 0. Then (p + q)(2) =

p(2) + q(2) = 0 + 0 = 0. Therefore, p+ q ∈ U . This shows that U is closed under
addition.

(iii) Suppose p ∈ U and c ∈ R. Then (cp)(2) = c · p(2) = c · 0 = 0, so cp ∈ U . Thus, U
is closed under scalar multiplication.

We have shown that all conditions in the subspace criterion hold, so U is a subspace of
P.

Example. Decide whether the set

U =

{(
a b

c d

)
∈M2(R)

∣∣∣ a+ b = c+ d

}

is a subspace of M2(R).

Solution:

(i) The set U is non-empty because the zero matrix

(
0 0

0 0

)
satisfies the required

condition: 0 + 0 = 0 + 0.
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(ii) Suppose

A =

(
a b

c d

)
, A′ =

(
a′ b′

c′ d′

)
are both in U , which is to say a+ b = c+ d and a′ + b′ = c′ + d′. Then

A+A′ =

(
a+ a′ b+ b′

c+ c′ d+ d′

)
,

and

(a+ a′) + (b+ b′) = (a+ b) + (a′ + b′) (rearranging)

= (c+ d) + (c′ + d′) by assumption

= (c+ c′) + (d+ d′) (rearranging),

so A+A′ satisfies the required condition. Thus, A+A′ ∈ U , so U is closed under
addition.

(iii) Suppose A =

(
a b

c d

)
∈ U and λ ∈ R. Then

λA =

(
λa λb

λc λd

)
,

and

λa+ λb = λ(a+ b) (rearranging)

= λ(c+ d) by assumption

= λc+ λd (rearranging),

so λA satisfies the required condition. Thus, λA ∈ U , so U is closed under scalar
multiplication.

We have shown that all conditions in the subspace criterion hold, so U is a subspace of
M2(R).

Example. Let U be the subset of S consisting of all sequences (an)n such that an ≥ 0

for all n ≥ 0. Decide whether U is a subspace of S.

Solution: We show that U is in fact not a subspace of S. We do so by showing that
it is not closed under scalar multiplication. We need just one counterexample. Let s =
(1, 0, 0, 0, . . .). Then (−1)s = (−1, 0, 0, 0, . . .), which is not in U , because the zeroth
entry is negative.

This is already enough to show that U is not a subspace. However, just for practice,
decide also whether U is closed under addition. If so, justify your answer with a proof.
Otherwise, find a counterexample.
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I – 4 Linear independence

Let V be a vector space, and let u1, . . . ,uk ∈ V . We say that u1, . . . ,uk are linearly
independent if the only solution in scalars c1, . . . , ck to the equation

c1u1 + · · ·+ ckuk = 0

is c1 = c2 = · · · = ck = 0. Otherwise, we say that u1, . . . ,uk are linearly dependent.

Example. The vectors

u1 =

1

2

3

 , u2 =

 3

1

−1

 , u3 =

−3

4

11


in R3 are linearly dependent because 3u1 − 2u2 − u3 = 0, meaning that the equation
c1u1 + c2u2 + c3u3 = 0 has the non-trivial solution c1 = 3, c2 = −2, c3 = −1.

By contrast, consider the vectors

v1 =

1

1

1

 , v2 =

3

0

1

 , v3 =

 2

1

−1


in R3. Try solving the equation c1v1 + c2v2 + c3v3 = 0. You will find that the only
solution is c1 = c2 = c3 = 0, so the vectors v1,v2,v3 are linearly independent.

Examples such as the previous one were considered already in math 125. Let us now
consider linear independence in a vector space other than Rn.

Example. Let f, g ∈ F be the functions defined by f(x) = sin(x) and g(x) = cos(x).
We will determine whether f and g are linearly independent. To do so, we set up the
equation

c1f + c2g = 0, (4.1)

and find its solutions c1, c2 ∈ R. If the only solution is c1 = c2 = 0, then f and g are
linearly independent. Otherwise, they are linearly dependent. Note that the 0 on the
right-hand side of (4.1) is the zero function, which is the zero vector in the vector space
F .

Because (4.1) is an equation of functions, the equation also holds if we evaluate both
sides at a real number x. Thus,

(c1f + c2g)(x) = 0

for all x ∈ R, which is to say c1f(x) + c2g(x) = 0 for all x ∈ R. Remembering the
definitions of the functions f and g, we therefore have

c1 sin(x) + c2 cos(x) = 0 (4.2)
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for all x ∈ R. The key point is that (4.2) is true for all x ∈ R by assumption, so we
may choose x to be whatever we want. Taking x = 0 gives c1 sin(0) + c2 cos(0) = 0,
i.e., c2 = 0. Hence, c1 sin(x) = 0 for all x ∈ R. We may now take x = π/2 to obtain
c1 sin(π/2) = 0, i.e., c1 = 0.

Having shown that the only solution to the equation c1f + c2g = 0 is c1 = c2 = 0,
we conclude that f and g are linearly independent.

It is not very often that a set of functions is linearly dependent, but consider the
following functions in F :

f1(x) = sin2(x)

f2(x) = cos2(x)

f3(x) = 1 (the function that is identically 1)

Can you find scalars c1, c2, c3 ∈ R, not all zero, such that c1f1 + c2f2 + c3f3 is the zero
function, i.e., such that

c1 sin
2(x) + c2 cos

2(x) + c3

is identically zero? If so, then you will have shown that f1, f2, f3 are linearly dependent.

Linear independence for infinite sets of vectors

An infinite set S of vectors in a vector space V is said to be linearly independent if every
finite subset of S is a linearly independent set in the sense defined above for finite sets.
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I – 5 Spanning

Let V be a vector space, and let u1, . . . ,uk ∈ V . Recall from Section 1 that a linear
combination of u1, . . . ,uk is an expression of the form c1u1+· · ·+ckuk where c1, . . . , ck ∈
R. We will also call any vector expressible this way a linear combination of u1, . . . ,uk.
The span of u1, . . . ,uk, denoted Span(u1, . . . ,uk), is the set of all linear combinations
of u1, . . . ,uk.

Example. In P, the span of 1, x, x2, x3 is the set of all linear combinations c1 ·1+c2x+
c3x

2 + c4x
3, which is the set of polynomials of degree less than or equal to 3. Thus,

Span(1, x, x2, x3) = P3.

We may even consider spans of infinite sets. If S is a possibly infinite set of vectors
in V , then the span of S is the set of all (finite) linear combinations c1u1 + · · ·+ ckuk

where u1, . . . ,uk ∈ S.

Example. Consider the vector space P again, and let

S = {x2n | n is a non-negative integer}

= {1, x2, x4, x6, . . .}.

Then a polynomial p is in Span(S) if and only if there are real numbers a0, . . . , ak (for
some k) such that

p = akx
2k + ak−1x

2(k−1) + · · ·+ a1x
2 + a0.

That is, Span(S) consists of all those polynomials in which every power of x is an even
power.

Spanning sets

A spanning set for a vector space V is a subset S of V such that Span(S) = V . If
u1, . . . ,uk are vectors in a vector space V , then to decide whether these vectors span
V , consider the equation

c1u1 + · · ·+ ckuk = v,

where c1, . . . , ck ∈ R and v ∈ V . If, for every v ∈ V , this equation has a solution
c1, . . . , ck, then u1, . . . ,uk span V . Otherwise, they do not.

Example. Let

p1 = x+ 1

p2 = x2 + 1

p3 = x2 + x,
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considered as elements of P2. To decide whether p1, p2, p3 span P2, we consider the
equation

c1p1 + c2p2 + c3p3 = q, (5.1)

where q is a general element of P2. Let q = a2x
2 + a1x+ a0. Then (5.1) says

c1(x+ 1) + c2(x
2 + 1) + c3(x

2 + x) = a2x
2 + a1x+ a0,

i.e., (c2 + c3)x
2 + (c1 + c3)x+ (c1 + c2) = a2x

2 + a1x+ a0,

which is to say

c2 + c3 = a2

c1 + c3 = a1

c1 + c2 = a0

This system of linear equations in the three unknowns c1, c2, c3 is represented by the
augmented matrix 0 1 1 a2

1 0 1 a1

1 1 0 a0


A few row reductions show that the left-hand side of the matrix (i.e., to the left of
the vertical line) has a pivot (leading entry) in every row of a row-echelon form, so the
system has a solution no matter what a0, a1, a2 are. Therefore, p1, p2, p3 span P2.

For example, let q = x2 + 2x − 3. Solve the above equations for c1, c2, c3, and then
verify directly that c1p1 + c2p2 + c3p3 = q. There is, of course, nothing special about
this q; via the method above, we could do the same for any q ∈ P2.

Example. Let

A1 =

(
1 1

1 −1

)
, A2 =

(
0 2

3 0

)
, A3 =

(
2 1

−3 −2

)
, A4 =

(
−1 4

5 1

)
.

The matrices A1, A2, A3, A4 do not span M2(R). To see this, observe that each of the
four matrices has trace 0 (i.e., the sum of the diagonal entries is 0), so the same is true
of any linear combination of them. That is,

Tr(c1A1 + c2A2 + c3A3 + c4A4) = 0

for all c1, c2, c3, c4 ∈ R. Therefore, it is impossible for the matrix

(
1 0

0 0

)
, which has

trace 1, to be a linear combination of A1, A2, A3, A4.

In the coming sections, we will see other tools for deciding whether a set is a spanning
set.
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I – 6 Bases and dimension

If V is a vector space, then a basis for V is a linearly independent spanning set. Ev-
ery vector space has a basis; for a proof in the case of a vector space of the form
Span(v1, . . . ,vn), see Proposition 2.2 of the Appendix.

Example. In math 125, we encountered the standard basis {e1, . . . , en} for Rn, where
ei is the vector that has 1 in the ith position and 0 elsewhere. For example,

1

0

0

 ,

0

1

0

 ,

0

0

1




is the standard basis for R3. We saw in math 125 that this set is indeed both linearly
independent and a spanning set for R3.

Example. Let V = {A ∈ M2(R) | Tr(A) = 0}, the set of real 2 × 2 matrices of trace
0, and let

A1 =

(
1 0

0 −1

)
, A2 =

(
0 1

0 0

)
, A3 =

(
0 0

1 0

)
,

which all lie in V . We show that {A1, A2, A3} is a basis for V .

Linear independence: Suppose that

c1A1 + c2A2 + c3A3 =

(
0 0

0 0

)
,

i.e., c1

(
1 0

0 −1

)
+ c2

(
0 1

0 0

)
+ c3

(
0 0

1 0

)
=

(
0 0

0 0

)
,

i.e.,

(
c1 c2

c3 −c1

)
=

(
0 0

0 0

)
.

Then c1 = c2 = c3 = 0, so A1, A2, A3 are linearly independent.

Spanning: Let

B =

(
a b

c d

)
be any matrix in V , so Tr(B) = 0 by assumption. This means that d = −a, so

B =

(
a b

c −a

)

= a

(
1 0

0 −1

)
+ b

(
0 1

0 0

)
+ c

(
0 0

1 0

)
= aA1 + bA2 + cA3,

so B ∈ Span(A1, A2, A3). Thus, {A1, A2, A3} is a linearly independent spanning set for
V , i.e., a basis.
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Example. If n is a natural number, then {1, x, x2, . . . , xn} is a basis for Pn. A basis for
the space P of all polynomials (with real coefficients) is the infinite set {1, x, x2, . . .}.

Dimension

Theorem 6.1. Let V be a vector space that has a finite spanning set. Then V has a
finite basis, and any two bases for V contain the same number of elements.

For a proof, see Section 2 of the Appendix.

Definition 6.2. Let V be a vector space that has a finite spanning set. The dimension
of V , denoted dim(V ), is the number of elements in a basis for V . By Theorem 6.1, this
number is independent of the choice of basis and is therefore well defined.

Remark. A zero space, meaning a vector space with only one element, its zero vector,
is taken to have the empty set ∅ = {} as a basis. Because the empty set contains no
elements, the dimension of a zero space is 0.

If a vector space V has a finite basis, then we call V finite dimensional. Otherwise,
we say that V is infinite dimensional.

Example. The space Rn has basis {e1, . . . , en} and therefore has dimension n.

Example. The space Pn has basis {1, x, x2, . . . , xn} and therefore has dimension n+1.

Example. The space Mm,n(R) has dimension mn. (Can you find a basis?)

Example. The space P has no finite basis and is therefore infinite dimensional.

Example. The space S is also infinite dimensional.

The following proposition is proven in the Appendix; see Corollaries 2.6 and 2.7
there.

Proposition 6.3. If U is a subspace of a finite-dimensional space V , then U has finite
dimension as well, and dim(U) ≤ dim(V ).
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I – 7 Coordinate vectors

Let V be a vector space with finite dimension n, and let B = {u1, . . . ,un} be a basis.

Proposition 7.1. Every vector in V can be written uniquely as a linear combination of
the vectors in the basis B. That is, given any v ∈ V , there are unique scalars c1, . . . , cn ∈
R such that v = c1u1 + · · ·+ cnun.

Proof. The fact that there exist scalars c1, . . . , cn such that v = c1u1 + · · · + cnun is
simply a restatement of the fact that u1, . . . ,un span V . For uniqueness, suppose we
have two representations of v as a linear combination of u1, . . . ,un:

v = c1u1 + · · ·+ cnun

and v = d1u1 + · · ·+ dnun.

Rearranging the equation

c1u1 + · · ·+ cnun = d1u1 + · · ·+ dnun,

we arrive at
(c1 − d1)u1 + · · ·+ (cn − dn)un = 0.

By the linear independence of u1, . . . ,un, we conclude that ci − di = 0 for all i, that is,
ci = di.

The scalars c1, . . . , cn such that v = c1u1 + · · ·+ cnun are called the coordinates of
v with respect to the basis B = {u1, . . . ,un}, and the vector

[v]B =


c1
...
cn

 ∈ Rn

is called the coordinate vector of v with respect to B.

Example. Let

B =

{(
1 0

0 0

)
,

(
1 1

0 0

)
,

(
1 1

1 0

)
,

(
1 1

1 1

)}
,

a basis for M2(R). (If you want some practice in bases, show that B is indeed a basis
for M2(R).) Find the coordinate vector[(

1 2

3 4

)]
B

.

Solution: We solve the equation

c1

(
1 0

0 0

)
+ c2

(
1 1

0 0

)
+ c3

(
1 1

1 0

)
+ c4

(
1 1

1 1

)
=

(
1 2

3 4

)
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for the scalars c1, . . . , c4, i.e.,(
c1 + c2 + c3 + c4 c2 + c3 + c4

c3 + c4 c4

)
=

(
1 2

3 4

)
.

This equation of matrices gives us the four linear equations

c1 + c2 + c3 + c4 = 1

c2 + c3 + c4 = 2

c3 + c4 = 3

c4 = 4,

whose unique solution is c1 = c2 = c3 = −1, c4 = 4. Thus,

[(
1 2

3 4

)]
B

=


−1

−1

−1

4

 .

One of the great strengths of coordinate vectors is that addition and scalar multipli-
cation in V correspond to addition and scalar multiplication in Rn. That is, if u,v ∈ V

and c ∈ R, then

[u+ v]B = [u]B + [v]B (7.1)

and [cu]B = c[u]B. (7.2)

Remark. Note how coordinate vectors make an n-dimensional vector space V “look” a
lot like Rn, with vectors v ∈ V being replaced by their coordinate vectors [v]B. We will
make this connection more precise when we study isomorphisms.

Caution. The coordinate vector of a vector in V depends on the choice of basis. For
example, if we instead take the basis

C =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}

of M2(R), then the coordinate vector of the same matrix(
1 2

3 4

)
as in the above example, but now with respect to C, is

[(
1 2

3 4

)]
C

=


1

2

3

4

 .
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I – 8 Linear independence and spanning via coordinate vectors

Let V be a vector space with finite dimension n, and let B be a basis.

Proposition 8.1. Suppose v1, . . . ,vk ∈ V .

(i) v1, . . . ,vk are linearly independent in V if and only if [v1]B, . . . , [vk]B are linearly
independent in Rn.

(ii) v1, . . . ,vk span V if and only if [v1]B, . . . , [vk]B span Rn.

Proof. We prove (ii) and leave (i) as an exercise. Assume that [v1]B, . . . , [vk]B span Rn.
We show that v1, . . . ,vk span V . Take any v ∈ V . Because [v1]B, . . . , [vk]B span Rn,
we may choose c1, . . . , ck ∈ R such that

[v]B = c1[v1]B + · · ·+ ck[vk]B

= [c1v1 + · · ·+ ckvk]B.

Since v and c1v1 + · · · + ckvk have the same coordinate vector, they are equal, i.e.,
v = c1v1 + · · ·+ ckvk. This shows that v1, . . .vk span V .

Conversely, suppose that v1, . . . ,vk span V . We show that [v1]B, . . . , [vk]B span Rn.
Take any w ∈ Rn, and let v be the vector in V with coordinate vector w. Because
v1, . . . ,vk span V , there are c1, . . . , ck ∈ R such that v = c1v1 + · · ·+ ckvk, so

w = [v]B

= [c1v1 + · · ·+ ckvk]B

= c1[v1]B + · · ·+ ck[vk]B,

so w is in the span of [v1]B, . . . , [vk]B.

Example. Decide whether x2+x+3, x2+2x+4, x2+x−2 ∈ P2 are linearly independent.

Solution: We work with the basis {x2, x, 1} for P2. The given polynomials are linearly
independent if and only if their coordinate vectors1

1

3

 ,

1

2

4

 ,

 1

1

−2


are. We know from math 125 how to determine whether vectors in Rn (in this case, R3)
are linearly independent: put the vectors as columns in a matrix and determine whether
there is a pivot in every column of a row-echelon form. Here, we row reduce as follows:1 1 1

1 2 1

3 4 −2

↔

1 1 1

0 1 0

0 1 −5

↔

1 1 1

0 1 0

0 0 −5

 .

(The symbol ↔ means “is row equivalent to”.) There is a pivot in every column of the
above row-echelon form, so the original three polynomials are linearly independent.
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Example. Decide whether the matrices(
1 1

2 −1

)
,

(
1 0

1 1

)
,

(
2 1

3 0

)
,

(
1 −1

1 1

)
,

(
3 0

4 1

)
(8.1)

span M2(R).

Solution: We work with the basis

B =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}

of M2(R). We put the coordinate vectors of the given matrices, with respect to B, as
columns in a matrix and then row reduce:

1 1 2 1 3

1 0 1 −1 0

2 1 3 1 4

−1 1 0 1 1

↔


1 1 2 1 3

0 −1 −1 −2 −3

0 −1 −1 −1 −2

0 0 0 0 0

 .

In fact, we do not even need a row-echelon form, because we can see already that there
is no pivot in the last row. Therefore, the matrices in (8.1) do not span M2(R).
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I – 9 Linear independence and spanning in relation to dimension

Proposition 9.1. Let V be a vector space of finite dimension n.

(i) Any linearly independent set in V contains at most n elements.

(ii) Any spanning set for V contains at least n elements.

For a proof, see Proposition 2.4 of the Appendix.

Example. In P3, which has dimension 4, the 5 polynomials

x3 + 1, 2x3 − 3x2 + x− 2, x− 4, x2 − 2x, −x3 + 2x− 3

are linearly dependent. No calculation is necessary; we simply apply part (i) of Propo-
sition 9.1.

Example. Because M3,2(R) has dimension 6, the 4 matrices 1 −1

2 5

−1 3

 ,

 2 1/2

6 −2

2/3 5

 ,

−10 2

5/3 16

0 7

 ,

1/2 1/3

2 3

1 6


do not span M3,2(R). Again, no calculation is necessary; just apply part (ii) of Propo-
sition 9.1.

Caution. If V has dimension n, then a set of n or fewer vectors need not be linearly
independent. For example, the three vectors1

2

3

 ,

1

1

1

 ,

2

3

4

 (9.1)

in R3 are linearly dependent.
Similarly, a set of n or more vectors need not span V . For example, the three vectors

in (9.1) do not span R3.

The case of n vectors in an n-dimensional space

Proposition 9.2. Let V be a vector space of finite dimension n, and let v1, . . . ,vn ∈ V .
(Note that the n in v1, . . . ,vn is the same as the dimension of V ; this is important.)
Then the following are equivalent:

(i) v1, . . . ,vn are linearly independent.

(ii) v1, . . . ,vn span V .

(iii) v1, . . . ,vn form a basis for V .

For a proof, see Proposition 2.5 of the Appendix.
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Example. Let V be a 4-dimensional vector space, and let v1,v2,v3,v4 ∈ V . Suppose
that the equation

c1v1 + c2v2 + c3v3 + c4v4 = 0 (9.2)

has no solutions besides the trivial one, c1 = c2 = c3 = c4 = 0. Do the vectors
v1,v2,v3,v4 span V ?

Solution: Yes. The fact that (9.2) has only the trivial solution means exactly that
v1,v2,v3,v4 are linearly independent. But they are four vectors in the 4-dimensional
space V , so by Proposition 9.2, they span V (and form a basis, in fact).
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I – 10 Change of basis

Suppose B and C are two bases for an n-dimensional vector space V . Often, it is useful
to be able to change from coordinates with respect to B to coordinates with respect to
C, and vice versa. This procedure is what we turn to now.

If B = {u1, . . . ,un}, then the change-of-basis matrix from B to C is the n×n matrix

PC←B =
(
[u1]C · · · [un]C

)
.

That is, the jth column of PC←B is the coordinate vector of uj with respect to C.

Example. Consider the vector space P2, and let B = {p1, p2, p3} and C = {q1, q2, q3},
where

p1 = 1, p2 = x− 1 = −1 + x, p3 = (x− 1)2 = 1− 2x+ x2

and
q1 = 1, q2 = x, q3 = x2

We know already that C is a basis for P2, and we leave it as an exercise to show that B
is a basis as well. (Use Section 8.) Now,

[p1]C =

1

0

0

 , [p2]C =

−1

1

0

 , [p3]C =

 1

−2

1

 ,

so

PC←B =

1 −1 1

0 1 −2

0 0 1

 .

Proposition 10.1. If B and C are bases for a finite-dimensional vector space V , then
for any v ∈ V we have [v]C = PC←B[v]B.

Proof. Let B = {u1, . . . ,un}, and write v = a1u1 + · · · + anun with a1, . . . , an ∈ R.
Then

[v]C = [a1u1 + · · ·+ anun]C

= a1[u1]C + · · ·+ an[un]C by (7.1) and (7.2)

=
(
[u1]C · · · [un]C

)
a1
...
an

 by a property of matrix multiplication

= PC←B[v]B.

Example. Let p = 5 − 2(x − 1) + 3(x − 1)2. Use the change-of-basis matrix PC←B

computed in the previous example to find the coordinates of p with respect to the basis
C. Hence, write down p in the form a0 + a1x+ a2x

2.
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Solution: By Proposition 10.1,

[p]C = PC←B[p]B =

1 −1 1

0 1 −2

0 0 1


 5

−2

3

 =

10

−8

3

 .

Therefore, p = 10− 8x+ 3x2.

The next result tells us how we can stack together a sequence of changes of basis,
and also how we reverse a change of basis.

Proposition 10.2. Let B, C, E be bases for a finite-dimensional vector space V . Then
PE←B = PE←CPC←B. In particular, PC←B is invertible, and P−1C←B = PB←C.

For a proof, see Section 3 in the Appendix.

Example. We return once more to the bases B and C of P2 in the previous two examples.
According to Proposition 10.2, we may compute PB←C by inverting PC←B:

PB←C = P−1C←B =

1 −1 1

0 1 −2

0 0 1


−1

=

1 1 1

0 1 2

0 0 1

 .

Using this new matrix, we may express any polynomial q = a0 + a1x+ a2x
2 ∈ P2 as a

quadratic Taylor polynomial about x = 1:

[q]B
Prop. 10.1

= PB←C [q]C =

1 1 1

0 1 2

0 0 1


a0a1
a2

 =

a0 + a1 + a2

a1 + 2a2

a2

 ,

so a0 + a1x + a2x
2 = (a0 + a1 + a2) + (a1 + 2a2)(x − 1) + a2(x − 1)2. For example, if

q = 1 + x+ x2, then a0 = a1 = a2 = 1, so 1 + x+ x2 = 3 + 3(x− 1) + (x− 1)2.

Finally, we provide a very computational way to find change-of-basis matrices.

Proposition 10.3. Let B and C be bases for an n-dimensional vector space V , and let
E be another basis for V . Then the reduced row-echelon form of(

PE←C PE←B

)
is (

In PC←B

)
,

where In is the n× n identity matrix.

For a proof, see Section 4 in the Appendix. We will do an example in class to illustrate
this proposition.
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(II) Linear Transformations
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II – 1 Linear transformations: definition and examples

Let U and V be vector spaces. A linear transformation from U to V is a map φ : U → V

satisfying both of the following properties:

(i) For all u1,u2 ∈ U , φ(u1 + u2) = φ(u1) + φ(u2).

(ii) For all u ∈ U and c ∈ R, φ(cu) = cφ(u).

If a map satisfies (i), we say that it respects addition. If it satisfies (ii), we say that
it respects scalar multiplication. Thus, a linear transformation is a map between vector
spaces that respects both addition and scalar multiplication.

Linear transformations were an important part of math 125, but of course all lin-
ear transformations in that course were between Rn and Rm. Now we consider linear
transformations between general vector spaces.

Example. Consider

φ :Mn(R) → R

A 7→ Tr(A),

that is, φ maps A to its trace. We saw in math 125 that the trace satisfies Tr(A+B) =

Tr(A) + Tr(B) and Tr(cA) = cTr(A), where c ∈ R. These properties say exactly that
our map φ is a linear transformation.

Before giving our next two examples, we note that if p, q ∈ P and a, c ∈ R, then

(p+ q)(a) = p(a) + q(a) (1.1)

and (cp)(a) = cp(a) (1.2)

In other words, (1.1) says that p+ q evaluated at a is the same as p evaluated at a plus
q evaluated at a, and (1.2) says that cp evaluated at a is the same as c times p(a).

Example. Fix a ∈ R. The map

φ : P → R

p 7→ p(a)

is a linear transformation:

Addition: If p, q ∈ P, then

φ(p+ q) = (p+ q)(a) by definition of φ

= p(a) + q(a) by (1.1)

= φ(p) + φ(q) by definition of φ.

Scalar multiplication: If p ∈ P and c ∈ R, then

φ(cp) = (cp)(a) by definition of φ

= cp(a) by (1.2)

= cφ(p) by definition of φ.
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Example. Recall S, the space of sequences (a0, a1, a2, . . .) of real numbers ai. The map

φ : P → S

p 7→ (p(0), p(1), p(2), . . .)

is linear:

Addition: If p, q ∈ P, then

φ(p+ q)

= ((p+ q)(0), (p+ q)(1), (p+ q)(2), . . .) by definition of φ

= (p(0) + q(0), p(1) + q(1), p(2) + q(2), . . .) by (1.1)

= (p(0), p(1), p(2), . . .) + (q(0), q(1), q(2), . . .) by definition of addition in S

= φ(p) + φ(q) by definition of φ.

Scalar multiplication: If p ∈ P and c ∈ R, then

φ(cp) = ((cp)(0), (cp)(1), (cp)(2), . . .) by definition of φ

= (cp(0), cp(1), cp(2), . . .) by (1.2)

= c(p(0), p(1), p(2), . . .) by definition of scalar multiplication in S

= cφ(p) by definition of φ.

If we wish to show that a map between vector spaces is not a linear transformation,
it is enough to show that one of the two properties (i) or (ii) fails in at least one instance.

Example. Consider the map

φ :M2(R) → R2

A 7→

(
det(A)

Tr(A)

)
.

This map is not a linear transformation, because it does not respect addition, as we
shall now see. Let

A =

(
1 0

0 0

)
, B =

(
0 0

0 1

)
.

Note that A+B = I, the 2× 2 identity matrix. Then

φ(A+B) = φ(I) =

(
det(I)

Tr(I)

)
=

(
1

2

)
,

while

φ(A) + φ(B) =

(
det(A)

Tr(A)

)
+

(
det(B)

Tr(B)

)
=

(
0

1

)
+

(
0

1

)
=

(
0

2

)
.

Thus, φ(A + B) ̸= φ(A) + φ(B) for this pair of matrices A,B, so φ does not respect
addition.
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II – 2 Injectivity and kernel

A map f : X → Y is said to be injective (or one-to-one) if the equality f(x1) = f(x2)

implies that x1 = x2. For example, the exponential map

exp : R → R

x 7→ ex

is injective. If x1, x2 ∈ R, then the only way for exp(x1) to be equal to exp(x2) is for x1
to be equal to x2. By contrast, the map

R → R

x 7→ sin(x)

is not injective, because sin(0) = sin(π), but 0 ̸= π.

The kernel of a linear transformation

If φ : U → V is a linear transformation of vector spaces, then the kernel of φ is the
subset of U defined by

Ker(φ) = {u ∈ U | φ(u) = 0V },

that is, Ker(φ) consists of all those vectors in U that φ maps to the zero vector in V .

Example. We will find the kernel of the linear transformation

φ :M2(R) → R

A 7→ Tr(A).

Let

A =

(
a b

c d

)
∈M2(R).

Then A ∈ Ker(φ) if and only if φ(A) = 0, if and only if a+ d = 0, if and only if

A =

(
a b

c −a

)
= a

(
1 0

0 −1

)
+ b

(
0 1

0 0

)
+ c

(
0 0

1 0

)
.

Thus, Ker(φ) is the span of the three matrices(
1 0

0 −1

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
.

Proposition 2.1. If φ : U → V is a linear transformation, then φ(0U ) = 0V .

Proof.

φ(0U ) = φ(0U + 0U )

= φ(0U ) + φ(0U ),

so adding −φ(0U ) to both sides leaves 0V = φ(0U ).
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Exercise. Show that the kernel of a linear transformation φ : U → V is a subspace of
U .

Proposition 2.2. Let φ : U → V be a linear transformation. Then φ is injective if and
only if Ker(φ) = {0U}.

Proof. Suppose first that φ is injective. If u ∈ Ker(φ), then

φ(u) = 0V

= φ(0U ) by Proposition 2.1,

so u = 0U by the assumption of injectivity.
Conversely, suppose that Ker(φ) = {0U}. If u1,u2 ∈ U satisfy φ(u1) = φ(u2), then

φ(u1) − φ(u2) = 0V , i.e., φ(u1 − u2) = 0V by linearity, so u1 − u2 ∈ Ker(φ). But
Ker(φ) = {0U} by assumption, so u1 − u2 = 0U , i.e., u1 = u2.

Example. Consider the linear transformation

φ : P → P

p 7→ (xp)′,

where q′ denotes the derivative of a polynomial q. Decide whether φ is injective.

Solution: We find Ker(φ). If p ∈ P, then

p ∈ Ker(φ) ⇐⇒ φ(p) = 0

⇐⇒ (xp)′ = 0 by definition of φ

⇐⇒ xp is constant (standard property of differentiation)

⇐⇒ p = 0,

because if p is a non-zero polynomial, then xp is not constant. Thus, Ker(φ) = {0}, so
φ is injective.
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II – 3 Surjectivity and image

A map f : X → Y is said to be surjective (or onto) if for every y ∈ Y , there is x ∈ X

such that f(x) = y. For example, the map

f : R → R

x 7→ x3

is surjective: every real number has a cube root. However, the map

g : R → R

x 7→ x2

is not surjective, because negative numbers do not have (real) square roots.
Another way to characterize whether a map f is surjective is via the image of f ,

which is the subset of Y given by

Image(f) = {f(x) | x ∈ X}.

That is, Image(f) consists of all those elements y ∈ Y for which there is x ∈ X such
that f(x) = y.

Remark. Another common word for the same concept is range. We will use the word
image, but be aware that you are likely also to encounter the word range elsewhere.

Example. The image of sin : R → R is [−1, 1]: For every y ∈ [−1, 1], there is x ∈ R
such that sin(x) = y, and if y ̸∈ [−1, 1], then there is no x ∈ R such that sin(x) = y.

Straight from the definitions, we see that a map f : X → Y is surjective if and only
if Image(f) = Y .

Let us see some examples from linear algebra.

Example. Find the image of the linear transformation

φ : R3 → R3x1x2
x3

 7→

x10
0

 .

Solution:

Image(φ) = {φ(u) | u ∈ R3} =


x0
0

 ∣∣∣∣∣x ∈ R

 =

x
1

0

0

 ∣∣∣∣∣x ∈ R

 = Span


1

0

0


 .

The image of φ is not all of the codomain R3, so φ is not surjective.
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Example. The image of the linear transformation

φ : R3 → M2(R)x1x2
x3

 7→

(
x1 x2

x2 x3

)

consists of the matrices of the form (
x1 x2

x2 x3

)

with x1, x2, x3 ∈ R. These are simply the symmetric matrices, i.e., the matrices A with
AT = A. Thus,

Image(φ) = {A ∈M2(R) | AT = A}.

Again, Image(φ) is not equal to the codomain M2(R) (not every 2 × 2 matrix is sym-
metric), so φ is not surjective.

Example. Consider the linear transformation

φ : P1 → R2

p 7→

(
p(0)

p(1)

)
,

that is, φ(a1x+a0) =

(
a0

a1 + a0

)
. This map is surjective, because given any

(
b1

b2

)
∈ R2,

we may find a polynomial in P1 that maps to it under φ:

φ((b2 − b1)x+ b1) =

(
b1

(b2 − b1) + b1

)
=

(
b1

b2

)
.

In other words, the image of φ is all of R2.

Exercise. Show that the image of a linear transformation φ : U → V is a subspace of
V .
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II – 4 Rank and nullity

Let φ : U → V be a linear transformation. The nullity of φ, denoted nullity(φ), is the
dimension of Ker(φ). The rank of φ, denoted rank(φ), is the dimension of the image of
φ. We have the following important theorem:

Theorem 4.1 (Rank-nullity). Let φ : U → V be a linear transformation. If U has
finite dimension, then so do Ker(φ) and Image(φ), and

rank(φ) + nullity(φ) = dim(U).

See the next page for a proof.

Example. Use the rank-nullity theorem to find nullity(φ) where

φ :M3(R) → R

A 7→ Tr(A).

Solution: The map φ is surjective, because given any c ∈ R, we have

φ

c 0 0

0 0 0

0 0 0

 = c.

Thus, Image(φ) = R, so rank(φ) = dim(Image(φ)) = dim(R) = 1. Hence, by the
rank-nullity theorem,

nullity(φ) = dim(M3(R))− rank(φ) = 9− 1 = 8.

Exercise. Find a linearly independent set of 8 matrices in Ker(φ), where φ is as in
the previous example. Conclude, using the fact that nullity(φ) = 8, that your linearly
independent set is in fact a basis for Ker(φ). (Use Proposition 9.2 in Section I.)

Example. Let n be a positive integer. One finds without much difficulty that the space
of symmetric n× n matrices has dimension 1

2n(n+ 1). Use this fact, together with the
rank-nullity theorem, to find the rank of the linear transformation

φ :Mn(R) → Mn(R)

A 7→ A−AT.

Solution: The kernel of φ consists of those n×n matrices A such that A−AT = 0, i.e.,
A = AT. Thus, the kernel is simply the space of symmetric n × n matrices, which has
dimension 1

2n(n+ 1). Hence,

rank(φ) = dim(Mn(R))− nullity(φ) = n2 − 1

2
n(n+ 1) =

1

2
n(n− 1).
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Proof of the rank-nullity theorem

Recall that φ : U → V is a linear transformation. If U has finite dimension, then so does
Ker(φ), because it is a subspace of U . (See Corollary 2.6 in the Appendix.) Further,
Image(φ) is spanned by a finite set, namely, the set of images of a basis for U , so
Image(φ) is also finite dimensional.

Let {v1, . . . ,vr} be a basis for Image(φ), choose ui ∈ U such that φ(ui) = vi, where
i = 1, . . . , r, and let {x1, . . . ,xn} be a basis for Ker(φ). We show that {x1, . . . ,xn,u1, . . . ,ur}
is a basis for U .

For linear independence, suppose that

a1x1 + · · ·+ anxn + b1u1 + · · ·+ brur = 0U .

Then

0V = φ(a1x1 + · · ·+ anxn + b1u1 + · · ·+ brur)

= b1v1 + · · ·+ brvr,

so bi = 0 for all i by the linear independence of v1, . . . ,vr. Hence,

a1x1 + · · ·+ anxn = 0U ,

so ai = 0 for all i by the linear independence of x1, . . . ,xn.
For spanning, take any u ∈ U , and write φ(u) = b1v1+ · · ·+brvr for some scalars bi,

which is possible because the vi form a basis for Image(φ). If x = u−(b1u1+ · · ·+brur),
then

φ(x) = φ(u)− (b1v1 + · · ·+ brvr)

= φ(u)− φ(u)

= 0V ,

so x ∈ Ker(φ). Therefore, we may write x = a1x1 + · · · + anxn for some scalars ai,
because the xi form a basis for Ker(φ). Thus,

u = a1x1 + · · ·+ anxn + b1u1 + · · ·+ brur.

Having shown that {x1, . . . ,xn,u1, . . . ,ur} is a basis for U , we see that

dim(U) = n+ r = nullity(φ) + rank(φ).
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II – 5 The matrix of a linear transformation

Let φ : U → V be a linear transformation, and assume that U and V are both finite
dimensional. Let B = {u1, . . . ,un} be a basis for U , and let C be a basis for V . Then
the matrix of φ with respect to B and C is the matrix

[φ]C←B =
(
[φ(u1)]C · · · [φ(un)]C

)
.

That is, the jth column of [φ]C←B is the coordinate vector of φ(uj) with respect to C.

Example. Consider the linear transformation

φ : P3 → P2

p 7→ p′ +

∫ 1

0

p(x) dx,

where p′ denotes the derivative of p. (For practice, you may like to show that φ is indeed
a linear transformation.) Let us find [φ]C←B where B = {x3, x2, x, 1} and C = {x2, x, 1},
bases for P3 and P2 respectively.

φ(x3) = 3x2 +
1

4
, φ(x2) = 2x+

1

3
, φ(x) =

3

2
, φ(1) = 1,

so

[φ(x3)]C =

 3

0

1/4

 , [φ(x2)]C =

 0

2

1/3

 , [φ(x)]C =

 0

0

3/2

 , [φ(1)]C =

0

0

1

 .

Therefore,

[φ]C←B =

 3 0 0 0

0 2 0 0

1/4 1/3 3/2 1

 .

One of the key functions of [φ]C←B is to translate the computation of a vector φ(u)
into a matrix multiplication. The following proposition shows how we achieve this.

Proposition 5.1. For any u ∈ U , [φ(u)]C = [φ]C←B[u]B.

See the next page for a proof.

Example. Let p = x3 + 3x2 − 5x− 2, and suppose we wish to compute

p′ +

∫ 1

0

p(x) dx,

which is simply φ(p), where φ is as in the previous example. Rather than compute the
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derivative and the integral directly, let us use the matrix [φ]C←B that we found above:

[φ(p)]C = [φ]C←B[p]B by Proposition 5.1

=

 3 0 0 0

0 2 0 0

1/4 1/3 3/2 1




1

3

−5

−2



=

 3

6

−33/4

 ,

so φ(p) = 3x2 + 6x− 33
4 .

If φ : U → U is a linear transformation from a finite-dimensional vector space U to
itself, we may wish to take the same basis B for the domain and the codomain. Rather
than writing [φ]B←B, we write simply [φ]B. Thus, if B = {u1, . . . ,un}, then

[φ]B =
(
[φ(u1)]B · · · [φ(un)]B

)
.

Example. If φ is the linear transformation

φ :M2(R) → M2(R)

A 7→ AT

and

B =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
,

then

[φ]B =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

Proof of Proposition 5.1

Let B = {u1, . . . ,un}, and write u = a1u1 + · · ·+ anun with a1, . . . , an ∈ R. Then

[φ(u)]C = [φ(a1u1 + · · ·+ anun)]C

= [a1φ(u1) + · · ·+ anφ(un)]C by linearity of φ

= a1[φ(u1)]C + · · ·+ an[φ(un)]C by (7.1) and (7.2) in Section I

=
(
[φ(u1)]C · · · [φ(un)]C

)
a1
...
an

 (property of matrix multiplication)

= [φ]C←B[u]B.
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II – 6 The kernel and the image via the matrix of a linear trans-
formation

As above, let φ : U → V be a linear transformation where U and V are finite dimen-
sional, and let B and C be bases for U and V respectively.

Proposition 6.1.

(i) If u ∈ U , then u ∈ Ker(φ) if and only if [u]B ∈ Nul([φ]C←B).

(ii) If v ∈ V , then v ∈ Image(φ) if and only if [v]C ∈ Col([φ]C←B).

Proof. We prove (i) and leave (ii) as an exercise. Let m = dim(V ). If u ∈ U , then

u ∈ Ker(φ) ⇐⇒ φ(u) = 0V

⇐⇒ [φ(u)]C = 0Rm (take coordinate vectors of both sides)

⇐⇒ [φ]C←B[u]B = 0Rm by Proposition 5.1

⇐⇒ [u]B ∈ Nul([φ]C←B).

In light of this proposition, if we wish to find a basis for Ker(φ), then once we have
found [φ]C←B, all we have to do is find a basis for Nul([φ]C←B) and translate those basis
vectors back to vectors in U via B. Similarly, a basis for Image(φ) may be found by
finding a basis for Col(φ) and then translating those basis vectors back to vectors in V
via C.

Example. Find a basis for Ker(φ) and a basis for Image(φ) where

φ :M2(R) → P2(
a b

c d

)
7→ (a− 2b+ c+ 3d)x2 + (2a− 3b+ c+ 8d)x+ (3a− 4b+ c+ 13d).

Solution: Let

B =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
and C = {x2, x, 1}. Then

φ

(
1 0

0 0

)
= x2 + 2x+ 3, φ

(
0 1

0 0

)
= −2x2 − 3x− 4,

φ

(
0 0

1 0

)
= x2 + x+ 1, φ

(
0 0

0 1

)
= 3x2 + 8x+ 13,

so

[φ]C←B =

1 −2 1 3

2 −3 1 8

3 −4 1 13

↔

1 0 −1 7

0 1 −1 2

0 0 0 0

 .
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From the given reduced row-echelon form, we find the basis

1

1

1

0

 ,


−7

−2

0

1




for Nul([φ]C←B). (Please review math 125 for the method to find a basis for a null
space.) A basis for Ker(φ) is therefore{(

1 1

1 0

)
,

(
−7 −2

0 1

)}
.

From the above reduced row-echelon form (or any row-echelon form, in fact), we see
that a basis for Col([φ]C←B) is 

1

2

3

 ,

−2

−3

−4


 ,

so a basis for Image(φ) is {x2 + 2x+ 3,−2x2 − 3x− 4}.

We return to the more general situation of a linear transformation φ : U → V where
U, V are finite-dimensional vector spaces with bases B, C respectively. Proposition 6.1
shows us that φ is injective if and only if [φ]C←B has zero null space (i.e., has a pivot
in every column of a row-echelon form), and is surjective if and only if [φ]C←B has full
rank (i.e., has a pivot in every row).

Example. Suppose a linear transformation φ : P2 → P1 has matrix

[φ]C←B =

(
1 2 −1

1 −1 3

)

with respect to some bases B for P2 and C for P1. Is φ surjective?

Solution: A row-echelon form of [φ]C←B is(
1 2 −1

0 −3 4

)
,

which has a pivot in each of its two rows, so φ is surjective.

Paul Buckingham Linear Algebra II (MATH 225) – v 1.23 | 38



II – 7 Composing linear transformations

If φ : U → V and ψ : V → W are linear transformations, then we may compose them
to get a map

ψ ◦ φ : U → W

u 7→ ψ(φ(u)).

Exercise. The composition ψ ◦ φ is again a linear transformation.

Example. Consider the linear transformations

φ : P3 → M2(R)

p 7→

(
p(0) p(1)

p(2) p(3)

)

ψ :M2(R) → P1(
a b

c d

)
7→ (a− b)x+ (c− d).

Then the composition ψ ◦ φ : P3 → P1 is given by

ψ ◦ φ(p) = ψ

(
p(0) p(1)

p(2) p(3)

)
= (p(0)− p(1))x+ (p(2)− p(3)).

Proposition 7.1. If φ : U → V and ψ : V → W are linear transformations, where
U, V,W are finite-dimensional vector spaces with bases B, C, E respectively, then

[ψ ◦ φ]E←B = [ψ]E←C [φ]C←B.

Proof. Let B = {u1, . . . ,un}. Then

[ψ]E←C [φ]C←B

= [ψ]E←C

(
[φ(u1)]C · · · [φ(un)]C

)
=

(
[ψ]E←C [φ(u1)]C · · · [ψ]E←C [φ(un)]C

)
(property of matrix multiplication)

=
(
[ψ(φ(u1))]E · · · [ψ(φ(un))]E

)
by Proposition 5.1 applied to ψ

=
(
[ψ ◦ φ(u1)]E · · · [ψ ◦ φ(un)]E

)
= [ψ ◦ φ]E←B.

This proposition, which may seem to state merely some technical fact, is crucial to
our understanding of matrices. Matrix multiplication is defined precisely so as to make
Proposition 7.1 hold. That is, matrix multiplication is defined to mimic the composition
of linear transformations, so that the latter can be computed via the former, once bases
have been chosen.
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Example. We take the linear transformations φ and ψ in the previous example, and
choose the following bases for P3, M2(R), and P1 respectively:

B = {x3, x2, x, 1}

C =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
E = {x, 1}

Then computing φ(x3), φ(x2), φ(x), φ(1), we obtain

[φ]C←B =


0 0 0 1

1 1 1 1

8 4 2 1

27 9 3 1

 .

Similarly, computing the effect of ψ on the basis vectors in C, we obtain

[ψ]E←C =

(
1 −1 0 0

0 0 1 −1

)
.

Therefore, by Proposition 7.1,

[ψ ◦ φ]E←B =

(
1 −1 0 0

0 0 1 −1

)
0 0 0 1

1 1 1 1

8 4 2 1

27 9 3 1


=

(
−1 −1 −1 0

−19 −5 −1 0

)
.

For example, if we wish to find ψ ◦ φ(x3 − x2 + x− 1), then we need only compute

[ψ ◦ φ]E←B[x3 − x2 + x− 1]B =

(
−1 −1 −1 0

−19 −5 −1 0

)
1

−1

1

−1

 =

(
−1

−15

)
,

from which we read off that ψ ◦ φ(x3 − x2 + x− 1) = −x− 15.
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II – 8 Invertible linear transformations

If U is a vector space, the identity map on U is the map

1U : U → U

u 7→ u.

It is obviously a linear transformation.
A linear transformation φ : U → V is called invertible if there is a linear transfor-

mation ψ : V → U such that

ψ ◦ φ = 1U and φ ◦ ψ = 1V .

If the map ψ exists, it is unique and is called the inverse of φ. The inverse of φ is
denoted φ−1.

Remark. An invertible linear transformation is also called an isomorphism.

To find the inverse of a linear transformation φ : U → V , if an inverse exists, do the
following: For an arbitrary element v ∈ V , try to solve the equation φ(u) = v for u in
terms of v. There are two cases:

(a) If, for each v ∈ V , there is a unique u ∈ U such that φ(u) = v, then φ is invertible,
and the inverse sends v to that u.

(b) If there is some v ∈ V such that the equation φ(u) = v has either no solutions or
more than one solution, then φ is not invertible.

Example. Decide whether

φ : P2 → R3

p 7→

p(−1)

p(0)

p(1)


is invertible, and find its inverse if so.

Solution: Let v = (a1, a2, a3) ∈ R3. We try to solve φ(p) = v for p = b2x
2+b1x+b0 ∈ P2.

Now, φ(p) = v if and only if p(−1)

p(0)

p(1)

 =

a1a2
a3

 ,

if and only if

b2 − b1 + b0 = a1

b0 = a2

b2 + b1 + b0 = a3
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This system has the unique solution

b2 =
1

2
a1 − a2 +

1

2
a3

b1 = −1

2
a1 +

1

2
a3

b0 = a2,

i.e., p = ( 12a1 − a2 +
1
2a3)x

2 + (− 1
2a1 +

1
2a3)x + a2. Therefore, φ is invertible, and its

inverse φ−1 : R3 → P2 is given by

φ−1

a1a2
a3

 = ( 12a1 − a2 +
1
2a3)x

2 + (− 1
2a1 +

1
2a3)x+ a2.

For example, the unique p ∈ P2 such that p(−1) = 0, p(0) = 1, and p(1) = 0, i.e., such
that φ(p) = (0, 1, 0), is φ−1(0, 1, 0) = −x2 + 1.

Proposition 8.1. Let φ : U → V be a linear transformation, where U and V are finite
dimensional with bases B and C respectively. Then φ is invertible if and only if [φ]C←B
is invertible, and if this is the case, [φ−1]B←C = [φ]−1C←B.

For a proof, see Section 5 of the Appendix.

Example. Consider the linear transformation

φ : P3 → M2(R)

p 7→

(
p(−2) p′(−1)

p′′(1) p′′′(2)

)
.

If B = {x3, x2, x, 1} and

C =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
,

then

[φ]C←B =


−8 4 −2 1

3 −2 1 0

6 2 0 0

6 0 0 0

 .

(Recall from Section 5 how to find [φ]C←B.) By row reducing the augmented matrix(
[φ]C←B I

)
, we find that [φ]C←B is invertible, with inverse

[φ]−1C←B =


0 0 0 1/6

0 0 1/2 −1/2

0 1 1 −3/2

1 2 0 1/3

 . (8.1)

Therefore, φ is invertible, and [φ−1]B←C is equal to the matrix in (8.1).

Paul Buckingham Linear Algebra II (MATH 225) – v 1.23 | 42



II – 9 Criterion for invertibility in terms of injectivity and sur-
jectivity

Proposition 9.1. A linear transformation φ : U → V is invertible (i.e., an isomor-
phism) if and only if it is both injective and surjective.

We prove this proposition after giving the next two examples.

Example. Let V be the subspace of P consisting of the polynomials q such that q(0) =
0, and consider the linear transformation

φ : P → V

p 7→ xp.

(For example, φ(x2 − 3x + 5) = x3 − 3x2 + 5x.) We show that φ is an isomorphism
using Proposition 9.1. First, we show injectivity, which is the same as showing that
Ker(φ) = {0}; see Proposition 2.2. If p ∈ P and xp is the zero polynomial, then p

must be the zero polynomial as well, since a non-zero polynomial multiplied by x is still
non-zero. For surjectivity, take any q ∈ V , i.e., q is a polynomial such that q(0) = 0.
Writing q = anx

n + · · ·+ a1x+ a0, we see by substituting x = 0 that a0 = 0, so

q = anx
n + · · ·+ a1x = xp

where p = anx
n−1 + · · ·+ a1. Thus, q = φ(p), and φ is surjective.

Example. Decide whether the linear transformation

φ : P → S

p 7→ (p(0), p(1), p(2), . . .)

is an isomorphism.

Solution: It is not an isomorphism, because it is not surjective. To see this, we show that
the sequence s = (1, 0, 0, 0, . . .) is not in Image(φ). Suppose that p is a polynomial such
that φ(p) = s. Then p(n) is zero for all positive integers n, so it has infinitely many roots
and therefore must be the zero polynomial. (This is something you probably already
know about polynomials: The graph of a non-zero polynomial can cross the horizontal
axis only finitely many times. For a formal proof, see Lemma 15.1 in the Appendix.) But
p cannot be the zero polynomial, because p(0) = 1. Therefore, no p satisfying φ(p) = s

exists, so s ̸∈ Image(φ), and so φ is not surjective.

Proof of Proposition 9.1

Assume first that φ is invertible, i.e., there is a linear transformation ψ : V → U such
that ψ ◦ φ = 1U and φ ◦ ψ = 1V . If φ(u1) = φ(u2), then

ψ(φ(u1)) = ψ(φ(u2)),

i.e., ψ ◦ φ(u1) = ψ ◦ φ(u2),

i.e., 1U (u1) = 1U (u2),

i.e., u1 = u2.
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Thus, φ is injective. Further, φ is surjective, because if v ∈ V , then v = 1V (v) =

φ ◦ ψ(v) = φ(u) where u = ψ(v).
Conversely, assume that φ is both injective and surjective. Then if v ∈ V , there is

a unique u ∈ U such that φ(u) = v. Existence is just the definition of surjectivity, and
for uniqueness, we observe that if φ(u) and φ(u′) are both equal to v, then u = u′ by
injectivity. Let uv be the unique vector u such that φ(u) = v. Then we have a map

ψ : V → U

v 7→ uv.

By construction, ψ ◦ φ = 1U and φ ◦ ψ = 1V . All that remains is to show that ψ is a
linear transformation. To that end, let v,v1,v2 ∈ V and c ∈ R. Then

ψ(v1 + v2) = ψ
(
φ ◦ ψ(v1) + φ ◦ ψ(v2)

)
because φ ◦ ψ = 1V

= ψ
(
φ(ψ(v1)) + φ(ψ(v2))

)
= ψ

(
φ(ψ(v1) + ψ(v2))

)
because φ respects addition

= ψ ◦ φ(ψ(v1) + ψ(v2))

= ψ(v1) + ψ(v2) because ψ ◦ φ = 1U ,

and ψ(cv) = ψ
(
c
(
φ ◦ ψ(v)

))
because φ ◦ ψ = 1V

= ψ
(
cφ(ψ(v))

)
= ψ

(
φ(cψ(v))

)
because φ respects scalar multiplication

= ψ ◦ φ(cψ(v))

= cψ(v) because ψ ◦ φ = 1U .
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II – 10 Isomorphic vector spaces

We say that vector spaces U and V are isomorphic if there is an isomorphism (i.e., an
invertible linear transformation) φ : U → V . In this case, we write U ∼= V .

Theorem 10.1. Two finite-dimensional vector spaces are isomorphic if and only if they
have the same dimension.

Proof. (Sketch) Let U and V be finite-dimensional vector spaces. Suppose first that
there is an isomorphism φ : U → V . Let n = dim(U), and let {u1, . . . ,un} be a basis
for U . We leave it as an exercise to show that the vectors φ(u1), . . . , φ(un) ∈ V are
linearly independent and span V , so dim(V ) = n = dim(U).

Conversely, suppose that U and V both have dimension n. If {u1, . . . ,un} is a basis
for U , and {v1, . . . ,vn} is a basis for V , then we may define a map

U → V

a1u1 + · · ·+ anun 7→ a1v1 + · · ·+ anvn,

and this map is a linear transformation. Further, it is invertible, with inverse given by
mapping b1v1 + · · ·+ bnvn to b1u1 + · · ·+ bnun. Thus, U and V are isomorphic.

Example. By Theorem 10.1, R6 ∼= M2,3(R), because both R6 and M2,3(R) have di-
mension 6. By the same proposition, P8 is not isomorphic to M4(R), because the former
has dimension 9 while the latter has dimension 16.

Coordinates and isomorphism

We return to an idea hinted at in Section I – 7. Let U be a vector space of finite dimension
n, and let B = {u1, . . . ,un} be a basis for U . We asserted that, via coordinate vectors, U
“looks a lot like” Rn. Now we can make this assertion more precise, namely, by observing
that the map

φ : U → Rn

u 7→ [u]B

is an isomorphism. In fact, it is the isomorphism described in the second half of the proof
of Theorem 10.1, where we take for C the standard basis {e1, . . . , en} of Rn. Indeed,

φ(a1u1 + · · ·+ anun) = [a1u1 + · · ·+ anun]B by definition of φ

=


a1
...
an


= a1e1 + · · ·+ anen.
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(III) Diagonalization
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III – 1 Review of eigenvalues, eigenvectors, and diagonalization

In math 125, we saw an introduction to eigenvalues and eigenvectors, together with a
brief study of diagonalization over R. In this course, we will see some further aspects of
diagonalization. Our treatment will include orthogonal diagonalization of real symmetric
matrices, which we will come to once we have studied inner products in Section IV.

First, we briefly recall some of the key ideas from the topic of eigenvalues and
eigenvectors. Let A be an n×n matrix. An eigenvector of A is a non-zero vector u ∈ Rn

such that Au is a scalar multiple of u. That is, u is an eigenvector of A if it is non-
zero and there is a scalar λ ∈ R such that Au = λu. We say in this case that λ is an
eigenvalue of A, and that u is an eigenvector of A with eigenvalue λ.

So, a (real) eigenvalue of A is a scalar λ ∈ R such that there is a non-zero vector
u ∈ Rn satisfying Au = λu.

The real eigenvalues of A turn out to be the real roots of the characteristic polynomial
of A, which is the monic degree-n polynomial pA(x) = det(xI −A).

Remark. Some books define the characteristic polynomial to be det(A−xI), but since
det(A− xI) = (−1)n det(xI −A), there is little difference between the two definitions.

If λ is an eigenvalue of A, then the eigenspace of A associated to λ is the set {u ∈
Rn | Au = λu}, i.e., the set of eigenvectors with eigenvalue λ together with the zero
vector (which is not an eigenvector). Equivalently, the eigenspace associated to λ is
Nul(A− λI).

Example. Find the eigenvalues and eigenspaces of the matrix A =

(
−8 10

−5 7

)
.

Solution: The characteristic polynomial is det(xI − A) = x2 + x − 6 = (x − 2)(x + 3),
so the eigenvalues are −3 and 2. The eigenspace associated to −3 is the null space of

−3I −A =

(
5 −10

5 −10

)
↔

(
1 −2

0 0

)
,

so this eigenspace is spanned by

(
2

1

)
. The eigenspace associated to 2 is the null space

of

2I −A =

(
10 −10

5 −5

)
↔

(
1 −1

0 0

)
,

i.e., it is the span of

(
1

1

)
.

Diagonalization

Let us briefly recall diagonalization over R. An n × n matrix A is diagonalizable if it
is similar to a diagonal matrix, i.e., if there is an invertible n × n matrix P such that
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P−1AP is diagonal. Before giving the next theorem, which is key, we recall that the
algebraic multiplicity mλ of an eigenvalue λ ∈ R is the number of times the factor
x− λ appears in pA(x). Also, the geometric multiplicity dλ of λ is the dimension of the
associated eigenspace. We always have 1 ≤ dλ ≤ mλ; see Lemma 6.1 in the Appendix.

Theorem 1.1. Let A ∈Mn(R). Then the following are equivalent:

(i) A is diagonalizable over R.

(ii) Rn has a basis consisting of eigenvectors of A.

(iii) The sum of the geometric multiplicities of the real eigenvalues of A is equal to n.

(iv) All roots of pA(x) are real, and the geometric multiplicity of every eigenvalue of
A is equal to its algebraic multiplicity.

For a proof, see Section 6 of the Appendix.
To diagonalize a diagonalizable matrix A, find a basis {u1, . . . ,un} for Rn consist-

ing of eigenvectors of A, let P be the invertible matrix
(
u1 · · · un

)
, and let D be

the diagonal matrix whose diagonal entries are λ1, . . . , λn, where Aui = λiui. Then
P−1AP = D.

Example. Let

A =

 1 1 4

2 2 −4

−2 1 7

 .

We find that pA(x) = (x− 3)2(x− 4), so the eigenvalues are 3 and 4. Now,

3I −A =

 2 −1 −4

−2 1 4

2 −1 −4

↔

2 −1 −4

0 0 0

0 0 0

 ,

so the eigenspace associated to 3 has basis
1

2

0

 ,

2

0

1


 .

Similarly, by row reducing 4I −A, we find that the eigenspace associated to 4 has basis
 1

−1

1


 .

Hence, if

P =

1 2 1

2 0 −1

0 1 1

 and D =

3 0 0

0 3 0

0 0 4

 ,

then P is invertible and P−1AP = D. Thus, A is diagonalizable.
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III – 2 Solving systems of differential equations via diagonaliza-
tion

We turn to an application of diagonalization to the problem of solving systems of dif-
ferential equations. A first-order differential equation with constant coefficients is an
equation of the form

f ′ = λf, (2.1)

where λ is some given real number, and f is a differentiable function to be solved for.
In fact, the solutions to the equation in (2.1) are straightforward to write down. They
are the functions f(x) = aeλx with a ∈ R. (One direction is easy: Just differentiate
the function f(x) = aeλx and observe that you get λf(x). For the other direction, see
Section 7 of the Appendix.)

Now consider the following system of differential equations:

f ′1 = 4f1 − f2

f ′2 = 2f1 + f2
(2.2)

Here, we are solving for two differentiable functions f1, f2. We may express the system
in the form (

f ′1
f ′2

)
= A

(
f1

f2

)
, (2.3)

where

A =

(
4 −1

2 1

)
.

We will use the fact that A is diagonalizable to solve the system in (2.2). Following the
method in Section 1 (or math 125), we find that P−1AP = D where

P =

(
1 1

2 1

)
and D =

(
2 0

0 3

)
.

Define functions g1, g2 by (
g1

g2

)
= P−1

(
f1

f2

)
. (2.4)

Differentiating, we obtain(
g′1
g′2

)
= P−1

(
f ′1
f ′2

)
(I will explain this step in class)

= P−1A

(
f1

f2

)
by (2.3)

= P−1AP

(
g1

g2

)
by (2.4)

= D

(
g1

g2

)
=

(
2g1

3g2

)
.
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Thus, g′1 = 2g1 and g′2 = 3g2. These new differential equations are just instances of the
differential equation we saw in (2.1) and therefore have the solutions g1(x) = a1e

2x and
g2(x) = a2e

3x where a1, a2 ∈ R. Now we use (2.4) again to express the functions f1 and
f2 in terms of the functions e2x and e3x. Specifically,(

f1

f2

)
(2.4)
= P

(
g1

g2

)
=

(
1 1

2 1

)(
g1

g2

)
=

(
g1 + g2

2g1 + g2

)
.

Thus,

f1(x) = a1e
2x + a2e

3x (2.5)

f2(x) = 2a1e
2x + a2e

3x (2.6)

The constants a1, a2 ∈ R are arbitrary. Any choice of these constants gives a solution
to the system in (2.2).

Systems of ODEs with constraints

The solutions f1, f2 found in the above example were general solutions without any
further constraints. Suppose instead that we were asked to solve the same system but
now subject to the constraints f1(0) = −1 and f2(0) = 4. Then substituting x = 0 in
(2.5) and (2.6), we obtain the linear system

a1 + a2 = −1

2a1 + a2 = 4,

which has the solution a1 = 5, a2 = −6. Therefore, the solution to (2.2) together with
the constraints f1(0) = −1 and f2(0) = 4 is

f1(x) = 5e2x − 6e3x

f2(x) = 10e2x − 6e3x

In class, we will do an example of a system of three differential equations in three
functions f1, f2, f3. The method will be identical, but will involve diagonalizing a 3× 3

matrix instead of a 2× 2 one.
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III – 3 Diagonalization over the complex numbers

Complex numbers are introduced in math 125, but in case you need an overview of the
key points, please refer to the document called What You Need to Know about Complex
Numbers for MATH 225 on eClass.

One point that should be stressed is that every real number is also a complex
number. Thus, 3, π,

√
2,−

√
5, 1 + 2i, π − 5i are all complex numbers.

Complex eigenvalues and eigenvectors

A complex eigenvector of A is a non-zero vector u ∈ Cn such that Au is a complex
scalar multiple of u. That is, u is an eigenvector of A if it is non-zero and there is a
scalar λ ∈ C such that Au = λu. We say in this case that λ is a complex eigenvalue of
A, and that u is an eigenvector of A with eigenvalue λ.

A complex eigenvalue of A is therefore a scalar λ ∈ C such that there is a non-zero
vector u ∈ Cn satisfying Au = λu.

The complex eigenvalues of A are the complex roots of the characteristic polynomial
of A.

If λ is a complex eigenvalue of A, then the eigenspace of A associated to λ is the set
{u ∈ Cn | Au = λu}, i.e., the set of complex eigenvectors with eigenvalue λ together
with the zero vector (which is not an eigenvector).

Example. The matrix A =

(
0 −1

1 0

)
has characteristic polynomial pA(x) = x2 + 1 =

(x−i)(x+i), so its complex eigenvalues are i and −i. The complex eigenspace associated
to the eigenvalue i is found, as in the real situation, by row reducing λI −A where now
λ = i:

iI −A =

(
i 1

−1 i

)
↔

(
1 −i
0 0

)
. (3.1)

The associated eigenspace is the complex null space of the matrix in (3.1), which is the

complex span of

(
i

1

)
. The eigenspace associated to −i is the complex span of

(
−i
1

)
.

This uses Proposition 3.1 below.

If u ∈ Cn, let u be the vector obtained by taking the complex conjugate of every
entry in u.

Proposition 3.1. If A ∈ Mn(R) and λ ∈ C is an eigenvalue of A, then λ is also an
eigenvalue of A. Further, if the complex eigenspace for λ is spanned by {u1, . . . ,uk},
then the complex eigenspace for λ is spanned by {u1, . . . ,uk}.

Proof. All we have to show is that if u is a complex eigenvector with eigenvalue λ, then
u is an eigenvector with eigenvalue λ. This is straightforward, because if Au = λu, then

λu = λu = Au = Au

because A is real.
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Diagonalization over C

If A ∈ Mn(C), i.e., is an n × n matrix with complex entries, then A is said to be
diagonalizable over C if there is an invertible n × n matrix P ∈ Mn(C) such that
P−1AP is diagonal. The criteria for when a matrix is diagonalizable over C are similar
for the situation over R. If λ ∈ C is an eigenvalue, the (complex) algebraic multiplicity
mλ of λ is the number of times the factor x − λ appears in the factorization of pA(x)
over C. (For example, because x2 +1 = (x− i)(x+ i) in the example above, each of the
eigenvalues i,−i has algebraic multiplicity 1.)

The (complex) geometric multiplicity dλ of a complex eigenvalue λ is the dimension
of the associated eigenspace as a complex vector space. We again have 1 ≤ dλ ≤ mλ.

Theorem 3.2. Let A ∈Mn(C). Then the following are equivalent:

(i) A is diagonalizable over C.

(ii) Cn has a basis consisting of eigenvectors of A.

(iii) The sum of the complex geometric multiplicities of the eigenvalues of A is equal
to n.

(iv) The complex geometric multiplicity of every eigenvalue of A is equal to its complex
algebraic multiplicity.

The proof is identical to that in the real case. See Section 6 of the Appendix.

Example. Let

A =

 1 −3 −2

1 2 1

−1 1 2

 ,

which has characteristic polynomial pA(x) = (x − 3)(x2 − 2x + 2). The eigenvalues of
A are therefore 3, 1 + i, and 1 − i. (We have used the usual formula for the roots of a
quadratic polynomial to find the two non-real eigenvalues.) The eigenspace associated
to the eigenvalue 3 is found just as usual, by row reducing 3I −A, and we find that it is
spanned by (1, 0,−1). For the eigenspace associated to 1+ i, we row reduce (1+ i)I−A:

(1 + i)I −A =

 i 3 2

−1 −1 + i −1

1 −1 −1 + i

↔

1 0 i

0 1 1

0 0 0

 .

(I will do the row-reduction steps in detail in class.) The eigenspace associated to 1 + i

is therefore spanned by (i, 1,−1). Using Proposition 3.1, we see that the eigenspace
associated to 1− i is spanned by (−i, 1,−1). Hence, if

P =

 1 i −i
0 1 1

−1 −1 −1

 and D =

3 0 0

0 1 + i 0

0 0 1− i

 ,

then P−1AP = D. Thus, A is diagonalizable over C.
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III – 4 The 2× 2 case with non-real eigenvalues

Recall from math 125 that the matrices describing rotations of the plane are the matrices
of the form (

c −s
s c

)
,

where c, s ∈ R satisfy c2 + s2 = 1. Equivalently, the 2× 2 rotation matrices are those of
the form

Rθ =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
,

because if c2+ s2 = 1, we may always choose θ ∈ R such that cos(θ) = c and sin(θ) = s.
The number θ ∈ R is the anticlockwise angle of rotation.

Proposition 4.1. Let A be a real 2× 2 matrix that has a non-real complex eigenvalue
λ = a+ bi. If w is an eigenvector for λ, then the real matrix Q =

(
Re(w) Im(w)

)
is

invertible, and

Q−1AQ =

(
a b

−b a

)
= s

(
a/s b/s

−b/s a/s

)
,

where s = |λ| =
√
a2 + b2.

For a proof of Proposition 4.1, see Section 8 of the Appendix.

Remark. The notation Re(w) and Im(w) appearing in the proposition signifies the
real part and imaginary part respectively of the complex vector w.

Remark. The matrix

(
a/s b/s

−b/s a/s

)
appearing in the proposition is a rotation matrix,

because (a/s)2 +(−b/s)2 = (a2 + b2)/(a2 + b2) = 1. We also point out that the effect of
replacing A by Q−1AQ amounts simply to a change of basis. The proposition therefore
says that every real 2× 2 matrix with non-real eigenvalues is, after a change of basis, a
scalar times a rotation matrix.

Example. Let

A =

(
3 −17

1 −5

)
.

The characteristic polynomial of A is pA(x) = det(xI−A) = x2+2x+2, whose complex
roots are

1

2
(−2±

√
−4) = −1± i.

We will apply Proposition 4.1 with λ = −1 + i. (We may use either eigenvalue.) First,
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we find an eigenvector with eigenvalue λ = −1 + i:

(−1 + i)I −A =

(
−4 + i 17

−1 4 + i

)

↔

(
1 −4− i

−4 + i 17

)
(interchange the rows,
then scale row 1 by −1)

↔

(
1 −4− i

0 0

)
(add 4− i times row 1 to row 2)

An eigenvector is therefore w =

(
4 + i

1

)
. Hence, we let

Q =
(
Re(w) Im(w)

)
=

(
4 1

1 0

)
.

By Proposition 4.1, Q is invertible and

Q−1AQ =

(
−1 1

−1 −1

)
(no calculation necessary; just use Prop. 4.1)

= |λ|

(
−1/|λ| 1/|λ|
−1/|λ| −1/|λ|

)

=
√
2

(
−1/

√
2 1/

√
2

−1/
√
2 −1/

√
2

)

=
√
2

(
cos(5π/4) − sin(5π/4)

sin(5π/4) cos(5π/4)

)
=

√
2R5π/4.

Thus, after a change of basis, A is
√
2 times rotation anticlockwise by angle 5π/4.
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(IV) Inner Product Spaces
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IV – 1 Inner product spaces: definition and examples

An inner product on a vector space V is an operation that assigns to each pair (u,v) ∈
V 2 a real number ⟨u,v⟩, in such a way that the following hold:

(i) For all u,v ∈ V , ⟨u,v⟩ = ⟨v,u⟩.

(ii) For all u,v,w ∈ V , ⟨u,v +w⟩ = ⟨u,v⟩+ ⟨u,w⟩.

(iii) For all u,v ∈ V and all c ∈ R, ⟨cu,v⟩ = c⟨u,v⟩.

(iv) For all u ∈ V , ⟨u,u⟩ ≥ 0, and ⟨u,u⟩ = 0 if and only if u = 0V .

A vector space V together with an inner product ⟨·, ·⟩ is called an inner product space,
denoted (V, ⟨·, ·⟩).

Remark. It follows from the axioms of an inner product that ⟨u + v,w⟩ = ⟨u,w⟩ +
⟨v,w⟩:

⟨u+ v,w⟩
(i)
= ⟨w,u+ v⟩

(ii)
= ⟨w,u⟩+ ⟨w,v⟩

(i)
= ⟨u,w⟩+ ⟨v,w⟩.

Similarly, we may show that ⟨u, cv⟩ = c⟨u,v⟩ (short exercise).

Example. The dot product studied in math 125 is an inner product on Rn. For ex-
ample, we know that if u,v ∈ Rn, then u · v = v · u. This is axiom (i) of an inner
product. We leave it as an exercise to verify the other three axioms. The dot product is
also called the standard inner product on Rn.

Example. Let us put an inner product on P2. For p, q ∈ P2, define

⟨p, q⟩ = p(−1)q(−1) + p(0)q(0) + p(1)q(1).

We will verify axiom (iv) and leave the other axioms as an exercise. If p ∈ P2, then

⟨p, p⟩ = p(−1)2 + p(0)2 + p(1)2 ≥ 0.

Further, because p(−1)2, p(0)2, p(1)2 are all non-negative, ⟨p, p⟩ = 0 if and only if
p(−1)2 = p(0)2 = p(1)2 = 0, if and only if p(−1) = p(0) = p(1) = 0. But a poly-
nomial of degree at most 2 that vanishes at three different points must be the zero
polynomial.

There is nothing special about the numbers −1, 0, 1 in the above example. Any three
distinct numbers would do for P2. In fact, as the next example shows, we may similarly
put an inner product on Pn for any n ≥ 1.

Example. If x0, . . . , xn are distinct real numbers, then

⟨p, q⟩ =
n∑

i=0

p(xi)q(xi)

defines an inner product on Pn.
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Example. Let a < b be real numbers, and define C[a, b] to be the space of continuous
functions f : [a, b] → R. We may define an inner product on C[a, b] by

⟨f, g⟩ =
∫ b

a

f(x)g(x) dx.

We will verify axiom (ii). If f, g, h ∈ C[a, b], then

⟨f, g + h⟩ =

∫ b

a

f(x)(g + h)(x) dx

=

∫ b

a

f(x)(g(x) + h(x)) dx

=

∫ b

a

(f(x)g(x) + f(x)h(x)) dx

=

∫ b

a

f(x)g(x) dx+

∫ b

a

f(x)h(x) dx

= ⟨f, g⟩+ ⟨f, h⟩.

Axiom (iv) is harder to verify, requiring a little analysis. See Section 9 of the Appendix.
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IV – 2 Length, distance, and orthogonality

Let (V, ⟨·, ·⟩) be an inner product space. The norm of a vector u ∈ V is the non-negative
real number ∥u∥ =

√
⟨u,u⟩. A vector of norm 1 is called a unit vector. The distance

dist(u,v) between two vectors u,v ∈ V is the norm of their difference, i.e.,

dist(u,v) = ∥u− v∥ =
√
⟨u− v,u− v⟩.

Example. When Rn has the standard inner product (the dot product), the norm of a
vector is its length in the sense of math 125. Thus, in R3 for example, ∥(x1, x2, x3)∥ =√
x21 + x22 + x23.

In a general inner product space, we will use the word norm instead of length, but
remember that they are the same concept in R2 and R3 (when these spaces are given
the standard inner product).

Example. Give P2 the inner product ⟨p, q⟩ = p(−1)q(−1) + p(0)q(0) + p(1)q(1). If
p = x2 + x+ 1 and q = x2 − 2, then

dist(p, q) = ∥p− q∥

= ∥x+ 3∥

=
√

(−1 + 3)2 + (0 + 3)2 + (1 + 3)2

=
√
29.

Orthogonality

Two vectors u,v in an inner product space (V, ⟨·, ·⟩) are said to be mutually orthogonal
(or simply orthogonal) if ⟨u,v⟩ = 0. This assumption is equivalent to ⟨v,u⟩ = 0 because
of symmetry of the inner product.

Example. In the inner product space C[−π, π], the functions cos and sin are orthogonal:

⟨cos, sin⟩ =
∫ π

−π
cos(x) sin(x) dx =

1

2

∫ π

−π
sin(2x) dx = −1

4
[cos(2x)]π−π = 0.

If U is a subspace of an inner product space (V, ⟨·, ·⟩), then the orthogonal complement
of U in V is the set

U⊥ = {v ∈ V | ⟨u,v⟩ = 0 for all u ∈ U}.

If U = Span(u1, . . . ,uk) for some vectors u1, . . . ,uk ∈ V , then we may show that

U⊥ = {v ∈ V | ⟨u1,v⟩ = · · · = ⟨uk,v⟩ = 0}.

Example. Let U = Span(u1,u2) ⊆ R4 where u1 = (1, 0, 1, 0) and u2 = (1, 0, 0,−1).
Then a vector v = (x1, x2, x3, x4) ∈ V lies in U⊥ if and only if u1 · v = u2 · v = 0, i.e.,

x1 + x3 = 0

x1 − x4 = 0
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The solution to this system is x1 = x4 and x3 = −x4, with x2, x4 being free. Therefore,
U⊥ has basis {(0, 1, 0, 0), (1, 0,−1, 1)}.

Proposition 2.1. If u and v are vectors in an inner product space (V, ⟨·, ·⟩) such that
⟨u,v⟩ = 0, then ∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof.
∥u+ v∥2 = ⟨u+ v,u+ v⟩ = ⟨u,u⟩+ ⟨u,v⟩+ ⟨v,u⟩+ ⟨v,v⟩.

The middle two terms on the right are both zero by assumption, and the outer terms
are ∥u∥2 and ∥v∥2.

Orthogonal and orthonormal bases

Let (V, ⟨·, ·⟩) be an inner product space. A basis {u1, . . . ,un} for V is said to be orthog-
onal if ⟨ui,uj⟩ = 0 for all i ̸= j. If, in addition, all of the ui have norm 1, i.e., ∥ui∥ = 1,
then the basis is said to be orthonormal. Thus, a basis is {u1, . . . ,un} is orthonormal if
and only if

⟨ui,uj⟩ =

1 when i = j

0 otherwise.

Example. The standard basis {e1, . . . , en} in Rn is an orthonormal basis when Rn has
the standard inner product.

Example. Give P2 the inner product ⟨p, q⟩ = p(−1)q(−1) + p(0)q(0) + p(1)q(1). An
orthogonal basis for P2 with respect to this inner product is {p1, p2, p3} where

p1 = 1, p2 = x, p3 = x2 − 2

3
.

We verify that ⟨p1, p3⟩ = 0 and leave the other calculations as an exercise:

⟨p1, p3⟩ = ⟨1, x2 − 2
3 ⟩ = (1− 2

3 )−
2
3 + (1− 2

3 ) = 0.

Note that the basis {p1, p2, p3} is orthogonal but not orthonormal.

If {u1, . . . ,un} is an orthogonal basis for a given inner product space, then we may
produce from it an orthonormal basis by scaling each ui by 1/∥ui∥. Thus, {û1, . . . , ûn}
is an orthonormal basis where

ûi =
1

∥ui∥
ui.

Example. Continuing with the previous example, we find that

∥1∥ =
√
3, ∥x∥ =

√
2, ∥x2 − 2

3∥ =
√

2
3 ,

so {
1√
3
, 1√

2
x,
√

3
2 (x

2 − 2
3 )

}
is an orthonormal basis for P2 (with respect to the inner product given above).
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IV – 3 The Gram–Schmidt process and orthogonal projection

We study a procedure for producing an orthogonal basis for a finite-dimensional inner
product space (V, ⟨·, ·⟩). Called the Gram–Schmidt process, it begins with any basis
{v1, . . . ,vn} for V , and successively replaces each vi with another vector ui such that
{u1, . . . ,un} is an orthogonal basis.

The uj are defined in terms of the vi as follows:

u1 = v1

u2 = v2 −
⟨u1,v2⟩
⟨u1,u1⟩

u1

u3 = v3 −
⟨u1,v3⟩
⟨u1,u1⟩

u1 −
⟨u2,v3⟩
⟨u2,u2⟩

u2

...

un = vn − ⟨u1,vn⟩
⟨u1,u1⟩

u1 −
⟨u2,vn⟩
⟨u2,u2⟩

u2 − · · · − ⟨un−1,vn⟩
⟨un−1,un−1⟩

un−1

(Can you see why each uk is orthogonal to all the uj before it?)

Example. Give P2 the inner product ⟨p, q⟩ = p(0)q(0)+ p(1)q(1)+ p(2)q(2). Note that
this is a different inner product from the examples in Section 2. Starting with the basis
{q1, q2, q3} for P2, where

q1 = 1, q2 = x, q3 = x2,

we use the Gram–Schmidt process to produce an orthogonal basis {p1, p2, p3} for P2:

p1 = q1 = 1,

p2 = q2 −
⟨p1, q2⟩
⟨p1, p1⟩

p1 = x− 3

3
· 1 = x− 1,

p3 = q3 −
⟨p1, q3⟩
⟨p1, p1⟩

p1 −
⟨p2, q3⟩
⟨p2, p2⟩

p2 = x2 − 5

3
· 1− 4

2
(x− 1) = x2 − 2x+

1

3
.

The basis {p1, p2, p3} is orthogonal but not orthonormal. The norms of the pi are

∥1∥ =
√
3, ∥x− 1∥ =

√
2, ∥x2 − 2x+ 1

3∥ =
√

2
3 ,

so {
1√
3
, 1√

2
(x− 1),

√
3
2 (x

2 − 2x+ 1
3 )

}
is an orthonormal basis for P2 (with respect to the inner product just given).

Remark. In the Gram–Schmidt process, having found a given uk, it is permissible to
scale it by a non-zero scalar before moving on to the computation of ui+1. Doing so can
make the subsequent computations easier.

Orthogonal projection

Let U be a finite-dimensional subspace of an inner product space (V, ⟨·, ·⟩). The Gram–
Schmidt process ensures that U has an orthogonal basis {u1, . . . ,uk}. Then for v ∈ V ,
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we define
projU (v) =

⟨u1,v⟩
⟨u1,u1⟩

u1 + · · ·+ ⟨uk,v⟩
⟨uk,uk⟩

uk ∈ U.

It appears as though projU (v) depends on the choice of orthogonal basis {u1, . . . ,uk},
but in fact it does not; it depends only on the subspace U and the vector v, as we show
in Section 10 in the Appendix. We call projU (v) the orthogonal projection of v onto U .

The orthogonal projection of a vector has the following important interpretation.

Proposition 3.1. Let (V, ⟨·, ·⟩) be an inner product space and U a finite-dimensional
subspace of V . If v ∈ V , then projU (v) is the unique vector u ∈ U that minimizes
dist(v,u).

See Section 10 of the Appendix for a proof.

Example. Consider the space V = C[−π, π] and the subspace U of V spanned by the
functions 1, cos, sin. We compute projU (f), where f(x) = x2 + x. For this, we use an
orthogonal basis for U . In fact, {1, cos, sin} is already one. (We saw in Section 2 that
cos and sin are orthogonal in C[−π, π], and we leave it as a short exercise to show that
⟨1, cos⟩ = ⟨1, sin⟩ = 0 as well.) Hence,

projU (f) =
⟨1, f⟩
⟨1, 1⟩

· 1 + ⟨cos, f⟩
⟨cos, cos⟩

cos +
⟨sin, f⟩
⟨sin, sin⟩

sin.

Each of the inner products in this expression is an integral. For example,

⟨cos, f⟩ =
∫ π

−π
cos(x)f(x) dx =

∫ π

−π
cos(x)(x2 + x) dx = −4π. (3.1)

(If you have not seen techniques for evaluating an integral such as the one in (3.1), then
do not worry. I am just illustrating a point.) Once we have evaluated all the relevant
integrals, we find that

projU (f) =
π2

3
− 4 cos + 2 sin.

According to Proposition 3.1, then, π2

3 − 4 cos + 2 sin is the “closest” function in
Span(1, cos, sin) to the function f(x) = x2 + x. If you plot the two functions, you will
see that they are in fact quite similar on the interval [−π, π]. This is the very beginning
of a very big subject called Fourier analysis. We could obtain better approximations of
f by projecting it not onto Span(1, cos(x), sin(x)) but instead onto

Span(1, cos(x), sin(x), cos2(x), sin2(x), cos3(x), sin3(x), . . . , cosn(x), sinn(x))

for some large integer n. Fourier analysis tells us how to compute these projections. The
subject has important applications in, for example, signal processing.
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IV – 4 QR-factorization

Suppose A ∈ Mm,n(R) has linearly independent columns (so necessarily m ≥ n). A
QR-factorization of A is a factorization A = QR where Q ∈Mm,n(R) has orthonormal
columns and R ∈ Mn(R) is upper triangular. In fact, the diagonal entries of R may be
chosen to be positive, and in this case the factorization is unique and is called the totally
positive QR-factorization of A. All of this is proven in Section 11 of the Appendix.

Method to obtain the totally positive QR-factorization of A

Assume that A has linearly independent columns v1, . . . ,vn (in that order). To find the
totally positive QR-factorization of A, do the following.

(i) Apply the Gram–Schmidt process to v1, . . . ,vn, obtaining an orthogonal basis
{u1, . . . ,un} for Col(A). Make sure that, if any of the ui are scaled along the way,
they are scaled only by positive scalars.

(ii) Let wi =
1
∥ui∥ui for i = 1, . . . , n.

(iii) Express each vj as vj = r1,jw1 + r2,jw2 + · · · + rj,jwj . This is possible because
of how the Gram–Schmidt process works. You should find that rj,j > 0.

(iv) Let Q =
(
w1 · · · wn

)
and R = (ri,j), where ri,j = 0 if i > j. Then A = QR is

the totally positive QR-factorization of A.

Example. Let

A =


1 1 1

1 0 2

0 1 0

1 2 1

 ,

which you may verify has linearly independent columns. Let the columns be v1,v2,v3,
and define

u1 = v1 =


1

1

0

1



u2 = v2 −
u1 · v2

u1 · u1
u1 =


1

0

1

2

− 3

3


1

1

0

1

 =


0

−1

1

1


u3 = v3 −

u1 · v3

u1 · u1
u1 −

u2 · v3

u2 · u2
u2

=


1

2

0

1

− 4

3


1

1

0

1

− −1

3


0

−1

1

1

 =
1

3


−1

1

1

0


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The basis {u1,u2,u3} for Col(A) is orthogonal but not orthonormal, so we scale these
basis vectors by positive scalars to obtain the orthonormal basis {w1,w2,w3}, where

w1 =
1√
3


1

1

0

1

 , w2 =
1√
3


0

−1

1

1

 , w3 =
1√
3


−1

1

1

0

 .

Now, rearranging the equations for u1,u2,u3 on the previous page, we obtain

v1 =


1

1

0

1

 =
√
3w1

v2 =


1

1

0

1

+


0

−1

1

1

 =
√
3w1 +

√
3w2

v3 =
4

3


1

1

0

1

− 1

3


0

−1

1

1

+
1

3


−1

1

1

0

 =
4
√
3

3
w1 −

√
3

3
w2 +

√
3

3
w3

(These steps will be explained in more detail in class.) Hence, letting

Q =
(
w1 w2 w3

)
=


1/
√
3 0 −1/

√
3

1/
√
3 −1/

√
3 1/

√
3

0 1/
√
3 1/

√
3

1/
√
3 1/

√
3 0



R =


√
3

√
3 4

√
3/3

0
√
3 −

√
3/3

0 0
√
3/3

 ,

we obtain the totally positive QR-factorization A = QR.
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IV – 5 The Cauchy–Schwarz and triangle inequalities

Theorem 5.1 (Cauchy–Schwarz). Let (V, ⟨·, ·⟩) be an inner product space. If u,v ∈ V ,
then |⟨u,v⟩| ≤ ∥u∥ ∥v∥, with equality holding if and only if one of the vectors is a scalar
multiple of the other.

For a proof, see Section 12 of the Appendix.

Example. Let

u =

1

3

2

 and v =

−2

2

1

 ,

and endow R3 with the standard inner product (the dot product). Then

⟨u,v⟩ = u · v = −2 + 6 + 2 = 6, ∥u∥ =
√
1 + 9 + 4 =

√
14, ∥v∥ =

√
4 + 4 + 1 = 3,

so indeed |⟨u,v⟩| ≤ ∥u∥ ∥v∥.

Example. Let b > 0. The integral∫ b

0

1

(1 + x+ sin(x))2
dx

has no simple expression in terms of b, but we can find a lower bound for it using the
Cauchy–Schwarz inequality. We work in the inner product space C[0, b]. Define functions
f, g ∈ C[0, b] by

f(x) =
1

1 + x+ sin(x)
and g(x) = 1 + cos(x).

The Cauchy–Schwarz inequality applied to the functions f, g says |⟨f, g⟩| ≤ ∥f∥ ∥g∥, so
⟨f, g⟩2 ≤ ∥f∥2∥g∥2. Hence,∫ b

0

1

(1 + x+ sin(x))2
dx = ∥f∥2 by definition of the norm

≥ ⟨f, g⟩2

∥g∥2
(Cauchy–Schwarz inequality rearranged)

=
(
∫ b

0
f(x)g(x) dx)2∫ b

0
g(x)2 dx

=
(
∫ b

0
1+cos(x)

1+x+sin(x) dx)
2∫ b

0
(1 + cos(x))2 dx

. (5.1)

The two integrals appearing in (5.1) may be evaluated easily:∫ b

0

1 + cos(x)

1 + x+ sin(x)
dx = [ln(1 + x+ sin(x))]b0 = ln(1 + b+ sin(b)),∫ b

0

(1 + cos(x))2 dx =

∫ b

0

(1 + 2 cos(x) + cos2(x)) dx =
3

2
b+ 2 sin(b) +

1

4
sin(2b).
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Therefore, ∫ b

0

1

(1 + x+ sin(x))2
dx ≥

(
ln(1 + b+ sin(b))

)2
3
2b+ 2 sin(b) + 1

4 sin(2b)
.

Angle

The Cauchy–Schwarz inequality allows us to define the angle between two non-zero
vectors u,v in an inner product space. This angle is the unique θ ∈ [0, π] such that

cos(θ) =
⟨u,v⟩
∥u∥ ∥v∥

. (5.2)

This definition makes sense, because the Cauchy–Schwarz inequality guarantees that
the right-hand side of (5.2) lies in the interval [−1, 1], so there is indeed a θ satisfying
the equality.

In the case of R2 and R3 endowed with the standard inner product, the angle defined
as above is the same as our usual notion of angle in these spaces.

Interpretation of orthogonality in terms of angle

Suppose that two non-zero vectors u,v in an inner product space are orthogonal. Then
⟨u,v⟩ = 0, so the angle θ between them satisfies cos(θ) = 0. Thus, θ = π/2 (because
θ ∈ [0, π] by assumption). That is to say, the angle between two non-zero orthogonal
vectors is π/2, which fits with our intuitive notion of angle. Conversely, if the angle
between two non-zero vectors is π/2, then their inner product is zero, i.e., they are
orthogonal.

The triangle inequality

The triangle inequality for an inner product space (V, ⟨·, ·⟩) states that if u,v ∈ V , then
∥u+ v∥ ≤ ∥u∥+ ∥v∥. We may prove this using the Cauchy–Schwarz inequality:

∥u+ v∥2 = ⟨u+ v,u+ v⟩

= ⟨u,u⟩+ 2⟨u,v⟩+ ⟨v,v⟩

≤ ⟨u,u⟩+ 2|⟨u,v⟩|+ ⟨v,v⟩

≤ ⟨u,u⟩+ 2∥u∥ ∥v∥+ ⟨v,v⟩ (Cauchy–Schwarz inequality)

= ∥u∥2 + 2∥u∥ ∥v∥+ ∥v∥2

= (∥u∥+ ∥v∥)2.

Now take square roots.
To see why the triangle inequality is so called, take the case of R2 (with the standard

inner product), and consider the triangle formed by the points 0, u, and u + v. What
are the numbers ∥u∥, ∥v∥, and ∥u+ v∥ in relation to this triangle?
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IV – 6 An application of Cauchy–Schwarz to constrained opti-
mization

Consider the following problem, a type of constrained optimization problem:

Find the maximum value of 3x1 − 2x2 + 4x3 subject to x21 + x22 + x23 = 1, and find
the values of x1, x2, x3 where the maximum is attained.

While this looks like a problem of calculus, it has a natural solution in linear algebra
via the Cauchy–Schwarz inequality. Let

v =

 3

−2

4

 and x =

x1x2
x3

 .

The given problem is to find the maximum value of v · x subject to ∥x∥2 = 1, i.e.,
∥x∥ = 1, and to find where the maximum occurs. Now,

v · x ≤ |v · x|

≤ ∥v∥ ∥x∥ (Cauchy–Schwarz inequality)

= ∥v∥ because ∥x∥ = 1

=
√

32 + (−2)2 + 42

=
√
29,

with equality holding if and only if x is a positive scalar multiple of v. (If x were a
negative scalar times v, then v ·x would equal −

√
29, not

√
29.) To find the x at which

the maximum is attained, we use the two facts that ∥x∥ = 1 and x = cv for some c > 0.
Thus,

1 = ∥x∥ = ∥cv∥ = |c|∥v∥ = c∥v∥ = c
√
29,

so c = 1/
√
29. The maximum of

√
29 therefore occurs at

x =
1√
29

 3

−2

4

 =

 3/
√
29

−2/
√
29

4/
√
29

 .

Next we consider a related, but slightly different problem:

Find the minimum value of x21+x22+x23 subject to the constraint 3x1+2x2+2x3 = 5,
and find the values of x1, x2, x3 where the minimum is attained.

Let

v =

3

2

2

 and x =

x1x2
x3

 .
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We are to find the minimum value of ∥x∥2 subject to v · x = 5, and we must also find
where the minimum occurs. By Cauchy–Schwarz,

∥x∥2 ≥ |v · x|2

∥v∥2
=

25

17
,

with equality holding if and only if x ∈ Span(v). To find this x, we use the facts that
v · x = 5 and x = cv for some c ∈ R:

5 = v · x = v · (cv) = c∥v∥2 = 17c,

so c = 5/17. The minimum of 25/17 therefore occurs at

x =
5

17

3

2

2

 =

15/17

10/17

10/17

 .
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IV – 7 Orthogonal diagonalization of real symmetric matrices

A matrix P ∈Mn(R) is called orthogonal if PTP = I. In other words, P is orthogonal
if it is invertible and PT = P−1. The rotations and reflections in R2 and R3 are all
described by orthogonal matrices.

Orthogonal matrices are characterized by the property that they have orthonormal
columns and orthonormal rows. For example, the matrix(

3/5 −4/5

4/5 3/5

)
is orthogonal. Note how its columns are orthonormal, as are its rows.

Recall that a matrix A ∈ Mn(R) is called symmetric if AT = A. Unlike a general
square matrix, real symmetric matrices are always diagonalizable. This would be
interesting by itself, but we can say more: A real symmetric matrix A can be diagonalized
by an orthogonal matrix P , that is, there is an orthogonal matrix P such that P−1AP
is diagonal. Because P−1 = PT for an orthogonal matrix P , we usually write PTAP

instead of P−1AP . Conversely, PDPT is symmetric when D is diagonal, and we have:

Theorem 7.1. Let A ∈Mn(R). The following are equivalent:

(i) A is symmetric.

(ii) A is orthogonally diagonalizable, i.e., there is an orthogonal matrix P such that
PTAP is diagonal.

For a proof, see Section 13 of the Appendix.

Method to orthogonally diagonalize a real symmetric matrix

Let A ∈Mn(R) be symmetric. To orthogonally diagonalize it:

(i) Find the eigenvalues of A. (They will all be real; see Section 13 of the Appendix.)

(ii) Find a basis for each eigenspace.

(iii) Apply Gram–Schmidt to each basis found in (ii) to obtain an orthonormal basis
for each eigenspace.

(iv) Let P be a matrix whose columns are the n basis vectors found in (iii). Then P

is orthogonal. (See Proposition 13.2 in the Appendix.)

(v) Let D be the diagonal matrix whose ith diagonal entry is the eigenvalue corre-
sponding to the ith column of P . Then PTAP = D.

Example. Orthogonally diagonalize the real symmetric matrix

A =

 3 −2 4

−2 6 2

4 2 3

 .
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Solution: The characteristic polynomial is pA(x) = (x+2)(x− 7)2. (For a 3× 3 matrix,
the characteristic polynomial will usually be given to you in this course.) Row reducing
−2I −A, we find that the eigenspace associated to −2 has basis {(−2,−1, 2)}. Because
this is a one-dimensional eigenspace, finding an orthonormal basis entails simply scaling
this basis vector to have norm 1. Thus, an orthonormal basis is {(−2/3,−1/3, 2/3)}.

Now we turn to the eigenspace associated to 7. Again, row reducing 7I −A, we find
that the eigenspace has basis {v1,v2} where

v1 =

−1

2

0

 and v2 =

1

0

1

 .

We apply Gram–Schmidt to the vectors v1,v2, letting

u1 = v1 =

−1

2

0

 ,

u2 = v2 −
u1 · v2

u1 · u1
u1 =

1

0

1

− −1

5

−1

2

0

 =
1

5

4

2

5

 .

The basis {u1,u2} is orthogonal but not orthonormal. Scaling, we obtain the orthonor-
mal basis 

−1/
√
5

2/
√
5

0

 ,

4/
√
45

2/
√
45

5/
√
45


 .

Hence, if

P =

−2/3 −1/
√
5 4/

√
45

−1/3 2/
√
5 2/

√
45

2/3 0 5/
√
45

 and D =

−2 0 0

0 7 0

0 0 7

 ,

then P is orthogonal and PTAP = D.
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IV – 8 Quadratic forms

A quadratic form in n variables is a function

Rn → R

x 7→ xTAx,

where A is real symmetric matrix. (There is no advantage in allowing a general matrix
A ∈ Mn(R), because the quadratic form associated to any A ∈ Mn(R) is the same as
the quadratic form associated to the symmetric matrix 1

2 (A+AT).)

Example. If A =

(
1 5

5 −4

)
, the associated quadratic form is

xTAx =
(
x1 x2

)(1 5

5 −4

)(
x1

x2

)
= x21 + 5x1x2 + 5x2x1 − 4x22

= x21 + 10x1x2 − 4x22.

We may pass back and forth between real symmetric matrices and quadratic forms
as follows:

• If A = (ai,j) ∈Mn(R) is symmetric, then

xTAx =

n∑
i=1

ai,ix
2
i +

∑
i<j

2ai,jxixj .

• The real symmetric matrix associated to the n-variable quadratic form

n∑
i=1

bi,ix
2
i +

∑
i<j

bi,jxixj

is A = (ai,j) where

ai,j =


bi,i if i = j

1
2bi,j if i < j

1
2bj,i if i > j.

Example. The real symmetric matrix associated to the quadratic form

3x21 − 4x23 + x1x2 − 2x1x3 − 5x2x4

is 
3 1/2 −1 0

1/2 0 0 −5/2

−1 0 −4 0

0 −5/2 0 0

 .
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An important first problem in the study of quadratic forms is to determine whether,
for example, a given quadratic form may take negative values. For example, are there
real numbers x1, x2 such that

5x21 − 14x1x2 + 10x22 < 0? (8.1)

At first glance, there appears to be no reason why not. Yet substituting some values
for x1, x2, we find that the left-hand side of (8.1) always appears to be positive (except
when x1 = x2 = 0).

We will investigate this problem further in Section 9. First, we introduce some ter-
minology.

A quadratic form f : Rn → R is called

• positive definite if f(x) > 0 for all non-zero x ∈ Rn

• negative definite if f(x) < 0 for all non-zero x ∈ Rn

• non-negative definite if f(x) ≥ 0 for all x ∈ Rn

• non-positive definite if f(x) ≤ 0 for all x ∈ Rn

• indefinite if f(x) takes both positive and negative values

For example, the quadratic forms x21 + 4x22 and 3x21 + 6x22 + 5x23 are obviously both
positive definite, while x21 − 7x22 is obviously indefinite. The situation becomes harder
to decide when there are cross terms, as in our example 5x21 − 14x1x2 + 10x22 earlier,
though we will see that in fact it is positive definite.

Here are a couple more to think about:

f(x1, x2) = 7x21 + 12x1x2 + 5x22

g(x1, x2) = 13x21 − 18x1x2 + 10x22

One of these two quadratic forms is positive definite, and the other is indefinite. Which
is which? (I recommend you wait until the next section before spending too long on
this!)
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IV – 9 Diagonalizing quadratic forms

As you may have appreciated from the previous section, the presence of cross terms in a
quadratic form f can make it difficult to decide whether f is positive definite, negative
definite, and so on. A neat way around this problem is to make a change of variables
such that, in the new variables, there are no cross terms. This idea leads us to the notion
of diagonalization of a quadratic form.

Definition 9.1. To orthogonally diagonalize a quadratic form f(x) = xTAx is to find
an orthogonal matrix P such that the quadratic form g(y) = f(Py) has no cross terms.

This amounts to orthogonally diagonalizing the real symmetric matrix A, for if
PTAP = D with D diagonal, then the quadratic form g(y) = f(Py) satisfies

g(y) = (Py)TA(Py) because f(x) = xTAx

= yTPTAPy

= yTDy

= λ1y
2
1 + · · ·+ λny

2
n,

where λ1, . . . , λn are the diagonal entries of D, and y = (y1, . . . , yn).

Example. Consider the quadratic form f(x1, x2) = 5x21 + 4x1x2 + 2x22. It is given by
f(x) = xTAx where

A =

(
5 2

2 2

)
.

By the method of Section 7, we find that PTAP = D where

P =
1√
5

(
2 −1

1 2

)
and D =

(
6 0

0 1

)
.

Hence, the quadratic form g(y) = f(Py) satisfies

g(y) = yTDy =
(
y1 y2

)(6 0

0 1

)(
y1

y2

)
= 6y21 + y22 .

We see, therefore, that g(y) is positive for all non-zero y, so f(x) is positive for all
non-zero x. Thus, f is positive definite.

We may even re-express f in terms of g. If we take y = PTx in the equation
g(y) = f(Py) and remember that PPT = I, we obtain

f(x) = g(PTx). (9.1)

But

PTx =
1√
5

(
2 1

−1 2

)(
x1

x2

)
=

(
1√
5
(2x1 + x2)

1√
5
(−x1 + 2x2)

)
,
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so (9.1) says

f(x) = 6
(

1√
5
(2x1 + x2)

)2
+
(

1√
5
(−x1 + 2x2)

)2
=

6

5
(2x1 + x2)

2 +
1

5
(−x1 + 2x2)

2. (9.2)

If you would like to appreciate further what we have achieved here, expand out the
expression in (9.2). You will find that you get back 5x21 + 4x1x2 + 2x22.

Quadratic forms and eigenvalues

Let f(x) = xTAx be a quadratic form, where, as usual, A ∈Mn(R) is a real symmetric
matrix. We know that there exist P orthogonal and D diagonal such that PTAP = D.
The diagonal entries of D are the eigenvalues λ1, . . . , λn of A (possibly repeated). So,
if all the eigenvalues are positive, then the diagonalized quadratic form g(y) = λ1y

2
1 +

· · ·+ λny
2
n will be positive definite. If all the eigenvalues are negative, then of course g

will be negative definite. And if there is a mix of positive and negative eigenvalues, then
the g will be indefinite. But whatever of these properties g has, the original quadratic
form f has as well, because f and g are related simply by a change of variables. We
summarize our discussion in the following proposition:

Proposition 9.2. Let f(x) = xTAx be a quadratic form, where A is real symmetric.
Then f is

• positive definite if and only if all the eigenvalues of A are positive,

• negative definite if and only if all the eigenvalues of A are negative,

• non-negative definite if and only if all the eigenvalues of A are non-negative,

• non-positive definite if and only if all the eigenvalues of A are non-positive,

• indefinite if and only if A has a mix of positive and negative eigenvalues.

Example. The quadratic form f(x1, x2) = 5x21 − 14x1x2 + 10x22 from Section 8 has

associated real symmetric matrix A =

(
5 −7

−7 10

)
. The characteristic polynomial of A

is pA(x) = x2 − 15x+ 1, whose roots are

1

2
(15±

√
152 − 4).

Both of these roots are positive, since obviously
√
152 − 4 < 15. Therefore, by Proposi-

tion 9.2, f is positive definite.

Exercise. For the quadratic form f(x1, x2, x3) = x21 + x22 + x23 + x1x2 + x1x3 + x2x3,
decide which of the following properties it has: positive definite, negative definite, etc.
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IV – 10 Constrained optimization of quadratic forms

Recall that we saw a couple of constrained-optimization problems in Section 6. Now we
consider a new kind of constrained-optimization problem:

Let f : Rn → R be a quadratic form. Find the maximum (or minimum) value of
f(x) subject to the constraint ∥x∥ = 1, and determine where the maximum (or
minimum) occurs.

The problem is answered by the following proposition.

Proposition 10.1. Suppose A ∈ Mn(R) is symmetric, and let f be the associated
quadratic form. Let the eigenvalues of A be λ1 ≥ · · · ≥ λn (some may be repeated).

(i) The maximum value of f(x) subject to ∥x∥ = 1 is λ1 and occurs at any unit
eigenvector with eigenvalue λ1.

(ii) The minimum value of f(x) subject to ∥x∥ = 1 is λn and occurs at any unit
eigenvector with eigenvalue λn.

For a proof, see Section 14 of the Appendix.

Example. Find the maximum value of the quadratic form

f(x1, x2, x3) = 3x21 + 6x22 + 3x23 − 4x1x2 + 8x1x3 + 4x2x3

subject to the constraint x21 + x22 + x23 = 1, and find a triple (x1, x2, x3) where that
maximum occurs.

Solution: The constraint x21 + x22 + x23 = 1 is simply ∥x∥2 = 1, i.e., ∥x∥ = 1, so we may
apply Proposition 10.1. The associated real symmetric matrix is

A =

 3 −2 4

−2 6 2

4 2 3

 ,

whose eigenvalues we found in Section 7; they are 7 and −2. Therefore, the maximum
of f(x) subject to ∥x∥ = 1 is 7 and occurs at any unit eigenvector with eigenvalue 7.
We found earlier that the eigenspace associated to 7 has orthonormal basis

−1/
√
5

2/
√
5

0

 ,

4/
√
45

2/
√
45

5/
√
45


 , (10.1)

so a unit eigenvector with eigenvalue 7 is (x1, x2, x3) = (−1/
√
5, 2/

√
5, 0), for example.

Exercise. In the above example, find all of the x ∈ R3 where f(x) takes the maximum
value of 7. This amounts to finding all the unit eigenvectors of A with eigenvalue 7. To
do this, let u1,u2 be the basis vectors in (10.1), and determine how to choose a1, a2 ∈ R
such that a1u1 + a2u2 has norm 1.

Exercise. Find the maximum and minimum values of x1x2 + x1x3 + x2x3 subject to
the constraint x21 + x22 + x23 = 1.
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Appendix: 1 Proof of Proposition 3.1 in Section I

We recall the statement to be proven:

Let U be a subset of a vector space V . Then U is a subspace of V if and only if all
of the following hold:

(i) U is non-empty.

(ii) For all u,v ∈ U , u+ v ∈ U . (Closure under addition)

(iii) For all u ∈ U and all c ∈ R, cu ∈ U . (Closure under scalar multiplication)

Proof. Assume that U is a non-empty subset of V that is closed under addition and
scalar multiplication. The key axioms to prove about U are that it contains the zero
vector of V and that it contains additive inverses. (The other axioms are more straight-
forward.)

So, choose any u ∈ U , which is possible because U is assumed to be non-empty. Then
(−1)u ∈ U because U is assumed to be closed under scalar multiplication. But (−1)u is
the additive inverse of u in V , because (−1)u+u = (−1+1)u = 0u = 0V . (It is a short
exercise to show that 0u = 0V .) Thus, U contains additive inverses. But then, because
U is closed under addition and contains both u and −u, it contains u+ (−u) = 0V .

The converse is immediate: If U is a subspace of V , and so is a vector space itself,
then it is necessarily non-empty and closed under addition and scalar multiplication.

Appendix: 2 Some basics of linear algebra

Lemma 2.1. Let v1, . . . ,vk be linearly independent vectors in a vector space V , and let
v be any element of V . Then the vectors v1, . . . ,vk,v are linearly independent if and
only if v ̸∈ Span(v1, . . . ,vk).

Proof. Assume that v ̸∈ Span(v1, . . . ,vk), and suppose that

k+1∑
i=1

aivi = 0,

where vk+1 = v. If ak+1 ̸= 0, then v would be in Span(v1, . . . ,vk), contrary to our
assumption, so ak+1 = 0. Hence,

k∑
i=1

aivi = 0,

so the remaining ai are all zero by linear independence of v1, . . . ,vk. The converse is
immediate.
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Proposition 2.2. Let S be a finite set of elements in a vector space V . Then given any
linearly independent subset S′ of S, there is a basis B for Span(S) satisfying S′ ⊆ B ⊆ S.

Proof. Let v1, . . . ,vk ∈ S be linearly independent. If Span(v1, . . . ,vk) ̸= Span(S), then
there is some vk+1 ∈ S∖Span(v1, . . . ,vk). By Lemma 2.1, the vectors v1, . . . ,vk+1 are
linearly independent. We continue in this way. Because S is finite, this process has to
stop with some linearly independent set {v1, . . . ,vn} that spans Span(S), i.e., a basis
for Span(S).

Theorem 2.3. Let V be a vector space.

(i) If B, E are bases of V , then for any v ∈ B, there is w ∈ E such that (B∖{v})∪{w}
is a basis for V .

(ii) If B, E are finite bases of V , then #B = #E.

Proof. We prove the first assertion, from which the second follows. Let v0 ∈ B. We may
write

v0 =
∑
w∈T

bww

for some finite subset T of E . If every w ∈ T were in Span(B∖{v0}), then so would v0

be, contradicting the linear independence of B. Therefore, there is some w0 ∈ T that is
not in Span(B∖{v0}). Let C = (B∖{v0}) ∪ {w0}. We show that C is a basis of V .

For linear independence, we are to show that every finite subset of C is linearly
independent. Such a subset is either a finite subset of B∖{v0}, in which case we are
done immediately, or a set of the form (S∖{v0})∪{w0} where S is a finite subset of B.
But w0 ̸∈ Span(S∖{v0}), so (S∖{v0}) ∪ {w0} is linearly independent by Lemma 2.1.

Now we turn to spanning. Because C ∪{v0} = B∪{w0}, which spans V , it is enough
to show that v0 ∈ Span(C). To that end, write

w0 = a0v0 +
∑
v∈S

avv

for some finite subset S of B∖{v0}, possible because B spans V . The linear independence
of B implies that a0 ̸= 0, so we may rearrange the equation above to express v0 as a
linear combination of w0 and vectors in B∖{v0}, as desired.

Proposition 2.4. Let V be a vector space, and suppose that V has a finite spanning
set (so V has a finite basis by Proposition 2.2).

(i) All bases of V are finite and have the same cardinality. Let that cardinality be n.

(ii) Any linearly independent set in V contains at most n elements.

(iii) Any spanning set for V contains at least n elements.

Proof. Without yet knowing that all bases of V are finite, we nonetheless know from
Theorem 2.3 that all finite bases have the same cardinality. Let that cardinality be n.
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Now, let T be a linearly independent set in V , let S′ be a finite subset of T , and
let S = S′ ∪ X where X is some choice of finite spanning set for V . Proposition 2.2
says that there is a basis B for Span(S) = V such that S′ ⊆ B. Then #S′ ≤ #B = n.
Therefore, T is finite of cardinality at most n.

Having shown that every linearly independent set in V is finite, we now know that
all bases of V are indeed finite.

Finally, if S were some spanning set for V that contained fewer than n elements,
then by Proposition 2.2, S would contain a basis B for Span(S) = V . (Just apply the
proposition with S′ = {v} for some non-zero v ∈ S.) But then B too would have
cardinality less than n, contradicting (i).

If V is a vector space that has a finite spanning set, the dimension of V , denoted
dim(V ), is the number of elements in a basis for V . By Proposition 2.4, this number is
independent of the choice of basis and is therefore well defined. If a vector space V has
a finite basis, then we call V finite dimensional. Otherwise, we say that V is infinite
dimensional.

We note several useful corollaries of Proposition 2.4.

Corollary 2.5. Let V be a vector space of finite dimension n, and let v1, . . . ,vn ∈ V .
(Note that the n in v1, . . . ,vn is the same as the dimension of V ; this is important.)
Then the following are equivalent:

(i) v1, . . . ,vn are linearly independent.

(ii) v1, . . . ,vn span V .

(iii) v1, . . . ,vn form a basis for V .

Proof. (i) ⇒ (ii) If there were some v ∈ V ∖Span(v1, . . . ,vn), then by Lemma 2.1,
v1, . . . ,vn,v would be linearly independent, contradicting Proposition 2.4. Therefore,
Span(v1, . . . ,vn) = V .

(ii) ⇒ (iii) If v1, . . . ,vn were not linearly independent, then some vi would be a
linear combination of the others, and then v1, . . . ,vi−1,vi+1, . . . ,vn would span V ,
contradicting Proposition 2.4. Thus, v1, . . . ,vn are linearly independent and therefore
form a basis.

(iii) ⇒ (i) Immediate.

Corollary 2.6. A subspace of a finite-dimensional vector space is finite dimensional.

Proof. Let U be a subspace of a finite-dimensional vector space V . If U is zero, then
we are done. Otherwise, choose a non-zero vector u1 ∈ U . If u1 spans U , then stop.
Otherwise, we may choose some u2 ∈ U∖Span(u1), and then {u1,u2} is linearly inde-
pendent by Lemma 2.1. If u1,u2 span U , then stop. Otherwise, we may choose some
u3 ∈ U∖Span(u1,u2). We continue in this way until we arrive at a spanning set for
U , which we must do. Indeed, the vectors in the sequence u1,u2,u3, . . . are linearly
independent, so the sequence must contain no more than dim(V ) vectors by Proposi-
tion 2.4.
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Corollary 2.7. Let W be a subspace of a finite-dimensional vector space V .

(i) dim(W ) ≤ dim(V ).

(ii) W = V if and only if dim(W ) = dim(V ).

Proof. Note that W has finite dimension by Corollary 2.6.
(i) Let B be a basis for W . Then, being a linearly independent set in V , it has

cardinality at most dim(V ) by Proposition 2.4. But by definition, the cardinality of B
is dim(W ).

(ii) IfW = V , then obviously dim(W ) = dim(V ). Suppose conversely that dim(W ) =

dim(V ). If B is a basis for W , then extend it to a basis C of V , so that B ⊆ C. Then

#B = dim(W )

= dim(V )

= #C,

so B = C. Thus, B is a basis for V and therefore spans V , so W = V .

Appendix: 3 Proof of Proposition 10.2 in Section I

We recall the statement to be proven:

Let B, C, E be bases for a finite-dimensional vector space V . Then PE←B = PE←CPC←B.
In particular, PC←B is invertible, and P−1C←B = PB←C .

Proof. Let B = {u1, . . . ,un}. Then

PE←CPC←B = PE←C

(
[u1]C · · · [un]C

)
=

(
PE←C [u1]C · · · PE←C [un]C

)
=

(
[u1]E · · · [un]E

)
by Proposition 10.1 in Section I

= PE←B.

The last assertion in the proposition comes about by taking E = B and noting that
PB←B is the identity matrix.

Appendix: 4 Proof of Proposition 10.3 in Section I

Before proving Proposition 10.3, which we will recall in a moment, let us introduce
a useful concept. An elementary matrix is a matrix obtained by performing a single
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elementary row operation on an identity matrix. For example, the matrix
1 0 0 0

0 1 0 0

7 0 1 0

0 0 0 1

 (4.1)

is an elementary matrix, because it is obtained from the 4×4 identity matrix via the row
operation that adds 7 times the first row to the third row. Other examples of elementary
matrices are 1 0 0

0 1 0

0 0 −2

 and


1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

 .

(Which row operation does each of them correspond to?) Note that every elementary
matrix is invertible.

Let E be an m × m elementary matrix, corresponding to some row operation ρ.
Then if A is any matrix with m rows, EA is the matrix obtained by performing the row
operation ρ on A. For example, if E is the elementary matrix in (4.1) and A is a matrix
with 4 rows, then EA is the matrix obtained from A by adding 7 times the first row of
A to the third. We leave it as an exercise to prove this observation for all elementary
matrices.

Lemma 4.1.

(i) Every invertible matrix is a product of elementary matrices.

(ii) Two matrices A,B ∈Mm,n(R) are row equivalent if and only if there is an invert-
ible m×m matrix P such that B = PA.

Proof. (i) Let P be an invertible m×m matrix. Then the reduced row-echelon form of P
is Im, the m×m identity matrix. Let (ρ1, . . . , ρk) be a sequence of row operations that
transforms Im to P , and for each i let Ei be the m×m elementary matrix corresponding
to ρi. Then

P = EkEk−1 · · ·E2E1I = EkEk−1 · · ·E2E1.

(ii) Suppose thatA is row equivalent toB. Then there are elementary matrices E1, . . . , Ek

such that B = EkEk−1 · · ·E2E1A, i.e., B = PA where P = Ek · · ·E1. Conversely, if
B = PA where P is invertible, then by (i), P = Ek · · ·E1 for some elementary matrices
Ei, so B = Ek · · ·EkA, which is row equivalent to A.

A nice application of elementary matrices is a quick proof of Proposition 10.3 in
Section I. Here again is the statement to be proven:
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Let B and C be bases for an n-dimensional vector space V , and let E be another
basis for V . Then the reduced row-echelon form of(

PE←C PE←B

)
is (

In PC←B

)
,

where In is the n× n identity matrix.

Proof.(
PE←C PE←B

)
↔ PC←E

(
PE←C PE←B

)
by part (ii) of Lemma 4.1

=
(
PC←EPE←C PC←EPE←B

)
=

(
PC←C PC←B

)
by Proposition 10.2 in Section I

=
(
In PC←B

)
.

Appendix: 5 Proof of Proposition 8.1 in Section II

We recall the statement to be proven:

Let φ : U → V be a linear transformation, where U and V are finite dimensional
with bases B and C respectively. Then φ is invertible if and only if [φ]C←B is
invertible, and if this is the case, [φ−1]B←C = [φ]−1C←B.

Proof. Suppose that φ : U → V is invertible, i.e., there is ψ : V → U such that
ψ ◦ φ = 1U and φ ◦ ψ = 1V . Then

In = [1U ]B where n = dim(U)

= [ψ ◦ φ]B
= [ψ]B←C [φ]C←B by Proposition 7.1 in Section II,

and Im = [1V ]C where m = dim(V )

= [φ ◦ ψ]C
= [φ]C←B[ψ]B←C by Proposition 7.1 in Section II again.

Thus, [φ]C←B is invertible, and its inverse is [ψ]B←C = [φ−1]B←C .
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Conversely, suppose that [φ]C←B is invertible. For brevity of notation, let A =

[φ]C←B. Let B = A−1, and let ψ : V → U be the linear transformation satisfying
[ψ]B←C = B. Then

[ψ ◦ φ]B = [ψ]B←C [φ]C←B

= BA

= In so ψ ◦ φ = 1U ,

and [φ ◦ ψ]C = [φ]C←B[ψ]B←C

= AB

= Im so φ ◦ ψ = 1V .

Thus, φ is invertible.

Appendix: 6 Some basics of diagonalization

Let F be a field. (We have not formally introduced the concept of a field, but for this
section you may take F to stand for either R, the field of real numbers, or C, the field
of complex numbers.) If A ∈ Mn(F ), then pA(x) denotes its characteristic polynomial,
i.e., pA(x) = det(xI −A).

If λ ∈ F is an eigenvalue of A, the geometric multiplicity of λ (over F ) is the
dimension of Nul(λI − A) ⊆ Fn, and is denoted dλ. The algebraic multiplicity of λ is
the number of times the factor x− λ occurs in pA(x).

Lemma 6.1. If λ ∈ F is an eigenvalue of A, then 1 ≤ dλ ≤ mλ.

Proof. The inequality 1 ≤ dλ follows immediately from the definition of an eigenvalue:
there has to be a non-zero vector v ∈ Fn such that Av = λv.

Now let {v1, . . . ,vd} be a basis for the eigenspace associated to λ, and extend it to a
basis B = {v1, . . . ,vn} of Fn. Let P = PE←B =

(
v1 · · · vn

)
, where E = {e1, . . . , en}

is the standard basis of Fn, and let B = P−1AP . Then for j = 1, . . . , d, the jth column
of B is

P−1Avj = P−1λvj

= λP−1vj

= λPB←Evj

= λej .

Hence,

pA(x) = pB(x)

= det(xI −B)

= (x− λ)dpC(x),
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where C is the (n − d) × (n − d) matrix in the bottom right-hand corner of B. Thus,
(x− λ)d divides pA(x), as required.

Proposition 6.2. The sum of the geometric multiplicities of the eigenvalues of A cannot
exceed n.

Proof. The sum of the geometric multiplicities is at most the sum of the algebraic
multiplicities by Lemma 6.1, which is the degree of pA(x), and this is n.

Lemma 6.3. Suppose that λ1, . . . , λs are distinct eigenvalues of A, and suppose that
for each i, Ti is a linearly independent set of eigenvectors of A with eigenvalue λi. Then
T1 ∪ · · · ∪ Ts is a linearly independent set.

Proof. The proof rests on the observation that if λ, µ ∈ F , and if u ∈ Fn satisfies
Au = λu, then (A− µI)u = (λ− µ)u. With this in mind, suppose that

s∑
j=1

∑
u∈Tj

cj,uu = 0, (6.1)

where the cj,u are in F . Choose any i ∈ {1, . . . , s}, and let

Bi =
∏
j ̸=i

(A− λjI)

βi =
∏
j ̸=i

(λi − λj).

Then by the observation at the start of the proof,

Biu =

βiu if u ∈ Ti

0 if u ∈ Tj with j ̸= i.

Applying Bi to both sides of (6.1), we therefore obtain

0 = Bi

s∑
j=1

∑
u∈Tj

cj,uu =
∑
u∈Ti

ci,uβiu = βi
∑
u∈Ti

ci,uu,

and hence
∑

u∈Ti
ci,uu = 0 because βi ̸= 0. The linear independence of the set Ti then

gives ci,u = 0 for all u ∈ Ti.

Lemma 6.4. Let A,B ∈ Mn(F ) with B = (bi,j), let u1, . . . ,un ∈ Fn, and let P =(
u1 · · · un

)
∈Mn(F ). Then the following are equivalent:

(i) Auj =
∑n

i=1 bi,jui for j = 1, . . . , n.

(ii) AP = PB.

Proof. By definition of matrix multiplication, the jth column of AP is Auj , and the
jth column of PB is

(
u1 · · · un

)
bj =

∑n
i=1 bi,jui, where bj is the jth column

of B. Therefore, the jth column of AP is equal to that of PB if and only if Auj =∑n
i=1 bi,jui.
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Theorem 6.5. Let A ∈Mn(F ). Then the following are equivalent:

(i) A is diagonalizable over F .

(ii) Fn has a basis consisting of eigenvectors of A.

(iii) The sum of the geometric multiplicities (over F ) of the eigenvalues of A is equal
to n.

(iv) All roots of pA(x) are in F , and the geometric multiplicity of every eigenvalue of
A is equal to its algebraic multiplicity.

Proof. We first prove the equivalence of (i) and (ii). Suppose that Fn has a basis
{u1, . . . ,un}, where Auj = λjuj . Then Lemma 6.4 says that AP = PD, where P =(
u1 · · · un

)
and D is the diagonal matrix with diagonal entries λ1, . . . , λn. Because

{u1, . . . ,un} is a basis for Fn, P is invertible, so the equality AP = PD implies that
P−1AP = D.

Conversely, suppose that there is an invertible matrix P ∈Mn(F ) such that P−1AP =

D, diagonal. Let the diagonal entries of D be λ1, . . . , λn, and let the columns of P be
u1, . . . ,un. Then because AP = PD, Lemma 6.4 tells us that Auj = λjuj for all j. The
uj are therefore eigenvectors of A, and they form a basis for Fn because P is invertible.

To complete the proof, we establish the implications (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii).
Assume (ii), i.e., that Fn has a basis B consisting of eigenvectors of A. Without loss of
generality, we may assume that

B = {u1,1, . . . ,u1,r1 , . . . ,us,1, . . . ,us,rs},

where Aui,j = λiui,j , the λi ∈ F being distinct eigenvalues. Then dλi
≥ ri for each i,

so
s∑

i=1

dλi ≥
s∑

i=1

ri = n.

The sum of the geometric multiplicities of all the eigenvalues in F is therefore at least
n, but then it has to be exactly n by Proposition 6.2.

Next, assume (iii), i.e., that the sum of the geometric multiplicities over F is n. Let
the eigenvalues of A in F be λ1, . . . , λt. Then

t∑
i=1

dλi
= n by assumption

≥
t∑

i=1

mλi
.

Hence, because dλi ≤ mλi for all i by Lemma 6.1, we must have dλi = mλi for all i,
and we must also have

∑t
i=1mλi = n, so all the roots of pA(x) are in F .

Finally, assume (iv), i.e., that all the roots of pA(x) are in F and that dλi
= mλi

for
all i, where λ1, . . . , λt are the eigenvalues of A. Then

t∑
i=1

dλi
=

t∑
i=1

mλi
= n.
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Hence, if Bi is a basis for the eigenspace associated to λi, then the set B = B1 ∪ · · · ∪Bt

is linearly independent by Lemma 6.3 and has n elements. It is therefore a basis for Fn

consisting of eigenvectors of A.

Appendix: 7 The differential equation f ′ = λf

We solve the differential equation f ′ = λf , where λ is some given constant. If f ′(x) =
λf(x), then 0 = f ′(x)− λf(x), so multiplying both sides by e−λx gives

0 = e−λxf ′(x)− e−λxf(x)

=
d

dx
(e−λxf(x)).

Hence, e−λxf(x) = a for some constant a, so f(x) = aeλx. Conversely, the function
f(x) = aeλx obviously satisfies f ′ = λf .

Appendix: 8 Proof of Proposition 4.1 in Section III

We recall the statement to be proven:

Let A be a real 2× 2 matrix that has a non-real complex eigenvalue λ = a+ bi. If
w is an eigenvector for λ, then the real matrix Q =

(
Re(w) Im(w)

)
is invertible,

and

Q−1AQ =

(
a b

−b a

)
= s

(
a/s b/s

−b/s a/s

)
,

where s = |λ| =
√
a2 + b2.

Proof. We start from the equality Aw = λw. If u = Re(w) and v = Im(w), then the
equality says

A(u+ iv) = (a+ bi)(u+ iv),

i.e., Au+ iAv = au− bv + i(bu+ av).

Equating real and imaginary parts gives

Au = au− bv

Av = bu+ av.

These two equations can be expressed by the single equation

A
(
u v

)
=

(
u v

)( a b

−b a

)
,

i.e., AQ = Q

(
a b

−b a

)
.
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It remains to show that Q is invertible, for then we obtain

Q−1AQ =

(
a b

−b a

)
.

To that end, note that w and w are linearly independent over C, since they are eigen-
vectors with different eigenvalues (λ and λ). Because u = 1

2 (w+w) and v = 1
2i (w−w),

the coordinate vectors of u and v with respect to the basis {w,w} of C2 are(
1/2

1/2

)
and

(
1/(2i)

−1/(2i)

)
,

which are linearly independent over C. Hence, u and v are linearly independent over C
(not only over R). It follows that Q is invertible, as desired.

Appendix: 9 The inner product space C[a, b]

We establish axiom (iv) of an inner product for the inner product we defined on C[a, b],
namely,

⟨f, g⟩ =
∫ b

a

f(x)g(x) dx.

We are to show that, if f ∈ C[a, b], then ⟨f, f⟩ ≥ 0, with equality holding if and only if
f is the zero function. The first assertion is clear, because

⟨f, f⟩ =
∫ b

a

f(x)2 dx ≥ 0,

and it is also clear that ⟨z, z⟩ = 0 where z here denotes the zero function. Now suppose
that f ∈ C[a, b] is not the zero function, meaning that there is x0 ∈ [a, b] such that
f(x0) ̸= 0. Then g(x0) > 0 where g : [a, b] → R is the function defined by g(x) = f(x)2.
The function g is again continuous, so because g(x0) > 0, we may find a positive real
number y0 and an interval I of width c > 0 in [a, b] such that g(x) ≥ y0 for x ∈ I.
Hence,

⟨f, f⟩ =
∫ b

a

g(x) dx ≥ cy0 > 0.

Appendix: 10 Orthogonal projection

Let (V, ⟨·, ·⟩) be an inner product space and U a subspace of V .

Lemma 10.1. U ∩ U⊥ = {0}.

Proof. If u is in both U and U⊥, then it must be orthogonal to itself, i.e., ⟨u,u⟩ = 0.
But then u = 0.
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Now assume that U has finite dimension n. Because of the Gram–Schmidt process,
we know that U has an orthogonal basis. If B = {u1, . . . ,un} is such a basis for U , and
if v ∈ V , then we define

projB(v) =

n∑
i=1

⟨ui,v⟩
⟨ui,ui⟩

ui ∈ U.

Lemma 10.2. With notation as above, v − projB(v) ∈ U⊥.

Proof. Observe that, for all i ∈ {1, . . . , n},

⟨ui,projB(v)⟩ =
⟨ui,v⟩
⟨ui,ui⟩

⟨ui,ui⟩ = ⟨ui,v⟩,

so
⟨ui,v − projB(v)⟩ = ⟨ui,v⟩ − ⟨ui,projB(v)⟩ = ⟨ui,v⟩ − ⟨ui,v⟩ = 0.

Being orthogonal to each ui, v − projB(v) is therefore orthogonal to every element of
U .

Proposition 10.3. Suppose that B and C are two orthogonal bases for U . If v ∈ V ,
then projB(v) = projC(v).

Proof. We start with the equality

projB(v)− projC(v) = (v − projC(v))− (v − projB(v)).

The right-hand side is in U⊥ by Lemma 10.2, so projB(v) − projC(v) is in U⊥. But
projB(v) − projC(v) is in U as well, so it is zero by Lemma 10.1. Thus, projB(v) =

projC(v).

In light of Proposition 10.3, given v ∈ V , we may define the orthogonal projection
of v onto U to be the vector projU (v) = projB(v), where B is any choice of orthogonal
basis for U .

We now prove Proposition 3.1 in Section IV. We recall the statement to be proven:

Let (V, ⟨·, ·⟩) be an inner product space and U a finite-dimensional subspace of V .
If v ∈ V , then projU (v) is the unique vector u ∈ U that minimizes dist(v,u).

Proof. If u is any vector in U , then

dist(v,u)2 = ∥v − u∥2 = ∥(v − projU (v)) + (projU (v)− u)∥2. (10.1)

Now, v− projU (v) ∈ U⊥ by Lemma 10.2, and of course projU (v)− u ∈ U , so Proposi-
tion 2.1 in Section IV shows that the expression on the right of (10.1) is equal to

∥v − projU (v)∥2 + ∥projU (v)− u∥2.

The left-hand term here is independent of u, and the right-hand term is zero if and only
if u = projU (v).
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Appendix: 11 Existence and uniqueness of the totally positive
QR-factorization

We outlined the existence of the totally positive QR-factorization of a matrix A (with
linearly independent columns v1, . . . ,vn) in Section IV – 4. All that was missing was the
justification that, with Q and R defined there, one has A = QR. But the jth column of
QR is Q times the jth column of R, which is equal to

(
w1 · · · wn

)


r1,j

r2,j
...
rj,j

0
...
0


= r1,jw1 + r2,jw2 + · · ·+ rj,jwj ,

and this is simply vj (the jth column of A) by the choice of the ri,j .
For uniqueness, suppose that Q,Q′ ∈ Mm,n(R) have orthonormal columns, that

R,R′ ∈Mn(R) are upper triangular with positive diagonal entries, and that QR = Q′R′.
We show that Q = Q′ and R = R′. Write

Q =
(
w1 · · · wn

)
, Q′ =

(
w′1 · · · w′n

)
, R = (ri,j), R′ = (r′i,j).

We prove by induction on j ≥ 1 that wj = w′j and that ri,j = r′i,j for i ≤ j. For the
case j = 1, we see by considering the first column of QR and of Q′R′ that r1,1w1 =

r′1,1w
′
1. Taking norms and remembering that w1 and w′1 are unit vectors, we obtain

|r1,1| = |r′1,1|, and hence r1,1 = r′1,1 because both are positive by assumption. It follows
that w1 = w′1 as well.

Now take j ≥ 2, and assume that the statement to be proven is true up to, but not
yet including, that j. By looking at the jth column of each of QR and Q′R′, we see that

r1,jw1 + · · ·+ rj,jwj = r′1,jw
′
1 + · · ·+ r′j,jw

′
j .

But wi = w′i for i < j by the inductive hypothesis, so we in fact have

r1,jw1 + · · ·+ rj−1,jwj−1 + rj,jwj = r′1,jw1 + · · ·+ r′j−1,jwj−1 + r′j,jw
′
j . (11.1)

Dotting both sides with wi for i < j gives ri,j = r′i,j , and (11.1) then becomes simply
rj,jwj = r′j,jw

′
j . Taking norms again and remembering that rj,j and r′j,j are positive,

we arrive at rj,j = r′j,j and wj = w′j . The induction is complete.

Appendix: 12 Proof of the Cauchy–Schwarz inequality

We recall the statement to be proven:
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Let (V, ⟨·, ·⟩) be an inner product space. If u,v ∈ V , then |⟨u,v⟩| ≤ ∥u∥ ∥v∥, with
equality holding if and only if one of the vectors is a scalar multiple of the other.

Proof. If both u and v are zero, then the inequality holds trivially. Therefore, we may
assume that one of them, u say, is non-zero. Let w = v − λu, where

λ =
⟨u,v⟩
⟨u,u⟩

.

Note that u and w are orthogonal, because

⟨u,w⟩ = ⟨u,v − λu⟩ = ⟨u,v⟩ − λ⟨u,u⟩ = 0.

Now,

∥v∥2 = ⟨v,v⟩

= ⟨λu+w, λu+w⟩

= λ2⟨u,u⟩+ ⟨λu,w⟩+ ⟨w, λu⟩+ ⟨w,w⟩

= λ2⟨u,u⟩+ 2λ⟨u,w⟩+ ⟨w,w⟩

= λ2⟨u,u⟩+ ⟨w,w⟩ because ⟨u,w⟩ = 0

≥ λ2⟨u,u⟩ because ⟨w,w⟩ ≥ 0

=
⟨u,v⟩2

⟨u,u⟩

=
⟨u,v⟩2

∥u∥2
.

Rearranging and taking square roots, we obtain |⟨u,v⟩| ≤ ∥u∥ ∥v∥. Further, equality
holds if and only if ⟨w,w⟩ = 0, if and only if w = 0, if and only if v ∈ Span(u).

Appendix: 13 Real symmetric matrices

We prove that a real square matrix is symmetric if and only if it is orthogonally diago-
nalizable. This is Theorem 7.1 in Section IV.

First, we need a lemma.

Lemma 13.1. Let A ∈ Mn(R) be symmetric. If λ ∈ C is an eigenvalue of A, then in
fact λ ∈ R.
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Proof. Let u ∈ Cn be an eigenvector with eigenvalue λ. Then

λ(uTu) = (λu)Tu

= (Au)Tu

= (Au)Tu

= uTA
T
u

= uTATu because A is real

= uTAu because A is symmetric

= uT(λu)

= λ(uTu).

But uTu is non-zero, because u is non-zero by assumption, so λ = λ, as desired.

Now we come to the proof of the theorem. One direction is straightforward: If A ∈
Mn(R) is orthogonally diagonalizable, then it is symmetric: Choose P orthogonal and D
diagonal such that PTAP = D, i.e., A = PDPT. Then AT = (PDPT)T = PDTPT =

PDPT = A. (We have used the fact that a diagonal matrix is symmetric.)
We prove the converse by induction. Specifically, we show by induction on n ≥ 1 the

statement that every symmetric A ∈ Mn(R) is orthogonally diagonalizable. The case
n = 1 is immediate, since every 1× 1 matrix is already diagonal, and so is orthogonally
diagonalizable in a trivial way.

Now let n ≥ 2, and assume that all real symmetric (n − 1) × (n − 1) matrices
are orthogonally diagonalizable. Let A ∈ Mn(R) be symmetric. Choose an eigenvalue
λ ∈ C of A, which is possible by the Fundamental Theorem of Algebra. By Lemma 13.1,
λ ∈ R, so we may choose u1 ∈ Rn∖{0} such that Au1 = λu1. Scaling if necessary,
we may assume that ∥u1∥ = 1, and then we may extend {u1} to an orthonormal basis
{u1, . . . ,un} of Rn. (Use Proposition 2.2 in the Appendix, together with the Gram–
Schmidt process.)

Let
P =

(
u1 · · · un

)
,

an orthogonal matrix. Because Au1 = λu1, Lemma 6.4 in the Appendix shows that

AP = P


λ a2 · · · an

0
... B

0


for some a2, . . . , an ∈ R and some B ∈Mn−1(R). Hence,

PTAP =


λ a2 · · · an

0
... B

0

 . (13.1)
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But (PTAP )T = PTATP = PTAP because A is symmetric, so the matrix on the right-
hand side of (13.1) is also symmetric. Thus, a2 = · · · = an = 0, and B is symmetric.

Knowing that B is a real symmetric (n − 1) × (n − 1) matrix, we may apply the
inductive hypothesis to it to deduce the existence of an orthogonal matrix Q ∈Mn−1(R)
and a diagonal matrix D ∈Mn−1(R) such that QTBQ = D. The matrix

Q̃ =


1 0 · · · 0

0
... Q

0


is orthogonal, so PQ̃ is also orthogonal. Further,

(PQ̃)TA(PQ̃) = Q̃TPTAPQ̃

= Q̃T


λ 0 · · · 0

0
... B

0

 Q̃ =


λ 0 · · · 0

0
... QTBQ

0

 =


λ 0 · · · 0

0
... D

0

 ,

a diagonal matrix. The induction is complete.

Orthogonality of eigenvectors from different eigenspaces

Recall from Section IV – 7 that, in the process of orthogonally diagonalizing a real sym-
metric matrix, we construct a matrix P from vectors in the orthonormal bases found for
the various eigenspaces. We claimed in that section that P will always be an orthogonal
matrix, i.e., its columns will be orthonormal. In particular, the columns are mutually
orthogonal. This is clear for columns in the same eigenspace, because they are the out-
put of the Gram–Schmidt process, which generates orthogonal bases. But what about
columns of P in different eigenspaces? Why should they necessarily be orthogonal to
one another? This is answered in the following proposition (and its proof).

Proposition 13.2. Let A be a real symmetric matrix. If u,v are eigenvectors of A in
different eigenspaces, then u and v are orthogonal to each other.

Proof. We could deduce the statement from the theorem we have just proven. Specifi-
cally, if A is a real symmetric matrix, then we know that it is orthogonally diagonaliz-
able, and from this the proposition follows via a short argument. However, there is also
a direct proof, which we now present.
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Suppose that Au = λu and Av = µv, where λ ̸= µ. Then

(λ− µ)(u · v) = λ(u · v)− µ(u · v)

= (λu) · v − u · (µv)

= (Au) · v − u · (Av)

= (Au)Tv − uT(Av)

= uTATv − uTAv

= uTAv − uTAv because A is symmetric

= 0.

Therefore, because λ ̸= µ, it follows that u · v = 0.

Appendix: 14 Proof of Proposition 10.1 in Section IV

We recall the statement to be proven:

Suppose A ∈Mn(R) is symmetric, and let f be the associated quadratic form. Let
the eigenvalues of A be λ1 ≥ · · · ≥ λn (some may be repeated).

(i) The maximum value of f(x) subject to ∥x∥ = 1 is λ1. It occurs at any unit
eigenvector with eigenvalue λ1, and at no other unit vector.

(ii) The minimum value of f(x) subject to ∥x∥ = 1 is λn. It occurs at any unit
eigenvector with eigenvalue λn, and at no other unit vector.

Proof. We prove the part concerning the maximum. The part concerning the minimum
is proven similarly.

Let g(y) = f(Py) where PTAP = D is an orthogonal diagonalization in which the
diagonal entries of D are λ1, . . . , λn in that order. Note that, if y = (y1, . . . , yn), then
g(y) = yTDy = λ1y

2
1 + · · · + λny

2
n. Note also that the change of variables y = PTx

preserves norms since P is orthogonal, so y has norm 1 if x does. Hence, if ∥x∥ = 1,
then letting y = PTx, we have

f(x) = g(y) = λ1y
2
1 + · · ·+ λny

2
n ≤ λ1(y

2
1 + · · ·+ y2n) = λ1∥y∥2 = λ1.

Now, if x is an eigenvector with eigenvalue λ1 (and has norm 1), then

f(x) = xTAx = xT(λ1x) = λ1∥x∥2 = λ1.

Conversely, suppose that x is a unit vector such that f(x) = λ1. Let y = PTx, and
write y = (y1, . . . , yn). We claim that

λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n = λ1y

2
1 + λ1y

2
2 + · · ·+ λ1y

2
n. (14.1)
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Indeed,

λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n = g(y)

= f(Py)

= f(x)

= λ1

= λ1∥y∥2

= λ1y
2
1 + λ1y

2
2 + · · ·+ λ1y

2
n.

But because λiy2i ≤ λ1y
2
i for all i, the equality in (14.1) implies that λiy2i = λ1y

2
i for

all i, i.e., (λ1 − λi)y
2
i = 0. This in turn implies that yi = 0 if λi < λ1, so the vector

x = Py is a linear combination of the columns of P corresponding to the eigenvalue λ1,
in other words, columns 1, . . . , k where k is greatest such that λk = λ1. These columns
are eigenvectors with eigenvalue λ1, so x is an eigenvector with eigenvalue λ1.

Appendix: 15 Polynomials and polynomial functions

There can be some confusion over what is meant by a polynomial. Here, we discuss
two definitions and show that they amount to essentially the same objects. We restrict
ourselves to polynomials with real coefficients, although the discussion would be identical
for polynomials over any infinite field.

Algebra books usually define a polynomial in a formal way, in which the “powers”
xn are initially not powers of a variable x but simply symbols indexed by non-negative
integers n. Once this formal definition is made, it is subsequently possible to define
products of polynomials such that xmxn = xm+n, so that the symbols do behave just
like powers of a variable. And it is possible to evaluate a polynomial p =

∑N
n=0 anx

n at
a given c ∈ R by defining p(c) =

∑N
n=0 anc

n. A polynomial also has a degree, namely,
the largest n such that the coefficient an of xn is non-zero. (This works for non-zero
polynomials. The zero polynomial is often assigned the degree −∞.)

In these notes, it is this formal definition of polynomials that I implicitly use, and I
use the notation P for the space of polynomials defined in this formal way.

However, another common interpretation of a polynomial is as a function p : R → R
of the form

p : x 7→
N∑

n=0

anx
n.

Thus, in this interpretation, a polynomial is a function first, albeit a function of a rather
specific type. Let us use the notation P̃ for the space of polynomials defined in this way,
i.e., as functions.

Both P and P̃ are vector spaces over R, and there is a linear transformation

φ : P → P̃

p 7→ (x 7→ p(x)).
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By definition of P̃, the map φ is surjective. Further, as we shall see below, it is injective
as well and therefore an isomorphism.

Recall that if p ∈ P, then a (real) root of p is a real number c such that p(c) = 0.

Lemma 15.1. A non-zero polynomial p ∈ P of degree n has at most n roots.

Proof. We prove this by induction on n ≥ 0. If p has degree 0, then p is a non-zero
constant and therefore has no roots.

Now choose n ≥ 1, and assume that every polynomial of degree n − 1 has at most
n − 1 roots. Let p ∈ P have degree n. If p has no roots, then we are done. Otherwise,
let c be a root. Via long division of polynomials, we may write p = (x− c)q + r where
q, r ∈ P and r has degree less than the degree of x − c, i.e., r is constant. Therefore,
evaluating p = (x− c)q+ r at c, we obtain 0 = (c− c)q(c) + r = r, i.e., r is zero. Hence,
p = (x − c)q. Because q has degree n − 1, the inductive hypothesis says that q has at
most n − 1 roots, so p, being the product of x − c and q, has at most 1 + (n − 1) = n

roots. The induction is complete.

Proposition 15.2. The map φ : P → P̃ defined above is an isomorphism.

Proof. We have already remarked that φ is surjective. It remains to show that it is
injective. Suppose p ∈ Ker(φ). Then p(x) = 0 for all x ∈ R, so p has infinitely many
roots because R is infinite. But a non-zero polynomial has at most finitely many roots
by Lemma 15.1, so p must be the zero polynomial.
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