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1. (a) If v ∈ V , then
0v = (0 + 0)v = 0v + 0v (1)

by distributivity. If we let w be the additive inverse of 0v, so that 0v+w = 0,
then (1) gives

0v + w = (0v + 0v) + w

i.e., 0 = 0v + (0v + w)

= 0v + 0

= 0v,

as required.

(b) If a ∈ R and v ∈ V , then

(−a)v + av = (−a+ a)v

= 0v

= 0

by part (a). Thus, (−a)v is the additive inverse of av, which is to say (−a)v =

−(av).

2. We wish to find a1, a2, a3 ∈ R such that

2x2 + 7x+ 10 = a1(x+ 1)2 + a2(x+ 1) + a3 · 1

= a1(x
2 + 2x+ 1) + a2(x+ 1) + a3

= a1x
2 + (2a1 + a2)x+ (a1 + a2 + a3).

Hence, equating coefficients of the powers of x, we are to solve the equations

a1 = 2

2a1 + a2 = 7

a1 + a2 + a3 = 10

We may read off straight away that the solution is a1 = 2, a2 = 3, a3 = 5. Thus,
p = 2p1 + 3p2 + 5p3.

3. We show that in fact f is not a linear combination of g and h. Suppose it were,
i.e., that there were a, b ∈ R such that f = ag + bh. Then f(x) = ag(x) + bh(x)

for all x ∈ R, i.e.,

x3 = a(x+ 1) + b ln(x2 + 1) for all x ∈ R.
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In this equation, choose x = 0, 1,−1 in turn:

0 = a (when x = 0) (2)

1 = 2a+ b ln(2) (when x = 1) (3)

−1 = b ln(2) (when x = −1) (4)

Equations (2)–(4) have no common solution for a and b. Indeed, because the first
equation states that a = 0, the second two state, respectively, 1 = b ln(2) and
−1 = b ln(2), a contradiction.

4. The nth term of s is

(n+ 1)3 = n3 + 3n2 + 3n+ 1

= (n3 + 1) + 3n(n+ 1),

so s = t+ 3u.

5. Observe that

A2 =

(
1 2

3 4

)(
1 2

3 4

)
=

(
7 10

15 22

)
,

so we are to solve(
7 10

15 22

)
= c

(
1 2

3 4

)
+ d

(
1 0

0 1

)
=

(
c+ d 2c

3c 4c+ d

)

for c, d ∈ R. Equating corresponding entries, we obtain the four equations

c+ d = 7

2c = 10

3c = 15

4c+ d = 22

The system has a unique solution, namely c = 5, d = 2, so A2 = 5A+ 2I.

6. Because A has trace zero, we may write it as

A =

(
a b

c −a

)
.

Squaring A, we obtain

A2 =

(
a b

c −a

)(
a b

c −a

)
=

(
a2 + bc 0

0 a2 + bc

)
=

(
λ 0

0 λ

)
,
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where λ = a2 + bc = −det(A), a non-zero integer. (Remember that A is assumed
to have integer entries and to be invertible.) Hence,

A4 =

(
λ 0

0 λ

)2

=

(
λ2 0

0 λ2

)
= nI,

where n = λ2, a positive integer.

7. We have the well-known trigonometric identity cos(2x) = 2 cos2(x)−1, i.e., f(x) =
2g(x)− h(x). This being true for all x ∈ R, we see that f = 2g − h as functions.

8. The function f is not a linear combination of g and h. We prove this by contradic-
tion. Suppose that f = ag + bh for some a, b ∈ R. That is, f(x) = ag(x) + bh(x)

for all x ∈ R, which is to say

sin(2x) = a cos(x) + b sin(x) for all x ∈ R.

In this equation, choose x = 0, π/2, π/4 in turn:

0 = a (when x = 0) (5)

0 = b (when x = π/2) (6)

1 = (a+ b)/
√
2 (when x = π/4) (7)

Equations (5)–(7) have no common solution for a and b, since the first two state
that a = b = 0, while the third implies that a + b ̸= 0. This gives us the desired
contradiction.

9. All the axioms except (i) and (vi) hold. Let us show this by going through the
eight axioms in turn.

(i) This axiom (associativity) does not hold. For example,

(1⊕ 2)⊕ 3 = |1− 2| ⊕ 3 = 1⊕ 3 = |1− 3| = 2,

while 1⊕ (2⊕ 3) = 1⊕ |2− 3| = 1⊕ 1 = |1− 1| = 0.

(ii) This axiom (commutativity) does hold: If u, v ∈ R≥0, then

u⊕ v = |u− v| = |v − u| = v ⊕ u.

(iii) This axiom does hold: If u ∈ R≥0, then

u⊕ 0 = |u− 0| = |u| = u,

because u ≥ 0 by assumption.
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(iv) This axiom does hold: Let u ∈ R≥0, and let v = u. Then

u⊕ v = |u− v| = |u− u| = 0.

(v) This axiom does hold: If u, v ∈ R≥0 and c ∈ R, then

c⊙ (u⊕ v) = |c|(u⊕ v) by definition of ⊙

= |c| |u− v| by definition of ⊕

=
∣∣|c|(u− v)

∣∣
=

∣∣|c|u− |c|v
∣∣

= (|c|u)⊕ (|c|v) by definition of ⊕

= (c⊙ u)⊕ (c⊙ v) by definition of ⊙.

(vi) This axiom does not hold. For example, let c = d = 1 ∈ R, and let u = 1 ∈ R≥0.
Then

(c+ d)⊙ u = (1 + 1)⊙ 1 = 2⊙ 1 = |2|1 = 2,

while (c⊙ u)⊕ (d⊙ u) = (1⊙ 1)⊕ (1⊙ 1) = |1− 1| = 0.

(vii) This axiom does hold: If c, d ∈ R and u ∈ R≥0, then

(cd)⊙ u = |cd|u

= |c| |d|u

= |c|(d⊙ u)

= c⊙ (d⊙ u).

(viii) This axiom does hold: If u ∈ R≥0, then 1⊙ u = |1|u = 1u = u.

10. (a) B1 is a subspace. Certainly it contains the zero polynomial, because the
derivative of the zero polynomial is identically zero. Next, if p′(a) = q′(a) = 0,
then (p+ q)′(a) = p′(a) + q′(a) = 0, and if b is a scalar, (bp)′(a) = b(p′(a)) =

b · 0 = 0. Therefore, B1 is closed under addition and scalar multiplication.

(b) B2 is not a subspace. For example, the zero polynomial is not in B2.

(c) B3 is a subspace. One way to see this is to observe that B3 is the set of
constant polynomials, which is a subspace: The zero polynomial is constant,
and adding or scaling a constant polynomial yields a constant polynomial.
Alternatively, we may work directly with the derivative: If p′ = q′ = 0, then
(p+ q)′ = p′ + q′ = 0+ 0 = 0, and if b is a scalar, then (bp)′ = bp′ = b · 0 = 0.

(d) B4 is not a subspace. For example, x + 2 ∈ B4, but 1
2 (x + 2) ̸∈ B4, so B4 is

not closed under scalar multiplication.
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11. (a) B1 is a subspace. Certainly it contains the zero sequence, because 0 = 2·0−3·0.
Next, if α = (an)n and β = (bn)n are in B1 and cn is the nth term in the
sequence α+ β, then

cn = an + bn

= 2an−1 − 3an−2 + 2bn−1 − 3bn−2

= 2(an−1 + bn−1)− 3(an−2 + bn−2)

= 2cn−1 − 3cn−2,

so α + β ∈ B1. Finally, if α = (an)n ∈ B1, λ ∈ R, and cn is the nth term in
the sequence λα, then

cn = λan

= λ(2an−1 − 3an−2)

= 2λan−1 − 3λan−2

= 2cn−1 − 3cn−2,

so λα ∈ B1.

(b) B2 is a subspace. It is clear that B2 contains the zero sequence. Now suppose
α = (an)n and β = (bn)n are in B2, and let cn be the nth term in the sequence
α+ β. If 3 divides n, then an = bn = 0, so cn = an + bn = 0+0 = 0. Further,
if α = (an)n ∈ B2, λ ∈ R, and cn is the nth term in the sequence λα, then
cn = λan = λ · 0 = 0 whenever 3 divides n.

(c) B3 is not a subspace. For example, the sequence α = (an)n where an = n is
in B3, but 2α = (0, 2, 4, 6, . . .) is not. This shows simultaneously that B3 is
closed neither under addition nor under scalar multiplication. Alternatively,
we may just observe that B3 does not contain the zero sequence.

(d) B4 is not a subspace. For example, consider the sequences α = (n)n and
β = (−n)n. Then α and β are both in B4, but α + β is the zero sequence,
which is not in B4. Or again, we may observe simply that B4 does not contain
the zero sequence. Alternatively, we may show that B4 is not closed under
scalar multiplication.

12. (a) B1 is not a subspace of P2. The easiest way to see this is to observe that the
zero polynomial is not in B1. Indeed, if p is the zero polynomial, then p+xp′

is still the zero polynomial, which does not have degree 2.

(b) B2 is a subspace of M2(R). If X is the zero 2× 2 matrix, then XA is the zero
2 × 3 matrix by definition of matrix multiplication. Thus, B2 contains the
zero 2× 2 matrix and is therefore non-empty. Now suppose that X,Y ∈ B2.
Then

(X + Y )A = XA+ Y A
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= 0 + 0

= 0,

so X + Y ∈ B2. Thus, B2 is closed under addition. Finally, if X ∈ B2 and
c ∈ R, then

(cX)A = cXA

= c0

= 0,

so cX ∈ B2, showing that B2 is closed under scalar multiplication as well.

There is an alternative solution exploiting a sneaky observation about the
subspace B2: it is in fact just the zero subspace of M2(R). Indeed, suppose
X ∈ B2. Then because XA = 0, it follows from a standard property of
matrix multiplication that Xw = 0 for each column w of A. In particular,
considering the first two columns of A, we obtain

X

(
1

4

)
= 0

X

(
2

5

)
= 0.

Now, let the columns of X be u and v, so that X =
(
u v

)
. Then the above

two equations say, respectively,

u+ 4v = 0

2u+ 5v = 0

Solving this system for u and v gives u = v = 0, so X is the zero matrix.

This alternative solution would not work for an arbitrary matrix A ∈M2,3(R),
so it is a good idea to understand the first solution.

(c) B3 is not a subspace of S. For example, it is not closed under addition. To see
this, let s = (1, 1, 1, 1, . . .) and t = (2, 4, 16, 256, . . .). (Thus, t is the sequence
whose zeroth term is 2, and in which each term after that is the square of the
previous term.) Both s and t are in B3, but s + t = (3, 5, . . .), and 5 ̸= 32.
Thus, s+ t ̸∈ B3, so B3 is not closed under addition.

Actually, B3 is not closed under scalar multiplication either. For example, the
sequence s = (1, 1, 1, 1, . . .) is in B3, but the sequence 2s = (2, 2, 2, 2, . . .) is
not, because 22 ̸= 2.

(d) B4 is a subspace of F . It is non-empty, because it contains the zero function,
z. Indeed, z(0) = 0 = z(1). Now suppose that f, g ∈ B4. Then

(f + g)(0) = f(0) + g(0) by definition of addition in F
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= f(1) + g(1) because f, g ∈ B4

= (f + g)(1) by definition of addition again,

so f + g ∈ B4. Finally, if f ∈ F and c ∈ R, then

(cf)(0) = cf(0) by definition of scalar multiplication in F

= cf(1) because f ∈ B4

= (cf)(1) by definition of scalar multiplication again,

so cf ∈ B4.

13. (a) A is closed under addition. If (x1, x2, x3), (y1, y2, y3) ∈ A, then x1+y1, x2+y2,
and x3 + y3 are all positive. Further, because all terms in the expansion of
the product (x1 + y1)(x2 + y2)(x3 + y3) are positive, we have

(x1 + y1)(x2 + y2)(x3 + y3) > x1x2x3 > 1,

so (x1 + y1, x2 + y2, x3 + y3) ∈ A.

(b) B is not closed under addition. For example, (1, 1, 2) and (−1,−1, 2) are in
B, but their sum, (0, 0, 4), is not.

14. (a) B1 is not linearly independent, because

(2x+ 1)− 2(3x+ 2) + (4x+ 3) = 0.

The set B1 does not span P2, because, for example, x2 is not in Span(B1).

(b) B2 is linearly independent: If a, b, c ∈ R and

ax+ b(x+ 2) + c(−x2) = 0,

then
2b+ (a+ b)x− cx2 = 0,

i.e.,

2b = 0

a+ b = 0

−c = 0,

so a = b = c.

B2 spans P2. Once we have seen more theory, we will have at our disposal
quick ways to show this. For now, let us do it the long way. Given a1x

2 +

a2x+ a3 ∈ P2, we wish to decide whether there exist c1, c2, c3 ∈ R such that

a1x
2 + a2x+ a3 = c1x+ c2(x+ 2) + c3(−x2)
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= −c3x2 + (c1 + c2)x+ 2c2.

This amounts to solving the system

−c3 = a1

c1 + c2 = a2

2c2 = a3

for c1, c2, c3 ∈ R, and we see that it has the solution

c1 = a2 −
1

2
a3, c2 =

1

2
a3, c3 = −a1.

(c) B3 is linearly independent, because the only scalars a, b such that 2a+bx2 = 0

(the zero polynomial) are a = b = 0. However, B3 does not span P2, because
there is no solution in a, b ∈ R to the equation 2a+ bx2 = x of polynomials.

(d) Let p1 = x+2, p2 = x− 1, p3 = x2, and p4 = x2 − 3. Then B4 is not linearly
independent, because p1−p2−p3+p4 = 0. (Or, once we have seen the notion
of dimension, we may simply observe that 4 vectors in a 3-dimensional space
cannot be linearly independent.)

B4 does span P2: Given a1x2 + a2x+ a3 ∈ P2, we wish to determine whether
we may solve

a1x
2 + a2x+ a3 = c1(x+ 2) + c2(x− 1) + c3x

2 + c4(x
2 − 3)

= (c3 + c4)x
2 + (c1 + c2)x+ 2c1 − c2 − 3c4

for c1, c2, c3, c4 ∈ R. The system to solve is

c3 + c4 = a1

c1 + c2 = a2

2c1 − c2 − 3c4 = a3

All we are interested in is whether the system has a solution for any given
a1, a2, a3, not what the solutions are if so. For that, we need only decide
whether the coefficient matrix0 0 1 1

1 1 0 0

2 −1 0 −3


has a pivot in every row of a row-echelon form. The following row-echelon
form shows that indeed there is a pivot in every row:1 1 0 0

0 −3 0 −3

0 0 1 1

 .
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15. (a) Consider A = {f ∈ F | f(0) ∈ Z}. Then A is closed under addition, for if
f, g ∈ A, then

(f + g)(0) = f(0) + g(0) ∈ Z,

because the sum of two integers is an integer. However, A is not closed under
scalar multiplication. For example, the function f(x) = x+ 1 is in A, but 1

2f

is not because its value at 0 is 1/2.

(b) Let B = {f ∈ F | f(0)f(1) = 0}. If f ∈ B and c ∈ R, then

(cf)(0) · (cf)(1) = cf(0) · cf(1)

= c2f(0)f(1)

= c2 · 0

= 0,

so cf ∈ B. Thus, B is closed under scalar multiplication. However, B is
not closed under addition. To see this, consider the functions f(x) = x and
g(x) = x− 1. Both f and g are in B, but their sum, h = f + g, is not:

h(0)h(1) = (f + g)(0) · (f + g)(1)

= (f(0) + g(0))(f(1) + g(1))

= g(0)f(1)

= −1.

16. First, note that

A2 =

(
19 27

45 64

)
.

Now, suppose that c1I + c2A+ c3A
2 = 0, where c1, c2, c3 ∈ R, i.e.,(

0 0

0 0

)
= c1

(
1 0

0 1

)
+ c2

(
2 3

5 7

)
+ c3

(
19 27

45 64

)

=

(
c1 + 2c2 + 19c3 3c2 + 27c3

5c2 + 45c3 c1 + 7c2 + 64c3

)
.

Then we obtain the linear system

c1 + 2c2 + 19c3 = 0

3c2 + 27c3 = 0

5c2 + 45c3 = 0

c1 + 7c2 + 64c3 = 0
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This system is represented by the matrix
1 2 19

0 3 27

0 5 45

1 7 64

 ,

and after a few row operations, we find the row-echelon form
1 2 19

0 1 9

0 0 0

0 0 0

 .

The system therefore has a free variable, so the equation c1I + c2A + c3A
2 = 0

has non-trivial solutions. Thus, I, A,A2 are not linearly independent.

17. Suppose c1, c2, c3 ∈ R satisfy c1s + c2t + c3u = 0, where 0 here means the zero
sequence. The nth term of c1s+ c2t+ c3u is c1(n+ 1) + c2(2n+ 1) + c3n

2, so we
have

c1(n+ 1) + c2(2n+ 1) + c3n
2 = 0 for all integers n ≥ 0. (8)

Taking n = 0, 1, 2 respectively in this equation gives

c1 + c2 = 0

2c1 + 3c2 + c3 = 0

3c1 + 5c2 + 4c3 = 0

This system is represented by the matrix1 1 0

2 3 1

3 5 4

 ,

and a row-echelon form of this matrix is1 1 0

0 1 1

0 0 2

 ,

which has a pivot in every column. The system therefore has only the trivial
solution c1 = c2 = c3 = 0, so s, t, u are linearly independent.

A slightly different solution is as follows. Because the equation in (8) holds for
infinitely many n, the polynomial f(x) = c1(x + 1) + c2(2x + 1) + c3x

2 must be
the zero polynomial, so the coefficients of the powers of x in f(x) are all zero.
Rearranging, we have f(x) = c3x

2 + (c1 + 2c2)x+ c1 + c2, so

c3 = 0
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c1 + 2c2 = 0

c1 + c2 = 0

This system has only the solution c1 = c2 = c3 = 0.

18. (a) We calculate the first two derivatives of f as follows:

f ′(x) = 2axeax
2

= 2axf(x)

f ′′(x) = 2af(x) + 2axf ′(x) = (2a+ 4a2x2)f(x).

Suppose, then, that λf + µf ′ + νf ′′ = 0 for some λ, µ, ν ∈ R. Then

0 = λf(x) + µ · 2axf(x) + ν(2a+ 4a2x2)f(x)

= (4a2νx2 + 2aµx+ 2aν + λ)f(x)

for all x ∈ R. Hence, because f(x) is non-zero for all x ∈ R,

4a2νx2 + 2aµx+ 2aν + λ = 0 for all x ∈ R.

The only way the above polynomial function in x can equal the zero function
is for all the coefficients to be zero, so 4a2ν = 2aµ = 2aν + λ = 0, and
therefore λ = µ = ν = 0.

(b) Differentiation using the product rule gives

g′′(x) = −x sin(x) + 2 cos(x)

g(4)(x) = x sin(x)− 4 cos(x).

Hence, g + 2g′′ + g(4) = 0, so g, g′′, g(4) are linearly dependent, and the same
is therefore true of g, g′, . . . , g(4).

19. (a) Suppose that au+ bv + cw = 0, the zero sequence, for some a, b, c ∈ R, i.e.,

4na+ 2nb+ n2c = 0

for all integers n ≥ 0. Taking n = 0, 1, 2 gives, respectively,

a+ b = 0

4a+ 2b+ c = 0

16a+ 4b+ 4c = 0.

After multiplying the bottom row by 1/4, we aim to show that the matrix1 1 0

4 2 1

4 1 1


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has a pivot in every column, and row reduction shows that this is the case.
Therefore, u, v, w are linearly independent.

(b) Note that α = u − 4v and β = u + 4v − 2w. Hence, if aα + bβ = 0 for some
a, b ∈ R, then

0 = a(u− 4v) + b(u+ 4v − 2w)

= (a+ b)u+ (−4a+ 4b)v − 2bw.

By the linear independence of u, v, w we conclude that a + b = −4a + 4b =

−2b = 0, so a = b = 0.

An alternative solution uses bases (I – 6) and coordinate vectors (I – 7). We
may row-reduce the matrix of coordinate vectors of α and β with respect to
the basis {u, v, w} of Span(u, v, w). The matrix is 1 1

−4 4

0 −2

 ,

and it has a pivot in both columns, so α and β are linearly independent.

(c) It helps to write γ1 and γ2 as

γ1 = (4n − n2)n (9)

γ2 = (2n − 1
4n

2)n. (10)

Now, we see that

α+ β = 2(4n − n2)n = 2γ1,

while

β − α = 2(2n+2 − n2)n

= 8(2n − 1
4n

2)n

= 8γ2.

Thus, γ1 = 1
2 (α+ β) and γ2 = 1

8 (−α+ β).

Another answer uses the observation that γ1 = u−w and γ2 = v− 1
4w, by (9)

and (10) respectively. In light of this observation, we look to express u − w

and v − 1
4w as linear combinations of α = u − 4v and β = u + 4v − 2w.

We could eyeball the solution, or find it systematically by expressing the last
two columns of the following matrix as linear combinations of the first two
columns:  1 1 1 0

−4 4 0 1

0 −2 −1 −1/4

 .
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Row-reducing this matrix, we arrive at the reduced row-echelon form1 0 1/2 −1/8

0 1 1/2 1/8

0 0 0 0

 ,

so γ1 = 1
2α+ 1

2β and γ2 = − 1
8α+ 1

8β.

20. By adding the equations u1 = v1+v2 and u2 = v1−v2, we obtain v1 = 1
2u1+

1
2u2,

and hence v2 = 1
2u1 − 1

2u2. Therefore,

v3 = 2v1 + 3v2 − u3 =
5

2
u1 −

1

2
u2 − u3.

Thus, every vector in the spanning set {v1,v2,v3} is in Span(u1,u2,u3), so
{u1,u2,u3} is also a spanning set. Explicitly, if c1, c2, c3 ∈ R, then

c1v1 + c2v2 + c3v3 = c1(
1
2u1 +

1
2u2) + c2(

1
2u1 − 1

2u2)

+ c3(
5
2u1 − 1

2u2 − u3)

=
1

2
(c1 + c2 + 5c3)u1 +

1

2
(c1 − c2 − c3)u2 − c3u3.

21. We shall answer part (b) first. The answer to part (a) will then be obvious.

Let N be a non-negative integer. Let us say that a sequence t = (an)n ∈ S is
constant from N if an = aN for all n ≥ N . With this definition, we will show that
a given sequence t lies in Span(X) if and only if there is some N ≥ 0 such that t
is constant from N .

Suppose first that t ∈ Span(X), i.e.,

c1sk1 + · · ·+ cmskm = t (11)

for some non-negative integers k1 < k2 < · · · < km and some c1, . . . , cm ∈ R. If
N = km, then each ski in (11) is constant from N , because it has a 1 in its nth
term for n ≥ N . But then t, being a linear combination of the ski , is also constant
from N .

Conversely, suppose there is N ≥ 0 such that an = aN when n ≥ N . For k =

0, . . . , N , let uk be the vector in RN+1 whose N +1 entries are, in order, the first
N + 1 terms of sk, i.e., terms 0 to N . The vectors u0, . . . ,uN form a basis for
RN+1, so we may solve the equation

c0u0 + · · ·+ cNuN = (a0, a1, . . . , aN ) (12)

for c0, . . . , cN ∈ R. We claim that

c0s0 + · · ·+ cNsN = t, (13)
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that is, bn = an for all n ≥ 0, where bn is the nth term of c0s0 + · · · + cNsN .
If n ≤ N , then bn = an precisely because of the choice of c0, . . . , cN in (12). For
the other bn, note that each of the sk appearing in (13) is constant from N , so
c0s0 + · · · + cNsN is constant from N . Therefore, if n ≥ N , we have bn = bN =

aN = an.

Having thus characterized the sequences in Span(X), we see immediately that
(1, 2, 3, 4, . . .) is not in Span(X), since there is no N ≥ 0 such that (1, 2, 3, 4, . . .)

is constant from N .

22. (a) We have p ∈ V if and only if p(1) = p(−1), if and only if

a3 + a2 + a1 + a0 = −a3 + a2 − a1 + a0,

if and only if a3 + a1 = 0.

(b) By part (a), a general polynomial in V takes the form

ax3 + bx2 − ax+ c = a(x3 − x) + bx2 + c,

where a, b, c ∈ R. Therefore, the polynomials

p1 = x3 − x, p2 = x2, p3 = 1

span V . To show that p1, p2, p3 are linearly independent, we suppose that
c1p1 + c2p2 + c3p3 = 0, the zero polynomial, i.e.,

c1(x
3 − x) + c2x

2 + c3 = 0,

which is to say
c1x

3 + c2x
2 − c1x+ c3 = 0.

Then we see immediately that c1 = c2 = c3 = 0. Thus, {p1, p2, p3} is a basis
for V . Because V has a basis consisting of 3 vectors, dim(V ) = 3.

23. (a) A general matrix in U takes the form(
a b

b c

)
= a

(
1 0

0 0

)
+ b

(
0 1

1 0

)
+ c

(
0 0

0 1

)
= aA1 + cA2 + bA3,

which is in Span(A1, A2, A3). Thus, B is a spanning set for U . For linear
independence, we observe that if c1A1 + c2A2 + c3A3 = 0, the zero matrix,
then (

c1 c3

c3 c2

)
=

(
0 0

0 0

)
,
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so c1 = c2 = c3 = 0.

(b) If X =

(
x y

z w

)
, then

XTX =

(
x z

y w

)(
x y

z w

)

=

(
x2 + z2 xy + zw

xy + zw y2 + w2

)

=

(
u · u u · v
u · v v · v

)
= (u · u)A1 + (v · v)A2 + (u · v)A3,

so

[XTX]B =

u · u
v · v
u · v

 . (14)

In fact, (14) holds for any matrix X ∈ Mm,2(R) with columns u and v; the
matrix X need not be square. Indeed, we always have

XTX =

(
u · u u · v
u · v v · v

)
regardless of the number of rows in X.

24. (a) Suppose that c1f1 + c2f2 + c3f3 = 0, the zero function, where c1, c2, c3 ∈ R.
Then

c1 cos(2πx) + c2 sin(2πx) + c3x = 0 for all x ∈ R.

Taking x = 0 shows that c1 = 0, and then taking x = 1/2 shows that c3 = 0.
We have only to take, for example, x = 1/4 to then see that c2 = 0 as well.
Thus, f1, f2, f3 are linearly independent. Also, they span V by definition of
V . Thus, {f1, f2, f3} is a basis for V .

(b) We are told that g = 4f1 − f2 + f3, so

g(x) = 4 cos(2πx)− sin(2πx) + 2x for all x ∈ R.

Hence,

g(3/8) = 4(−
√
2/2)−

√
2/2 + 3/4 = 3/4− 5

√
2/2.

25. (a) The zero sequence is in U , because 0 = 0 + 0. Next, suppose that u = (xn)n

and v = (yn)n are in U . Then u+ v = (xn + yn)n, and

xn + yn = (xn−1 + xn−2) + (yn−1 + yn−2)
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= (xn−1 + yn−1) + (xn−2 + yn−2),

so u + v ∈ U . Finally, suppose that u = (xn)n ∈ U and c ∈ R. Then cu =

(cxn)n, and

cxn = c(xn−1 + xn−2)

= cxn−1 + cxn−2,

so cu ∈ U .

(b) For n ≥ 2,

αn = αn−2α2

= αn−2(α+ 1) by the hint

= αn−1 + αn−2.

Thus, s ∈ U . Exactly the same argument with β in place of α shows that
t ∈ U .

(c) Suppose that c1s + c2t = 0, the zero sequence, i.e., c1αn + c2β
n = 0 for all

non-negative integers n. Taking n = 0 and n = 1 gives

c1 + c2 = 0

αc1 + βc2 = 0

This homogeneous system is represented by the square matrix

(
1 1

α β

)
, which

has determinant β − α = −
√
5 ̸= 0, so the system has only the solution

c1 = c2 = 0. Thus, s and t are linearly independent.

26. (a) Suppose c1, c2 ∈ R satisfy c1f + c2g = 0, i.e., c1(e2x+x)+ c2(ex+2x) = 0 for
all x ∈ R. Taking x = 0 gives c1 + c2 = 0. Now take x = ln(2). (Actually, in
this example, any x ̸= 0 would do.) Then c1(4 + ln(2)) + c2(2 + 2 ln(2)) = 0.
The system

c1 + c2 = 0

c1(4 + ln(2)) + c2(2 + 2 ln(2)) = 0

is represented by a 2× 2 matrix having determinant∣∣∣∣∣ 1 1

4 + ln(2) 2 + 2 ln(2)

∣∣∣∣∣ = ln(2)− 2 ̸= 0,

so the system has the unique solution c1 = c2 = 0, as desired.

(b)

[h1]E =

(
−2

1

)
, [h2]E =

(
3

−1

)
.
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(c) The functions h1, h2 are linearly independent if and only if [h1]E , [h2]E are,
but (

[h1]E [h2]E

)
=

(
−2 3

1 −1

)
↔

(
1 −1

0 1

)
so [h1]E , [h2]E are indeed linearly independent (pivot in each column). Further,
h1, h2 span V because [h1]E , [h2]E span R2:(

−2 3

1 −1

)
↔

(
1 −1

0 1

)
(pivot in each row).

27. (a) We search for a basis B such that S′ ⊆ B ⊆ S, where S′ = {v1,v2} and S is
the spanning set {v1,v2, e1, e2, e3, e4} of R4. (The vectors e1, . . . , e4 are the
standard basis vectors in R4.) This amounts to row-reducing the matrix

2 1 1 0 0 0

1 2 0 1 0 0

1 1 0 0 1 0

0 1 0 0 0 1

↔


1 2 0 1 0 0

0 1 0 0 0 1

0 0 1 −2 0 3

0 0 0 −1 1 1

 .

The columns corresponding to the four vectors v1,v2, e1, e2 are linearly in-
dependent and span the column space, so {v1,v2, e1, e2} is a basis for R4

extending {v1,v2}.

(b) Let A1, A2 be the matrices in the given set, in that order, and let

A3 =

(
1 0

0 0

)
, A4 =

(
0 1

0 0

)
, A5 =

(
0 0

1 0

)
, A6 =

(
0 0

0 1

)
.

Then {A1, . . . , A6} is a spanning set for M2(R) containing the linearly inde-
pendent set {A1, A2}, so it contains a basis for M2(R) extending the linearly
independent set. To find one, we put the matrix of coordinate vectors with
respect to the basis {A3, A4, A5, A6} in row-echelon form:

1 1 1 0 0 0

1 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

↔


1 1 1 0 0 0

0 −1 −1 0 1 0

0 0 −1 1 0 0

0 0 0 −1 0 1

 .

The columns corresponding to the four matrices A1, A2, A3, A4 are linearly
independent and span the column space, so {A1, A2, A3, A4} is a basis for
M2(R) extending {A1, A2}.

28. (a) The set W is non-empty, because the zero 2× 2 matrix is symmetric and has
trace zero and is therefore in W . Next, if A,B ∈W , then

(A+B)T = AT +BT = A+B,
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and Tr(A+B) = Tr(A) + Tr(B) = 0 + 0 = 0,

so A+B ∈W . Finally, if λ ∈ R, then

(λA)T = λAT = λA,

and Tr(λA) = λTr(A) = λ · 0 = 0,

so λA ∈W .

(b) Let

A =

(
a b

c d

)
.

Then A ∈W if and only if b = c and a+ d = 0, if and only if

A =

(
a b

b −a

)
= a

(
1 0

0 −1

)
+ b

(
0 1

1 0

)
.

Thus, W is the subspace spanned by the matrices(
1 0

0 −1

)
,

(
0 1

1 0

)
. (15)

These matrices are linearly independent, because if

c1

(
1 0

0 −1

)
+ c2

(
0 1

1 0

)
=

(
0 0

0 0

)
,

i.e.,

(
c1 c2

c2 −c1

)
=

(
0 0

0 0

)
,

then c1 = c2 = 0. Therefore, the matrices in (15) form a basis for W . The
space W has dimension 2, because a basis for it consists of two vectors.

29. Working with the basis B = {x3, x2, x, 1} of P2, we solve the equation c1[p1]B +

c2[p2]B + c3[p3]B + c4[p4]B = 0 for c1, c2, c3, c4 ∈ R. Arranging these coordinate
vectors as columns in a matrix, we obtain the system

1 1 1 2

2 1 2 6

−1 −1 1 4

3 1 −1 −2

↔


1 0 0 1

0 1 0 −2

0 0 1 3

0 0 0 0

 .

There is no pivot in the final column, so p1, p2, p3, p4 are linearly dependent.
Specifically, if the columns of the reduced row-echelon form are v1,v2,v3,v4, then
v4 = v1−2v2+3v3, so the same is true of the columns of the matrix of coordinate
vectors, i.e., [p4]B = [p1]B − 2[p2]B + 3[p3]B, and therefore p4 = p1 − 2p2 + 3p3.
Alternatively, treating c4 as free, we take c4 = −1 and thus obtain c1 = 1, c2 = −2,
and c3 = 3.
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30. (a) We row-reduce the matrix of coordinate vectors, with coordinates taken with
respect to the basis{(

1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
,

i.e., 
1 1 2 1 −1

1 2 3 0 2

1 3 4 1 1

1 −1 0 0 −1

↔


1 1 2 1 −1

0 1 1 −1 3

0 0 0 1 −2

0 0 0 0 0

 .

The pivot columns are columns 1, 2, and 4, so the corresponding matrices in
the set S form a basis for U :(

1 1

1 1

)
,

(
1 2

3 −1

)
,

(
1 0

1 0

)
.

(b) We represent the polynomials p1 = x3 + x2 − 1, p2 = −x3 + 2x + 1, p3 =

x3 + 2x2 + 2x − 1, p4 = 2x3 + x2 + x − 2, p5 = 4x3 + 2x2 − x − 4 by their
coordinate vectors with respect to the basis {x3, x2, x, 1}:

1

1

0

−1

 ,


−1

0

2

1

 ,


1

2

2

−1

 ,


2

1

1

−2

 ,


4

2

−1

−4

 .

By row-reducing the corresponding matrix, i.e.,
1 −1 1 2 4

1 0 2 1 2

0 2 2 1 −1

−1 1 −1 −2 −4

↔


1 −1 1 2 4

0 1 1 −1 −2

0 0 0 3 3

0 0 0 0 0

 ,

we conclude that p1, p2, and p4 form a basis forW . (Note from the row-echelon
form above that p3, p5 ∈ Span(p1, p2, p4).)

31. (a) We have the following coordinate vectors with respect to the basis B =

{f1, f2, f3} for the space V = Span(f1, f2, f3):

[g1]B =

1

2

3

 , [g2]B =

 1

−1

1

 , [g3]B =

−3

6

−1

 .

We put the matrix of coordinate vectors in row-echelon form:1 1 −3

2 −1 6

3 1 −1

↔

1 1 −3

0 1 −4

0 0 0

 .
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The coordinate vectors are not linearly independent, because there is no pivot
in the final column of the above row-echelon form, so g1, g2, g3 are not linearly
independent.

(b) The solution is the same as in part (a), except now we have the following
matrix of coordinate vectors: 1 2 1

3 1 4

−2 1 3

↔

1 2 1

0 −5 1

0 0 6

 .

This time, there is a pivot in every column, so the coordinate vectors are
linearly independent, and so h1, h2, h3 are linearly independent.

32. Let p = a3x
3 + a2x

2 + a1x+ a0 ∈ P3. Then p′ = 3a3x
3 + 2a2x

2 + a1, so p ∈ V if
and only if

8a3 + 4a2 + 2a1 + a0 = 0

and 12a3 + 4a2 + a1 = 0

(The first equation says p(2) = 0, and the second says p′(2) = 0.) Putting the
unknowns in the order a0, a1, a2, a3, we may represent this system of equations by
the matrix (

1 2 4 8

0 1 4 12

)
↔

(
1 0 −4 −16

0 1 4 12

)
,

from which we read off the general solution

a0 = 4µ+ 16λ

a1 = −4µ− 12λ

a2 = µ

a3 = λ,

where λ, µ ∈ R are free. Thus, the polynomials in V are those of the form

λx3 + µx2 − (12λ+ 4µ)x+ 16λ+ 4µ

= λ(x3 − 12x+ 16) + µ(x2 − 4x+ 4)

with λ, µ ∈ R. Hence, the polynomials p1 = x3 − 12x + 16 and p2 = x2 − 4x + 4

are in V , and every polynomial in V is a linear combination of p1 and p2. Further,
p1 and p2 are linearly independent, for if c1(x3 − 12x+16) + c2(x

2 − 4x+4) = 0,
then

c1x
3 + c2x

2 − (12c1 + 4c2)x+ 16c1 + 4c2 = 0,

so c1 = c2 = 0. Thus, {p1, p2} is a basis for V .
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33. (a)

[B1]C =

1

1

1

 [B2]C =

 1

−1

2


[B3]C =

−1

3

−3

 [B4]C =

 3

−1

5


(b) We put the matrix of coordinate vectors in row-echelon form:1 1 −1 3

1 −1 3 −1

1 2 −3 5

↔

1 1 −1 3

0 1 −2 2

0 0 0 0

 .

There is no pivot in the final row of this row-echelon form, so the coordinate
vectors do not span R3, and so B1, B2, B3, B4 do not span V .

34. In both parts, we consider coordinates with respect to the basis

B =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}

of M2(R).

(a) The matrix of coordinate vectors of the elements of S1 is
1 1 1 −1 1

2 3 1 −1 3

1 3 −1 2 2

2 3 1 −1 4

↔


1 1 1 −1 1

0 1 −1 1 1

0 0 0 1 −1

0 0 0 0 1

 .

There is a pivot in every row, so S1 is a spanning set. However, the third
column has no pivot, so S1 is not linearly independent.

(b) The matrix of coordinate vectors of the elements of S2 is
1 1 1

2 3 1

1 −1 3

2 5 −1

↔


1 1 1

0 1 −1

0 0 0

0 0 0

 .

There is a column without a pivot, so S2 is not linearly independent. It is not
a spanning set either, because not every row in the above row-echelon form
has a pivot.
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35.

(
w1 w2 w3 v1 v2 v3

)
=

1 −1 2 11 5 4

0 1 1 −1 0 0

1 1 −1 −1 0 −1


↔

1 0 0 4 2 1

0 1 0 −3 −1 −1

0 0 1 2 1 1

 ,

so

PC←B =

 4 2 1

−3 −1 −1

2 1 1

 .

36. (a)

PB←E = P−1E←B

=

(
3 8

1 2

)−1

=

(
−1 4

1/2 −3/2

)
.

For PC←B, we row reduce as follows:(
PE←C PE←B

)
=

(
1 1 3 8

1 −1 1 2

)
↔

(
1 0 2 5

0 1 1 3

)
.

Thus,

PC←B =

(
2 5

1 3

)
.

Finally,

PC←E = P−1E←C

=

(
1 1

1 −1

)−1

=

(
1/2 1/2

1/2 −1/2

)
.

(b)

PC←BPB←E =

(
2 5

1 3

)(
−1 4

1/2 −3/2

)

=

(
1/2 1/2

1/2 −1/2

)
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= PC←E .

37. (a) Observe that

p = ax2 + bx+ c

p′ = 2ax+ b

p′′ = 2a.

The coordinate vectors of p, p′, p′′ with respect to the basis {x2, x, 1} of P2

are ab
c

 ,

 0

2a

b

 ,

 0

0

2a

 ,

which are linearly independent because a ̸= 0. Therefore, these coordinate
vectors necessarily form a basis for R3 because they are three linearly in-
dependent vectors in the 3-dimensional space R3. Hence, the polynomials
p, p′, p′′ form a basis for P2.

(b) The coordinates of p, p+ p′, and p+ p′ + p′′ with respect to B are1

0

0

 ,

1

1

0

 ,

1

1

1

 .

(c) The matrix formed from the columns in part (b) has a pivot in every column
and a pivot in every row: 1 1 1

0 1 1

0 0 1

 .

Thus, the coordinate vectors of p, p + p′, and p + p′ + p′′ with respect to B
form a basis for R3, so {p, p+ p′, p+ p′ + p′′} is a basis for P2.

38. The vectors v1, . . . , vn form a basis for V if and only if the coordinate vectors
[v1]B, . . . , [vn]B form a basis for Rn, if and only if the columns of A form a basis
for Rn, if and only if A is invertible, if and only if det(A) ̸= 0.

Variations on this idea work. For example, v1, . . . , vn form a basis for V if and
only if they are linearly independent (n vectors in an n-dimensional space), if and
only if the coordinate vectors [v1]B, . . . , [vn]B are linearly independent, if and only
if the columns of A are linearly independent, if and only if A is invertible (square
matrix), if and only if det(A) ̸= 0.
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39. Taking coordinate vectors of both sides of the equation v1 = c1u1 + c2u2 + c3u3,
where c1, c2, c3 ∈ R, we obtain

[v1]B = c1[u1]B + c2[u2]B + c3[u3]B

i.e.,


1

0

0

0

 = c1


1

−1

1

3

+ c2


−2

3

−1

−5

+ c3


2

−1

4

9

 .

We thus obtain a system of equations in c1, c2, c3 represented by the augmented
matrix 

1 −2 2 1

−1 3 −1 0

1 −1 4 0

3 −5 9 0

↔


1 0 0 11

0 1 0 3

0 0 1 −2

0 0 0 0

 .

From the reduced row-echelon form, we see that the original equation has a solu-
tion, namely, c1 = 11, c2 = 3, and c3 = −2, so v1 = 11u1 + 3u2 − 2u3.

40. (a) We work with the standard basis

{(
1

0

)
,

(
0

1

)}
to compute PC←B and PE←C .

We row-reduce as follows:(
3 5 11 30

1 0 2 5

)
↔

(
1 0 2 5

0 1 1 3

)
.

Therefore,

PC←B =

(
2 5

1 3

)
.

Similarly, the row reductions(
1 2 3 5

2 −1 1 0

)
↔

(
1 0 1 1

0 1 1 2

)

show that

PE←C =

(
1 1

1 2

)
.

(b)

PE←B = PE←CPC←B

=

(
1 1

1 2

)(
2 5

1 3

)

=

(
3 8

4 11

)
.
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(c)

PB←E = P−1E←B

=

(
3 8

4 11

)−1

=

(
11 −8

−4 3

)
.

(d) By part (c), [(
1

2

)]
B

= PB←E

[(
1

2

)]
E

=

(
11 −8

−4 3

)(
1

0

)

=

(
11

−4

)
,

so (
1

2

)
= 11

(
11

2

)
− 4

(
30

5

)
.

41. We consider coordinates with respect to the basis E = {x2, x, 1} of P2:

(
PE←C PE←B

)
=

1 1 1 2 3 2

1 2 2 2 5 5

2 2 3 2 6 6


↔

1 0 0 2 1 −1

0 1 0 2 2 1

0 0 1 −2 0 2

 .

The change-of-basis matrix PC←B is equal to the 3× 3 matrix to the right of the
vertical line in the above reduced row-echelon form, i.e.,

PC←B =

 2 1 −1

2 2 1

−2 0 2

 .

42. (a) Let u = 2u1 + 3u2 + 5u3. Then

[u]C = PC←B[u]B by Prop. 10.1 in Section I

=

 1 −1 2

−1 2 −3

1 1 1


2

3

5

 =

 9

−11

10

 .
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Thus, u = 9v1 − 11v2 + 10v3.

(b) Let v = v1 + 2v2 + 3v3. Then

[v]B = PB←C [v]C by Prop. 10.1 in Section I

= P−1C←B[v]C by Prop. 10.2 in Section I

=

 5 3 −1

−2 −1 1

−3 −2 1


1

2

3

 =

 8

−1

−4

 .

Thus, v = 8u1 − u2 − 4u3.

43. (a) With respect to the basis E = {f1, f2, f3} of V , the coordinates of the vectors
in B are described by the matrix−1 −2 2

−2 −1 2

−3 2 0

↔

1 2 −2

0 1 0

0 0 −2

 .

There is a pivot in every column (and every row, the matrix being square),
so B is a basis for V .

(b) We consider the matrix(
[h1]E [h2]E [h3]E [g1]E [g2]E [g3]E

)
=

0 1 1 −1 −2 2

1 2 1 −2 −1 2

2 3 −1 −3 2 0


↔

1 0 0 0 2 −1

0 1 0 −1 −1 1

0 0 1 0 −1 1

 . (16)

Because we obtain the identity matrix to the left of the vertical line, the
functions h1, h2, h3 form a basis for V . But then, by the proposition in class
on finding change-of-basis matrices via row reduction, the right-hand side of
the reduced row-echelon form in (16) is PC←B, that is,

PC←B =

 0 2 −1

−1 −1 1

0 −1 1

 .

44. Because V is spanned by four functions, dim(V ) ≤ 4. However, the fact given
about the functions g1, g2, g3, g4 says precisely that the gi are linearly indepen-
dent, so dim(V ) ≥ 4. Putting the two inequalities together gives dim(V ) = 4.
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Next, f1, f2, f3, f4 are four functions spanning the 4-dimensional space V , so
{f1, f2, f3, f4} is a basis for V by Proposition 9.2 in Section I of the course notes.
Similarly, g1, g2, g3, g4 are four linearly independent functions in the 4-dimensional
space V , so {g1, g2, g3, g4} is a basis for V .

45. Because every vector in V is a linear combination of v1,v2,v3, and because each
vi is in turn a linear combination of u1,u2,u3, it follows that every vector in V is a
linear combination of u1,u2,u3. That is, u1,u2,u3 span V . But V has dimension
3, so {u1,u2,u3} must be a basis for V by Proposition 9.2 in Section I of the
course notes.

46. (a) The matrix of coordinates of v1,v2 with respect to D is( √
2

a+b
1

a−b
1

a+b

√
2

a−b

)
,

which has determinant 1/(a2 − b2) ̸= 0, so C = {v1,v2} is a basis for R2.
Then, the matrix of coordinates of u1,u2 with respect to C is(

a b

b a

)
,

which has determinant a2 − b2 ̸= 0, so B = {u1,u2} is also a basis for R2.

(b) Let E be the standard basis of R2. Then the area in question is

|det(PE←B)| = |det(PE←D) det(PD←C) det(PC←B)|

= |det(PE←D)| |det(PD←C)| |det(PC←B)|

= |det(PE←D)|
1

a2 − b2
(a2 − b2)

= |det(PE←D)|,

which is independent of a and b.

47. (a) Working with the basis C = {v1,v2} of R2, we have

(
[u1]C [u2]C

)
=

(
x− 1 5

−5 x− 3

)
,

which has determinant

(x− 1)(x− 3) + 25 = x2 − 4x+ 28 = (x− 2)2 + 24 ̸= 0.

The coordinate vectors therefore form a basis for R2, so {u1,u2} is a basis
for R2.

Paul Buckingham Linear Algebra II (MATH 225): Solutions to the Practice Problems – v 1.12 | 28



(b) Let B = {u1,u2}, and let E be the standard basis of R2. Then

|det(PE←B)| = |det(PE←CPC←B)| by Prop. 10.2 in Sect. I

= |det(PE←C)| |det(PC←B)|

=
1

2
((x− 2)2 + 24),

because we are told that |det(PE←C)| = 1/2, and we found in part (a) that
det(PC←B) = (x− 2)2 + 24.

(c) The expression 1
2 ((x−2)2+24) is least when x = 2, and in this case the value

of the expression is 24/2 = 12.

48. Let V = Span(f1, . . . , fn), which has basis B = {f1, . . . , fn}, because the fj are
assumed to be linearly independent. For a function f = c1f1 + · · · + cnfn ∈ V ,
where c1, . . . , cn ∈ R, the condition f ′(xi) = 0 says

c1f
′
1(xi) + · · ·+ cnf

′
n(xi) = 0.

Therefore, finding c1, . . . , cn ∈ R satisfying the conditions f ′(x1) = · · · = f ′(xm) =

0 is equivalent to solving
f ′1(x1) f ′2(x1) · · · f ′n(x1)

f ′1(x2) f ′2(x2) · · · f ′n(x2)
...

...
...

f ′1(xm) f ′2(xm) · · · f ′n(xm)



c1

c2
...
cn

 = 0.

Because m < n (by assumption), this linear system has at least one non-zero
solution. In fact, we may choose a non-zero solution (c1, . . . , cn) having rational
entries, because the coefficient matrix has rational entries by another assumption
given in the question. Hence, we may choose a positive integer d such that the
numbers ai = dci (i = 1, . . . , n) are all integers. (Just clear denominators in
c1, . . . , cn.)

To summarize what we have done: a1, . . . , an are integers (because we cleared
denominators in the rational numbers c1, . . . , cn), they are not all zero (because
we chose (c1, . . . , cn) to not be the zero vector), and (a1f1 + · · ·+ anfn)

′(xi) = 0

for all i (because (c1f1 + · · ·+ cnfn)
′(xi) = 0 for all i, and we simply scaled the ci

to get the ai). Finally, because f1, . . . , fn are linearly independent and the ai are
not all zero, the function f is not the zero function.

49. (a) Let c1, c2, c3 ∈ R. Then

1

(x2 + 1)(x2 + 2)(x2 + 3)
=

c1
x2 + 1

+
c2

x2 + 2
+

c3
x2 + 3

(17)
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if and only if

1 = c1(x
2 + 2)(x2 + 3) + c2(x

2 + 1)(x2 + 3) + c3(x
2 + 1)(x2 + 2)

= c1(x
4 + 5x2 + 6) + c2(x

4 + 4x2 + 3) + c3(x
4 + 3x2 + 2)

= (c1 + c2 + c3)x
4 + (5c1 + 4c2 + 3c3)x

2 + (6c1 + 3c2 + 2c1),

if and only if

c1 + c2 + c3 = 0

5c1 + 4c2 + 3c2 = 0

6c1 + 3c2 + 2c1 = 1

(To obtain this system, we have equated coefficients in the polynomials.) The
system is represented by the augmented matrix1 1 1 0

5 4 3 0

6 3 2 1

↔

1 0 0 1/2

0 1 0 −1

0 0 1 1/2

 . (18)

From the reduced row-echelon form, we see that there is a unique solution,
namely, c1 = 1/2, c2 = −1, c3 = 1/2, so

g =
1

2
f1 − f2 +

1

2
f3.

(b) Solution 1: We saw in our solution to part (a) that there is a unique solution
(c1, c2, c3) to the equation g = c1f1 + c2f2 + c3f3. If f1, f2, f3 were linearly
dependent, then there would be more than one solution to that equation,
namely, (c1 + d1, c2 + d2, c3 + d3) for any non-zero vector (d1, d2, d3) ∈ R3

satisfying d1f1 + d2f2 + d3f3 = 0. Thus, f1, f2, f3 are linearly independent.

Solution 2: We consider the equation in (17) but with the left-hand side
replaced by the zero function:

0 =
c1

x2 + 1
+

c2
x2 + 2

+
c3

x2 + 3
.

This time, the system of equations satisfied by c1, c2, c3 is

c1 + c2 + c3 = 0

5c1 + 4c2 + 3c2 = 0

6c1 + 3c2 + 2c1 = 0

(19)

This system is the same as before except that the numbers on the right are
all zero. The augmented matrix representing this new system is1 1 1 0

5 4 3 0

6 3 2 0

 .
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Again, this is the same augmented matrix as before apart from the numbers
to the right of the vertical line. We therefore know that, if we were to put this
matrix in row-echelon form, there would be a pivot in each of the first three
columns, because that is what we found for the earlier augmented matrix.
Hence, the new system in (19) has only the solution c1 = c2 = c3 = 0.

(c) We saw in part (a) that g1 = 1
2f1 − f2 +

1
2f3, so [g]B = (1/2,−1, 1/2).

50. (a)

f1(x) =
(x2 + 3)(x2 + 5)

p(x)

=
x4 + 8x2 + 15

p(x)

= g1(x) + 8g2(x) + 15g3(x),

f2(x) =
(x2 + 2)(x2 + 5)

p(x)

=
x4 + 7x2 + 10

p(x)

= g1(x) + 7g2(x) + 10g3(x),

f3(x) =
(x2 + 2)(x2 + 3)

p(x)

=
x4 + 5x2 + 6

p(x)

= g1(x) + 5g2(x) + 6g3(x),

so

[f1]C =

 1

8

15

 , [f2]C =

 1

7

10

 , [f3]C =

1

5

6

 .

(b) The matrix of coordinate vectors of f1, f2, f3 with respect to C is 1 1 1

8 7 5

15 10 6

 = A,

which we are told is invertible, so f1, f2, f3 are linearly independent.

(c) The functions f1, f2, f3 are three linearly independent functions in the space
V , which we are told has dimension 3. Therefore, by Proposition 9.2 in Sec-
tion I of the course notes, {f1, f2, f3} is a basis for V . Alternatively, we may
use the fact that the matrix of coordinate vectors, being an invertible matrix,
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has a pivot both in every column and in every row of a row-echelon form.
Therefore, {f1, f2, f3} is both a linearly independent set and a spanning set
for V by Proposition 8.1 in Section I, that is, {f1, f2, f3} is a basis for V .

(d)

PB←C = P−1C←B = A−1 =

 4/3 −2/3 1/3

−9/2 3/2 −1/2

25/6 −5/6 1/6

 ,

so

g1 =
4

3
f1 −

9

2
f2 +

25

6
f3

g2 = −2

3
f1 +

3

2
f2 −

5

6
f3

g3 =
1

3
f1 −

1

2
f2 +

1

6
f3

51. (a) The map φ1 is a linear transformation. If A,B ∈Mn(R), then

φ1(A+B) = Tr((A+B)Y )

= Tr(AY +BY ) by distributivity

= Tr(AY ) + Tr(BY ) by a property of the trace

= φ1(A) + φ1(B),

so φ1 respects addition. If A ∈Mn(R) and c ∈ R, then

φ1(cA) = Tr((cA)Y )

= Tr(cAY )

= cTr(AY ) by a property of the trace

= cφ1(A),

so φ1 respects scalar multiplication.

(b) The map φ2 is not a linear transformation. We show that φ2 does not respect
scalar multiplication. If u = (1, 0, 0), then

φ2(2u) = φ2(2, 0, 0) = (2n+1)n,

while 2φ2(u) = 2φ2(1, 0, 0) = 2(1)n = (2)n.

Since 2n+1 ̸= 2 when n ≥ 1, the sequences (2n+1)n and (2)n are not equal, so
φ2(2u) ̸= 2φ2(u).

(Alternatively, one may show that φ2 does not respect addition.)
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52. (a) The map φ1 is a linear transformation. If

u =

u1u2
u3

 and v =

v1v2
v3


are in R3 and c ∈ R, then

φ1(u+ v) = φ1

u1 + v1

u2 + v2

u3 + v3


= (u1 + v1)(x+ 1)2 + (u2 + v2)(x+ 1) + (u3 + v3)

=
(
u1(x+ 1)2 + u2(x+ 1) + u3

)
+
(
v1(x+ 1)2 + v2(x+ 1) + v3

)
= φ1(u) + φ1(v),

and

φ1(cu) = φ1

cu1cu2

cu3


= (cu1)(x+ 1)2 + (cu2)(x+ 1) + (cu3)

= c
(
u1(x+ 1)2 + u2(x+ 1) + u3

)
= cφ1(u),

so φ1 respects both addition and scalar multiplication.

(b) The map φ2 is not a linear transformation. For example, if f, g ∈ F are
defined by f(x) = 1 and g(x) = x, then

φ2(f + g) =

(
(f + g)(1)2 (f + g)(1) · (f + g)(2)

(f + g)(1) · (f + g)(2) (f + g)(2)2

)

=

(
4 6

6 9

)
,

but

φ2(f) + φ2(g) =

(
1 1

1 1

)
+

(
1 2

2 4

)
=

(
2 3

3 5

)
.

(Alternatively, one may show that φ2 does not respect scalar multiplication.)

53. (a) φ1 is a linear transformation. Let u =

(
a1

a2

)
and v =

(
b1

b2

)
be in R2. Then

φ1(u+ v)

= φ1

(
a1 + b1

a2 + b2

)
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= ((a1 + b1)− (a2 + b2))x
2

+ ((a1 + b1) + (a2 + b2))x+ (2(a1 + b1) + 3(a2 + b2))

= (a1 − a2)x
2 + (a1 + a2)x+ (2a1 + 3a2)

+ (b1 − b2)x
2 + (b1 + b2)x+ (2b1 + 3b2)

= φ1(u) + φ1(v),

so φ1 respects addition. For scalar multiplication, take u =

(
a1

a2

)
∈ R2 and

c ∈ R. Then

φ1(cu) = φ1

(
ca1

ca2

)
= (ca1 − ca2)x

2 + (ca1 + ca2)x+ (2ca1 + 3ca2)

= c((a1 − a2)x
2 + (a1 + a2)x+ (2a1 + 3a2))

= cφ1(u).

(b) φ2 is not a linear transformation. For example, it does not respect addition.
To see this, observe that

φ2(I + (−I)) = φ2(0) = 0,

where I is the 3× 3 identity matrix, while

φ2(I) + φ2(−I) = 0 + (−1) = −1.

(c) φ3 is a linear transformation. Let α = (an)n and β = (bn)n be sequences.
Then the nth term in α+ β is an + bn, so

φ3(α+ β) = (an2 + bn2)n

= (an2)n + (bn2)n

= φ3(α) + φ3(β).

Thus, φ3 respects addition. For scalar multiplication, we take α = (an)n ∈ S
and λ ∈ R. The nth term in λα is λan, so

φ3(λα) = (λan2)n

= λ(an2)n

= λφ3(α).

(d) φ4 is not a linear transformation. For example, it does not respect scalar
multiplication. To see this, let p = x, take any a ∈ R, and let q = ap = ax.
Then

φ4(ap) = φ4(q)
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= q(q(x))

= q(ax)

= a(ax)

= a2x,

while

aφ4(p) = ap(p(x))

= ap(x)

= ax.

Therefore, if a ̸∈ {0, 1}, then φ4(ap) ̸= aφ4(p).

54. (a) φ1 is not a linear transformation. For example, it does not respect addition.
To see this, observe that

φ1

((
1

0

)
+

(
0

1

))
= φ1

(
1

1

)
= 2,

while

φ1

(
1

0

)
+ φ1

(
0

1

)
= 0 + 0 = 0.

(b) φ2 is not a linear transformation. For example, it does not respect scalar
multiplication. To see this, observe that for A ∈M3(R) and c ∈ R,

φ2(cA) = Tr(cA)(cA)

= c2 Tr(A)A

= c2φ2(A),

so φ2(cA) ̸= cφ2(A) if Tr(A) ̸= 0 and c ̸= 0, 1.

(c) φ3 is a linear transformation: it respects both addition and scalar multiplica-
tion. For brevity, let us write q(x) = x2 + 1. Then for p1, p2 ∈ P3,

φ3(p1 + p2) =
d

dx
(q · (p1 + p2))

=
d

dx
(qp1 + qp2)

=
d

dx
(qp1) +

d

dx
(qp2)

= φ3(p1) + φ3(p2).

Note that the product rule is unnecessary in this calculation.

For scalar multiplication, we take p ∈ P3 and c ∈ R:

φ3(cp) =
d

dx
(qcp)
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= c
d

dx
(qp) because c is constant

= cφ3(p).

(d) φ4 is a linear transformation: it respects both addition and scalar multiplica-
tion. Indeed, if f, g ∈ C[1, 2], then

φ4(f + g) =

∫ 2

1

(f + g)(x)

x
dx

=

∫ 2

1

(
f(x)

x
+
g(x)

x

)
dx

=

∫ 2

1

f(x)

x
dx+

∫ 2

1

g(x)

x
dx

= φ4(f) + φ4(g),

and if c ∈ R, then

φ4(cf) =

∫ 2

1

(cf)(x)

x
dx

=

∫ 2

1

cf(x)

x
dx

= c

∫ 2

1

f(x)

x
dx

= cφ4(f).

55. The linear transformation φ is injective. To see this, suppose that p = ax2+bx+c

is in Ker(φ). Then 0

0

0

 = φ(p) =

a+ b+ c

4a+ b

2a

 ,

so a+b+c = 4a+b = 2a = 0. The only solution to these equations is a = b = c = 0,
so p = 0.

56. The map φ is not injective, because

φ

1 0 0

0 −1 0

0 0 0

 = 0.

The map is surjective, though, because given any a ∈ R, we see that

φ

a 0 0

0 0 0

0 0 0

 = a.
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57. For the first part of this question, we are looking for a non-zero polynomial p =

ax2 + bx+ c such that(
a+ b+ c a+ 2b+ 3c

−a+ b+ 3c a− c

)
=

(
0 0

0 0

)
,

i.e.,

a+ b+ c = 0

a+ 2b+ 3c = 0

−a+ b+ 3c = 0

a − c = 0

This homogeneous system is represented by the matrix
1 1 1

1 2 3

−1 1 3

1 0 −1

↔


1 0 −1

0 1 2

0 0 0

0 0 0

 .

The solutions (a, b, c) therefore take the form λ(1,−2, 1) with λ ∈ R. Taking λ = 1,
for example, gives the non-zero polynomial p = x2 − 2x+ 1 ∈ Ker(φ).

To find a non-zero matrix in the image, let us take a = 1 and b = c = 0 in the
definition of φ:

φ(x2) =

(
1 1

−1 1

)
.

This is a non-zero matrix in the image.

58. To decide surjectivity, the question is this: Given any matrix A =

(
y1 y2

y3 y4

)
∈

M2(R), does there exist p = ax2 + bx+ c ∈ P2 such that φ(p) = A, i.e., such that(
a+ b+ c a+ 2b+ 3c

−a+ b+ 3c a− c

)
=

(
y1 y2

y3 y4

)
?

Deciding this amounts to deciding whether the system

a+ b+ c = y1

a+ 2b+ 3c = y2

−a+ b+ 3c = y3

a − c = y4

(20)

has a solution for any given y1, y2, y3, y4, which is the same as deciding whether the
coefficient matrix has a pivot in every row of a row-echelon form. But, of course,
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the coefficient matrix has more rows than columns, so a row-echelon form cannot
possibly have a pivot in every row, and so φ is not surjective.

Let us find a matrix in M2(R) that is not in Image(φ). We may do this by finding
y1, y2, y3, y4 ∈ R such that the system in (20) has no solution. The reduced row-
echelon form of the augmented matrix representing that system is

1 0 −1 y4

0 1 2 y3 + y4

0 0 0 y1 − y3 − 2y4

0 0 0 y2 − 2y3 − 3y4

 .

A matrix

(
y1 y2

y3 y4

)
in Image(φ) satisfies, in particular, y1 − y3 − 2y4 = 0. There-

fore, the matrix (
1 0

0 0

)
is not in Image(φ), because here y1 − y3 − 2y4 = 1 ̸= 0.

59. Suppose that p ∈ Ker(φ), which is to say that p(−1) = p(0) = p(1) = 0. Then p =
0, because a polynomial of degree 2 or less that vanishes at three different values
must be the zero polynomial. Thus, Ker(φ) consists only of the zero polynomial,
so φ is injective.

Alternatively, write p = ax2 + bx+ c. The equations p(−1) = p(0) = p(1) = 0 say

a− b+ c = 0

c = 0

a+ b+ c = 0

The only solution to this system is a = b = c = 0, so p = 0.

60. We take an arbitrary vector

v =

a1a2
a3

 ∈ R3

and decide whether it is possible to solve φ(p) = v for p = ax2 + bx+ c ∈ P2. The
equation φ(p) = v says p(−1)

p(0)

p(1)

 =

a1a2
a3

 ,
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i.e.,

a− b+ c = a1

c = a2

a+ b+ c = a3

The question of surjectivity is therefore whether this system has a solution for
every a1, a2, a3 ∈ R. This amounts to deciding whether the coefficient matrix of
the system has a pivot in every row of a row-echelon form. Row reducing, we see
that 1 −1 1

0 0 1

1 1 1

↔

1 −1 1

0 2 0

0 0 1

 ,

which has a pivot in every row, so φ is surjective.

61. For injectivity, suppose that p ∈ Ker(φ). Then

p(0) + p(1) = 0 (21)

p(0)− p(1) = 0 (22)

p′(0) + p′(1) = 0 (23)

p′(0)− p′(1) = 0 (24)

Equations (21) and (22) taken together are equivalent to the equations p(0) =

p(1) = 0. Similarly, (23) and (24) taken together are equivalent to the equations
p′(0) = p′(1) = 0. Hence, if p = ax2 + bx+ c, then

c = 0

a+ b+ c = 0

b = 0

2a+ b = 0

The only solution to this system is a = b = c = 0, so p = 0. Thus, φ is injective.

To decide on surjectivity, we attempt to solve the equation φ(p) = A given
an arbitrary A ∈ M2(R). That is, we wish to decide whether, given arbitrary
y1, y2, y3, y4 ∈ R, there is p = ax2 + bx+ c ∈ P2 such that(

p(0) + p(1) p′(0) + p′(1)

p(0)− p(1) p′(0)− p′(1)

)
=

(
y1 y2

y3 y4

)

i.e., such that (
a+ b+ 2c 2a+ 2b

−a− b −2a

)
=

(
y1 y2

y3 y4

)
.
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Put another, given any y1, y2, y3, y4 ∈ R, can we solve

a+ b+ 2c = y1 (25)

2a+ 2b = y2 (26)

−a− b = y3 (27)

−2a = y4 (28)

for a, b, c ∈ R? We can see, without any row reducing, that the answer must be
no, because the coefficient matrix has more rows than columns, so a row-echelon
form of the coefficient matrix must have at least one row of zeroes. Thus, φ is not
surjective.

In fact, it is not too hard to spot a matrix that is not in the image of φ, because if

A =

(
y1 y2

y3 y4

)
is in the image of φ, then by (26) and (27), we see that y2 = −2y3.

Therefore, we have only to find a matrix A in which y2 ̸= −2y3, such as(
0 1

0 0

)
.

This matrix is not in Image(φ).

62. (a) Because(
1 1

1 1

)
A =

(
1 1

1 1

)(
a b

c d

)
=

(
a+ c b+ d

a+ c b+ d

)
,

we see that φ(A) = Tr(A)x+Tr(BA) = (a+ d)x+ (a+ c+ b+ d).

(b) We are to show that, given p = λx + µ ∈ P1, where λ, µ ∈ R, there are
a, b, c, d ∈ R such that

(a+ d)x+ (a+ c+ b+ d) = λx+ µ,

i.e., a+ d = λ and a+ c+ b+ d = µ. There are many possibilities for a, b, c, d.
For example, we may take a = λ, b = µ− λ, and c = d = 0. That is

φ

(
λ µ− λ

0 0

)
= λx+ µ.

(c) We find a non-zero solution to the equations a+ d = 0 and a+ c+ b+ d = 0.
One possibility is a = 1, d = −1, b = c = 0. Thus, the non-zero matrix(
1 0

0 −1

)
, for example, is in Ker(φ).

63. In our solution to Question 61, we saw that φ is injective. Therefore, its nullity is
0, so by the rank-nullity theorem,

rank(φ) = dim(P2)− nullity(φ) = 3− 0 = 3.
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This gives us another way to see that φ is not surjective, for Image(φ) is a 3-
dimensional subspace of the 4-dimensional space M2(R).

64. If

A =

a b c

d e f

g h i

 ,

then XA =

g h i

a b c

d e f



and X2A =

d e f

g h i

a b c

 ,

so φ(A) =

a+ e+ i

g + b+ f

d+ h+ c

 .

Hence, given any v = (x, y, z) ∈ R3, we may choose A such that φ(A) = v by
choosing the entries of A to satisfy

a+ e+ i = x

g + b+ f = y

d+ h+ c = z

For example, we may take a = x, b = y, and c = z, and take all the other entries
to be zero. Thus,

φ

x y z

0 0 0

0 0 0

 =

xy
z

 .

Having shown that φ is surjective, i.e., that Image(φ) = R3, we may use the
rank-nullity theorem to see that

nullity(φ) = dim(M3(R))− rank(φ)

= 9− 3

= 6.

65. (a) Note that

φ

(
a b

c d

)
=

(
0 0

a b

)
.
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Now, for a matrix

A =

(
a b

c d

)
∈M2(R),

we have φ(A) = 0 if and only if a = b = 0, if and only if

A =

(
0 0

c d

)
= cE3 + dE4.

Thus, Ker(φ) = Span(E3, E4). But

Image(φ) =

{(
0 0

a b

) ∣∣∣∣∣ a, b ∈ R

}
= {aE3 + bE4 | a, b ∈ R}

= Span(E3, E4),

so Ker(φ) and Image(φ) are equal.

(b) Suppose that v is in both Ker(π) and Image(π). Choose u ∈ V such that
v = π(u). Then

v = π(u)

= π(π(u)) by the property given in the question

= π(v)

= 0V .

66. (a) If p ∈ Ker(φ), then p(1) = p(2) = p(3) = p(4). Therefore, if q(x) = p(x)−p(1),

q(1) = q(2) = q(3) = q(4) = 0,

i.e., 1, 2, 3, 4 are all roots of q. Since q has degree at most 4, the only possibility
is q(x) = a(x− 1)(x− 2)(x− 3)(x− 4) for some a ∈ R. Hence,

p(x) = q(x) + p(1)

= a(x− 1)(x− 2)(x− 3)(x− 4) + b

where b = p(1), so p ∈ Span(t, 1) where t(x) = (x − 1)(x − 2)(x − 3)(x − 4).
Conversely, t and 1 are both in Ker(φ), so Ker(φ) = Span(t, 1). Because t, 1
are linearly independent, {t, 1} is a basis for Ker(φ).

(b) By part (a), nullity(φ) = 2. Therefore,

rank(φ) = dim(P4)− nullity(φ) = 5− 2 = 3.
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(c) Let U be the subspace of M2(R) consisting of the matrices

(
a1 a2

a3 a4

)
with

a1 + a2 + a3 + a4 = 0. We observe from the equation(
−a2 − a3 − a4 a2

a3 a4

)
= a2

(
−1 1

0 0

)
+ a3

(
−1 0

1 0

)
+ a4

(
−1 0

0 1

)

that U is 3-dimensional with basis {A1, A2, A3}, where

A1 =

(
−1 1

0 0

)
, A2 =

(
−1 0

1 0

)
, A3 =

(
−1 0

0 1

)
.

But Image(φ) is contained in U , and we saw in part (b) that Image(φ) has di-
mension 3, so Image(φ) = U . Therefore, {A1, A2, A3} is a basis for Image(φ).

Another basis is{(
−1 1

0 0

)
,

(
0 −1

1 0

)
,

(
0 0

−1 1

)}
.

66. Alternative solution: We solve the problem this time by computing [φ]C←B, where
B = {x4, x3, x2, x, 1} and

C =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
.

We find

[φ]C←B =


−15 −7 −3 −1 0

−65 −19 −5 −1 0

−175 −37 −7 −1 0

255 63 15 3 0

↔


1 0 0 1/50 0

0 1 0 −1/5 0

0 0 1 7/10 0

0 0 0 0 0

 .

(a) A basis for the null space of [φ]C←B is


−1/50

1/5

−7/10

1

0

 ,


0

0

0

0

1




,

so a basis for Ker(φ) is

{− 1
50x

4 + 1
5x

3 − 7
10x

2 + x, 1}.

Or we could scale the first basis vector by −50 to obtain the basis

{x4 − 10x3 + 35x2 − 50x, 1}.

Paul Buckingham Linear Algebra II (MATH 225): Solutions to the Practice Problems – v 1.12 | 43



(b) The nullity is 2, because a basis for Ker(φ) consists of two vectors. Because
we have computed [φ]C←B and its reduced row-echelon form, we can see by
the fact that there are three pivots that rank(φ) = 3. However, we are asked
to use the rank-nullity theorem: rank(φ) = dim(P4)− nullity(φ) = 5− 2 = 3.

(c) The pivot columns of [φ]C←B are the first, second, and third, so a basis for
the column space is


−15

−65

−175

255

 ,


−7

−19

−37

63

 ,


−3

−5

−7

15


 .

Therefore, a basis for Image(φ) is{(
−15 −65

−175 255

)
,

(
−7 −19

−37 63

)
,

(
−3 −5

−7 15

)}
.

67. Note that Image(φ) has dimension at most 3, because it is contained in the 3-
dimensional space V . Therefore, by the rank-nullity theorem,

nullity(φ) = dim(U)− rank(φ) ≥ 5− 3 = 2. (29)

If every y ∈ Ker(φ) were a scalar multiple of x, then Ker(φ) would have dimension
at most 1, contradicting (29). Thus, there exists some y ∈ Ker(φ) that is not a
scalar multiple of x.

68. (a)

φ(f) =

(
1

2

)
= e1 + 2e2

and φ(g) =

(
1/2

2/3

)
=

1

2
e1 +

2

3
e2,

so [φ]C←B =

(
1 1/2

2 2/3

)
.

(b) We compute that det([φ]C←B) = −1/3 ̸= 0, so a row-echelon form of [φ]C←B
has a pivot in each column and in each row. The fact that there is a pivot in
each column shows that the null space of [φ]C←B is zero, so Ker(φ) is zero by
Proposition 6.1 in Section II of the course notes, and so φ is injective. The
fact that there is a pivot in each row shows that the column space of [φ]C←B
is R2, so Image(φ) = R2 by Proposition 6.1 in Section II again, which is to
say that φ is surjective.
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69. Let the matrices in E be A1, A2, A3, A4 in that order. Then

φ(A1) = 1, φ(A2) = 0, φ(A3) = 0, φ(A4) = 1,

so
[φ]C←E =

(
1 0 0 1

)
.

70. (a) Let the matrices in E be A1, A2, A3, A4 in that order. Then

φ(x2) =

(
1 1

−1 1

)
= A1 +A2 −A3 +A4,

φ(x) =

(
1 2

1 0

)
= A1 + 2A2 +A3 + 0A4,

φ(1) =

(
1 3

3 −1

)
= A1 + 3A2 + 3A3 −A4,

so

[φ]E←B =


1 1 1

1 2 3

−1 1 3

1 0 −1

 .

(b) Row reducing, we obtain

[φ]E←B =


1 1 1

1 2 3

−1 1 3

1 0 −1

↔


1 0 −1

0 1 2

0 0 0

0 0 0

 . (30)

We read off from the reduced row-echelon form that a basis for the null space
of [φ]E←B is 

 1

−2

1


 ,

so a basis for Ker(φ) is {x2 − 2x+ 1}. We also see from (30) that a basis for
the column space of [φ]E←B is


1

1

−1

1

 ,


1

2

1

0


 ,

so a basis for Image(φ) is{(
1 1

−1 1

)
,

(
1 2

1 0

)}
.
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71. (a) Let the matrices in E be A1, A2, A3, A4 in that order. Then

φ(x2) =

(
1 2

−1 −2

)
= A1 + 2A2 −A3 − 2A4,

φ(x) =

(
1 2

−1 0

)
= A1 + 2A2 −A3 + 0A4,

φ(1) =

(
2 0

0 0

)
= 2A1 + 0A2 + 0A3 + 0A4,

so

[φ]E←B =


1 1 2

2 2 0

−1 −1 0

−2 0 0

 .

(b) Row reducing, we obtain

[φ]E←B =


1 1 2

2 2 0

−1 −1 0

−2 0 0

↔


1 0 0

0 1 0

0 0 1

0 0 0

 . (31)

The null space of [φ]E←B is zero, so Ker(φ) is the zero space, and so φ is
injective. We also see from (31) that the three columns of [φ]E←B form a
basis for the column space of [φ]E←B, so a basis for Image(φ) is{(

1 2

−1 −2

)
,

(
1 2

−1 0

)
,

(
2 0

0 0

)}
.

Note that, although we found the reduced row-echelon form for [φ]E←B, any
row-echelon form would have been enough. Indeed, all we were asked to do
in this particular question was to demonstrate injectivity and to find a basis
for the image, both of which require only a row-echelon form.

72. (a) We calculate that

φ(x3) = 3x2 + 6x+ 6

φ(x2) = 2x+ 2

φ(x) = 1

φ(1) = −x2 − x− 1,

so

[φ]C←B =

3 0 0 −1

6 2 0 −1

6 2 1 −1

 .
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(b) Row reducing the matrix found in part (a), we find that

[φ]C←B ↔

1 0 0 −1/3

0 1 0 1/2

0 0 1 0

 , (32)

so Nul([φ]C←B) is spanned by (1/3,−1/2, 0, 1), or, clearing denominators,
we may take instead the vector (2,−3, 0, 6). Therefore, a basis for Ker(φ) is
{2x3−3x2+6} by part (i) of Proposition 6.1 in Section II of the course notes.

(c) A row-echelon form of [φ]C←B has a pivot in every row, as we see from (32),
so Col([φ]C←B) = R3, and so Image(φ) = P2 by part (ii) of Proposition 6.1 in
Section II. Thus, φ is surjective. Alternatively, we may just use the fact, given
on page 38 of the course notes, that a linear transformation is surjective if
and only if there is a pivot in every row of a row-echelon form of an associated
matrix.

73. (a) From the reduced row-echelon form given in the question, we see that Nul([φ]C←B)

has basis 


−1

−1

1

0

0

 ,


0

−1

0

2

1




,

so Ker(φ) has basis {−x4 − x3 + x2,−x3 + 2x+ 1}.

(b) Because the pivots of the given row-echelon form are in columns 1, 2, and 4,
a basis for Col([φ]C←B) is


1

1

1

1

 ,


1

2

3

−1

 ,


1

0

1

0


 .

Therefore, a basis for Image(φ) is{(
1 1

1 1

)
,

(
1 2

3 −1

)
,

(
1 0

1 0

)}
.

74. (a) We see immediately that

φ(s) =

(
1

5

)
= e1 + 5e2 and φ(t) =

(
1

8

)
= e1 + 8e2,
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so

[φ]E←B =

(
1 1

5 8

)
.

(b) The matrix [φ]E←B has determinant 3 ̸= 0, so it is invertible and therefore has
zero null space. Hence, by Proposition 6.1 in Section II of the course notes,
Ker(φ) = {0}, so φ is injective. Now, if (an)n and (bn)n in V satisfy a2 = b2

and a6 = b6, then φ((an)n) = φ((bn)n), so the injectivity of φ implies that
(an)n = (bn)n, which is to say that an = bn for all n ≥ 0.

(There is nothing special about the indices 2 and 6 in this question. A sequence
in V is determined by any two of its terms. Nor is there anything particularly
special about V . A similar property holds, in typical cases, for spaces of
sequences defined by other homogeneous recurrence relations.)

75. (a)

ψ ◦ φ(p) = ψ(p(0)s+ p(1)t)

= ψ
(
(p(0), 0,−p(0),−p(0), . . .) + (0, p(1), p(1), 0, . . .)

)
= ψ(p(0), p(1), p(1)− p(0),−p(0), . . .)

=

(
p(0) p(1)

p(1)− p(0) −p(0)

)
.

(The dots in the sequences above merely indicate omitted entries, not the
continuation of a pattern.)

For the change-of-basis matrix, we observe that

ψ ◦ φ(x) =

(
0 1

1 0

)
and ψ ◦ φ(1) =

(
1 1

0 −1

)
,

so

[ψ ◦ φ]E←B =


0 1

1 1

1 0

0 −1

 .

(b) We see that

φ(x) = 0s+ t ψ(s) =

(
1 0

−1 −1

)
= A1 + 0A2 −A3 −A4

φ(1) = s+ t ψ(t) =

(
0 1

1 0

)
= 0A1 +A2 +A3 + 0A4,
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so

[φ]C←B =

(
0 1

1 1

)
and [ψ]E←C =


1 0

0 1

−1 1

−1 0

 .

Hence, we calculate that
1 0

0 1

−1 1

−1 0


(
0 1

1 1

)
=


0 1

1 1

1 0

0 −1

 ,

as required.

76. (a) We find

φ(s) =

(
1 0

0 −1

)
= A1 + 0A2 + 0A3 −A4

φ(t) =

(
0 1

−1 0

)
= 0A1 +A2 −A3 + 0A4,

so

[φ]E←C =


1 0

0 1

0 −1

−1 0

 .

Next,

ψ(A1) =

(
1

0

)
= e1 + 0e2

ψ(A2) =

(
0

1

)
= 0e1 + e2

ψ(A3) =

(
0

1

)
= 0e1 + e2

ψ(A4) =

(
1

0

)
= e1 + 0e2,

so

[ψ]D←E =

(
1 0 0 1

0 1 1 0

)
.

(b)

[ψ]D←E [φ]E←C =

(
1 0 0 1

0 1 1 0

)
1 0

0 1

0 −1

−1 0

 =

(
0 0

0 0

)
,
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so [ψ ◦ φ]D←C = [ψ]D←E [φ]E←C = 0. Thus, ψ ◦ φ is the zero map.

(c) Part (b) shows that Image(φ) ⊆ Ker(ψ). However, we see from

[φ]E←C =


1 0

0 1

0 −1

−1 0

↔


1 0

0 1

0 0

0 0

 (33)

that Image(φ) has dimension 2, because there are two pivots in (33), and we
see immediately from

[ψ]D←E =

(
1 0 0 1

0 1 1 0

)
(34)

that Ker(ψ) also has dimension 2, because there are two non-pivot columns
in (34). Thus, Image(φ) is a dimension-2 subspace of the dimension-2 space
Ker(ψ), so Image(φ) = Ker(ψ).

77. Let y ∈ R<2. Then for x ∈ R>0,

f(x) = y

⇐⇒ 2− 1

x
= y,

⇐⇒ 2− y =
1

x
,

⇐⇒ x =
1

2− y
.

Thus, there is a unique x ∈ R>0 such that f(x) = y, namely, x = 1
2−y . (Note that

1/(2− y) is indeed positive when y < 2.) Thus, f is invertible and f−1(y) = 1
2−y .

78. We first find the coordinate vector of ψ ◦ φ(p) with respect to D:

[ψ ◦ φ(p)]D = [ψ ◦ φ]D←B[p]B

= [ψ ◦ φ]D←B

ab
c


= [ψ]D←C [φ]C←B

ab
c



=


1 0 −1

0 1 −1

1 1 −2

1 −1 0


1 0 1

0 1 1

1 −1 1


ab
c


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=


0 1 0

−1 2 0

−1 3 0

1 −1 0


ab
c

 =


b

−a+ 2b

−a+ 3b

a− b

 .

Hence,

ψ ◦ φ(p) = bX1 + (−a+ 2b)X2 + (−a+ 3b)X3 + (a− b)X4

= b

(
1 0

0 0

)
+ (−a+ 2b)

(
1 1

0 0

)

+ (−a+ 3b)

(
1 1

1 0

)
+ (a− b)

(
1 1

1 1

)

=

(
−a+ 5b −a+ 4b

2b a− b

)
.

79. Let y ∈ R≥1. Then for x ∈ R≥2,

f(x) = y

⇐⇒ ex
2−4x+4 = y,

⇐⇒ x2 − 4x+ 4 = ln(y),

⇐⇒ (x− 2)2 = ln(y),

⇐⇒ x− 2 = ±
√
ln(y), (recall that y ≥ 1, so ln(y) ≥ 0)

⇐⇒ x− 2 =
√

ln(y) because x ≥ 2 by assumption,

⇐⇒ x = 2 +
√
ln(y).

Thus, there is a unique x ∈ R≥2 such that f(x) = y, namely, x = 2+
√
ln(y) ≥ 2,

so f is invertible and f−1(y) = 2 +
√
ln(y).

80. Let p = b2x
2 + b1x+ b0 ∈ P2. For u = (a1, a2, a3) ∈ R, φ(u) = p if and only if

(a1 − a2)x
2 + (a2 − a3)x+ a1 + a3 = b2x

2 + b1x+ b0,

if and only if

a1 − a2 = b2

a2 − a3 = b1

a1 + a3 = b0

We are to decide whether this system has a unique solution for a1, a2, a3 in terms of
b2, b1, b0, and to find the solution if so. We can solve this problem by row reducing:1 −1 0 b2

0 1 −1 b1

1 0 1 b0

↔

1 0 0 1
2b2 +

1
2b1 +

1
2b0

0 1 0 − 1
2b2 +

1
2b1 +

1
2b0

0 0 1 − 1
2b2 −

1
2b1 +

1
2b0

 .
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Thus, there is a unique solution to the system, so there is a unique u ∈ R3 such
that φ(u) = p, namely,

u =


1
2b2 +

1
2b1 +

1
2b0

− 1
2b2 +

1
2b1 +

1
2b0

− 1
2b2 −

1
2b1 +

1
2b0

 . (35)

The linear transformation φ is therefore invertible, and its inverse sends p =

b2x
2 + b1x+ b0 ∈ P2 to the vector u in (35).

81.

φ(A1) =

(
3 0

1 0

)

φ(A2) =

(
−1 1

2 2

)

φ(A3) =

(
2 2

1 −1

)

φ(A4) =

(
0 1

0 3

)
,

so

[φ]C =


3 −1 2 0

0 1 2 1

1 2 1 0

0 2 −1 3



↔


1 2 1 0

0 1 2 1

0 0 13 7

0 0 −5 1

 ,

which we see, without any further row reducing, has determinant 48 ̸= 0. Thus,
[φ]C is invertible, so φ is an isomorphism.

82. (a) By row reducing, we can simultaneously show that the matrix [φ]E←B is
invertible and find its inverse: 3 −2 1 1 0 0

0 −1 1 0 1 0

−1 0 1 0 0 1

↔

1 0 0 1/2 −1 1/2

0 1 0 1/2 −2 3/2

0 0 1 1/2 −1 3/2

 .

The matrix [φ]E←B is invertible because the above 3 × 6 row-echelon form
has the 3 × 3 identity matrix to the left of the vertical line, so the linear
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transformation φ is invertible. Further, the inverse matrix is the matrix to
the right of the vertical line, and so

[φ−1]B←E = [φ]−1E←B =

1/2 −1 1/2

1/2 −2 3/2

1/2 −1 3/2

 .

Hence,

[φ−1(a1, a2, a3)]B = [φ−1]B←E [(a1, a2, a3)]E

=

1/2 −1 1/2

1/2 −2 3/2

1/2 −1 3/2


a1a2
a3

 =


1
2a1 − a2 +

1
2a3

1
2a1 − 2a2 +

3
2a3

1
2a1 − a2 +

3
2a3

.
Therefore,

φ−1(a1, a2, a3) = ( 12a1 − a2 +
1
2a3)x

2 + ( 12a1 − 2a2 +
3
2a3)x

+ 1
2a1 − a2 +

3
2a3.

(b) We are looking for the unique p ∈ P2 such φ(p) = (0,−1, 0), i.e.,

p = φ−1(0,−1, 0) = x2 + 2x+ 1

according to the expression found in part (a).

83. Let t = (cn)n ∈ S. For s = (an)n ∈ S,

φ(s) = t

⇐⇒

(
n∑

k=0

ak

)
n

= (cn)n,

⇐⇒
n∑

k=0

ak = cn for all n ≥ 0,

if and only if

a0 = c0

a1 + a0 = c1

a2 + a1 + a0 = c2

a3 + a2 + a1 + a0 = c3

...

if and only if

a0 = c0
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a1 = c1 − c0

a2 = c2 − c1

a3 = c3 − c2

...

Thus, there is a unique (an)n ∈ S such that φ((an)n) = (cn)n, its terms being
given by a0 = c0 and an = cn − cn−1 for n ≥ 1. Therefore, φ is invertible, and

φ−1((cn)n) = (cn − cn−1)n,

where we have set c−1 = 0.

84. (a) Assume Tr(C) ̸= s, and let A ∈ Ker(φ), i.e., Tr(A)C − sA = 0. Taking the
trace of both sides, we find Tr(A) Tr(C)− sTr(A) = 0, i.e.,

Tr(A)(Tr(C)− s) = 0.

Because Tr(C) ̸= s by assumption, we have Tr(A) = 0. Hence,

A =
1

s
Tr(A)C = 0.

Thus, φ is injective, so it is in fact an isomorphism because the domain and
codomain have the same dimension.

(b) (i) We first observe that C ∈ Ker(φ). Indeed, because s = Tr(C), we have

φ(C) = Tr(C)C − Tr(C)C = 0.

Conversely, suppose A ∈ Ker(φ), i.e., Tr(A)C − sA = 0. Then

A =
1

s
Tr(A)C ∈ Span(C).

(ii) Suppose C = φ(A) for some A ∈ Mn(R), i.e., C = Tr(A)C − sA. Then
taking the trace of both sides and remembering that Tr(C) = s, we
obtain

s = Tr(A)s− sTr(A) = 0,

contradicting our assumption that s ̸= 0.

85. (a) Suppose λ, µ ∈ R satisfy

λecx sin(sx) + µecx cos(sx) = 0

for all x ∈ R. Since ecx > 0, we in fact have

λ sin(sx) + µ cos(sx) = 0
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for all x ∈ R. Taking x = 0 gives µ = 0, and then taking x = π
2s gives λ = 0.

(b)

f ′(x) = cecx sin(sx) + secx cos(sx) = cf(x) + sg(x)

and g′(x) = cecx cos(sx)− secx sin(sx) = −sf(x) + cg(x),

so

[φ]B =

(
c −s
s c

)
.

(c) det([φ]B) = c2 + s2 > 0, since s ̸= 0 by assumption.

(d) One way is to observe that the linear transformation φ is invertible, because
the matrix [φ]B is. Invertible transformations are surjective, so every h ∈ V is
in the image of φ, i.e., is the derivative of some function H in V . The function
H is unique because φ is injective.

In short, H = φ−1(h).

(e) We are trying to find the function
∫
h = φ−1(λf+µg). The coordinate vector

of
∫
h is

[φ−1]B

(
λ

µ

)
= [φ]−1B

(
λ

µ

)

=

(
c −s
s c

)−1(
λ

µ

)

=
1

c2 + s2

(
c s

−s c

)(
λ

µ

)

=
1

c2 + s2

(
cλ+ sµ

−sλ+ cµ

)
.

Thus, ∫
h = 1

c2+s2

(
(cλ+ sµ)f + (−sλ+ cµ)g

)
.

86. (a) We have

[φ]B =

(
c −s
s c

)
=

(
cos(2π/9) − sin(2π/9)

sin(2π/9) cos(2π/9)

)
,

and this is the form of a rotation matrix, the angle in this case being 2π/9.

(b) Because the 9th power of the rotation matrix(
cos(2π/9) − sin(2π/9)

sin(2π/9) cos(2π/9)

)
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is the 2× 2 identity matrix I, we have

[φ9]B = [φ]9B

= I

= [1V ]B,

so φ9 = 1V . In other words, the 9th derivative of any function h ∈ V is just
h.

(c) By definition,
∫
h is the unique function in V whose derivative is h. But

(h(8))′ = h(9) = h by part (b), so
∫
h = h(8).

87. The map φ is invertible. We are told that it is surjective, so by Proposition 9.1
in Section II of the course notes, it remains only to show that it is injective. But
we are also told that a row-echelon form of [φ]C←B has a pivot in every column,
so Nul([φ]C←B) is the zero space. Thus, Ker(φ) = {0U} by Proposition 6.1 in
Section II, and so φ is injective. (Alternatively, we may use the paragraph in the
middle of page 38 of the course notes.)

88. We group together vector spaces of the same dimension: {4, 6} (dimension 2),
{1, 3} (dimension 3), and {2, 5} (dimension 8).

89. We group together vector spaces of the same dimension: {3, 5} (dimension 2),
{2, 4} (dimension 4), and {1, 6} (dimension 6).

90. The spaces R3 and V are isomorphic to each other. To show this, we first establish
that f1, f2, f3 are linearly independent. Suppose that c1f1+c2f2+c3f3 = 0, where
c1, c2, c3 ∈ R. That is,

c1 + c2 cos(x) + c3 cos(x+ π
4 ) = 0 for all x ∈ R.

Taking x = 0, π/4,−π/4 gives, respectively, the equations

c1 + c2 +

√
2

2
c3 = 0

c1 +

√
2

2
c2 = 0

c1 +

√
2

2
c2 + c3 = 0

While we could solve this system by Gaussian elimination, there is a quicker way.
The second and third equations imply immediately that c3 = 0, and then the
difference of the first and second equations shows that c2 = 0, from which we
finally deduce (via the first or the second equation) that c1 = 0. Thus, f1, f2, f3
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are linearly independent. Hence, because they span V by definition, they form a
basis for V .

By Section II – 10 in the course notes, we may therefore define an isomorphism

φ : R3 → V

a1e1 + a2e2 + a3e3 7→ a1f1 + a2f2 + a3f3,

where {e1, e2, e3} is the standard basis of R3. Note that

φ(a1, a2, a3) = a1f1 + a2f2 + a3f3.

91. (a)

pA(x) = det(xI −A)

= det

(
x− 8 −6

3 x+ 1

)
= (x− 8)(x+ 1) + 18

= x2 − 7x+ 10

= (x− 2)(x− 5).

The eigenvalues are therefore 2 and 5.

The eigenspace for 2 is the null space of

2I −A =

(
−6 −6

3 3

)
↔

(
1 1

0 0

)
,

which is spanned by

(
1

−1

)
.

The eigenspace for 5 is the null space of

5I −A =

(
−3 −6

3 6

)
↔

(
1 2

0 0

)
,

which is spanned by

(
2

−1

)
.

(b)

pB(x) = det(xI −B)

= (x− 7)((x+ 5)(x− 4) + 18)

− 12(−3(x− 4)− 9) + 6(18− 3(x+ 5))

= x3 − 6x2 + 9x− 4
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= (x− 1)2(x− 4).

The eigenvalues are therefore 1 and 4.

The eigenspace for 1 is the null space of

I −B =

−6 12 6

−3 6 3

3 −6 −3

↔

1 −2 −1

0 0 0

0 0 0

 ,

which has basis 
2

1

0

 ,

1

0

1


 .

The eigenspace for 4 is the null space of

4I −B =

−3 12 6

−3 9 3

3 −6 0

↔

1 0 2

0 1 1

0 0 0

 ,

which has basis 
 2

1

−1


 .

92. Let us first find the eigenspace associated to −1:

−I − C =

−6 3 9

12 −6 −18

−6 3 9

↔

2 −1 −3

0 0 0

0 0 0

 ,

so this eigenspace has basis {(1, 2, 0), (3, 0, 2)}. Note that the geometric multiplic-
ity is d−1 = 2.

Next, we turn to the eigenspace associated to 2:

2I − C =

−3 3 9

12 −3 −18

−6 3 12

↔

1 0 −1

0 1 2

0 0 0

 ,

so this eigenspace has basis {(1,−2, 1)}. The geometric multiplicity is d2 = 1.

The sum of the geometric multiplicities is d−1 + d2 = 2+ 1 = 3, so C is diagonal-
izable. Specifically, P−1CP = D where

P =

1 3 1

2 0 −2

0 2 1

 and D =

−1 0 0

0 −1 0

0 0 2

 .
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93. Let us first find the eigenspace associated to −2:

−2I − C =

−6 1 −1

−2 −3 −1

10 −5 1

↔

5 0 1

0 5 1

0 0 0

 ,

so this eigenspace has basis {(1, 1,−5)}. The geometric multiplicity is d−2 = 1.

Next, we turn to the eigenspace associated to 2:

2I − C =

−2 1 −1

−2 1 −1

10 −5 5

↔

2 −1 1

0 0 0

0 0 0

 ,

so this eigenspace has basis {(1, 2, 0), (−1, 0, 2)}. Note that the geometric multi-
plicity is d2 = 2.

The sum of the geometric multiplicities is d−2 + d2 = 1+ 2 = 3, so C is diagonal-
izable. Specifically, P−1CP = D where

P =

 1 1 −1

1 2 0

−5 0 2

 and D =

−2 0 0

0 2 0

0 0 2

 .

94. (a) We consider the eigenspace associated to 3:

3I −A =

 0 −1 3

42 6 3

14 2 1

↔

14 2 1

0 −1 3

0 0 0

 .

We do not need the reduced row-echelon form, because we can see already
from this row-echelon form that the eigenspace is one-dimensional, that is,
the geometric multiplicity of 3 is d3 = 1. This is less than the algebraic
multiplicity m3 (which is 2), so A is not diagonalizable.

(b) Because pB(x) = (x − 2)(x2 + 1) and x2 + 1 has no real roots, we see that
the roots of pB(x) are not all real, so B is not diagonalizable over R. (It is,
however, diagonalizable over C.)

Alternatively, we may observe that the only real eigenvalue is 2, and it has
algebraic multiplicity m2 = 1. Hence, its geometric multiplicity d2 satisfies
1 ≤ d2 ≤ m2 = 1, so d2 = 1. The sum of the (real) geometric multiplicities is
therefore 1 < 3, so B is not diagonalizable over R.

95. (a) The characteristic polynomial of A is

pA(x) = det(xI −A)
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= det

x+ 1 5 −5

−5 x+ 1 −5

−5 5 x− 9


= (x+ 1)(x− 4)2,

so the eigenvalues of A are 4 and −1.

The eigenvalue 4 has algebraic multiplicity 2, but the corresponding eigenspace
has dimension 1 < 2:

4I −A =

 5 5 −5

−5 5 −5

−5 5 −5

↔

1 0 0

0 1 −1

0 0 0

 .

There is therefore no basis of R3 consisting of eigenvalues of A, so A is not
diagonalizable.

Just for interest: The matrix A has Jordan normal form4 1 0

0 4 0

0 0 −1

 .

Specifically,

Q−1AQ =

4 1 0

0 4 0

0 0 −1


where

Q =

 0 1 −1

10 −1 1

10 0 1

 .

(b) The characteristic polynomial of B is

pB(x) = det(xI −B)

= det

x+ 1 −5 5

−5 x+ 1 −5

−5 5 x− 9


= (x+ 1)(x− 4)2,

so the eigenvalues of B are again 4 and −1.

This time, the eigenspace corresponding to 4 has dimension 2:

4I −B =

 5 −5 5

−5 5 −5

−5 5 −5

↔

1 −1 1

0 0 0

0 0 0

 .
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A basis for this eigenspace is
1

1

0

 ,

−1

0

1


 .

Further,

−I −B =

 0 −5 5

−5 0 −5

−5 5 −10

↔

1 0 1

0 1 −1

0 0 0

 ,

so the eigenspace corresponding to −1 has basis
−1

1

1


 .

The set 
1

1

0

 ,

−1

0

1

 ,

−1

1

1




is therefore a basis of R3 consisting of eigenvectors of B, so if

P =

1 −1 −1

1 0 1

0 1 1

 ,

then P is invertible and

P−1BP =

4 0 0

0 4 0

0 0 −1

 .

96. The matrix C has characteristic polynomial det(xI − C) = x5, so 0 is the only
eigenvalue. The corresponding eigenspace is the null space of

0I − C =


0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

which has dimension 4. Therefore, any linearly independent set of eigenvectors
has size 4 or less. Consequently, there is no basis of R5 (or even C5) consisting of
eigenvectors of C, so C is not diagonalizable.
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97. (a) A is diagonalizable, because it is a 5× 5 matrix with 5 distinct eigenvalues.

(b) A is not invertible. Indeed, because 0 is an eigenvalue, there is v ∈ R5∖{0}
such that Av = 0v = 0, so A has a non-zero null space.

(c) The eigenvalues of A2 are the squares of the eigenvalues of A. To see this,
we reason as follows. Using the fact that A is diagonalizable, we choose an
invertible 5× 5 matrix P such that P−1AP = D, where

D =


−2 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 2

 .

Then

P−1A2P = (P−1AP )2 = D2 =


4 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 4

 .

Hence, pA2(x) = pD2(x) = x(x− 1)2(x− 4)2, so A2 has eigenvalues 0, 1, and
4.

98. (a) Because A is upper triangular, and therefore xI−A as well, we may compute
pA(x) easily:

pA(x) = det(xI −A) = det


x− 1 b −b2 b3

0 x− b b2 −b3

0 0 x− b2 b3

0 0 0 x− b3


= (x− 1)(x− b)(x− b2)(x− b3).

(b) The numbers 1, b, b2, b3 are distinct. Indeed, if i < j are integers, then j−i > 0

and so bj−i > 1 because b > 1 (by assumption). Hence, bi < bj . Therefore, by
part (a), the eigenvalues of A are the four distinct real numbers 1, b, b2, b3, and
each has algebraic multiplicity 1. Because 1 ≤ dλ ≤ mλ for each eigenvalue
λ, every eigenvalue has geometric multiplicity 1.

(c) The sum of the geometric multiplicities is d1+db+db2+db3 = 1+1+1+1 = 4,
so A is diagonalizable by Theorem 1.1 in Section III of the course notes.

99. We first diagonalize the matrix

A =

(
8 2

−15 −3

)
.
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The characteristic polynomial is det(xI−A) = x2−5x+6 = (x−2)(x−3), so the
eigenvalues of A are 2 and 3. For the eigenspace associated to 2, we row reduce as
follows:

2I −A =

(
−6 −2

15 5

)

↔

(
3 1

0 0

)
.

A basis for the eigenspace is therefore{(
−1

3

)}
.

Similarly, from the row reduction

3I −A =

(
−5 −2

15 6

)

↔

(
5 2

0 0

)
,

we see that a basis for the eigenspace associated to 3 is{(
−2

5

)}
.

Therefore, if

P =

(
−1 −2

3 5

)
, D =

(
2 0

0 3

)
,

then P is invertible and P−1AP = D.

Now define the functions g1, g2 by(
g1

g2

)
= P−1

(
f1

f2

)
.

Then (
g′1
g′2

)
= P−1

(
f ′1
f ′2

)
= P−1A

(
f1

f2

)
= D

(
g1

g2

)
,

that is, g′1 = 2g1 and g′2 = 3g2. Thus, there are real constants a1 and a2 such that
g1(x) = a1e

2x and g2(x) = a2e
3x. To find a1 and a2, note that(

a1

a2

)
=

(
g1(0)

g2(0)

)

= P−1

(
f1(0)

f2(0)

)
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=

(
5 2

−3 −1

)(
1

−1

)

=

(
3

−2

)
.

Thus, g1(x) = 3e2x and g2(x) = −2e3x. Finally,(
f1

f2

)
= P

(
g1

g2

)

=

(
−1 −2

3 5

)(
g1

g2

)

=

(
−g1 − 2g2

3g1 + 5g2

)
,

so

f1(x) = −3e2x + 4e3x

f2(x) = 9e2x − 10e3x.

100. The system may be written as(
f ′1
f ′2

)
= A

(
f1

f2

)
where

A =

(
4 1

−6 −3

)
.

First, we show that A is diagonalizable and diagonalize it. The characteristic
polynomial is

pA(x) = det(xI −A) = (x− 4)(x+ 3) + 6 = x2 − x− 6

= (x+ 2)(x− 3),

so the eigenvalues of A are −2 and 3. The eigenspace associated to −2 is the null
space of

−2I −A =

(
−6 −1

6 1

)
↔

(
6 1

0 0

)
,

so a basis is {(
−1

6

)}
.

The eigenspace associated to 3 is the null space of

3I −A =

(
−1 −1

6 6

)
↔

(
1 1

0 0

)
,
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so a basis is {(
−1

1

)}
.

The sum of the geometric multiplicities is 1 + 1 = 2, so A is diagonalizable.
Specifically, if

P =

(
−1 −1

6 1

)
, D =

(
−2 0

0 3

)
,

then P is invertible and P−1AP = D.

Now, define functions g1, g2 by(
g1

g2

)
= P−1

(
f1

f2

)
.

Then (
g′1
g′2

)
= P−1

(
f ′1
f ′2

)
= P−1A

(
f1

f2

)

= P−1AP

(
g1

g2

)
= D

(
g1

g2

)
=

(
−2g1

3g2

)
.

Hence, there are constants a1, a2 ∈ R such that

g1(x) = a1e
−2x, g2(x) = a2e

3x.

Therefore, because(
f1

f2

)
= P

(
g1

g2

)
=

(
−1 −1

6 1

)(
g1

g2

)
=

(
−g1 − g2

6g1 + g2

)
,

we have f1(x) = −a1e−2x − a2e
3x and f2(x) = 6a1e

−2x + a2e
3x.

Finally, we use the given constraints. Because f ′1(x) = 2a1e
−2x − 3a2e

3x, the
constaints f1(0) = 16 and f ′1(0) = −3 yield the linear system

−a1 − a2 = −3

2a1 − 3a2 = 16,

which has solution a1 = 5, a2 = −2. Thus,

f1(x) = −5e−2x + 2e3x, f2(x) = 30e−2x − 2e3x.

101. Define functions g1, g2, g3 byg1g2
g3

 = P−1

f1f2
f3

 .
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Then g′1g′2
g′3

 = P−1

f ′1f ′2
f ′3


= P−1A

f1f2
f3


= D

g1g2
g3


=

−g1
−g2
g3

 .

Therefore, there are real constants a1, a2, a3 such that

g1(x) = a1e
−x

g2(x) = a2e
−x

g3(x) = a3e
x.

Now, a1a2
a3

 =

g1(0)g2(0)

g3(0)


= P−1

f1(0)f2(0)

f3(0)


= P−1

 6

−3

8

 .

To find a1, a2, a3, we solve the system

P

a1a2
a3

 =

 6

−3

8

 :

−1 1 1 6

1 0 −1 −3

0 1 1 8

↔

1 0 0 2

0 1 0 3

0 0 1 5

 .
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Thus, g1(x) = 2e−x, g2(x) = 3e−x, and g3(x) = 5ex. Finally,f1f2
f3

 = P

g1g2
g3

 =

−g1 + g2 + g3

g1 − g3

g2 + g3

 ,

so

f1(x) = −2e−x + 3−x + 5ex

= e−x + 5ex

f2(x) = 2e−x − 5ex

f3(x) = 3e−x + 5ex.

102. Note that the matrix describing this system of differential equations is

A =

 1 1 4

2 2 −4

−2 1 7

 .

That is, f ′1f ′2
f ′3

 = A

f1f2
f3

 .

We saw in Section III – 1 of the course notes that P−1AP = D where

P =

1 2 1

2 0 −1

0 1 1

 and D =

3 0 0

0 3 0

0 0 4

 .

Therefore, if we define functions g1, g2, g3 byg1g2
g3

 = P−1

f1f2
f3

 ,

we have g′1g′2
g′3

 = P−1

f ′1f ′2
f ′3


= P−1A

f1f2
f3


= P−1AP

g1g2
g3


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= D

g1g2
g3


=

3g1

3g2

4g3

 .

Hence, there exist constants a1, a2, a3 ∈ R such that g1(x) = a1e
3x, g2(x) = a2e

3x,
and g3(x) = a3e

4x.

Now, 4

3

1

 =

f1(0)f2(0)

f3(0)


= P

g1(0)g2(0)

g3(0)


=

1 2 1

2 0 −1

0 1 1


a1a2
a3

 .

Solving the system1 2 1 4

2 0 −1 3

0 1 1 1

↔

1 0 0 1

0 1 0 2

0 0 1 −1

 ,

we see that a1 = 1, a2 = 2, and a3 = −1, so g1(x) = e3x, g2(x) = 2e3x, and
g3(x) = −e4x. Hence, becausef1f2

f3

 = P

g1g2
g3


=

1 2 1

2 0 −1

0 1 1


g1g2
g3


=

g1 + 2g2 + g3

2g1 − g3

g2 + g3

 ,

we have

f1(x) = e3x + 4e3x − e4x

= 5e3x − e4x
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f2(x) = 2e3x + e4x

f3(x) = 2e3x − e4x.

103. (a) The system may be written as(
f ′1
f ′2

)
= A

(
f1

f2

)
where

A =

(
−3 2

−1 −6

)
.

First, we show that A is diagonalizable and diagonalize it. The characteristic
polynomial is

pA(x) = det(xI −A) = (x+ 3)(x+ 6) + 2 = x2 + 9x+ 20

= (x+ 4)(x+ 5),

so the eigenvalues of A are −4 and −5. The eigenspace associated to −4 is
the null space of

−4I −A =

(
−1 −2

1 2

)
↔

(
1 2

0 0

)
,

so a basis is {(
−2

1

)}
.

The eigenspace associated to −5 is the null space of

−5I −A =

(
−2 −2

1 1

)
↔

(
1 1

0 0

)
,

so a basis is {(
−1

1

)}
.

The sum of the geometric multiplicities is 1 + 1 = 2, so A is diagonalizable.
Specifically, if

P =

(
−2 −1

1 1

)
, D =

(
−4 0

0 −5

)
,

then P is invertible and P−1AP = D.

Now, define functions g1, g2 by(
g1

g2

)
= P−1

(
f1

f2

)
.
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Then(
g′1
g′2

)
= P−1

(
f ′1
f ′2

)
= P−1A

(
f1

f2

)

= P−1AP

(
g1

g2

)
= D

(
g1

g2

)
=

(
−4g1

−5g2

)
.

Hence, there are constants a1, a2 ∈ R such that

g1(x) = a1e
−4x, g2(x) = a2e

−5x.

Therefore, because(
f1

f2

)
= P

(
g1

g2

)
=

(
−2 −1

1 1

)(
g1

g2

)
=

(
−2g1 − g2

g1 + g2

)
,

we have
f1(x) = −2a1e

−4x − a2e
−5x

f2(x) = a1e
−4x + a2e

−5x.
(36)

(b) First, f1(0) = f2(0) if and only if −2a1 − a2 = a1 + a2, if and only if

3a1 + 2a2 = 0. (37)

Further, f ′1(x) = 8a1e
−4x + 5a2e

−5x and f ′2(x) = −4a1e
−4x − 5a2e

−5x, so
7f ′1(0) = f ′2(0) if and only if 56a1 + 35a2 = −4a1 − 5a2, if and only if 60a1 +
40a2 = 0, if and only if 3a1 + 2a2 = 0. This is the same condition as (37), so
the desired functions are those in (36) where a1 = − 2

3a2. Letting c = 1
3a2 (so

a1 = −2c and a2 = 3c), we obtain the solutions

f1(x) = c(4e−4x − 3e−5x)

f2(x) = c(−2e−4x + 3e−5x)

with c ∈ R. (Note that c, although arbitrary, is the same for both functions.)

104. The given system of differential equations can be expressed as(
f ′1
f ′2

)
= A

(
f1

f2

)
,

where the matrix A is as in the question. Hence,(
g′1
g′2

)
= P−1

(
f ′1
f ′2

)
= P−1A

(
f1

f2

)

= P−1AP

(
g1

g2

)
= B

(
g1

g2

)
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=

(
−2 1

0 −2

)(
g1

g2

)
=

(
−2g1 + g2

−2g2

)
.

105. (a) The equation g′2 = −2g2 says that there is a constant b ∈ R such that g2(x) =
be−2x. Hence, the equation g′1 = −2g1+g2 says that g′1(x) = −2g1(x)+be

−2x.
Therefore, by the fact given in the question, there is a constant a ∈ R such
that g1(x) = (a+ bx)e−2x. In summary,

g1(x) = (a+ bx)e−2x (38)

g2(x) = be−2x (39)

for some constants a, b. Conversely, differentiation shows that functions g1
and g2 given by (38) and (39) satisfy the specified differential equations.

(b) We find that(
f1

f2

)
= P

(
g1

g2

)
=

(
3 1

−3 0

)(
g1

g2

)
=

(
3g1 + g2

−3g1

)
,

so

f1(x) = 3(a+ bx)e−2x + be−2x

= (3a+ b+ 3bx)e−2x

and f2(x) = −3(a+ bx)e−2x

106. The characteristic polynomial of B is

pB(x) = det(xI −B) = x2 − 6x+ 13,

whose complex roots are

1

2
(6±

√
36− 52) = 3± 2i.

Note that both eigenvalues have algebraic multiplicity 1, so each geometric mul-
tiplicity is necessarily equal to the corresponding algebraic multiplicity because
of the inequalities 1 ≤ dλ ≤ mλ. Therefore, Theorem 3.2 in Section III tells us
already that B is diagonalizable over C.

To diagonalize B, let us find the eigenspace associated to the eigenvalue 3 + 2i:

(3 + 2i)I −B =

(
2 + 2i −2

4 −2 + 2i

)
↔

(
1 + i −1

0 0

)
,

so the eigenspace is spanned by w =

(
1

1 + i

)
.
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By Proposition 3.1 in Section III, the eigenspace associated to the eigenvalue 3−2i

is spanned by the complex conjugate of w, i.e.,

(
1

1− i

)
.

Hence, if

P =

(
1 1

1 + i 1− i

)
and D =

(
3 + 2i 0

0 3− 2i

)
,

then P is invertible and P−1BP = D.

107. The complex eigenvalues of A are the roots of pA(x) = (x+1)(x2−4x+5), which
are −1, 2 + i, and 2− i. Let us find the eigenspace associate to λ = −1 first:

−I −A =

−4 −4 −2

−4 −4 −2

4 9 2

↔

2 0 1

0 1 0

0 0 0

 ,

so a basis for this eigenspace is 
−1

0

2


 .

Next, we turn to the eigenspace associated to λ = 2 + i:

(2 + i)I −A =

−1 + i −4 −2

−4 −1 + i −2

4 9 5 + i

↔

13 0 5 + i

0 13 5 + i

0 0 0

 .

(Please see eClass for a video showing the row operations that bring us to this
row-echelon form.) We may read off from this row-echelon form the basis

5 + i

5 + i

−13




for the eigenspace associated to 2 + i.

A basis for the remaining eigenspace, for 2 − i, may be obtained by taking the
complex conjugate of the basis vector we found for the previous eigenspace:

5− i

5− i

−13


 .

We have found a basis for C3 consisting of eigenvectors of A, namely,
−1

0

2

 ,

5 + i

5 + i

−13

 ,

5− i

5− i

−13


 ,
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so if

P =

−1 5 + i 5− i

0 5 + i 5− i

2 −13 −13

 , D =

−1 0 0

0 2 + i 0

0 0 2− i

 ,

then P is invertible and P−1AP = D. We have thus diagonalized A over C.

108. The complex eigenvalues of A are the roots of pA(x) = (x−3)(x2−2x+2), which
are 3, 1 + i, and 1− i. Let us find the eigenspace associate to λ = 3 first:

3I −A =

 2 3 2

−1 1 −1

1 −1 1

↔

1 0 1

0 1 0

0 0 0

 ,

so a basis for this eigenspace is 
 1

0

−1


 .

Next, we turn to the eigenspace associated to λ = 1 + i:

(1 + i)I −A =

 i 3 2

−1 −1 + i −1

1 −1 −1 + i


↔

 1 −3i −2i

−1 −1 + i −1

1 −1 −1 + i


↔

1 −3i −2i

0 −1− 2i −1− 2i

0 −1 + 3i −1 + 3i


↔

1 −3i −2i

0 1 1

0 0 0


↔

1 0 i

0 1 1

0 0 0

 .

We may read off from this row-echelon form the basis
 i

1

−1




for the eigenspace associated to 1 + i.
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A basis for the remaining eigenspace, for 1 − i, may be obtained by taking the
complex conjugate of the basis vector we found for the previous eigenspace:

−i
1

−1




We have found a basis for C3 consisting of eigenvectors of A, namely,
 1

0

−1

 ,

 i

1

−1

 ,

−i
1

−1


 ,

so if

P =

 1 i −i
0 1 1

−1 −1 −1

 , D =

3 0 0

0 1 + i 0

0 0 1− i

 ,

then P is invertible and P−1AP = D. We have thus diagonalized A over C.

109. (a) Multiplying both sides of the equation z2 +
√
3 z + 3 = 0 by z, we obtain

0 = z3 +
√
3 z2 + 3z = z3 +

√
3(z2 +

√
3 z) = z3 +

√
3(−3),

so z3 = 3
√
3.

(b) As noted in the question, A is diagonalizable over C. Let us find the eigen-
values. Let the two roots of the polynomial x2 +

√
3x + 3 be z, w ∈ C, and

note that the roots of x2 + 3 are ±
√
3 i. Then the complex eigenvalues of A

are
√
3 i,−

√
3 i, z, w, so there is an invertible matrix P ∈ M4(C) such that

P−1AP = D, where D is the diagonal matrix with
√
3 i,−

√
3 i, z, w on the

diagonal. Now, (
√
3 i)12 = 36 i12 = 93 = 729, and similarly for (−

√
3 i)12.

Further, using part (a), we have z12 = (z3)4 = (3
√
3)4 = 36 = 729 again, and

similarly for w12. Hence,

A12 = (PDP−1)12 = PD12P−1 = P (729I)P−1 = 729I,

the last equality holding because scalar matrices commute with all matrices.

110. (a) The characteristic polynomial of A is

pA(x) = det(xI −A) = (x− 2)(x− 4) + 28 = x2 − 6x+ 36,

whose roots are 1
2 (6 ±

√
−3 · 36) = 3 ± 3

√
3i. We work with the eigenvalue

3− 3
√
3i (although either eigenvalue is permissible):

(3− 3
√
3i)I −A =

(
1− 3

√
3i 4

−7 −1− 3
√
3i

)
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↔

(
1− 3

√
3i 4

7(1− 3
√
3i) 28

)
(row 2 times −1 + 3

√
3i)

↔

(
1− 3

√
3i 4

0 0

)
(row 2 minus 7 times row 1),

so an eigenvector with this eigenvalue is

w =

(
4

−1 + 3
√
3i

)
.

Hence, we let

Q =
(
Re(w) Im(w)

)
=

(
4 0

−1 3
√
3

)
.

By Proposition 4.1 in Section III, Q is invertible and

Q−1AQ =

(
3 −3

√
3

3
√
3 3

)
= 6

(
1
2 −

√
3
2√

3
2

1
2

)
= 6R,

where R is a rotation matrix.

(b)

R =

(
cos(π/3) − sin(π/3)

sin(π/3) cos(π/3)

)
,

which is the matrix for rotation anticlockwise by angle π/3.

If we had chosen to work with the eigenvalue 3 + 3
√
3 i instead, then the

anticlockwise angle of rotation would have been 5π/3.

111. Note first that pA(x) = det(xI −A) = x2 − 10x+ 169, which has complex roots

1

2
(10±

√
100− 4 · 169) = 1

2
(10±

√
−576) = 5± 12i,

because 576 = 242. We choose to work with the eigenvalue λ = 5 − 12i. (Either
eigenvalue is acceptable.) For the eigenspace associated to λ, we row reduce as
follows:

(5− 12i)I −A =

(
4− 12i −16

10 −4− 12i

)
↔

(
5 −2− 6i

0 0

)
.

We see, then, that the eigenspace is spanned by

w =

(
2 + 6i

5

)
.

Hence, we let

s = |λ| =
√
52 + 122 = 13,
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Q =
(
Re(w) Im(w)

)
=

(
2 6

5 0

)
,

and R =
1

s

(
5 −12

12 5

)
=

1

13

(
5 −12

12 5

)
.

Then according to Proposition 4.1 in Section III,Q is invertible, andQ−1AQ = sR.
Further, R is a rotation matrix, because it takes the form

1√
a2 + b2

(
a b

−b a

)
for real numbers a and b (not both zero), specifically, a = 5 and b = −12.

If we had chosen to work with the eigenvalue 5 + 12i, then the rotation matrix
would have been

1

13

(
5 12

−12 5

)
instead, and the matrix Q would have been different as well, e.g.,

Q =

(
2 −6

5 0

)
.

112. (a) The matrix A has characteristic polynomial pA(x) = x2 − 6x + 12, whose
roots are 3 ±

√
3i. We choose to work with the eigenvalue λ = 3 −

√
3i. To

find the corresponding eigenspace, we row-reduce as follows:

λI −A =

(
2−

√
3i −7

1 −2−
√
3i

)
↔

(
1 −2−

√
3i

0 0

)
.

A non-zero eigenvector for λ is

w =

(
2 +

√
3i

1

)
,

so letting

Q =
(
Re(w) Im(w)

)
=

(
2

√
3

1 0

)
,

we find that

Q−1AQ =

(
Re(λ) Im(λ)

− Im(λ) Re(λ)

)

=

(
3 −

√
3√

3 3

)

= 2
√
3

(√
3/2 −1/2

1/2
√
3/2

)
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= 2
√
3R,

where

R =

(
cos(π/6) − sin(π/6)

sin(π/6) cos(π/6)

)
,

rotation anticlockwise by angle π/6.

If we had chosen Q =
(
Re(w) Im(w)

)
instead, then the anticlockwise angle

of rotation would have been 11π/6.

(b) If k is a positive integer, then

Ak ∈ Span(I) ⇔ (Q(2
√
3R)Q−1)k ∈ Span(I)

⇔ (2
√
3)kQRkQ−1 ∈ Span(I)

⇔ QRkQ−1 ∈ Span(I)

⇔ Rk ∈ Span(I).

Because R is a rotation matrix, Rk ∈ Span(I) if and only if Rk = ±I, and
this happens if and only if 6 divides k, because the angle of rotation of R is
π/6. The smallest such k > 0 is 6. Then we compute

A6 = (2
√
3)6QR6Q−1

= 26 · 33(−I)

=

(
−1728 0

0 −1728

)
.

113. (a) The matrix B has characteristic polynomial pB(x) = x2 − 6x + 25, whose
roots are 3 ± 4i. We choose to work with the eigenvalue λ = 3 − 4i. To find
the corresponding eigenspace, we row-reduce as follows:

λI −B =

(
2− 4i −4

5 −2− 4i

)
↔

(
1− 2i −2

0 0

)
.

A non-zero eigenvector for λ is

w =

(
2

1− 2i

)
,

so letting

Q =
(
Re(w) Im(w)

)
=

(
2 0

1 −2

)
,

we find that

Q−1BQ =

(
Re(λ) Im(λ)

− Im(λ) Re(λ)

)
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=

(
3 −4

4 3

)
= 5R,

where R is the rotation matrix(
3/5 −4/5

4/5 3/5

)
.

If we had chosen Q =
(
Re(w) Im(w)

)
instead, then the rotation matrix

would have been (
3/5 4/5

−4/5 3/5

)
.

(b) By the same argument as in part (b) of question 112, if k is a positive integer,
then Bk ∈ Span(I) if and only if Rk = ±I. If this occurred, then R2k would
be equal to I. But here, R is a rotation matrix with rational entries and is not
equal to any of the four matrices given in the question, so no positive power
of it can be the identity.

114. We are told that

1√
a2 + b2

(
a b

−b a

)
=

(
cos(π/3) − sin(π/3)

sin(π/3) cos(π/3)

)
=

(
1
2 −

√
3
2√

3
2

1
2

)
,

so using the fact that
√
a2 + b2 = |λ|, we obtain

a =
1

2
|λ|, b = −

√
3

2
|λ|.

It remains to find |λ|. For this, we use Proposition 4.1 in Section III, which tells
us that there is an invertible matrix Q ∈M2(R) such that Q−1CQ = |λ|R. Note,
then, that C = |λ|QRQ−1. Now, because R represents rotation by angle π/3,
R3 = −I where I is the 2× 2 identity matrix. Therefore,

C3 = |λ|3(QRQ−1)3

= |λ|3QR3Q−1

= |λ|3Q(−I)Q−1

= −|λ|3I because Q−1IQ = Q−1Q = I

=

(
−|λ|3 0

0 −|λ|3

)
.

Hence, because the top-left entry of C3 is −64, we conclude that |λ|3 = 64, i.e.,
|λ| = 4. Thus, a = 2 and b = −2

√
3.
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115. (a) The characteristic polynomial of B is det(xI − B) = (x − 3)2(x + 2), so the
eigenvalues of B are 3 and −2. The characteristic polynomial of

B2 =

9 6 0

0 9 0

0 0 4


is det(xI−B2) = (x− 9)2(x− 4), so the eigenvalues of B2 are 9 and 4. These
are the squares of 3 and −2 respectively.

(b) One could take

C =

1 0 0

0 0 −1

0 1 0

 ,

for example. The matrix

C2 =

1 0 0

0 −1 0

0 0 −1


has eigenvalues 1 and −1, so it has a negative eigenvalue.

(c) Let A be any matrix whose square has a negative eigenvalue λ, such as the
matrix C above. Since λ is negative, it cannot be the square of any real
number, so certainly it is not the square of a real eigenvalue of A.

116. (a) Note that, because uTAv is a 1 × 1 matrix, we consider it as simply a real
number. Note further that any 1× 1 matrix is symmetric.

Now, if u,v ∈ Rn, then

⟨u,v⟩ = uTAv

= (uTAv)T because uTAv is a 1× 1 matrix

= vTATu (a standard property of the transpose)

= vTAu because A is symmetric by assumption

= ⟨v,u⟩.

This establishes the first axiom of an inner product.

Next, if u,v,w ∈ Rn, then

⟨u,v +w⟩ = uTA(v +w)

= uTAv + uTAw

= ⟨u,v⟩+ ⟨u,w⟩,

establishing the second axiom.
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If u,v ∈ Rn and c ∈ R, then

⟨cu,v⟩ = (cu)TAv

= c(uTAv)

= c⟨u,v⟩,

so the third axiom holds.

Finally, if u ∈ Rn, then ⟨u,u⟩ = uTAu ≥ 0 by the assumption given in the
question, and uTAu = 0 if and only if u = 0, by the same assumption.

(b) The standard inner product corresponds to the case where A is the n × n

identity matrix.

117. (a) Note that ⟨u,v⟩ = uTAv where

A =

(
3 −5

−5 −8

)
.

Axioms (i), (ii), and (iii) hold by the arguments given in the solution to
Question 116. However, axiom (iv) does not hold, because we can find u ∈ R2

such that ⟨u,u⟩ < 0. An example is u = (0, 1), which satisfies ⟨u,u⟩ = −8.

(b) The pairing does not define an inner product, because it fails axiom (iv).

118. (a) Note that ⟨u,v⟩ = uTAv where

A =

(
16 12

12 9

)
.

Axioms (i), (ii), and (iii) hold by the arguments given in the solution to
Question 116. However, axiom (iv) does not hold, because we can find a non-
zero vector u ∈ R2 such that ⟨u,u⟩ = 0. An example is u = (−3, 4).

(b) The pairing does not define an inner product, because it fails axiom (iv).

119. (a) Note that ⟨u,v⟩ = uTAv where

A =

(
13 −11

−7 10

)
.

Axioms (ii) and (iii) hold by the arguments given in the solution to Ques-
tion 116, but axiom (i) fails because, for example, ⟨e1, e2⟩ = −11 while
⟨e2, e1⟩ = −7.

Finally, we show that axiom (iv) holds. Observe that, for a vector u =

(u1, u2) ∈ R2,

⟨u,u⟩ = 13u21 − 18u1u2 + 10u22
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= (2u1 − 3u2)
2 + (3u1 − u2)

2

by the identity given in the question. This expression is always non-negative,
and further, it is zero if and only if

2u1 − 3u2 = 0

3u1 − u2 = 0,

if and only if u1 = u2 = 0 (because the determinant of the system is non-zero),
if and only if u = 0.

(b) The pairing does not define an inner product, because it fails axiom (i).

120. Let u = (x1, x2, x3). Then

⟨u,u⟩ = x21 + 5x22 + 4x2x3 + 25x23 = x21 + (2x2 + 3x3)
2 + (x2 − 4x3)

2

by the equation given in the question. Because each term on the right is the square
of a real number, ⟨u,u⟩ ≥ 0. Further, ⟨u,u⟩ = 0 if and only if x21 = (2x2+3x3)

2 =

(x2 − 4x3)
2 = 0, if and only if

x1 = 2x2 + 3x3 = x2 − 4x3 = 0.

We thus have immediately that x1 = 0, and x2 = x3 = 0 because the matrix(
2 3

1 −4

)
is invertible. Therefore, ⟨u,u⟩ = 0 if and only if u = 0.

121. Let p = ax2 + bx+ c. Then

⟨p, x⟩ = (a− b+ c)(−1) + 0 + (a+ b+ c)(1) = 2b

⟨p, x2⟩ = (a− b+ c)(1) + 0 + (a+ b+ c)(1) = 2a+ 2c,

so p is orthogonal to both x and x2 if and only if 2b = 2a + 2c = 0, if and only
if b = 0 and c = −a, if and only if p = a(x2 − 1). Among the polynomials of the
form p = a(x2 − 1), we want those of norm 1, i.e., ∥p∥ = 1. But

∥p∥ = ∥a(x2 − 1)∥ = |a| ∥x2 − 1∥ = |a|
√
0 + 1 + 0 = |a|,

so ∥p∥ = 1 if and only if |a| = 1, if and only if a ∈ {−1, 1}. Thus, the polynomials
of norm 1 that are orthogonal to both x and x2 are x2 − 1 and −(x2 − 1).

122. If p = ax2 + bx+ c, then

11 = ⟨p, 1⟩ = (a− b+ c) + c+ (a+ b+ c) = 2a+ 3c,

−6 = ⟨p, x⟩ = (a− b+ c)(−1) + 0 + (a+ b+ c) = 2b,
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10 = ⟨p, x2⟩ = (a− b+ c) + 0 + (a+ b+ c) = 2a+ 2c.

The unique solution to the system

2a + 3c = 11

2b = −6

2a + 2c = 10

is a = 4, b = −3, c = 1. Thus, p = 4x2 − 3x+ 1.

123. (a) We use the well-known identity cos(A+B) = cos(A) cos(B)− sin(A) sin(B):

cos((m+ n)x) = cos(mx) cos(nx)− sin(mx) sin(nx)

cos((m− n)x) = cos(mx) cos(nx) + sin(mx) sin(nx).

Subtracting the first of these two equations from the second and then dividing
through by 2 yields

sin(mx) sin(nx) =
1

2

(
cos((m− n)x)− cos((m+ n)x)

)
. (40)

(b) The assumption |m| ̸= |n| says that both m + n and m − n are non-zero.
Hence,

⟨fm, fn⟩ =

∫ π

−π
sin(mx) sin(nx) dx

=
1

2

∫ π

−π

(
cos((m− n)x)− cos((m+ n)x)

)
dx by (40)

=
1

2

[
1

m− n
sin((m− n)x)− 1

m+ n
sin((m+ n)x)

]π
−π

= 0,

because m− n,m+ n ∈ Z.

124. Note first that, for any i ∈ {1, . . . , k},

⟨ui,w⟩ = ⟨ui, b1u1 + · · ·+ bkuk⟩

= b1⟨ui,u1⟩+ · · ·+ bk⟨ui,uk⟩ by linearity

= bi⟨ui,ui⟩ by orthogonality

= bi∥ui∥2.

Hence,

⟨v,w⟩ = ⟨a1u1 + · · ·+ akuk,w⟩

= a1⟨u1,w⟩+ · · ·+ ak⟨uk,w⟩ by linearity
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= a1b1∥u1∥2 + · · ·+ akbk∥uk∥2.

125. (a)

∥f1∥2 = ⟨f1, f1⟩ =
∫ π

−π
dx = 2π,

∥f2∥2 = ⟨f2, f2⟩ =
∫ π

−π
sin2(x) dx =

1

2

∫ π

−π
(1− cos(2x)) dx = π,

∥f3∥2 = ⟨f3, f3⟩ =
∫ π

−π
sin2(2x) dx =

1

2

∫ π

−π
(1− cos(4x)) dx = π.

(b) Let h = a1f1 + a2f2 + a3f3, where a1, a2, a3 ∈ R. Then

⟨h, g1⟩ = a2∥f2∥2 − a3∥f3∥2 by Question 124

= π(a2 − a3),

⟨h, g2⟩ = a1∥f1∥2 + 2a2∥f2∥2 + 4a3∥f3∥2 by Question 124 again

= π(2a1 + 2a2 + 4a3).

Therefore, the equations ⟨h, g1⟩ = ⟨h, g2⟩ = 0 are equivalent to the system

a2 − a3 = 0

2a1 + 2a2 + 4a3 = 0

This system has general solution a1 = 3c, a2 = −c, a3 = −c, where c ∈ R.
Hence, the desired functions are the functions h = c(3f1−f2−f3) with c ∈ R.

(c) For functions h as above,

∥h∥2 = c2∥3f1 − f2 − f3∥2

= c2(9∥f1∥2 + ∥f2∥2 + ∥f3∥2) by Question 124

= c2(20π),

so ∥h∥ = 1 if and only if |c|
√
20π = 1, if and only if

c = ± 1

2
√
5π
.

Thus, there are only two functions meeting all the criteria:

1

2
√
5π

(3f1 − f2 − f3), − 1

2
√
5π

(3f1 − f2 − f3).

126. (a) We let

p1 = q1
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= 1,

p2 = q2 −
⟨p1, q2⟩
⟨p1, p1⟩

p1

= x− 0p1

= x,

p3 = q3 −
⟨p1, q3⟩
⟨p1, p1⟩

p1 −
⟨p2, q3⟩
⟨p2, p2⟩

p2

= x2 − 8

3
− 0p2

= x2 − 8

3
.

Then {p1, p2, p3} is an orthogonal basis. The norms of p1, p2, and p3 are
√
3,√

8, and
√
32/3 respectively, so{

1√
3
,
1√
8
x,

√
3

32
(x2 − 8

3 )

}
is an orthonormal basis for P2 with respect to the given inner product.

(b) We let

p1 = q1

= 1,

p2 = q2 −
⟨p1, q2⟩
⟨p1, p1⟩

p1

= x− 0p1

= x,

p3 = q3 −
⟨p1, q3⟩
⟨p1, p1⟩

p1 −
⟨p2, q3⟩
⟨p2, p2⟩

p2

= x2 − 16/3

4
− 0p2

= x2 − 4

3
.

Then {p1, p2, p3} is an orthogonal basis. The norms of p1, p2, and p3 are 2,
4/
√
3, and 16/

√
45 respectively, so{

1

2
,

√
3

4
x,

√
45

16
(x2 − 4

3 )

}
is an orthonormal basis for P2 with respect to the given inner product.

127. We first let u1 = v1. Next,

v2 −
⟨u1,v2⟩
⟨u1,u1⟩

u1 =


1

0

1

0

− 1

2


1

1

0

0


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=
1

2


1

−1

2

0

 ,

so scaling, as we may, we let

u2 =


1

−1

2

0

 .

Finally,

v3 −
⟨u1,v3⟩
⟨u1,u1⟩

u1 −
⟨u2,v3⟩
⟨u2,u2⟩

u2 =


1

0

0

1

− 1

2


1

1

0

0

− 1

6


1

−1

2

0



=
1

3


1

−1

−1

3

 .

Again, scaling this vector, we let

u3 =


1

−1

−1

3

 .

If we normalize the vectors u1,u2,u3, we find the orthonormal basis
1√
2


1

1

0

0

 ,
1√
6


1

−1

2

0

 ,
1√
12


1

−1

−1

3




of U .

128. We use the formula for orthogonal projection:

projP2
(q) =

⟨p1, q⟩
⟨p1, p1⟩

p1 +
⟨p2, q⟩
⟨p2, p2⟩

p2 +
⟨p3, q⟩
⟨p3, p3⟩

p3.

Here,

⟨p1, q⟩ = ⟨1, x3⟩ = 0 + 1 + 8 + 27 = 36
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⟨p2, q⟩ = ⟨x− 3
2 , x

3⟩ = 0− 1
2 + 4 + 3

2 · 27 = 44

⟨p3, q⟩ = ⟨x2 − 3x+ 1, x3⟩ = 0− 1− 8 + 27 = 18.

Thus, using the given equalities ⟨p1, p1⟩ = 4, ⟨p2, p2⟩ = 5, ⟨p3, p3⟩ = 4, we obtain

projP2
(q) = 36

4 + 44
5 (x− 3

2 ) +
18
4 (x2 − 3x+ 1) = 9

2x
2 − 47

10x+ 3
10 .

129. (a) Following the Gram–Schmidt process, we let

p1 = q1 = 1,

p2 = q2 −
⟨p1, q2⟩
⟨p1, p1⟩

p1 = x2 − 6

4
= x2 − 3

2
,

p3 = q3 −
⟨p1, q3⟩
⟨p1, p1⟩

p1 −
⟨p2, q3⟩
⟨p2, p2⟩

p2

= x3 − 8

4
− 20

9

(
x2 − 3

2

)
= x3 − 20

9
x2 +

4

3
.

Then {p1, p2, p3} is an orthogonal basis for U , and the pi are all monic.

(b)

projU (r) =
⟨p1, r⟩
⟨p1, p1⟩

p1 +
⟨p2, r⟩
⟨p2, p2⟩

p2 +
⟨p3, r⟩
⟨p3, p3⟩

p3

=
10

4
+

25

9

(
x2 − 3

2

)
+

76

50

(
x3 − 20

9
x2 +

4

3

)
=

38

25
x3 − 3

5
x2 +

9

25
.

130. (a) Let

u1 = v1 = (1, 2, 1,−2) (41)

u2 = v2 −
u1 · v2

u1 · u1
u1

= (0, 1, 0,−1)− 4

10
(1, 2, 1,−2) =

1

5
(−2, 1,−2,−1). (42)

To avoid working with denominators, we choose to scale u2 by 5 and instead
take u2 = (−2, 1,−2,−1). Note that we have scaled by a positive scalar, which
will be important when we come to find the totally positive QR-factorization
of A in part (b). Next, we let

u3 = v3 −
u1 · v3

u1 · u1
u1 −

u2 · v3

u2 · u2
u2

= (2, 1, 1,−1)− 7

10
(1, 2, 1,−2)− −4

10
(−2, 1,−2,−1)

=
1

2
(1, 0,−1, 0). (43)
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Finally, we let wi =
1
∥ui∥ ui for i = 1, 2, 3:

w1 =
1√
10

(1, 2, 1,−2)

w2 =
1√
10

(−2, 1,−2,−1)

w3 =
1√
2
(1, 0,−1, 0)

Then {w1,w2,w3} is an orthonormal basis for Col(A).

(b) From (41), (42), and (43), along with the definitions of w1,w2,w3, we see
that

v1 = (1, 2, 1,−2) =
√
10w1

v2 =
2

5
(1, 2, 1,−2) +

1

5
(−2, 1,−2,−1)

=
2
√
10

5
w1 +

√
10

5
w2

v3 =
7

10
(1, 2, 1,−2)− 2

5
(−2, 1,−2,−1) +

1

2
(1, 0,−1, 0)

=
7
√
10

10
w1 −

2
√
10

5
w2 +

√
2

2
w3

Thus, the totally positive QR-factorization of A is

A =



1√
10

− 2√
10

1√
2

2√
10

1√
10

0

1√
10

− 2√
10

− 1√
2

− 2√
10

− 1√
10

0




√
10 2

√
10
5

7
√
10

10

0
√
10
5 − 2

√
10
5

0 0
√
2
2

 .

131. Let

w1 =
1√
2


1

1

0

0

 , w2 =
1√
6


1

−1

2

0

 , w3 =
1√
12


1

−1

−1

3

 .

From the calculations in Question 127, we see that

v1 =
√
2w1

v2 =

√
2

2
w1 +

√
6

2
w2

v3 =

√
2

2
w1 +

√
6

6
w2 +

√
12

3
w2

Hence, A = QR where

Q =
(
w1 w2 w3

)
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=


1/
√
2 1/

√
6 1/

√
12

1/
√
2 −1/

√
6 −1/

√
12

0 2/
√
6 −1/

√
12

0 0 3/
√
12



and R =


√
2

√
2
2

√
2
2

0
√
6
2

√
6
6

0 0
√
12
3



132. Let the columns of A be v1,v2,v3 in that order. Then we let

u1 = v1 = (1, 1, 1, 1)

u2 = v2 −
u1 · v2

u1 · u1
u1

= (0, 1, 1, 1)− 3

4
(1, 1, 1, 1) =

1

4
(−3, 1, 1, 1).

At this point, we will replace u2 by (−3, 1, 1, 1) to avoid working with denomina-
tors. Note that, to obtain the totally positive QR-factorization, we should scale
the vectors ui only by positive scalars (in this case, the positive scalar 4). Hence,
we let

u3 = v3 −
u1 · v3

u1 · u1
u1 −

u2 · v3

u2 · u2
u2

= (0, 0, 1, 1)− 2

4
(1, 1, 1, 1)− 2

12
(−3, 1, 1, 1) =

1

3
(0,−2, 1, 1).

Now we normalize by letting wi =
1
∥ui∥ui for i = 1, 2, 3:

w1 =
1

2
(1, 1, 1, 1), w2 =

1√
12

(−3, 1, 1, 1), w3 =
1√
6
(0,−2, 1, 1).

Next, we express the vj in terms of the wi:

v1 = (1, 1, 1, 1) = 2w1

v2 =
3

4
(1, 1, 1, 1) +

1

4
(−3, 1, 1, 1) =

3

2
w1 +

√
3

2
w2

v3 =
1

2
(1, 1, 1, 1) +

1

6
(−3, 1, 1, 1) +

1

3
(0,−2, 1, 1)

= w1 +

√
3

3
w2 +

√
6

3
w3.

Therefore, the QR-factorization of A is

A =


1/2 −3/

√
12 0

1/2 1/
√
12 −2/

√
6

1/2 1/
√
12 1/

√
6

1/2 1/
√
12 1/

√
6


2 3/2 1

0
√
3/2

√
3/3

0 0
√
6/3

 .
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133.

dist(u, v) = ∥u− v∥

=
√

⟨u− v, u− v⟩

=
√
⟨u, u⟩ − ⟨u, v⟩ − ⟨v, u⟩+ ⟨v, v⟩

=
√

⟨u, u⟩+ ⟨v, v⟩ because ⟨u, v⟩ = 0 by assumption

=
√

∥u∥2 + ∥v∥2.

134. Following the Gram–Schmidt process, we define vectors v1,v2,v3 as follows:

v1 = e1 = (1, 0, 0)

v2 = e2 −
⟨v1, e2⟩
⟨v1,v1⟩

v1

= (0, 1, 0)− 1

2
(1, 0, 0)

= (−1/2, 1, 0)

v3 = e3 −
⟨v1, e3⟩
⟨v1,v1⟩

v1 −
⟨v2, e3⟩
⟨v2,v2⟩

v2

= (0, 0, 1)− 0v1 − 0v2

= (0, 0, 1)

The Gram–Schmidt process ensures that v1,v2,v3 are mutually orthogonal, though
not necessarily unit vectors. To obtain an orthonormal basis, we therefore scale
each vi by 1

∥vi∥ , where the norm here is, of course, taken with respect to the given
inner product: {

( 1√
2
, 0, 0), ( −1√

18
, 2√

18
, 0), (0, 0, 1)

}
.

135. (a)

∥α∥2 =

∞∑
n=0

1

(n+ 3)2

=

∞∑
n=3

1

n2

=
π2

6
− 1

12
− 1

22

=
π2

6
− 5

4
,

and

∥β∥2 =

∞∑
n=0

1

(n+ 1)2
=

∞∑
n=1

1

n2
=
π2

6
.
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(b)

∞∑
n=2

1

n2 − 1
=

∞∑
n=2

1

(n+ 1)(n− 1)

=

∞∑
n=0

1

(n+ 3)(n+ 1)

= ⟨α, β⟩

≤ ∥α∥ ∥β∥ by Cauchy–Schwarz

=

√
π2

6
− 5

4

√
π2

6

=
π2

6

√
1− 15

2π2
.

136. Let f, g ∈ B(M) and t ∈ [0, 1]. Then∫ b

a

(
tf(x) + (1− t)g(x)

)2
dx

= ∥tf + (1− t)g∥2

≤
(
∥tf∥+ ∥(1− t)g∥

)2
by the triangle inequality

=
(
|t| ∥f∥+ |1− t| ∥g∥

)2
≤
(
|t|
√
M + |1− t|

√
M
)2

because f, g ∈ B(M)

=M
(
|t|+ |1− t|

)
=M(t+ 1− t) because t ∈ [0, 1]

=M.

137. According to the proof of the triangle inequality on page 65 of the course notes,
we have equality if and only if

⟨u,u⟩+ 2⟨u,v⟩+ ⟨v,v⟩ = ⟨u,u⟩+ 2|⟨u,v⟩|+ ⟨v,v⟩

and ⟨u,u⟩+ 2|⟨u,v⟩|+ ⟨v,v⟩ = ⟨u,u⟩+ 2∥u∥ ∥v∥+ ⟨v,v⟩

The first equality holds if and only if ⟨u,u⟩ ≥ 0, and the second holds if and only
if v = cu for some c ∈ R by Theorem 5.1 in Section IV of the course notes. But
if v = cu, then ⟨u,v⟩ ≥ 0 if and only if c⟨u,u⟩ ≥ 0, if and only if c ≥ 0 (because
⟨u,u⟩ > 0).

138. We verify each of the axioms of a metric in turn:
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(i) If u,v ∈ V , then

d(u,v) = 0 ⇐⇒ ∥u− v∥ = 0

⇐⇒ u− v = 0 by axiom (iv) of an inner product

⇐⇒ u = v.

(ii) If u,v ∈ V , then

d(u,v) = ∥u− v∥

= ∥(−1)(v − u)∥

= | − 1| ∥v − u∥

= ∥v − u∥

= d(v,u).

(iii) If u,v,w ∈ V , then

d(u,w) = ∥u−w∥

= ∥(u− v) + (v −w)∥

≤ ∥u− v∥+ ∥v −w∥ by the triangle inequality
for inner product spaces

= d(u,v) + d(v,w).

139. (a) Let

v =

3

4

5

 , x =

x1x2
x3

 ,

with x assumed to satisfy x21 + x22 + x23 = 1, i.e., ∥x∥2 = 1. Then

|3x1 + 4x2 + 5x3| = |v · x|

≤ ∥v∥ ∥x∥ by Cauchy–Schwarz

= ∥v∥

= 5
√
2,

with equality holding if and only if x is a scalar times v. Only when x is a
positive scalar times v can v · x be the maximum, for otherwise v · x < 0.
Therefore, to find the x where the maximum is attained, we solve ∥cv∥ = 1

for c > 0, i.e., c = 1/∥v∥ = 1/5
√
2. So

x = cv =
1

5
√
2

3

4

5

 ,
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and the maximum is attained when

x1 =
3

5
√
2
, x2 =

4

5
√
2
, x3 =

1√
2
.

(b) Let

v =

 5

12

13

 , x =

x1x2
x3

 ,

with x assumed to satisfy 5x1 + 12x2 + 13x3 = 26, i.e., v · x = 26. Then

x21 + x22 + x23 = ∥x∥2

≥ (v · x)2

∥v∥2
by Cauchy–Schwarz

=
262

2 · 132

=
22 · 132

2 · 132
= 2,

with equality holding if and only if x ∈ Span(v). Therefore, the minimum is
2, attained at x ∈ Span(v) satisfying v ·x = 26. We can find such x by solving
v · (cv) = 26 for c ∈ R, i.e.,

c =
26

∥v∥2
=

2 · 13
2 · 132

=
1

13
.

Then

x = cv =
1

13

 5

12

13

 =

 5/13

12/13

1

 ,

and the minimum of 2 is attained when

x1 = 5/13, x2 = 12/13, x3 = 1.

140. (a) Let

v =

−2

1

−1

 , x =

x1x2
x3

 ,

with x assumed to satisfy x21 + x22 + x23 = 1, i.e., ∥x∥2 = 1. Then

−2x1 + x2 − x3 = v · x

≤ ∥v∥ ∥x∥ (Cauchy–Schwarz)

= ∥v∥
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=
√
6,

with equality holding if and only if x is a positive scalar times v. (If x were a
negative scalar times v, then v ·x would be equal to −∥v∥ ∥x∥.) The maximum
is therefore

√
6, and to find the x where it is attained, we solve ∥cv∥ = 1 for

c > 0, i.e., c = 1/∥v∥ = 1/
√
6. So

x = cv =
1√
6

−2

1

−1

 ,

and the maximum is attained when

(x1, x2, x3) = (−2/
√
6, 1/

√
6,−1/

√
6).

(b) Let

v =

4

1

5

 , x =

x1x2
x3

 ,

with x assumed to satisfy 4x1 + x2 + 5x3 = 2, i.e., v · x = 2. Then

x21 + x22 + x23 = ∥x∥2

≥ (v · x)2

∥v∥2
(Cauchy–Schwarz)

=
4

42

=
2

21
,

with equality holding if and only if x ∈ Span(v). Therefore, the minimum is
2/21, as long as there is x ∈ Span(v) with v · x = 2. We can find such x by
solving v · (cv) = 2 for c ∈ R, i.e.,

c =
2

∥v∥2
=

2

42
=

1

21
.

Then

x = cv =
1

21

4

1

5

 ,

and the minimum of 2/21 is attained when

(x1, x2, x3) = (4/21, 1/21, 5/21).

141. (a) Let

v =

1/3

1/2

1

 , x =

x1x2
x3

 ,
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with x assumed to satisfy x21 + x22 + x23 = 1, i.e., ∥x∥2 = 1. Then

1
3x1 +

1
2x2 + x3 = v · x ≤ |v · x|

≤ ∥v∥ ∥x∥ by Cauchy–Schwarz

= ∥v∥ = 7
6 ,

with equality holding if and only if x is a positive scalar times v. Therefore,
to find the x where the maximum is attained, we solve ∥cv∥ = 1 for c > 0,
i.e., c = 1/∥v∥ = 6/7. Thus, the maximum is 7/6, and it is attained when
x = 6

7v = (2/7, 3/7, 6/7).

(b) We find the minimum of x21 + x22 + x23 subject to 2x1 + 3x2 + 6x3 = a, where
a is unknown for the time being. Let v = (2, 3, 6) and x = (x1, x2, x3), with
x assumed to satisfy 2x1 + 3x2 + 6x3 = a, i.e., v · x = a. Then

x21 + x22 + x23 = ∥x∥2 ≥ (v · x)2

∥v∥2
by Cauchy–Schwarz

=
a2

49
,

with equality holding if and only if x ∈ Span(v). Therefore, the minimum is
a2/49, attained at x ∈ Span(v) satisfying v · x = a. We can find such x by
solving v · (cv) = a for c ∈ R, i.e.,

c =
a

∥v∥2
=

a

49
.

Then
x = cv =

a

49
(2, 3, 6).

The minimum is 1 if and only if a2/49 = 1, i.e., a = −7 (since a was as-
sumed negative). The minimum in this case occurs at x = − 1

7 (2, 3, 6) =

(−2/7,−3/7,−6/7).

142. Note that the condition
∫ π/4

0
f(x)g(x) dx = 1

2 says ⟨f, g⟩ = 1/2 in the notation of
inner products. For such a g,∫ π/4

0

g(x)2 dx = ∥g∥2

≥ ⟨f, g⟩2

∥f∥2
by the Cauchy–Schwarz inequality

=
1

4∥f∥2
,

and equality holds if and only if g = cf for some c ∈ R. The unique c ∈ R for
which ⟨f, cf⟩ = 1/2 is

c =
1/2

⟨f, f⟩
=

1

2∥f∥2
.
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It remains, then, to find ∥f∥2, which we achieve via a couple of trigonometric
identities:

f(x)2 = sin2(x)− 2 sin(x) cos(x) + cos2(x) = 1− sin(2x),

so

∥f∥2 =

∫ π/4

0

(1− sin(2x)) dx = [x+ 1
2 cos(2x)]

π/4
0 =

1

4
(π − 2).

Thus, c = 2/(π − 2), so the function g we seek is g = 2
π−2f , i.e.,

g(x) =
2

π − 2
(sin(x)− cos(x)).

In this case, ∫ π/4

0

g(x)2 dx =
1

4∥f∥2
=

1

π − 2
.

143. (a)

p =
1

2
(x− 2)(x− 3) + (x− 1)(x− 3) +

1

2
(x− 1)(x− 2)

= 2x2 − 8x+ 7.

Alternatively, we may solve for p by letting p = ax2 + bx + c and observing
that the given conditions on p translate to the system

a+ b+ c = 1

4a+ 2b+ c = −1

9a+ 3b+ c = 1,

which has solution a = 2, b = −8, c = 7 (steps to this solution should be
shown).

(b) Endow P2 with the inner product ⟨·, ·⟩ given by

⟨r, q⟩ = r(1)q(1) + r(2)q(2) + r(3)q(3).

The condition q(1)2 + q(2)2 + q(3)2 = 1 says ∥q∥2 = 1, i.e., ∥q∥ = 1, and by
part (a),

q(1)− q(2) + q(3) = ⟨p, q⟩

where p = 2x2−8x+7, so we are trying to maximize ⟨p, q⟩ subject to ∥q∥ = 1.
Now,

⟨p, q⟩ ≤ |⟨p, q⟩|

≤ ∥p∥ ∥q∥ by Cauchy–Schwarz

= ∥p∥ by the condition ∥q∥ = 1.
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Further, equality occurs if and only if q is a positive-scalar multiple of p, i.e.,
q = cp with c > 0. The unique c > 0 such that ∥cp∥ = 1 is c = 1/∥p∥.

It remains, then, to find ∥p∥. But we already know that p(1) = p(3) = 1 and
p(2) = −1, so ∥p∥ =

√
12 + (−1)2 + 12 =

√
3. Thus, the polynomial we seek

is q = 1
∥p∥p =

1√
3
p = 1√

3
(2x2 − 8x+ 7).

144. We first find orthonormal bases for the eigenspaces, starting with the eigenvalue
−1:

−I −A =

−1 −2 1

−2 −4 2

1 2 −1

↔

1 2 −1

0 0 0

0 0 0

 ,

so a basis is 
−2

1

0

 ,

1

0

1


 .

We apply Gram–Schmidt to

v1 =

1

0

1

 , v2 =

−2

1

0

 ,

that is, we let u1 = v1 and

u2 = v2 −
u1 · v2
u1 · u1

u1 =

−2

1

0

− −2

2

1

0

1

 =

−1

1

1

 .

Scaling, we obtain the orthonormal basis 1√
2

1

0

1

 ,
1√
3

−1

1

1


 .

Now for the eigenspace for the eigenvalue 5:

5I −A =

 5 −2 1

−2 2 2

1 2 5

↔

1 0 1

0 1 2

0 0 0

 ,

so a basis is 
−1

−2

1


 ,
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which we normalize to  1√
6

−1

−2

1


 .

Hence, if

P =

1/
√
2 −1/

√
3 −1/

√
6

0 1/
√
3 −2/

√
6

1/
√
2 1/

√
3 1/

√
6

 , D =

−1 0 0

0 −1 0

0 0 5

 ,

then PTAP = D.

145. Let us begin with the eigenspace associated to −9:

−9I −A =

−20 2 −6

2 −20 −6

−6 −6 −4

↔

3 0 1

0 3 1

0 0 0

 ,

so this eigenspace is 1-dimensional, spanned by (1, 1,−3). A unit spanning vector
is (1/

√
11, 1/

√
11,−3/

√
11).

Next, we turn to the eigenspace associated to 13:

13I −A =

 2 2 −6

2 2 −6

−6 −6 18

↔

1 1 −3

0 0 0

0 0 0

 ,

so this eigenspace has basis {v1,v2} where v1 = (−1, 1, 0) and v2 = (3, 0, 1). To
perform Gram–Schmidt on this basis, we let u1 = v1 and

u2 = v2 −
u1 · v2

u1 · u1
u1 = (3, 0, 1)− −32 (−1, 1, 0) = 1

2 (3, 3, 2).

Thus, this eigenspace has orthonormal basis

{(−1/
√
2, 1/

√
2, 0), (3/

√
22, 3/

√
22, 2/

√
22)}.

We have produced an orthonormal basis of R3 consisting of eigenvectors, and using
this basis we see that PTAP = D, where

P =

 1/
√
11 −1/

√
2 3/

√
22

1/
√
11 1/

√
2 3/

√
22

−3/
√
11 0 2/

√
22

 , D =

−9 0 0

0 13 0

0 0 13

 .

146.
f(x1, x2, x3) = −x21 − x22 − x23 + 4x1x2 + 6x1x3 + 10x2x3.
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147.

A =

 1 1/2 −3/2

1/2 −1 5/2

3/2 5/2 2

 .

148.

A =
1

2
(B +BT) =

2 3 9

3 4 5

9 5 6

 .

149. If x = (x1, x2), then

f(x) = (a2 − c2)x21 + 2(ab− cd)x1x2 + (b2 − d2)x22

= (a2x21 + 2abx1x2 + b2x22)− (c2x21 + 2cdx1x2 + d2x22)

= (ax1 + bx2)
2 − (cx1 + dx2)

2. (44)

Now, because

(
a b

c d

)
is invertible, there is a solution to the equations

ax1 + bx2 = 1

cx1 + dx2 = 0,

and for such an x =
(
x1, x2

)
, (44) shows that f(x) = 12 − 02 = 1 > 0. Similarly,

there is a solution to

ax1 + bx2 = 0

cx1 + dx2 = 1,

and then f(x) = 02 − 12 = −1 < 0.

150. (a) The symmetric matrix associated to f is

A =

(
1 3/2

3/2 3

)
,

which has characteristic polynomial pA(x) = (x−1)(x−3)− 9
4 = x2−4x+ 3

4 .
The roots are 1

2 (4±
√
13), so the maximum and minimum of f on unit vectors

are 1
2 (4 +

√
13) and 1

2 (4−
√
13) respectively. Both roots are positive, so f is

positive definite.

(b) The symmetric matrix associated to f is

A =

(
1 −3

−3 9

)
,
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which has characteristic polynomial pA(x) = (x− 1)(x− 9)− 9 = x2 − 10x =

x(x − 10). The roots are 0 and 10, so the maximum and minimum of f on
unit vectors are 10 and 0 respectively. Both roots are non-negative, but one
is zero, so f is non-negative definite but not positive definite.

(c) The symmetric matrix associated to f is

A =

1 0 1

0 −3 −1

1 −1 −1

 ,

which has characteristic polynomial

pA(x) = det

x− 1 0 −1

0 x+ 3 1

−1 1 x+ 1


= (x− 1)(x2 + 4x+ 2)− (x+ 3) (first row)

= x3 + 3x2 − 3x− 5 = (x+ 1)(x2 + 2x− 5).

The roots, in ascending order, are −1 −
√
6, −1, and −1 +

√
6. Therefore,

the maximum and minimum of f on unit vectors are −1 +
√
6 and −1 −√

6 respectively. The maximum and minimum have opposite signs, so f is
indefinite.

151. We orthogonally diagonalize the real symmetric matrix

A =

(
2 2

2 −1

)
.

The characteristic polynomial is

pA(x) = (x− 2)(x+ 1)− 4 = x2 − x− 6 = (x+ 2)(x− 3),

so the eigenvalues are −2 and 3.

Eigenspace for 3:

3I −A =

(
1 −2

−2 4

)
↔

(
1 −2

0 0

)
,

so this eigenspace is spanned by

(
2

1

)
. A unit spanning vector is

(
2/
√
5

1/
√
5

)
.

Eigenspace for −2:

−2I −A =

(
−4 −2

−2 −1

)
↔

(
2 1

0 0

)
,
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so this eigenspace is spanned by

(
−1

2

)
. A unit spanning vector is

(
−1/

√
5

2/
√
5

)
.

Thus, if

P =

(
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

)
, D =

(
3 0

0 −2

)
,

then PTAP = D. Hence, the quadratic form g(y) = f(Py) satisfies g(y1, y2) =

3y21 − 2y22 .

The quadratic form f is indefinite, because the corresponding matrix A has both
a positive eigenvalue and a negative one (or because the diagonalized quadratic
form g is indefinite).

152. We orthogonally diagonalize the real symmetric matrix

A =

(
3 6

6 −2

)
.

The characteristic polynomial is

pA(x) = (x− 3)(x+ 2)− 36 = x2 − x− 42 = (x+ 6)(x− 7),

so the eigenvalues are −6 and 7.

Eigenspace for 7:

7I −A =

(
4 −6

−6 9

)
↔

(
2 −3

0 0

)
,

so this eigenspace is spanned by

(
3

2

)
. A unit spanning vector is

(
3/
√
13

2/
√
13

)
.

Eigenspace for −6:

−6I −A =

(
−9 −6

−6 −4

)
↔

(
3 2

0 0

)
,

so this eigenspace is spanned by

(
−2

3

)
. A unit spanning vector is

(
−2/

√
13

3/
√
13

)
.

Thus, if

P =

(
3/
√
13 −2/

√
13

2/
√
13 3/

√
13

)
, D =

(
7 0

0 −6

)
,

then PTAP = D. Hence, the quadratic form g(y) = f(Py) satisfies g(y1, y2) =

7y21 − 6y22 .

The quadratic form f is indefinite, because the corresponding matrix A has both
a positive eigenvalue and a negative one (or because the diagonalized quadratic
form g is indefinite).
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153. The symmetric matrix corresponding to f is

A =

 0 2 −1

2 3 −2

−1 −2 0

 .

As we saw in Question 3 in the Week 12 practice problems, PTAP = D where

P =

1/
√
2 −1/

√
3 −1/

√
6

0 1/
√
3 −2/

√
6

1/
√
2 1/

√
3 1/

√
6

 , D =

−1 0 0

0 −1 0

0 0 5

 .

Therefore, the quadratic form g(y) = f(Py) satisfies

g(y1, y2, y3) = −y21 − y22 + 5y23 .

The quadratic form f is indefinite, because the corresponding matrix A has both
a positive eigenvalue and a negative one (or because the diagonalized quadratic
form g is indefinite).

154.

f

x1x2
x3

 = 5x21 − 2(x1 + 2x2)
2 + 4(x1 + 2x2 + 3x3)

2

= 5y21 − 2y22 + 4y23

where

y1 = x1

y2 = x1 + 2x2

y3 = x1 + 2x2 + 3x3.

Hence, y1y2
y3

 =

1 0 0

1 2 0

1 2 3


x1x2
x3

 = PT

x1x2
x3


where

P =

1 1 1

0 2 2

0 0 3

 .

Therefore, if

D =

5 0 0

0 −2 0

0 0 4

 ,
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then f(x) = yTDy = (PTx)TD(PTx).

155. (a) Define y1 = x1 + 3x2 and y2 = 2x1 − x2. Then f

(
x1

x2

)
= 4y21 + 3y22 . Now, if

x =

(
x1

x2

)
and y =

(
y1

y2

)
, then y = PTx where P =

(
1 2

3 −1

)
, so letting

D =

(
4 0

0 3

)
, we have

f(x) = 4y21 + 3y22 = yTDy = (PTx)TD(PTx).

(b) By part (a), if x ∈ R2, then

xTAx = f(x) = (PTx)TD(PTx) = xTPDPTx,

so A = PDPT by the fact given in the question, because both A and PDPT

are symmetric. Alternatively, one may compute A and PDPT explicitly and
compare them.

156. The quadratic form f is indefinite. To see this, let the eigenvalues of A, counted
with multiplicity, be λ1, λ2, λ3, λ4, so that pA(x) = (x−λ1)(x−λ2)(x−λ3)(x−λ4).
Then λ1λ2λ3λ4 = pA(0) = det(A) < 0, so at least one of the λi is negative and
at least one positive (because 4 is even). Now use Proposition 9.2 in Section IV of
the course notes.

157. (a) For the quadratic form in Question 151, the maximum and minimum subject
to ∥x∥ = 1 are 3 and −2 respectively by Proposition 10.1 in Section IV of
the course notes. For the quadratic from in Question 152, the maximum and
minimum are 7 and −6.

(b) For the quadratic form in Question 154, the maximum and minimum subject
to ∥x∥ = 1 are 5 and −1 respectively.

158. (a) Let us first find the eigenspace associated to −6:

−6I −A =

−4 −2 −6

−2 −1 −3

−6 −3 −9

↔

2 1 3

0 0 0

0 0 0

 ,

so a basis for this eigenspace is {v1,v2} where v1 = (−1, 2, 0) and v2 =

(−3, 0, 2). We apply Gram–Schmidt to these basis vectors, letting

u1 = v1 = (−1, 2, 0)
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u2 = v2 −
u1 · v2

u1 · u1
u1

= (−3, 0, 2)− 3

5
(−1, 2, 0) =

2

5
(−6,−3, 5).

Scaling u1,u2, we obtain the orthonormal basis
−1/

√
5

2/
√
5

0

 ,

−6/
√
70

−3/
√
70

5/
√
70




for this eigenspace.

We turn to the eigenspace associated to 8:

8I −A =

10 −2 −6

−2 13 −3

−6 −3 5

↔

3 0 −2

0 3 −1

0 0 0

 ,

so this eigenspace is spanned by (2, 1, 3). Scaling, we obtain the unit spanning
vector 2/

√
14

1/
√
14

3/
√
14

 .

Hence, if

P =

−1/
√
5 −6/

√
70 2/

√
14

2/
√
5 −3/

√
70 1/

√
14

0 5/
√
70 3/

√
14

 and D =

−6 0 0

0 −6 0

0 0 8

 ,

then P is orthogonal and PTAP = D.

(b) By Proposition 10.1 in Section IV, the maximum of xTAx subject to ∥x∥ = 1

occurs at the unit eigenvectors with eigenvalue 8. By our answer to part (a),
the corresponding eigenspace is spanned by the unit vector (2/

√
14, 1/

√
14, 3/

√
14),

so the two vectors of norm 1 in this eigenspace are

(2/
√
14, 1/

√
14, 3/

√
14) and −(2/

√
14, 1/

√
14, 3/

√
14).

(c) Let x = (x1, x2, x3), and define y = (y1, y2, y3) by

y = PTx =

 −1/
√
5 2/

√
5 0

−6/
√
70 −3/

√
70 5/

√
70

2/
√
14 1/

√
14 3/

√
14


x1x2
x3



=


− 1√

5
x1 +

2√
5
x2

− 6√
70
x1 − 3√

70
x2 +

5√
70
x3

2√
14
x1 +

1√
14
x2 +

3√
14
x3

 .
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Then

f(x) = xTAx

= yTDy because x = Py and PTAP = D

= −6y21 − 6y22 + 8y23

= −6
(
− 1√

5
x1 +

2√
5
x2

)2
− 6
(
− 6√

70
x1 − 3√

70
x2 +

5√
70
x3

)2
+ 8
(

2√
14
x1 +

1√
14
x2 +

3√
14
x3

)2
= −6

5
(−x1 + 2x2)

2 − 3

35
(−6x1 − 3x2 + 5x3)

2

+
4

7
(2x1 + x2 + 3x3)

2.

159. Let y1 = x1/x3 and y2 = x2/x3. Then x1x2/x
2
3 = y1y2, and x21 + x22 = x23 if and

only if y21 + y22 = 1. Thus, we are to find the maximum and minimum of y1y2
subject to y21 + y22 = 1. The symmetric matrix associated to the quadratic form
y1y2 is (

0 1/2

1/2 0

)
,

whose characteristic polynomial is x2−1/4. The roots of this polynomial are ±1/2,
so the maximum and minimum in question are 1/2 and −1/2 respectively.

160. The symmetric matrix associated to f is

A =

 1 a/2 0

a/2 2 0

0 0 1/2

 ,

which has characteristic polynomial

pA(x) = (x− 1
2 )((x− 1)(x− 2)− (a2 )

2)

= (x− 1
2 )(x

2 − 3x+ 2− (a2 )
2).

The roots of the quadratic factor are

1

2
(3±

√
9− 8 + 4(a2 )

2) =
1

2
(3±

√
a2 + 1),

so A has eigenvalues 1
2 , 1

2 (3 +
√
a2 + 1), and 1

2 (3−
√
a2 + 1).

(a) By Proposition 10.1 in Section IV of the course notes, we are looking for a ∈ R
such that the least eigenvalue of A is 0. This amounts to finding a such that
1
2 (3−

√
a2 + 1) = 0, i.e.,

√
a2 + 1 = 3, i.e., a2 +1 = 9, i.e., a = 2

√
2 (because

a ≥ 0 by assumption).
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(b) Let ∆ be the difference between the maximum and minimum of f(x) subject
to ∥x∥ = 1, and for brevity, let c = 1

2

√
a2 + 1, so that the eigenvalues of A

are 1
2 , 3

2 − c, and 3
2 + c. The key observation for this question is that the

order of the eigenvalues depends on c, with the crossover between 1
2 and 3

2 −c
occurring when c = 1. Thus,

∆ =

( 32 + c)− 1
2 = c+ 1 if c ≤ 1

( 32 + c)− ( 32 − c) = 2c if c ≥ 1.
(45)

(i) Note that if c < 1, then according to (45), ∆ = c+1 < 2 < 4. Therefore,

∆ = 4 ⇐⇒ c ≥ 1 and 2c = 4 by (45) again,

⇐⇒ c ≥ 1 and c = 2,

⇐⇒ c = 2,

⇐⇒ 1
2

√
a2 + 1 = 2,

⇐⇒ a =
√
15 (because a ≥ 0 by assumption).

(ii) This time, observe that if c > 1, then (45) implies that ∆ = 2c > 2 > 7/4.
Hence,

∆ = 7
4 ⇐⇒ c ≤ 1 and c+ 1 = 7

4 by (45) again,

⇐⇒ c ≤ 1 and c = 3
4 ,

⇐⇒ c = 3
4 ,

⇐⇒ 1
2

√
a2 + 1 = 3

4 ,

⇐⇒ a =
√
5
2 (because a ≥ 0 by assumption).
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