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1.  (a) Ifv eV, then
0v=(0+0)v =0v+0v (1)

by distributivity. If we let w be the additive inverse of Ov, so that 0Ov+w = 0,
then (1) gives

ov+w = (Ov+0v)+w
ie, 0 = O0v+ (0v+w)
= 0v+0
= Ov,

as required.
(b) Ifa € Rand v € V, then
(—a)v+av = (—a+a)
= v
= 0

by part (a). Thus, (—a)v is the additive inverse of av, which is to say (—a)v =
—(av).
2. We wish to find a1, as,as € R such that

202 + 72 +10 = ay(x+1)* +ag(z+1)+az-1
= ay(2®+2x+1) +ax(z+1) +as
= a2’ + (2a1 + a2)r + (a1 + as + a3).

Hence, equating coefficients of the powers of z, we are to solve the equations

ay = 2
7
a1+a2+a3:10

2(11 + aso

We may read off straight away that the solution is a; = 2, as = 3, ag = 5. Thus,
P = 2p1 + 3p2 + 5ps3.

3. We show that in fact f is not a linear combination of g and h. Suppose it were,
i.e., that there were a,b € R such that f = ag + bh. Then f(x) = ag(z) + bh(z)
for all x € R, i.e.,

3 =a(zx+1)+bln(2® +1) forall z € R.
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In this equation, choose z = 0,1, —1 in turn:

0 = a (whenz=0)
1 20+ bIn(2) (when z =1)
-1 bIn(2) (when z = —1)

Equations (2)—(4) have no common solution for ¢ and b. Indeed, because the first

equation states that a = 0, the second two state, respectively, 1 = bln(2) and

—1="0In(2), a contradiction.

The nth term of s is

(n+1)?® = n¥+3n+3n+1
= (¥+1)+3n(n+1),

so s =t + 3u.

Observe that

42— 1 2 1 2 _ 7 10
3 4/\3 4 15 22)°
so we are to solve
7 10 1 2 1 0 c+d 2¢c
= C +d =
15 22 3 4 0 1 3¢ 4de+d

for ¢,d € R. Equating corresponding entries, we obtain the four equations

c+d= T
2c =10
3c =15
de+d =22

The system has a unique solution, namely ¢ = 5, d = 2, so A2 = 54 + 21I.

Because A has trace zero, we may write it as

Squaring A, we obtain

AQ_ab a b\ [a®+bc 0 (A0
“\e —a)\e —=a) \ 0  a4+bc) \0o A}’
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where A = a? + bec = — det(A), a non-zero integer. (Remember that A is assumed

to have integer entries and to be invertible.) Hence,

2
g (MO _ (A0 I
0 A 0 A2 ’
where n = A2, a positive integer.

7. We have the well-known trigonometric identity cos(2x) = 2 cos?(x)—1, i.e., f(z) =
2¢g(x) — h(x). This being true for all z € R, we see that f = 2¢g — h as functions.

8. The function f is not a linear combination of g and h. We prove this by contradic-
tion. Suppose that f = ag + bh for some a,b € R. That is, f(x) = ag(x) + bh(zx)
for all x € R, which is to say

sin(2z) = acos(z) + bsin(z) for all x € R.

In this equation, choose = 0,7/2, /4 in turn:

0 = a (whenz=0) (5)
0 = b (whenz=m/2) (6)
1 = (a+b)/vV2 (whenz=r/4) (7)

Equations (5)—(7) have no common solution for a and b, since the first two state
that a = b = 0, while the third implies that a + b # 0. This gives us the desired
contradiction.

9. Al the axioms except (i) and (vi) hold. Let us show this by going through the

eight axioms in turn.

(i) This axiom (associativity) does not hold. For example,

(1@2)@3=]1-2/@3=163=[1-3/=2,
while 1@ (2@3)=1@2-3/=1&l=[1-1]=0.

(ii) This axiom (commutativity) does hold: If u,v € R>¢, then
udv=|lu—v|=v—ul=vdu.
(iii) This axiom does hold: If u € R>g, then
u®0=|u—0|=|ul =u,

because u > 0 by assumption.
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(iv) This axiom does hold: Let u € R>¢, and let v = u. Then

u@v=u—vl=u—ul=0.

(v) This axiom does hold: If u,v € R>¢ and ¢ € R, then

cOudv) = |c/(udv) by definition of ®
= |c||lu—wv| by definition of @
= [lel(u— )]
= |lefu—|elv]

= (lcju) @ (JeJv) by definition of &
= (cOu)®(cOv) by definition of ®.

(vi) This axiom does not hold. For example, let c=d =1 € R, and let u =1 € R>.
Then

(c+d)ou=(1+1)0ol1=201=|21=2,
while (cou)®d(dou)=(101)a(1ol)=1-1]=0.

(vii) This axiom does hold: If ¢,d € R and u € R>g, then

(cd) ou = |cdlu
= el ldlu
= ld(dowu)
= ¢cO((dou).

(viii) This axiom does hold: If © € R>q, then 1 © u = |1|u = lu = u.

10.

(a)

(d)

B is a subspace. Certainly it contains the zero polynomial, because the
derivative of the zero polynomial is identically zero. Next, if p’(a) = ¢’(a) = 0,
then (p+ ¢)'(a) =p'(a) + ¢'(a) = 0, and if b is a scalar, (bp)'(a) = b(p'(a)) =
b-0 = 0. Therefore, B; is closed under addition and scalar multiplication.

B> is not a subspace. For example, the zero polynomial is not in Bs.

Bs is a subspace. One way to see this is to observe that Bjs is the set of
constant polynomials, which is a subspace: The zero polynomial is constant,
and adding or scaling a constant polynomial yields a constant polynomial.
Alternatively, we may work directly with the derivative: If p’ = ¢’ = 0, then
(p+q) =p +¢ =0+0=0, and if b is a scalar, then (bp)’ =bp’ =b-0 = 0.

By is not a subspace. For example, x + 2 € By, but %(m +2) & By, so By is
not closed under scalar multiplication.
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11.

12.

(a)

B is a subspace. Certainly it contains the zero sequence, because 0 = 2:0—3-0.
Next, if @« = (an)n and 8 = (b,), are in By and ¢, is the nth term in the

sequence « + 3, then

¢, = an-+b,
= 2ap-1—3ap_2+2b,_1 —3b,_2
= 2(ap—1+bp-1)—3(an—2+ by_2)
= 2cp-1—3cp_2,

so @+ 8 € B;. Finally, if & = (an), € B1, A € R, and ¢, is the nth term in

the sequence A\, then
Cn = Aap
= A2ap—1 —3an—2)
= 2Xap_1 — 3 a,_9
= 2cp—1 — 3cp_2,

so \a € Bj.

Bs is a subspace. It is clear that By contains the zero sequence. Now suppose
a = (ap), and B = (by,), are in Bs, and let ¢, be the nth term in the sequence
a+ B. If 3 divides n, then a,, = b, =0, so ¢, = a,, +b, = 0+ 0 = 0. Further,
if @ = (an)n € B2, A € R, and ¢, is the nth term in the sequence A, then
¢p = Aap, = A -0 =0 whenever 3 divides n.

Bs is not a subspace. For example, the sequence o = (ay,),, where a,, = n is
in Bs, but 2a = (0,2,4,6,...) is not. This shows simultaneously that Bjs is
closed neither under addition nor under scalar multiplication. Alternatively,

we may just observe that Bs does not contain the zero sequence.

B, is not a subspace. For example, consider the sequences @ = (n), and
8 = (—n)n. Then a and S are both in By, but « + § is the zero sequence,
which is not in By. Or again, we may observe simply that By does not contain
the zero sequence. Alternatively, we may show that B, is not closed under

scalar multiplication.

Bj is not a subspace of Ps. The easiest way to see this is to observe that the
zero polynomial is not in Bj. Indeed, if p is the zero polynomial, then p + zp’

is still the zero polynomial, which does not have degree 2.

Bs is a subspace of Ms(R). If X is the zero 2 x 2 matrix, then X A is the zero
2 x 3 matrix by definition of matrix multiplication. Thus, By contains the
zero 2 X 2 matrix and is therefore non-empty. Now suppose that X,Y € Bs.
Then

(X+Y)A = XA+YA
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= 07
so X +Y € By. Thus, Bs is closed under addition. Finally, if X € By and
c € R, then

(cX)A = XA

= 0

= 0,
so cX € B, showing that By is closed under scalar multiplication as well.
There is an alternative solution exploiting a sneaky observation about the
subspace Bs: it is in fact just the zero subspace of Ma(R). Indeed, suppose
X € B;y. Then because XA = 0, it follows from a standard property of

matrix multiplication that Xw = 0 for each column w of A. In particular,

considering the first two columns of A, we obtain

X(D o

Now, let the columns of X be u and v, so that X = (u v). Then the above
two equations say, respectively,
u+4v=0
2u+5v=0

Solving this system for u and v gives u = v = 0, so X is the zero matrix.

This alternative solution would not work for an arbitrary matrix A € M 3(R),
so it is a good idea to understand the first solution.

(¢) Bs is not a subspace of S. For example, it is not closed under addition. To see
this, let s = (1,1,1,1,...) and t = (2,4, 16,256, ...). (Thus, ¢ is the sequence
whose zeroth term is 2, and in which each term after that is the square of the
previous term.) Both s and ¢ are in Bs, but s +t = (3,5,...), and 5 # 32.
Thus, s+t & Bs, so B3 is not closed under addition.

Actually, Bs is not closed under scalar multiplication either. For example, the
sequence s = (1,1,1,1,...) is in Bs, but the sequence 2s = (2,2,2,2,...) is
not, because 22 # 2.

(d) By is a subspace of F. It is non-empty, because it contains the zero function,
z. Indeed, z(0) = 0 = 2(1). Now suppose that f,g € Bs. Then

(f+9)(0) = f(0)+g(0) by definition of addition in F
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13.

14.

f(1)+g(1) because f,g € By
(f +9)(1) by definition of addition again,

so f+ g € By. Finally, if f € F and ¢ € R, then

(cf)(0) = ¢f(0) Dby definition of scalar multiplication in F
= c¢f(1) because f € By

= (ef)(1) by definition of scalar multiplication again,
so cf € By.
A is closed under addition. If (x1, x2, x3), (y1,¥2,y3) € A, then x1+y1, x2+y2,

and 3 + y3 are all positive. Further, because all terms in the expansion of

the product (z1 + y1)(x2 + y2)(x3 + y3) are positive, we have
(z1 +y1) (22 + y2) (23 + y3) > z1w223 > 1,

80 (71 +y1, T2 + Y2, 73 + y3) € A.
B is not closed under addition. For example, (1,1,2) and (—1,—1,2) are in
B, but their sum, (0,0,4), is not.
B is not linearly independent, because

2x+1)—23zx+2)+ (4z+3) =0.
The set By does not span Py, because, for example, 22 is not in Span(B;).
B> is linearly independent: If a,b,c € R and

ax + b(z + 2) + c(—z?) =0,

then
20+ (a + b)x — cx?® = 0,
i.e.,
26 = 0
a+b = 0
—c = 0,

soa=b=c.

B> spans Ps. Once we have seen more theory, we will have at our disposal
quick ways to show this. For now, let us do it the long way. Given ajz? +
a2x + a3z € Pa, we wish to decide whether there exist ¢y, ca, c3 € R such that

@z’ +axr +az = c1x+cz(x+2)+03(—$2)
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= —c3z’+ (c1 + c2)x + 2ca.

This amounts to solving the system

—C3 = ay
C1 + Co = az
262 = as

for c1,ca,c3 € R, and we see that it has the solution

1 1
C1 = az — $as, 6225

B as, C3 — —ay.

(c) Bs is linearly independent, because the only scalars a, b such that 2a-+bx? = 0
(the zero polynomial) are a = b = 0. However, B3 does not span Pa, because

there is no solution in a,b € R to the equation 2a + bz? = x of polynomials.

(d) Let py =2+2,p2 = —1, p3 = 22, and p; = 22 — 3. Then By is not linearly
independent, because p; — ps — p3 +ps = 0. (Or, once we have seen the notion
of dimension, we may simply observe that 4 vectors in a 3-dimensional space

cannot be linearly independent.)

B, does span Py: Given a122 + asx + as € P, we wish to determine whether
we may solve

mr? +asr+az = ci(x+2) +ea(x— 1)+ czz? + ca(2? - 3)
(cs + 64)x2 + (1 4+ c2)x 4+ 2¢1 —ca — 3¢y

for ¢y, s, c3,cq4 € R. The system to solve is

c3+ C4=a
c1+ co = ay
2¢1 — 3 —3cq = ag
All we are interested in is whether the system has a solution for any given

ai,as,az, not what the solutions are if so. For that, we need only decide

whether the coeflicient matrix

0 0 1 1
1 1 0 0
2 -1 0 -3

has a pivot in every row of a row-echelon form. The following row-echelon

form shows that indeed there is a pivot in every row:

11 0 O
0 -3 0 =3
0 0 1 1
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15. (a) Consider A = {f € F | f(0) € Z}. Then A is closed under addition, for if
fyg € A, then
(f +9)(0) = £(0) + 9(0) € Z,

because the sum of two integers is an integer. However, A is not closed under
scalar multiplication. For example, the function f(z) =z 41 is in A, but % f

is not because its value at 0 is 1/2.

(b) Let B={feF| f(0)f(1)=0}.If f € B and ¢ € R, then

(€)0) - (ef)(1) = ¢cf(0)-cf(1)

so ¢f € B. Thus, B is closed under scalar multiplication. However, B is
not closed under addition. To see this, consider the functions f(x) = x and
g(z) =z — 1. Both f and g are in B, but their sum, h = f + g, is not:

hO)h(1) = (f+9)(0)-(f+9)(1)

= (f(0) +9(0))(f(1) + g(1))
= 9(0)f(1)

= -1

42— 19 27 .
45 64
Now, suppose that ¢; I + caA + c3A% = 0, where c1, ¢, c3 € R, i.e.,
0 0 _ . 1 0 ny 2 3 ny 19 27
oo/  tlo 1) "\ 7)) P45 e

. c1 + 2¢co + 19c3 3¢y + 27¢3
5co + 45c3 c1 + Teo + 64c3 '

16. First, note that

Then we obtain the linear system

c1+2co +19¢c3 =0
3¢y 4+ 27c3 =0
5¢o + 45¢3 =0
c1+ Tcag+64c3 =0
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This system is represented by the matrix

1 2 19
0 3 27
0 5 45|’
1 7 64

and after a few row operations, we find the row-echelon form

1 2 19
01 9
0 0 O
0 0 O

The system therefore has a free variable, so the equation c¢;I 4+ coA + c3A? = 0

has non-trivial solutions. Thus, I, A, A% are not linearly independent.

17.  Suppose c1,c2,c3 € R satisfy ¢15 + cot + csu = 0, where 0 here means the zero
sequence. The nth term of ¢1s + cot + czu is ¢ (n + 1) + co(2n + 1) + c3n?, so we
have

ci(n+1) +ca(2n+1) +c3n? =0 for all integers n > 0. (8)

Taking n = 0, 1, 2 respectively in this equation gives

c1+ ¢ =0
261+3CQ+ 03:0
3Cl+562+463 =0

This system is represented by the matrix

1 1
2 3
3 5

N =

and a row-echelon form of this matrix is

N = O

1
0
0

[ e

which has a pivot in every column. The system therefore has only the trivial

solution ¢; = ¢o = ¢3 =0, so0 s,t,u are linearly independent.

A slightly different solution is as follows. Because the equation in (8) holds for
infinitely many n, the polynomial f(z) = ci(z + 1) + c2(22 + 1) + c3z? must be
the zero polynomial, so the coefficients of the powers of = in f(x) are all zero.

Rearranging, we have f(z) = c3x? + (c1 + 2¢2) + ¢1 + €32, 50

63:0
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Cl+202 =0
Cl+ C2 :0

This system has only the solution ¢; = ¢y = ¢c3 = 0.

18.  (a) We calculate the first two derivatives of f as follows:

flz) = 2aze"® =2azf(x)
f"(z) = 2af(x)+2axf'(z) = (2a + 4a*2?) f ().

Suppose, then, that \f + pf’ + v f” = 0 for some A, u, v € R. Then

M(x) 4 p - 2ax f(x) + v(2a + 4a*2?) f (z)
= (4a’va? + 2apx + 2av + \) f(2)

0

for all x € R. Hence, because f(x) is non-zero for all z € R,
4ava® + 2apx +2av + X =0 for all 2z € R.

The only way the above polynomial function in « can equal the zero function
is for all the coefficients to be zero, so 4a?v = 2au = 2av + XA = 0, and

therefore A\ = p=v=0.

(b) Differentiation using the product rule gives

g"(x) = —wxsin(z)+ 2cos(x)
gW(z) = zsin(z) — 4cos(z).

Hence, g+ 2¢" + ¢ =0, s0 g, ¢", ¢'¥ are linearly dependent, and the same
is therefore true of g, ¢/, ..., 9.
19. (a) Suppose that au + bv + cw = 0, the zero sequence, for some a,b,c € R, i.e.,
4"a +2"b +n’c =0

for all integers n > 0. Taking n = 0, 1,2 gives, respectively,

a+b = 0
4da+2b+c = 0
16a +4b+4c = 0.

After multiplying the bottom row by 1/4, we aim to show that the matrix

=~ s =
— N

0
1
1
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has a pivot in every column, and row reduction shows that this is the case.

Therefore, u, v, w are linearly independent.

(b) Note that o = u — 4v and 8 = u + 4v — 2w. Hence, if ac + b5 = 0 for some
a,b € R, then

=
|

a(u — 4v) + b(u + 4v — 2w)
(a+b)u+ (—4a + 4b)v — 2bw.

By the linear independence of w, v, w we conclude that a + b = —4a + 4b =
—2b=0,s0a=b=0.

An alternative solution uses bases (I-6) and coordinate vectors (I-7). We
may row-reduce the matrix of coordinate vectors of o and 8 with respect to

the basis {u, v, w} of Span(u,v,w). The matrix is

and it has a pivot in both columns, so a and 8 are linearly independent.

(¢) It helps to write 71 and 2 as

m o= (@ -=n", 9)
Yo = (2" = in)n. (10)

Now, we see that

while
B—a = 22" —n?),
= 8(2" —1in),
= 8.
Thus, 71 = 3(a+ ) and 2 = ;(—a + ).

Another answer uses the observation that v; = u—w and v = v— iw7 by (9)
and (10) respectively. In light of this observation, we look to express u — w
and v — %w as linear combinations of @ = u — 4v and 8 = u + 4v — 2w.
We could eyeball the solution, or find it systematically by expressing the last
two columns of the following matrix as linear combinations of the first two

columns:
1 1 1 0

—4 4 0 1
0 -2 -1 —1/4
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Row-reducing this matrix, we arrive at the reduced row-echelon form

10 1/2 —1/8
01 1/2 1/8 |,
00 0 0

soy =sa+ 1B and v = —%a—i— %B.

20. By adding the equations u; = vi+vs and uy = vy —vse, we obtain v; = %ul—i—%ug,

1

and hence vy = %ul — 5uy. Therefore,

1
vy =2vy 4+ 3vy —ug = 5111 — 5112—113.

Thus, every vector in the spanning set {vi,ve,v3} is in Span(uj,us,us), so

{u1,uy,u3} is also a spanning set. Explicitly, if ¢1, ¢a, ¢35 € R, then

1 1 1 1
C1V1 + Ccovg +c3vy = 61(5111 + 5112) + 02(5111 — 5112)

+ 03(3111 - %u2 —u3)

1 1
= 5(81 + co + 563)111 + 5(01 — Co — 03)112 — C3Uus.

21.  We shall answer part (b) first. The answer to part (a) will then be obvious.

Let N be a non-negative integer. Let us say that a sequence t = (ay), € S is
constant from N if a,, = an for all n > N. With this definition, we will show that
a given sequence t lies in Span(X) if and only if there is some N > 0 such that ¢
is constant from N.

Suppose first that ¢ € Span(X), i.e.,
C1Sk, + -+ CmSk, =1 (11)

for some non-negative integers k1 < ko < --- < k,, and some c¢1,...,¢, € R.If
N = ky,, then each s, in (11) is constant from N, because it has a 1 in its nth

term for n > N. But then ¢, being a linear combination of the sy, , is also constant
from N.

Conversely, suppose there is N > 0 such that a, = ay when n > N. For k =
0,...,N, let u; be the vector in RN+ whose N + 1 entries are, in order, the first
N + 1 terms of sg, i.e., terms 0 to N. The vectors ug,...,uy form a basis for

RN+, so we may solve the equation

coug + - -+ +eyuy = (ag,ai,...,anN) (12)
for cg,...,cy € R. We claim that
coso+ -+ ensy =t, (13)
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22.

23.

that is, b, = a, for all n > 0, where b,, is the nth term of cosqg + -+ + cysn.
If n < N, then b,, = a,, precisely because of the choice of ¢y, ...,cy in (12). For
the other b, note that each of the s; appearing in (13) is constant from N, so
coSg + -+ + cnsy is constant from N. Therefore, if n > N, we have b, = by =

anN = Qp.

Having thus characterized the sequences in Span(X), we see immediately that
(1,2,3,4,...) is not in Span(X), since there is no N > 0 such that (1,2,3,4,...)
is constant from N.

(a) We have p € V if and only if p(1) = p(—1), if and only if
a3+ az +ay +ap = —az + az — a1 + ap,
if and only if ag 4+ a; = 0.
(b) By part (a), a general polynomial in V' takes the form
az® + bx? — ax + ¢ = a(2® — ) + ba® + ¢,
where a, b, c € R. Therefore, the polynomials
p=a"—z, p=a° p3=1

span V. To show that pp,ps,ps are linearly independent, we suppose that
c1p1 + cap2 + c3ps = 0, the zero polynomial, i.e.,

3

c(z® —x) + o 3 =0,

which is to say

2

clx3 + cox” —c1x +c3 = 0.

Then we see immediately that ¢; = c2 = ¢5 = 0. Thus, {p1,p2,ps3} is a basis
for V. Because V has a basis consisting of 3 vectors, dim(V') = 3.

(a) A general matrix in U takes the form
a b 10 b 01 n 0 0
= a C
b ¢ 0 0 10 01
= aA; + cAs + bAs,

which is in Span(A;, Aa, A3). Thus, B is a spanning set for U. For linear

independence, we observe that if ¢; A; + coAs + c3As = 0, the zero matrix,

then
Cc1 C3 o 0 0
C3 C2 N 0 0 ’
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24.

25.

(b)

socp =co =cg =0.

If X = (x y) then
z w

XTx =

B x? + 22 xy—i—zw
B zy+ 2w y*+w?
= (u u)A1+(V V)A2+(u'V)A37

SO
u-u

X™Xg=|v-v]|. (14)
u-v
In fact, (14) holds for any matrix X € M, »(R) with columns u and v; the

matrix X need not be square. Indeed, we always have

XTx — (u-u u-v)
u-v v-v

regardless of the number of rows in X.

Suppose that c1 f1 + cafo + c3fs = 0, the zero function, where c¢1,c2,c3 € R.
Then

c1c08(2mx) + cosin(27x) + cgx =0 for all z € R.

Taking « = 0 shows that ¢; = 0, and then taking z = 1/2 shows that ¢ = 0.
We have only to take, for example, z = 1/4 to then see that c; = 0 as well.
Thus, f1, fo, f3 are linearly independent. Also, they span V by definition of
V. Thus, {f1, f2, f3} is a basis for V.

We are told that g = 4f1 — fo + f3, so
g(z) = 4cos(2mz) — sin(27wx) + 2z for all x € R.
Hence,

g(3/8) = 4(—V/2/2) — V2/2 4+ 3/4 = 3/4 — 5V/2/2.

The zero sequence is in U, because 0 = 0 + 0. Next, suppose that v = (z,,),

and v = (yn)n are in U. Then u + v = (z, + Yn)n, and

Ty + Yn = (xn—l + xn—2) + (yn—l + yn—2)
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26.

= (xnfl + ynfl) + (xnf2 + ynf2)a
so u + v € U. Finally, suppose that v = (z,), € U and ¢ € R. Then cu =
(¢xp)n, and

ctp, = c(Tp_1+ Tp_2)

= CTp—1+ CTp—2,
socu€U.

For n > 2,

a® = an72a2

= a" ?(a+1) by the hint
— an—l +an—2.

Thus, s € U. Exactly the same argument with § in place of o shows that
telU.

Suppose that c1s + cot = 0, the zero sequence, i.e., cia™ + co 8™ = 0 for all
non-negative integers n. Taking n = 0 and n = 1 gives
c1+ c2 = 0
acy + 562 =0

1 1
This homogeneous system is represented by the square matrix ( 5) , which
o

has determinant 8 — a = —/5 # 0, so the system has only the solution
c1 = cg = 0. Thus, s and t are linearly independent.

Suppose ¢, ca € R satisfy ¢1 f +cag = 0, i.e., ¢1(€2* + 1) + ca(e® +2x) = 0 for
all € R. Taking 2 = 0 gives ¢; + ¢z = 0. Now take & = In(2). (Actually, in
this example, any = # 0 would do.) Then ¢1(4 + In(2)) + c2(2 + 2In(2)) = 0.
The system

ci+ec = 0
c1(4 +1n(2)) + e2(2 + 2In(2)) 0

is represented by a 2 x 2 matrix having determinant

1 1

Jm@) 242m()| " @270

so the system has the unique solution ¢; = ¢o = 0, as desired.

e = (‘f), [hale = ( _31).
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27.

28.

()

(b)

The functions hy, hy are linearly independent if and only if [h]g, [ho]s are,

but
(1mle [@k)(‘f f’l>H<é ‘f)

50 [h1]e, [h2]e are indeed linearly independent (pivot in each column). Further,
h1,hy span V because [hi]g, [h2]e span R?:

()60

We search for a basis B such that S C B C S, where S’ = {vy, vy} and S is
the spanning set {vy, vy, e1,ez,e3,e4} of R4 (The vectors eq,...,e4 are the

(pivot in each row).

standard basis vectors in R*.) This amounts to row-reducing the matrix

211000 12 0 1 00
12 01 00 o 010 0 01
110 0 10 001 -2 0 3
01 0001 0 00 -1 11

The columns corresponding to the four vectors vi,vo,eq,eq are linearly in-
dependent and span the column space, so {vi, vy, e;,es} is a basis for R*

extending {vy, va}.

Let Ay, A5 be the matrices in the given set, in that order, and let

1 1
Az = 0 ;o Ag= 0 , As= 00 , As = 00
0 0 0 0 1 0 0 1

Then {A;,...,Ag} is a spanning set for Ms(R) containing the linearly inde-
pendent set {41, A}, so it contains a basis for Ms(R) extending the linearly
independent set. To find one, we put the matrix of coordinate vectors with
respect to the basis {As, Ay, A5, Ag} in row-echelon form:

111000 1 1 1 0 00
1101 00 o 0 -1 -1 0 1 0
100 0 10 0 0 -1 1 00
110 0 01 0o 0 0 -1 01

The columns corresponding to the four matrices Aq, Ao, A3, A4 are linearly
independent and span the column space, so {A;, As, A3, A4} is a basis for
M5 (R) extending {A1, A2}

The set W is non-empty, because the zero 2 x 2 matrix is symmetric and has
trace zero and is therefore in W. Next, if A, B € W, then

(A+B)'=AT"+BY"= A+ B,
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and Tr(A+B)=Tr(A)+Tr(B)=0+0=0,
so A+ B € W. Finally, if A € R, then

AT = AT = 24,
and Tr(AA) =ATr(A)=X-0=0,

=(2)

Then A € W if and only if b = ¢ and a + d = 0, if and only if

=5 8) =6 ) )

Thus, W is the subspace spanned by the matrices

b))

These matrices are linearly independent, because if
1 0 0 1 0 0
C1 + Co = )
0 -1 1 0 0 0
. C1 Co 0 0
1.e., - )
co —C 0 0

soNAeW.

Let

then ¢; = ¢o = 0. Therefore, the matrices in (15) form a basis for W. The

space W has dimension 2, because a basis for it consists of two vectors.

29.  Working with the basis B = {2, 22, 2,1} of Pa, we solve the equation ci[p1]s +
calp2]B + c3lpsls + calpals = 0 for c1,ca,¢3,¢4 € R. Arranging these coordinate

vectors as columns in a matrix, we obtain the system

1 1 1 2 1 0 0 1

2 1 2 6 01 0 -2
—

-1 -1 1 4 001 3

3 1 -1 =2 0 00 O

There is no pivot in the final column, so p1,p2,ps,ps are linearly dependent.

Specifically, if the columns of the reduced row-echelon form are vy, va, vs, vy, then

vy = vi—2vy+3vs, so the same is true of the columns of the matrix of coordinate

vectors, i.e., [p4]p = [p1]s — 2[p2]s + 3[ps)s, and therefore py = p1 — 2ps + 3ps.
Alternatively, treating c4 as free, we take ¢4 = —1 and thus obtain ¢; = 1, co = —2,

and c3 = 3.

Paul Buckingham

Linear Algebra Il (MATH 225): Solutions to the Practice Problems —v1.12 | 19



30. (a) We row-reduce the matrix of coordinate vectors, with coordinates taken with

respect to the basis

o o) 6 o0 o6 )

ie.,
1 2 1 -1 11 2 1 =1
1 3 0 2 011 -1 3
>
1 4 1 1 000 1 =2
1 -1 0 0 -1 00 0 0 O

The pivot columns are columns 1, 2, and 4, so the corresponding matrices in
the set S form a basis for U:

L)) ()

(b) We represent the polynomials p; = 23 + 2% — 1,py = —2% + 22 + 1,p3 =
22+ 222+ 22— 1,py = 223 + 22 + 2 — 2,ps = 423 4+ 222 — 2 — 4 by their
coordinate vectors with respect to the basis {z3, 22, z,1}:

-1 1 2 4
1 0 1 2
o'l 2121 1]|-1
-1 1 -1 -2 —4

1 -1 1 2 4 1 -1 1 2 4
2 1 2 0o 1 1 -1 -2
H Y
0 2 1 -1 0 0 0 3 3
-1 1 -1 -2 -4 0O 0 0 0 O
we conclude that py, pa, and py form a basis for W. (Note from the row-echelon

form above that ps, ps € Span(p1, p2, ps).)

31. (a) We have the following coordinate vectors with respect to the basis B =
{f17 f27 f3} for the Space V= Span(fh f27 f3):
1 -3
ls= 2], les=|-1|, lesls=| 6
1 -1

We put the matrix of coordinate vectors in row-echelon form:

1 1 =3 1 1 -3
2 -1 6 |« |0 1 —4
3 1 -1 0 0 O
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32.

The coordinate vectors are not linearly independent, because there is no pivot
in the final column of the above row-echelon form, so g1, g2, g3 are not linearly
independent.

(b) The solution is the same as in part (a), except now we have the following

matrix of coordinate vectors:

1 2 1 1 2 1
3 1 4|« |0 =5 1
-2 1 3 0 0 6

This time, there is a pivot in every column, so the coordinate vectors are

linearly independent, and so hq, ho, hs are linearly independent.
Let p = asz® + agx? + a1z + ag € P3. Then p’ = 3azx® + 2a222 + a1, so p € V if
and only if

8a3+4a2+2a1 +CLO =0
and 12a3 +4as + a1 =0

(The first equation says p(2) = 0, and the second says p’(2) = 0.) Putting the

unknowns in the order ag, a1, as, az, we may represent this system of equations by

1248(_)10—4—16
01 4 12 01 4 12}’

from which we read off the general solution

the matrix

ap = 4p+16A
a; = —4p—12X\
ax =

az = A,

where A, i € R are free. Thus, the polynomials in V' are those of the form

At 4 pa? — (120 4 4p)z + 16X + 4p
= AMa® =122+ 16) 4 p(z? — 42 + 4)

with A, 4 € R. Hence, the polynomials p; = 2 — 122 + 16 and py = 2% — 4z + 4
are in V', and every polynomial in V is a linear combination of p; and p,. Further,
p1 and ps are linearly independent, for if ¢y (23 — 122 + 16) + co(2? — 4z +4) = 0,
then

ez + cox® — (12¢1 + 4co)x + 16¢1 + 4eg = 0,

so ¢; = ¢cg = 0. Thus, {p1,p2} is a basis for V.
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33.

34.

1 1
[Bile = |1 [Bale = | —1
1 2
-1 3
[Bsle=1| 3 [Be=| -1
-3 5

(b) We put the matrix of coordinate vectors in row-echelon form:

1 -1 3 1 1 -1 3
1 -1 3 -1« |0 1 -2 2
2 -3 5 0 0 0 O

There is no pivot in the final row of this row-echelon form, so the coordinate
vectors do not span R?, and so By, By, B3, By do not span V.

In both parts, we consider coordinates with respect to the basis
B 1 0 0 1 0 0 0 0
~1\o o/"\o o/"\1 0)\0 1

(a) The matrix of coordinate vectors of the elements of Sy is

of MQ(R)

1 1 -1 1 11 1 -1 1

2 -1 3 01 -1 1 1
<~

1 3 -1 2 2 0 0 O 1 -1

23 1 -1 4 0 0 O 0 1

There is a pivot in every row, so S; is a spanning set. However, the third

column has no pivot, so S7 is not linearly independent.

(b) The matrix of coordinate vectors of the elements of Sy is

1 1 1 11 1

2 3 0 1 -1
Ad

1 -1 3 0 0 O

2 5 -1 0 0 O

There is a column without a pivot, so Ss is not linearly independent. It is not
a spanning set either, because not every row in the above row-echelon form

has a pivot.

Paul Buckingham Linear Algebra Il (MATH 225): Solutions to the Practice Problems — v1.12 | 22



35.

—_
|
—_
[\
—
—
ot
S

(w1 Wo W3 | V1 Vs ’1}3): 0 1 1 |-1 0 O
-1

—
—
|
—
|
—
o

ol 4 2 1
s o1t o]-3 -1 -1,

—_
o

0 0 1| 2 1 1
S0
4 2 1
Peep=1-3 -1 -1
2 1 1
36. (a)
Psce = Pelg

(3 8\
o\ 2
(-1 4

- o\12 —3/2)°

For Pc. g, we row reduce as follows:

1 113 8 10
P, P, ) — N
( 5“0‘ €8 <1 101 2) <0 1
2 5
Peep= <1 3> :
Pece = Pgle
-1
(11
I

/2 1/2
/2 —-1/2)

2 5\ (-1 4
PeesPsee = (1 3) (1/2 —3/2)
(12 12
—o\12 —1)2
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Thus,

Finally,



37.

38.

= FPece.

(a) Observe that

p = ar’+br+c
p = 2ar+b
P’ = 2a.

The coordinate vectors of p,p’,p” with respect to the basis {z2,z,1} of Py

0 0
b1, 2a |, 01,
c b 2a

which are linearly independent because a # 0. Therefore, these coordinate
vectors necessarily form a basis for R? because they are three linearly in-
dependent vectors in the 3-dimensional space R3. Hence, the polynomials
p,p',p"” form a basis for Ps.

(b) The coordinates of p, p + p’, and p + p’ + p” with respect to B are

1 1 1
0], (1],
0 0

(¢) The matrix formed from the columuns in part (b) has a pivot in every column

and a pivot in every row:

1 1 1
0 1 1
0 0 1

Thus, the coordinate vectors of p, p + p’, and p + p’ + p”’ with respect to B
form a basis for R3, so {p,p+p',p+p' + p"} is a basis for Ps.

The vectors vq,...,v, form a basis for V if and only if the coordinate vectors
[v1]B, - .-, [vn]p form a basis for R™, if and only if the columns of A form a basis
for R™, if and only if A is invertible, if and only if det(A) # 0.

Variations on this idea work. For example, vy, ..., v, form a basis for V if and
only if they are linearly independent (n vectors in an n-dimensional space), if and
only if the coordinate vectors [v1]s, ..., [vs]s are linearly independent, if and only
if the columns of A are linearly independent, if and only if A is invertible (square
matrix), if and only if det(A) # 0.
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39. Taking coordinate vectors of both sides of the equation vi = c;u; + cous + c3us,

where c¢1, c2,c3 € R, we obtain

Vils = cawlg + c2lugs + cslus]s
1 1 -2 2
. 0 -1 3 -1
1.e., 0 = 1 + c2 1 +cs3 4
0 3 -5 9

We thus obtain a system of equations in ¢, co, c3 represented by the augmented

matrix
1 -2 2|1 1 0 0] 11
-1 3 =110 01 0| 3
d
1 -1 4 |0 0 0 1|-2
3 =5 9 1|0 0 0 0| O

From the reduced row-echelon form, we see that the original equation has a solu-

tion, namely, ¢; = 11, ¢o = 3, and ¢3 = —2, so v; = 11u; + 3us — 2ug.

1 0
40. (a) We work with the standard basis { (0) , (1

) } to compute Pe,. g and Pg, c.

2 5
1 3/

We row-reduce as follows:
3 511 30 1 0
<~
1 02 5 0 1
2 5
P, = .
C«+B <1 3>

Similarly, the row reductions

1 2 |3 5 1 0
“
1 1
P, = .
E«C (1 2)
Peep = PeecFPeesn
1 1 2 5
1 2 1 3
(3 s
\4 1)’
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show that



—1
Pece = Pe g

—1
(3 8
41

(d) By part (c),

41.  We consider coordinates with respect to the basis €& = {22, x,1} of Pa:

11 1]2 3 2
(PgeC\PgeB)z 12 22 5 5
2 2 3|2 6 6

002 1 -1

s lo1 o2 2 1

00 1[-2 0 2

The change-of-basis matrix Pe. 5 is equal to the 3 x 3 matrix to the right of the
vertical line in the above reduced row-echelon form, i.e.,

2 1 -1
FPeep=12 2 1
-2 0 2

42.  (a) Let u = 2u; + 3uz + 5uz. Then

[ulc = Peepluls by Prop. 10.1 in Section I

1 -1 2 2 9
=1-1 2 =3 31=1]-11
1 1 1 5 10
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Thus, u = 9vy; — 11vy + 10v3.
(b) Let v =vy +2vy + 3vs. Then
[vlg = Psc[v]e by Prop. 10.1 in Section I

= P;'s[vle by Prop. 10.2 in Section I

) 3 -1 1 8
=|-2 -1 1 2(=1-1
-3 -2 1 3 —4

Thus, v = 8u; — uy — 4us.

43. (a) With respect to the basis & = {f1, f2, f3} of V, the coordinates of the vectors
in B are described by the matrix

-1 -2 2 1 2 =2
-2 -1 2|« |0 1 O
-3 2 0 0 0 -2

There is a pivot in every column (and every row, the matrix being square),
so B is a basis for V.

(b) We consider the matrix

(de (ole sle | [nle loole o)

1 (-1 -2 2
1 -2 -1 2
-11-3 2 0

0l-1 -1 1]. (16)

SO O = N = O

o R O W o=
o
o
N
|
—_

Because we obtain the identity matrix to the left of the vertical line, the
functions hq, ho, h3 form a basis for V. But then, by the proposition in class
on finding change-of-basis matrices via row reduction, the right-hand side of
the reduced row-echelon form in (16) is Pe.p, that is,

0 2 -1
Peep=1-1 -1 1
0o -1 1

44. Because V is spanned by four functions, dim(V) < 4. However, the fact given
about the functions g1, g2, g3, g4 says precisely that the g; are linearly indepen-
dent, so dim(V) > 4. Putting the two inequalities together gives dim(V) = 4.
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45.

46.

47.

Next, f1, fa, f3, f4+ are four functions spanning the 4-dimensional space V', so

{f1, f2, f3, fa} is a basis for V' by Proposition 9.2 in Section I of the course notes.

Similarly, g1, g2, g3, g4 are four linearly independent functions in the 4-dimensional

space V', so {g1, 92,93, 94} is a basis for V.

Because every vector in V' is a linear combination of vi,vs, v3, and because each

v, is in turn a linear combination of uy, us, us, it follows that every vector in V' is a

linear combination of uj, us, ug. That is, uy, us, us span V. But V has dimension

3, so {uj,uz,uz} must be a basis for V by Proposition 9.2 in Section I of the

course notes.

(a)

The matrix of coordinates of v, vy with respect to D is

V2 1
a-+b a—b
1 42
a-+b a—b

which has determinant 1/(a? — b?) # 0, so C = {vy, vz} is a basis for R2.

Then, the matrix of coordinates of uy, us with respect to C is

a b
b al’
which has determinant a? — b? # 0, so B = {u,uy} is also a basis for R

Let &€ be the standard basis of R2. Then the area in question is

|det(Pep)] = |det(Pecp)det(Ppec)det(Peep)l
= |det(Pep)l| det(PDeC)| | det(Pees)|
= |det(Pecp)l 53— (a 20
= | det(P£<—D)|,

which is independent of a and b.

Working with the basis C = {v1, vy} of R?, we have

([u1]c [uz]c) = (x—51 - i 3> ,

which has determinant
(x—1)(x—3)+25=2® —4ox +28 = (x —2)* + 24 £ 0.

The coordinate vectors therefore form a basis for R?, so {uj,us} is a basis
for R2.
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48.

49.

(b) Let B = {uj,uz}, and let € be the standard basis of R%. Then

|det(Pep)| = |det(PeecPeen)| by Prop. 10.2 in Sect. I
| det(Peec)|| det(Pecs)|

1
5(@ —2)% 4 24),

because we are told that |det(Pg.¢)| = 1/2, and we found in part (a) that
det(Pep) = (z —2)2 + 24.

(c) The expression 3((z —2)?+24) is least when = 2, and in this case the value

of the expression is 24/2 = 12.

Let V = Span(fi,..., fn), which has basis B = {fi,..., fn}, because the f; are
assumed to be linearly independent. For a function f = c1f1 + -+ cnfn €V,
where ¢1,...,¢, € R, the condition f'(x;) = 0 says

e fi() + -+ enfy(z:) = 0.

Therefore, finding ¢y, . . ., ¢, € R satisfying the conditions f'(z1) = -+ = f(ay) =

0 is equivalent to solving

fiz)  fa(z) - fr(z)) [a
fa(za) - fr(xa) | | e

fil@m)  folzm) - fi(zm)) \ca

Because m < n (by assumption), this linear system has at least one non-zero
solution. In fact, we may choose a non-zero solution (c,...,¢,) having rational
entries, because the coefficient matrix has rational entries by another assumption
given in the question. Hence, we may choose a positive integer d such that the
numbers a; = de¢; (¢ = 1,...,n) are all integers. (Just clear denominators in

Cly.vyCp.)

To summarize what we have done: ay,...,a, are integers (because we cleared
denominators in the rational numbers cy, ..., ¢, ), they are not all zero (because
we chose (c1,...,¢,) to not be the zero vector), and (a1 f1 + -+ anfn) (z;)) =0
for all ¢ (because (c1f1 4+ cnfn) (x;) = 0 for all ¢, and we simply scaled the ¢;
to get the a;). Finally, because f1,..., f, are linearly independent and the a; are

not all zero, the function f is not the zero function.

(a) Let ¢1,co,c3 € R. Then

1 C1 Co C3

(22 + 1) (22 +2)(x2 + 3) x2+1+x2—|—2+x2+3

(17)
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if and only if

1 c1(x? +2)(2® +3) + ca(2® + 1) (2% + 3) + c3(2? + 1) (22 + 2)
= ci(@* 4+ 527 +6) + co(a* + 42 +3) + c3(x* + 327 +2)

(c1+co+ 03)x4 + (5er 4+ 4eas + 303):52 + (6¢1 4 3c2 + 2¢1),

if and only if
i+ co+ c3=0

5¢1 +4cg + 3¢5 =0
6c1 4+ 3c2 +2¢1 =1

(To obtain this system, we have equated coefficients in the polynomials.) The

system is represented by the augmented matrix

11 1]o0 10 0f1/2
5 4 3|0l |0 1 0] -1]. (18)
6 3 2|1 00 1]1/2

From the reduced row-echelon form, we see that there is a unique solution,

namely, ¢; = 1/2, co = =1, ¢3 = 1/2, so
1 1
g= §f1 —fat §f3'

(b) Solution 1: We saw in our solution to part (a) that there is a unique solution
(c1,¢2,c3) to the equation g = ¢1f1 + cofo + c3fs. If f1, fo, f3 were linearly
dependent, then there would be more than one solution to that equation,
namely, (¢; + dy,cz + dg,c3 + d3) for any non-zero vector (dy,dsz,ds) € R3
satisfying dy f1 + da fo + ds f3 = 0. Thus, f1, f2, f3 are linearly independent.

Solution 2: We consider the equation in (17) but with the left-hand side
replaced by the zero function:
C1 C2 C3

0= .
m2—|—1+x2+2+x2—|—3

This time, the system of equations satisfied by ¢y, ca, c3 is

c1+ o+ c3=0
561 + 462 + 302 =0 (19)
661 +3CQ + 261 =0

This system is the same as before except that the numbers on the right are

all zero. The augmented matrix representing this new system is

1
5)
6

W B~ =

1
3
2

o O O
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Again, this is the same augmented matrix as before apart from the numbers
to the right of the vertical line. We therefore know that, if we were to put this
matrix in row-echelon form, there would be a pivot in each of the first three
columns, because that is what we found for the earlier augmented matrix.

Hence, the new system in (19) has only the solution ¢; = ¢y = ¢35 = 0.

(c) We saw in part (a) that g1 = L fi — fo + L fa, s [g]s = (1/2,—1,1/2).

50. (a)

B (2% + 3)(2® +5)
file) = p(x)
ozt 822+ 15
N p(x)
g1(z) + 8g2(x) + 15g3(),

(% +2)(a® +5)
p(x)
zt + 722 + 10
p(z)
= g1(x) + 7g2(z) + 10g3(x),

fa2(x) =

B (2% +2)(2? + 3)
fslw) = p(z)

_ zt + 522+ 6
p(z)
g1(z) + bga(x) + 6g3(x),

1 1

1
[fl]C =181, [fQ]C =71, [fg]c =15
15 10 6

(b) The matrix of coordinate vectors of f1, fa, f3 with respect to C is

11 1
8 7 5|=4,
15 10 6

which we are told is invertible, so f1, f2, f3 are linearly independent.

(¢) The functions fi, f2, f3 are three linearly independent functions in the space
V', which we are told has dimension 3. Therefore, by Proposition 9.2 in Sec-
tion I of the course notes, {f1, f2, f3} is a basis for V. Alternatively, we may

use the fact that the matrix of coordinate vectors, being an invertible matrix,
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has a pivot both in every column and in every row of a row-echelon form.
Therefore, {f1, f2, f3} is both a linearly independent set and a spanning set
for V by Proposition 8.1 in Section I, that is, {f1, f2, f3} is a basis for V.

4/3  —2/3 1/3
Pscc=Plp=A"1=|-9/2 3/2 -1/2{,
25/6 —5/6 1/6

SO
4 9 25
g1 = §f1 - §f2 + FfS
2 3 5
g2 = —§f1 + §f2 - 6f3
1 1 1
fi— §f2 + gfs

93:§

51. (a) The map ¢ is a linear transformation. If A, B € M,,(R), then

01(A+ B)

Tr((A+ B)Y)
= Tr(AY 4+ BY) by distributivity
= Tr(AY)+ Tr(BY) by a property of the trace
= »1(4) +¢1(B)
so 1 respects addition. If A € M, (R) and ¢ € R, then
p1(cA) = Tr((cA)Y)
Tr(cAY)

c¢Tr(AY) by a property of the trace
= 0801(14)7

S0 (1 respects scalar multiplication.

(b) The map s is not a linear transformation. We show that o does not respect
scalar multiplication. If u = (1,0, 0), then

902(211) = 902(2707 O) = (2n+1)n7
while 2¢5(u) = 292(1,0,0) = 2(1),, = (2).-

Since 2"t1 # 2 when n > 1, the sequences (2"*1),, and (2),, are not equal, so
p2(2u) # 2p2(u).

(Alternatively, one may show that ¢o does not respect addition.)
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52. (a) The map ¢ is a linear transformation. If

Uy U1
u= | us and v = | vy
us U3

are in R? and ¢ € R, then

’U,1+’Ul
pr(u+v) =1 | uz+ vy
us + vs

= (w1 +v1)(x +1)* + (uz + v2) (2 + 1) + (uz + v3)
= (u1(z + 1)* +uz(z + 1) +us) + (vi(z +1)% + va(x + 1) + v3)
= ¢1(u) + ¢1(v),

and

= (cuy)(z +1)% + (cug)(x + 1) + (cus)
=c(ui(z+1)* +us(z + 1) + us)

so 1 respects both addition and scalar multiplication.

(b) The map s is not a linear transformation. For example, if f,g € F are
defined by f(x) =1 and g(x) = x, then

(U’ (a0 (Fe@
)= <<f+g><1> Yo (Fe)e? )

(16
~\6 9/’
1 1 1 2 2 3
cnemn=(1 )+ (02)-()
(Alternatively, one may show that o does not respect scalar multiplication.)

b
53. (a) ¢ is a linear transformation. Let u = <a1> and v = < !
az

) be in R?. Then
bo

o1(u+v)
- a1 + b1
1 as + by

Paul Buckingham Linear Algebra Il (MATH 225): Solutions to the Practice Problems — v1.12 | 33



= ((a1 +b1) = (az + b2))a?

+ ((a1 4+ b1) + (az + b2))z + (2(a1 + b1) + 3(az + b))
= (a1 — a2)z? + (a1 + a2)z + (2a1 + 3as)

+ (by — ba)x® + (by + b2)x + (2b1 + 3b2)
= p1(u) + ¢1(v),

a
so 1 respects addition. For scalar multiplication, take u = ( 1) € R? and
as

¢ € R. Then

caq
p1(cu) = <p1< )
cag

(cay — cag)x? + (cay + cag)x + (2cay + 3cas)
= (a1 — ag)x? + (a1 + az)x + (2a1 + 3az))

= cpi(u).

(b) 2 is not a linear transformation. For example, it does not respect addition.

To see this, observe that

pa(I +(=1)) = ¢2(0) = 0,
where I is the 3 x 3 identity matrix, while

wo(I) + po(—I) =0+ (—1) = —1.

(¢) s is a linear transformation. Let o = (ay), and S = (b,), be sequences.
Then the nth term in o« + 3 is a,, + by, so

p3(a+8) = (apz +bp2)n
= (an2)n —+ (an)n
= 3(a) + @3(B).

Thus, @3 respects addition. For scalar multiplication, we take o = (an), € S
and A € R. The nth term in A« is Aa,, so

(,03()\04) (/\anQ)n
/\(an2 )n

Apz(a).

(d) ¢4 is not a linear transformation. For example, it does not respect scalar
multiplication. To see this, let p = x, take any a € R, and let ¢ = ap = ax.
Then

palap) = a(q)
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while

aps(p) = ap(p(w))
= ap(z)

= ax.

Therefore, if a & {0,1}, then p4(ap) # apa(p).

54. (a) 7 is not a linear transformation. For example, it does not respect addition.
To see this, observe that

(0)-0))-
() o (0 -ooo

(b) o is not a linear transformation. For example, it does not respect scalar
multiplication. To see this, observe that for A € M3(R) and ¢ € R,

while

p2(cA) = Tr(cA)(cA)
= ATr(A)A
= 62902(‘4)7
50 pa2(cA) # cpa(A) if Tr(A) #0 and ¢ # 0, 1.

(¢) s is a linear transformation: it respects both addition and scalar multiplica-
tion. For brevity, let us write ¢(x) = 2% + 1. Then for p,ps € Ps,

w3(p1+p2) = %(q (p1 +p2))

= am +am)
= ir qap1 +— qp2

= %(qpl)Jr%(qu)
= ¢3(p1) + p3(p2)-

Note that the product rule is unnecessary in this calculation.

For scalar multiplication, we take p € P3 and ¢ € R:
d
pslep) = —(aep)

X
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55.

56.

d :
= c¢—(gp) because c is constant

dx
= cp3(p)-

(d) 4 is a linear transformation: it respects both addition and scalar multiplica-
tion. Indeed, if f,g € C[1,2], then

ealf+g) — /(f+g)()d

1

[
/f

2
ZL‘) dx_|_ L

1
= I) +walg),

and if ¢ € R, then

ey = [0,

x

- /12 Cfix) dz

= c/Z(x)dx

= cpa(f)-

The linear transformation ¢ is injective. To see this, suppose that p = ax?+bx +c
is in Ker(¢). Then

0 at+b+ec
0l =¢) =1 4a+b |,
0 2a

80 a+b+c = 4a+b = 2a = 0. The only solution to these equationsisa =b =c =0,
sop=0.

The map ¢ is not injective, because

1 0 0
olo -1 o =0
0 0 0

The map is surjective, though, because given any a € R, we see that

AS)
o o 9
o O O
o o o

Il

S
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o7.

58.

For the first part of this question, we are looking for a non-zero polynomial p =
ax? 4 bx + c such that

at+b+ec a+2b+ 3c {0 0
—a+b+ 3¢ a—c ~\o o)’

ie.,
a+ b+ ¢c=0
a+2b+3c=0
—a+ b+3c=0
a — c¢c=0

This homogeneous system is represented by the matrix

1 1 1 1 0 -1

1 2 3 01 2
d

-1 1 3 0 0 O

1 0 -1 0 0 O

The solutions (a, b, ¢) therefore take the form A(1,—2,1) with A € R. Taking A = 1,

for example, gives the non-zero polynomial p = 22 — 2z + 1 € Ker(¢p).

To find a non-zero matrix in the image, let us take a = 1 and b = ¢ = 0 in the

oo (11
w(ﬂ—(_l 1>~

This is a non-zero matrix in the image.

definition of ¢:

To decide surjectivity, the question is this: Given any matrix A = <y1 y2> €
Y3  Ya

M,(R), does there exist p = ax? + bz + ¢ € Py such that ¢(p) = A4, i.e., such that

atbt+c a+204+3c)\ [y y2),
—a+b+ 3¢ a—c ys ya)
Deciding this amounts to deciding whether the system

a+ b+ c=1
a+2b+3c=1ys (20)
—a+ b+3c=ys

a - c=y

has a solution for any given 1, y2, 3, ¥4, which is the same as deciding whether the

coefficient matrix has a pivot in every row of a row-echelon form. But, of course,
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99.

60.

the coefficient matrix has more rows than columns, so a row-echelon form cannot

possibly have a pivot in every row, and so ¢ is not surjective.

Let us find a matrix in Ms(RR) that is not in Image(¢). We may do this by finding
Y1,Y2, Y3, Y4 € R such that the system in (20) has no solution. The reduced row-
echelon form of the augmented matrix representing that system is

0 -1 im

I 2 Y3 + Ya

0 0| y1—ys— 2y
0 0 |y2—2ys—3ya

o O o

Y1 Y2

Ys Ya
fore, the matrix

A matrix ) in Image(y) satisfies, in particular, y1 — y3 — 2y4 = 0. There-

o)

is not in Image(p), because here y; — y3 — 2y, = 1 # 0.

Suppose that p € Ker(yp), which is to say that p(—1) = p(0) = p(1) = 0. Then p =
0, because a polynomial of degree 2 or less that vanishes at three different values
must be the zero polynomial. Thus, Ker(p) consists only of the zero polynomial,

So  is injective.

Alternatively, write p = az? + bz + c. The equations p(—1) = p(0) = p(1) = 0 say

a—b+c=0
c=0
a+b+ec=0

The only solution to this system isa =b=c=0,s0p=0.

We take an arbitrary vector

ai
_ 3
v=|as | €R

as

and decide whether it is possible to solve ¢(p) = v for p = ax? + bx + ¢ € Py. The
equation ¢(p) = v says

p(=1) a1
p(O) =laz2|;
p(1) as
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61.

ie.,

a—b+c=a;
C = a9

a+b+c=as

The question of surjectivity is therefore whether this system has a solution for
every ai,as,as € R. This amounts to deciding whether the coefficient matrix of
the system has a pivot in every row of a row-echelon form. Row reducing, we see
that

1 -1 1 1 -1 1
0O 0 1]« ]0 2 0],
1 1 1 0 0 1

which has a pivot in every row, so ¢ is surjective.

p(0)+ p(1) =0 (21)
p(0) = p(1) =0 (22)
p(0)+p(1)=0 (23)
p(0)—p'(1)=0 (24)

Equations (21) and (22) taken together are equivalent to the equations p(0) =
p(1) = 0. Similarly, (23) and (24) taken together are equivalent to the equations
p'(0) = p/(1) = 0. Hence, if p = az? + bz + ¢, then

c=0
a+b+c=0
b =0

20 +b =0

The only solution to this system is a = b= c =0, so p = 0. Thus, ¢ is injective.

To decide on surjectivity, we attempt to solve the equation ¢(p) = A given
an arbitrary A € M>(R). That is, we wish to decide whether, given arbitrary
Y1,Y2,Y3,Ys € R, there is p = ax? + bz + ¢ € P, such that

p(0) +p(1) PO +p (1)) _ [v1 w2
p(0) —p(1) p'(0) —p'(1) Y3 Ya

a+b+2c 2a+2b\  [(y1 ¥
—a—b ~2a ) \ws wa)’

i.e., such that
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Put another, given any y1,y2,ys,y4 € R, can we solve

a+ b+2c=1y (25)
2 +2 =1y (26)
—a— b =ys (27)
—2a =Yy (28)

for a,b,c € R? We can see, without any row reducing, that the answer must be
no, because the coefficient matrix has more rows than columns, so a row-echelon
form of the coefficient matrix must have at least one row of zeroes. Thus, ¢ is not
surjective.

In fact, it is not too hard to spot a matrix that is not in the image of , because if

Ys Y4
Therefore, we have only to find a matrix A in which ys # —2y3, such as

o o)

A= <y1 Y2 is in the image of ¢, then by (26) and (27), we see that y, = —2ys.

This matrix is not in Image(p).

62. (a) Because
11A_11 a b\ (at+c b+d
1 1)7 \1 1)\ec d) \a+c b+d)’
we see that ¢(A) = Tr(A)x + Tr(BA) = (a +d)x + (a+c+ b+ d).

(b) We are to show that, given p = Az + p € Py, where A\, € R, there are
a,b,c,d € R such that

(a+d)z+ (a+c+b+d) = e+ p,

ie., a+d= Xand a+c+b+d = p. There are many possibilities for a, b, ¢, d.
For example, we may take a = A\, b=y — A, and ¢ = d = 0. That is

A=A
= .
oy 1Y) e

(¢) We find a non-zero solution to the equations a +d =0 and a+c+b+d = 0.

One possibility is a = 1, d = —1, b = ¢ = 0. Thus, the non-zero matrix
1 0
(0 1), for example, is in Ker(y).

63. In our solution to Question 61, we saw that ¢ is injective. Therefore, its nullity is

0, so by the rank-nullity theorem,

rank(y) = dim(P2) — nullity(¢) =3 -0 = 3.
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This gives us another way to see that ¢ is not surjective, for Image(y) is a 3-

dimensional subspace of the 4-dimensional space Ma(R).

64. If

a b c
A = d e ,

g )

g h 1

then XA = a b c

d e

e f
and X?A = g h i,
a b c

at+e+1

so  p(4) = |g+db+f
d+h+c

Hence, given any v = (z,y,2) € R3, we may choose A such that ¢(A4) = v by
choosing the entries of A to satisfy

ate+ i=zx
g+bv+f=y
d+h+c==z

For example, we may take a = x, b = y, and ¢ = z, and take all the other entries

to be zero. Thus,

AS)
o o 8
o ow
o o wn

I
SIS

Having shown that ¢ is surjective, i.e., that Image(p) = R®, we may use the

rank-nullity theorem to see that

nullity(¢) = dim(M;3(R)) — rank(p)
= 9-3
= 6.

65. (a) Note that
a by (0 0
4 c d) \a b)°
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66.

(b)

Now, for a matrix

A= (Z Z) € My(R),

we have p(A) = 0 if and only if a = b = 0, if and only if

A= (0 0) :CE3+dE4.
c d

Thus, Ker(y) = Span(Es3, Ey). But
a,b e R}

(5
a b
= {aF3+bEs|a,beR}

Span(Es, Ey),

Image(p)

so Ker(y) and Image(y) are equal.

Suppose that v is in both Ker(w) and Image(w). Choose u € V such that
v = m(u). Then

(u)

= m(w(u)) by the property given in the question
(v)

= 0y.

S
I
3

I
3

i.e., 1,2,3,4 are all roots of g. Since ¢ has degree at most 4, the only possibility
is ¢(z) = a(z — 1)(x — 2)(x — 3)(z — 4) for some a € R. Hence,

p(x) = q(z)+p1)

= ale—1)(z—-2)(z—3)(z—4)+b

where b = p(1), so p € Span(¢,1) where t(z) = (z — 1)(x — 2)(z — 3)(z — 4).
Conversely, t and 1 are both in Ker(y), so Ker(¢) = Span(t,1). Because ¢, 1

are linearly independent, {¢,1} is a basis for Ker(yp).

By part (a), nullity(¢) = 2. Therefore,

rank(y) = dim(Ps) — nullity(¢) =5—2 = 3.
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(¢) Let U be the subspace of M3(R) consisting of the matrices (al a2> with
a3 a4

a1 + as + az + a4 = 0. We observe from the equation

—Q —az —aqg ag -1 1 -1 0 -1 0
=a +a +a

that U is 3-dimensional with basis {A;, As, A3}, where

-1 1 -1 0 -1 0
Ay = Ay = A= .
But Image(¢p) is contained in U, and we saw in part (b) that Image(y) has di-

mension 3, so Image(y) = U. Therefore, { A1, A2, A3} is a basis for Image(¢p).

Another basis is
-1 1 0 -1 0 0
o o/’\1 o/ \-1 1)

66. Alternative solution: We solve the problem this time by computing [¢]c« g, where
B={z* 2% 2% x,1} and

{60 (o) (o) ()

We find
15 -7 -3 -1 0 100 1/50 0
Gos | 85 19 =5t ol o0 <15 0
ACB=N 75 37 —71 —1 0 00 1 7/10 0
255 63 15 3 0 000 0 0

(a) A basis for the null space of [p]cp is

~1/50
1/5
—7/10 |,
1
0

_ o O O O

so a basis for Ker(yp) is
{—%az:4 + éx‘g - %xQ +xz,1}.
Or we could scale the first basis vector by —50 to obtain the basis

{z* —102® + 352% — 50z, 1}.
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(b) The nullity is 2, because a basis for Ker(y) consists of two vectors. Because
we have computed [p]c«p and its reduced row-echelon form, we can see by
the fact that there are three pivots that rank(¢) = 3. However, we are asked
to use the rank-nullity theorem: rank(y) = dim(P4) — nullity(¢) =5—2 = 3.

(¢) The pivot columns of [¢]c« are the first, second, and third, so a basis for

the column space is

—-15 —7 -3
—65 —-19 -5
—175 || =37 || -7

255 63 15

Therefore, a basis for Image(y) is
-15 =65 -7 -19 -3 =5
—-175 255/ °\-37 63/ \-7 15)[°

67. Note that Image(¢) has dimension at most 3, because it is contained in the 3-
dimensional space V. Therefore, by the rank-nullity theorem,

nullity (¢) = dim(U) — rank(¢) > 5—-3 = 2. (29)

If every y € Ker(p) were a scalar multiple of x, then Ker(¢) would have dimension
at most 1, contradicting (29). Thus, there exists some y € Ker(y) that is not a
scalar multiple of x.

68. (a)
1
o(f) = <2> =e; +2e
and o(g) = <;§§> = ;el + §e27
e A

(b) We compute that det([¢]cn) = —1/3 # 0, so a row-echelon form of [p]cp
has a pivot in each column and in each row. The fact that there is a pivot in
each column shows that the null space of [p]c«p is zero, so Ker(yp) is zero by
Proposition 6.1 in Section II of the course notes, and so ¢ is injective. The
fact that there is a pivot in each row shows that the column space of [p]cpn
is R?, so Image(yp) = R? by Proposition 6.1 in Section II again, which is to
say that ¢ is surjective.
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69. Let the matrices in £ be Ay, As, A3, A4 in that order. Then

(A1) =1, ©(A2) =0, ¢(A43) =0, @(As)=1,

’ Wlece=(1 0 0 1).

70. (a) Let the matrices in £ be A;, Ay, Az, A4 in that order. Then

1 1
o(z%) = (_1 1) =Ay + Ay — Az + Ay,

1 2
(p((E) = (1 O) :Al +2A2+A3+0A4,

1 3
(p(l): ( > :A1+3A2+3A37A4,

3 -1
SO
1 1 1
Geeno| L 23
Ple—B = 11 3
1 0 -1
(b) Row reducing, we obtain
1 1 1 1 0 -1
1 2 3 01 2
= ~ 30
[plecn 11 3 00 0 (30)
1 0 -1 00 0
We read off from the reduced row-echelon form that a basis for the null space
of [plecnp is
1
_9 ,
1

so a basis for Ker(p) is {z? — 22 + 1}. We also see from (30) that a basis for
the column space of [p]ep is

S = N =

so a basis for Image(yp) is

()0
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71.  (a)

72. (a)

Let the matrices in £ be Ay, Ay, Az, A4 in that order. Then

1 2
p(x?) = ( 1 2) = A + 245 — A3 — 24,

1 2
(p(l‘) = (_1 0) =A; +2A5 — A3 + 0Ay,

2 0
(p(l) = ( O) = 2A1 + 0A2 + 0143 + 0A4,

0
SO
1 1 2
o] 12 2 0
Ple«~B = 1 —-1 0
-2 0 0
Row reducing, we obtain
1 1 2 1 00
2 2 0 01 0
[plecn 1 -1 0 00 1 (31)
-2 0 0 0 0 0

The null space of [p|gp is zero, so Ker(p) is the zero space, and so ¢ is
injective. We also see from (31) that the three columns of [p]g¢p form a

basis for the column space of [¢]s« 5, so a basis for Image(y) is

2060

Note that, although we found the reduced row-echelon form for [¢]s« 5, any
row-echelon form would have been enough. Indeed, all we were asked to do
in this particular question was to demonstrate injectivity and to find a basis

for the image, both of which require only a row-echelon form.

We calculate that

o(@*) = 322 +62+6
o(x?) = 2z+2
ple) = 1
o) = —a?—z-1,
S0
3 0 0 -1
Plees=16 2 0 -1
6 2 1 -1
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73.

74.

(b) Row reducing the matrix found in part (a), we find that

100 —1/3
lee < |0 1 0 1/2 |, (32)
001 0

so Nul([p]ccg) is spanned by (1/3,-1/2,0,1), or, clearing denominators,
we may take instead the vector (2,—3,0,6). Therefore, a basis for Ker(y) is
{223 —32%+6} by part (i) of Proposition 6.1 in Section II of the course notes.

(¢) A row-echelon form of [¢]c. s has a pivot in every row, as we see from (32),
so Col([¢]cn) = R3, and so Image(¢) = P by part (ii) of Proposition 6.1 in
Section II. Thus, ¢ is surjective. Alternatively, we may just use the fact, given
on page 38 of the course notes, that a linear transformation is surjective if
and only if there is a pivot in every row of a row-echelon form of an associated

matrix.

(a) From the reduced row-echelon form given in the question, we see that Nul([¢]c«5)

has basis
-1 0
-1 -1
1(,]0 ,
0 2
0 1

so Ker(ip) has basis {—2* — 2% + 22, —2® + 22 + 1}.

(b) Because the pivots of the given row-echelon form are in columns 1, 2, and 4,

a basis for Col([¢]cn) is

1 1 1
1 2 0
11’31
1 -1 0

Therefore, a basis for Image(y) is
1 1 1 2 1 0
1 1)°\3 —-1)7\1 o)

(a) We see immediately that

1 1
p(s) = <5> =e; +5e; and ¢(t) = (8) =e; + 8ey,
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75.

(b)

SO

[Sﬁ}a—s = (; ;) .

The matrix [p]ep has determinant 3 # 0, so it is invertible and therefore has
zero null space. Hence, by Proposition 6.1 in Section II of the course notes,
Ker(¢) = {0}, so ¢ is injective. Now, if (a), and (by), in V satisfy as = by
and ag = bg, then ((an)n) = ¢©((bn)n), so the injectivity of ¢ implies that
(an)n = (bn)n, which is to say that a,, = b, for all n > 0.

(There is nothing special about the indices 2 and 6 in this question. A sequence
in V is determined by any two of its terms. Nor is there anything particularly
special about V. A similar property holds, in typical cases, for spaces of

sequences defined by other homogeneous recurrence relations.)

Yop(p) = (p(0)s+p(1)t)
= ¥((p(0),0,=p(0), =p(0),...) + (0, p(1),p(1),0,...))
= ¥(p(0),p(1), p(1) — p(0), —p(0),...)

(w0 P
p(1) —p(0) —p(0)) "

(The dots in the sequences above merely indicate omitted entries, not the

continuation of a pattern.)

For the change-of-basis matrix, we observe that

1&0@(96):((1) é) and woso(1)=<(1) _11>

[Wopleen =

SO

S = = O

We see that
1 0
(@) =0s+t  Y(s) = <_1 _1> = A1 +04; — A3 — Ay

0 1
@(1):S+t ’(/)(t): <1 0>:OA1+A2+A3+0A4,

Paul Buckingham Linear Algebra Il (MATH 225): Solutions to the Practice Problems — v1.12 | 48



SO

1 0
0 1 0 1
[leen = <1 1) and  []gec = 4
-1 0
Hence, we calculate that
1 0 0 1
0 1 0 1)y |1 1
-1 1| \1 1) |1 o}’
-1 0 0 -1
as required.
76. (a) We find
1 0
(p(S) = (0 1) =A; +0A45 + 043 — Ay
0 1
gD(t) = ( 1 O) :0A1+A2—A3+0A47
SO
1 0
0] 10 1
Ple—Cc = 0 -1
-1 0
Next,
1
’t/J(Al) = <O> =e; + 092
0
P(Az) = <1> = Oe; + e
0
”(/}(Ag) = <1> = Oe1 + eq
1
w(A4) = <0> =e; + Oeg,
SO
1 0 0 1
Wloee = (0 11 0)'
(b)
1 0
1 0 0 1 0 1 0 0
Wlocelplece = (o 11 0) 0 -1] <o 0)’
-1 0
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50 [ o plpc = [Y]peelplece = 0. Thus, ¥ o ¢ is the zero map.

(¢) Part (b) shows that Image(yp) C Ker(¢). However, we see from

0
1

33
. (33)
0

o
I
—
o o o =

that Image(¢) has dimension 2, because there are two pivots in (33), and we

see immediately from

S )

that Ker(¢) also has dimension 2, because there are two non-pivot columns
in (34). Thus, Image(y) is a dimension-2 subspace of the dimension-2 space
Ker (), so Image(yp) = Ker ().

77. Let y € Rey. Then for x € Ry,

fl@) =y
1
= 2-—- =y,
x
1
= 2-y = -,
x
i 1
x = .
2-y
Thus, there is a unique x € R such that f(z) = y, namely, x = Q%y (Note that
1/(2 — y) is indeed positive when y < 2.) Thus, f is invertible and f~!(y) = ﬁ

78.  We first find the coordinate vector of ¥ o p(p) with respect to D:

[Y o @(p)lp = [ o ¢lpslpls
=poylpen|b
= [Ylpeclpleen | b

C
1 0 -1
o 1 1] (! “
- 0 1 b
11 -2
1 -1 1) \e¢
1 -1 0
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0 1 0 b
-1 2 0 —a+2b
-1 3 0 —a+3b

1 -1 0 a—>b

Hence,

Yop(p) =bX1+ (—a+2b)Xs+ (—a+3b) X5+ (a — b) X4

1 0 1 1
At et )
+(—a+3b)(1 é)—&-(a—b)(i 1)
_[—a+5b —a+4b
B 2b a—b |’

79. Let y € R>q. Then for x € R>o,

fl@) =y
s pridatd v,
— 2 —dr+4 = In(y),
= (z-2° = In(y),
< -2 = =+/In(y), (recall thaty > 1, so In(y) > 0)
= r—2 = \/m because = > 2 by assumption,

= x = 2++/In(y).
Thus, there is a unique « € R>9 such that f(z) =y, namely, ¢ =2+ /In(y) > 2,
so f is invertible and f~1(y) = 2 + /In(y).

80. Let p = bow? + byx + by € Pa. For u = (a1, az,a3) € R, p(u) = p if and only if
(a1 — 02)1'2 + (ag —ag)x + a1 + a3 = box?® + brx + by,
if and only if
ai; — as = by
as —az =by
ay + a3 = by

We are to decide whether this system has a unique solution for a1, as, asg in terms of

b, b1, by, and to find the solution if so. We can solve this problem by row reducing;:

1 -1 0 |b 1 0 0| $ba+43b1+3bo
0 1 —1{b |« [0 1 0|—2b+3bi+3bo
1 0 1 |bo 0 0 1| —2by—2by+3bo
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Thus, there is a unique solution to the system, so there is a unique u € R? such
that p(u) = p, namely,

b2 + $b1 + 3bo
—5ba — b1 + bo
The linear transformation ¢ is therefore invertible, and its inverse sends p =

box® + b1z + by € Py to the vector u in (35).

81.

o(A) =

(
p(4d2) = (;1 ;)

(

(

2 2
A =
©(As3) 1 _1>
0 1
A = ,
©0(Ay) 0 3>
SO
3 -1 2 0
e = |01 2t
sle = |y 1 0
0 -1 3
1 1 0
0 2 1
<~ )
0 13
0 0 -5 1

which we see, without any further row reducing, has determinant 48 # 0. Thus,
[¢]c is invertible, so ¢ is an isomorphism.

82. (a) By row reducing, we can simultaneously show that the matrix [p]ep is
invertible and find its inverse:

3 -2 1]1 0 0 10 0/[1/2 -1 1/2
0 -1 1/0 1 0|« |0 1 0]1/2 —2 3/2
-1 0 1]0 0 1 00 1[1/2 —1 3/2

The matrix [¢|e¢p is invertible because the above 3 x 6 row-echelon form
has the 3 x 3 identity matrix to the left of the vertical line, so the linear
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transformation ¢ is invertible. Further, the inverse matrix is the matrix to

the right of the vertical line, and so

1/2 -1 1/2
o Usee=lPlsip=|1/2 -2 3/2
1/2 -1 3/2

Hence,
o (a1, a2,a3)]8 = [¢ '|Becl(a1, a2, a3)e

12 -1 172\ (@ a1 — az + 503
1/2 72 3/2 a9 == %al — 20,2 + %ag
12 —1 3/2) \as

%al —as + %ag
Therefore,
o Yay,as,a3) = (%al —as + %0,3)1‘2 + (%al — 2a9 + %ag)x
+ %al —az+ %ag.
(b) We are looking for the unique p € Py such ¢(p) = (0,—1,0), i.e.,
p=¢ '0,-1,0) =2 +2z+1

according to the expression found in part (a).

83. Lett=(cn)n €S. For s = (an)n €S,

e(s) =t
= (Z ak> = (el
k=0 n
= Zak = ¢, foralln >0,
k=0
if and only if
apg = Co

a1 +ag =c1
as + a1 +ag = co

a3 +az+ar+ap=c3

if and only if

apg = Cp
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a; = C1 —Cp
a2 = C2 — C1

a3 = C3 — C9

Thus, there is a unique (a,), € S such that ¢((an)n) = (¢n)n, its terms being
given by ag = ¢¢ and a,, = ¢, — ¢,—1 for n > 1. Therefore, ¢ is invertible, and

o~ ((en)n) = (€n = Cn1)n,
where we have set ¢_; = 0.
84. (a) Assume Tr(C) # s, and let A € Ker(yp), i.e., Tr(A)C — sA = 0. Taking the
trace of both sides, we find Tr(A) Tr(C) — s Tr(A4) = 0, i.e.,
Tr(A)(Tr(C) — s) = 0.
Because Tr(C) # s by assumption, we have Tr(A) = 0. Hence,
A:%HMW:Q

Thus, ¢ is injective, so it is in fact an isomorphism because the domain and

codomain have the same dimension.

(b) (i) We first observe that C' € Ker(y). Indeed, because s = Tr(C'), we have
p(C)=Tr(C)C —Tr(C)C = 0.
Conversely, suppose A € Ker(p), i.e., Tr(A)C — sA = 0. Then

A= éTr(A)C € Span(C).

(i) Suppose C' = p(A) for some A € M,(R), i.e., C = Tr(A)C — sA. Then
taking the trace of both sides and remembering that Tr(C) = s, we
obtain

s="Tr(A)s — sTr(A) =0,

contradicting our assumption that s # 0.

85. (a) Suppose A, u € R satisfy
Ae“sin(sx) + pe cos(sx) =0
for all x € R. Since e“* > 0, we in fact have

Asin(sx) + pcos(sx) =0
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86. (a)

(b)

for all x € R. Taking x = 0 gives 1 = 0, and then taking z = - gives A = 0.

fl(x) = cesin(sx) + e cos(sx) = cf (x) + sg(x)

and ¢'(x) = ce® cos(sx) — sesin(sz) = —sf(x) + cg(x),

det([p]g) = c* + s > 0, since s # 0 by assumption.

One way is to observe that the linear transformation ¢ is invertible, because
the matrix [¢]g is. Invertible transformations are surjective, so every h € V' is
in the image of ¢, i.e., is the derivative of some function H in V. The function

H is unique because ¢ is injective.
In short, H = ¢~ 1(h).

We are trying to find the function [h = ¢~ '(Af + ug). The coordinate vector

of [his
A A
o5 (u) = [ol5" (u)
-1
_ c —s A
)0
B 1 c s A
2482\ —s c N
- 1 cA+ su
T 24 g2 —sA+cu ’
Thus,
Jh = = ((eX + sp) f + (—sA + cp)g).
‘We have

(ol = c —s\ ([cos(2m/9) —sin(27/9)
A=A o) T sin(27/9) cos(2m/9) )’
and this is the form of a rotation matrix, the angle in this case being 27/9.

Because the 9th power of the rotation matrix

<cos(2w/9) - sin(27r/9)>
sin(27/9) cos(2m/9)
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is the 2 x 2 identity matrix I, we have

s = [ols

= 1

[¢

= [1v]s,

so ©? = 1y. In other words, the 9th derivative of any function h € V is just
h.

(c) By definition, [h is the unique function in V whose derivative is h. But
(h®) = h® = h by part (b), so [h = h®).

87. The map ¢ is invertible. We are told that it is surjective, so by Proposition 9.1
in Section II of the course notes, it remains only to show that it is injective. But
we are also told that a row-echelon form of [¢]c 5 has a pivot in every column,
so Nul([p]cp) is the zero space. Thus, Ker(yp) = {0y} by Proposition 6.1 in
Section II, and so ¢ is injective. (Alternatively, we may use the paragraph in the
middle of page 38 of the course notes.)

88.  We group together vector spaces of the same dimension: {4,6} (dimension 2),
{1,3} (dimension 3), and {2,5} (dimension 8).

89. We group together vector spaces of the same dimension: {3,5} (dimension 2),
{2,4} (dimension 4), and {1,6} (dimension 6).

90. The spaces R? and V are isomorphic to each other. To show this, we first establish
that fi1, fo, f3 are linearly independent. Suppose that ¢; f1 +co fo +c3f3 = 0, where
c1,ca,c3 € R. That is,

c1 +cgcos(z) +ezcos(z+ §) =0 forall z € R.

Taking x = 0,7/4, —7 /4 gives, respectively, the equations
2
C1 + C2 + gc;), = O
2
c1 + gCQ =0

2
Cl+§62+ 03:0

While we could solve this system by Gaussian elimination, there is a quicker way.
The second and third equations imply immediately that c3 = 0, and then the
difference of the first and second equations shows that co = 0, from which we
finally deduce (via the first or the second equation) that ¢; = 0. Thus, fi, f2, f3
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are linearly independent. Hence, because they span V' by definition, they form a
basis for V.

By Section II-10 in the course notes, we may therefore define an isomorphism

:R¥ = V

aie; +azes +azes +— aifi +asfo+asfs,

where {e;, s, e3} is the standard basis of R3. Note that

(a1, as,a3) = a1 f1 + asfa + as fs.

91. (a)
pa(z) = det(zl — A)
_ det<x—8 —6)
3 z+1
= (z—-8)(x+1)+18

= 22 -Tz+10
= (z—2)(z-5).

The eigenvalues are therefore 2 and 5.

The eigenspace for 2 is the null space of

of _ A — —6 76<_> 117
3 3 0 0
Co 1
which is spanned by( 1).

The eigenspace for 5 is the null space of

5I_A:—3—6<_>127
3 6 00

2
which is spanned by ( 1> .

pp(z) = det(zl — B)

= (2—=7)((z+5)(z—4)+18)
—12(=3(x —4) —9) +6(18 — 3(z + 5))
x — 6% + 9z — 4
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= (z—1)*(x—4).
The eigenvalues are therefore 1 and 4.

The eigenspace for 1 is the null space of

-6 12 6 1 -2 -1
I-B=|-3 6 31«10 o0 01,
3 -6 -3 0 0 0
which has basis
2 1
11,10
0 1

The eigenspace for 4 is the null space of

-3 12 6 1 0 2
4I-B=]1-3 9 3|« |0 1 1],
3 —6 0 0 0 0
which has basis
2
1
-1
92. Let us first find the eigenspace associated to —1:
-6 3 9 2 -1 -3
—I-C=112 -6 -—-18|«< |0 O 01,
-6 3 9 0 0 O

so this eigenspace has basis {(1,2,0), (3,0,2)}. Note that the geometric multiplic-
ity is d_; = 2.

Next, we turn to the eigenspace associated to 2:

-3 3 9 1 0 -1
21-C=1[12 -3 —-18|«< |0 1 2 |,
-6 3 12 0 0 O

so this eigenspace has basis {(1, —2,1)}. The geometric multiplicity is ds = 1.

The sum of the geometric multiplicities is d_1 +ds = 2+ 1 = 3, so C is diagonal-
izable. Specifically, P~'CP = D where

1 3 1 -1 0 0
P= —2 and D=0 -1 0
0o 2 1 0 0 2
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93. Let us first find the eigenspace associated to —2:

-6 1 -1 50 1
—2I-C=|-2 -3 —-1|& |0 5 1],
10 -5 1 00 0

so this eigenspace has basis {(1,1,—5)}. The geometric multiplicity is d_5 = 1.

Next, we turn to the eigenspace associated to 2:

-2 1 -1 2 -1 1
2[-C=|-2 1 -1|«|0 0 of,
10 =5 5 0 0 0

so this eigenspace has basis {(1,2,0),(—1,0,2)}. Note that the geometric multi-
plicity is do = 2.

The sum of the geometric multiplicities is d_o +dy =142 = 3, so C is diagonal-
izable. Specifically, P~'C'P = D where

94. (a)

95. (a)

1 1 -1 -2 0 0
P=11 2 0 and D=0 2 0
-5 0 2 0 0 2
We consider the eigenspace associated to 3:
0 -1 3 14 2
3—-A=142 6 3|« |0 -1 3
14 2 1 0 0 0

We do not need the reduced row-echelon form, because we can see already
from this row-echelon form that the eigenspace is one-dimensional, that is,
the geometric multiplicity of 3 is d3 = 1. This is less than the algebraic
multiplicity mg (which is 2), so A is not diagonalizable.

Because pp(r) = (z — 2)(22 + 1) and 22 + 1 has no real roots, we see that
the roots of pp(x) are not all real, so B is not diagonalizable over R. (It is,

however, diagonalizable over C.)

Alternatively, we may observe that the only real eigenvalue is 2, and it has
algebraic multiplicity mo = 1. Hence, its geometric multiplicity dy satisfies
1 <dy <mg =1, s0ds =1. The sum of the (real) geometric multiplicities is

therefore 1 < 3, so B is not diagonalizable over R.

The characteristic polynomial of A is

pa(x) = det(al — A)
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z+1 5 -5
= det| -5 x+1 =5
-5 ) r—9

= (z41)(z—4)?

so the eigenvalues of A are 4 and —1.

The eigenvalue 4 has algebraic multiplicity 2, but the corresponding eigenspace

has dimension 1 < 2:

5 5 =5 1 0 O
4l -A=|-5 5 -5« |0 1 -1
-5 5 -5 00 O

There is therefore no basis of R? consisting of eigenvalues of A, so A is not

diagonalizable.

Just for interest: The matrix A has Jordan normal form

4 1 0
0 4 0
0 0 -1
Specifically,
1 0
Q7'AQ =10 4 o0
0 0 -1
where
o 1 -1
Q=110 -1 1
10 0 1

(b) The characteristic polynomial of B is

det(xzI — B)
z+1 =5 )
= det -5 x+1 -5
-5 5 z—9
= (z+1)(z—4)?

pe(7)

so the eigenvalues of B are again 4 and —1.

This time, the eigenspace corresponding to 4 has dimension 2:

5 =5 5 1 -1 1
4 -B=|-5 5 =5« |0 0 O
-5 5 =5 0 0 O
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A basis for this eigenspace is

1 -1
11,1 0
0 1
Further,
0 -5 b 1 0 1
—-I-B=|-5 0 -5|«<|0 1 -1],
-5 5 -10 0 0 O

so the eigenspace corresponding to —1 has basis

-1

1

1
1 -1 -1
s 0,1 1
0 1 1

1 -1 -1
P= 0 1],
0 1 1
then P is invertible and
4 0 O
P'BP=10 4 0
0 0 -1

96. The matrix C' has characteristic polynomial det(zI — C) = 2, so 0 is the only
eigenvalue. The corresponding eigenspace is the null space of

-1

0l -C=

o O O O O
o O o O

o O O O O
o O O O O
o O O O O

which has dimension 4. Therefore, any linearly independent set of eigenvectors
has size 4 or less. Consequently, there is no basis of R® (or even C%) consisting of
eigenvectors of C', so C' is not diagonalizable.
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97. (a) A is diagonalizable, because it is a 5 x 5 matrix with 5 distinct eigenvalues.

(b) A is not invertible. Indeed, because 0 is an eigenvalue, there is v € R~ {0}

such that Av = 0v = 0, so A has a non-zero null space.

(c) The eigenvalues of A2 are the squares of the eigenvalues of A. To see this,
we reason as follows. Using the fact that A is diagonalizable, we choose an
invertible 5 x 5 matrix P such that P~'AP = D, where

-2 0 0 0 O
0 -1 0 0 O
D=0 0 000
0 0 0 1 0
0o 0 0 0 2

Then

P1A’P = (P'AP)?* =D* =

S O O O =
o O O = O
o O O O O
o = O O O
- O O O O

Hence, pa2(z) = pp2(x) = z(z — 1)%(z — 4)?, so A? has eigenvalues 0, 1, and
4.

98. (a) Because A is upper triangular, and therefore z1 — A as well, we may compute

pa(x) easily:

z—1 b —b? b

x—b b2 —b3

pa(z) = det(zl — A) = det 0w y?
0 0 0 r— b

=(z—1)(z—-b)(x— b2)(x — bs).

(b) The numbers 1, b, b?, b% are distinct. Indeed, if i < j are integers, then j—i > 0
and so b ~* > 1 because b > 1 (by assumption). Hence, b* < b’. Therefore, by
part (a), the eigenvalues of A are the four distinct real numbers 1, b, b%, b3, and
each has algebraic multiplicity 1. Because 1 < d) < m) for each eigenvalue

A, every eigenvalue has geometric multiplicity 1.

(¢) The sum of the geometric multiplicities is di +dp+dpz +dps = 1+1+14+1 =4,
so A is diagonalizable by Theorem 1.1 in Section III of the course notes.

99. We first diagonalize the matrix

A_<8 2).
-15 -3
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The characteristic polynomial is det(x] — A) = 2% —5x+6 = (v —2)(x — 3), so the

eigenvalues of A are 2 and 3. For the eigenspace associated to 2, we row reduce as
-6 -2
2 - A =
15 5

3 1
0 0/
A basis for the eigenspace is therefore

)

Similarly, from the row reduction
sr-A = [ 2
15 6
5 2
0 0/’

we see that a basis for the eigenspace associated to 3 is

()}
() - (08)

then P is invertible and P~'AP = D.

follows:

Therefore, if

Now define the functions g1, g2 by

g1 _p-1 b5t

g2 f2)
9/1 _ p-1! f{ —_plg f1 -D g1
95 f3 fa 92)’

that is, ¢§ = 2g1 and g5 = 3go. Thus, there are real constants a; and ay such that

g1(z) = a1€** and ga(7) = aze3®. To find a; and ag, note that
aj _ 91(0)
a2 92(0)
_ p-1(£1(0)
f2(0)
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Thus, g1(z) = 3€2* and go(z) = —2€3*. Finally,
iy _ p(n
f2 92
_ -1 -2 g1
S \3 5 ) e
_ (91— 292
391 + 592 ’

filz) = —3e* +4e>
fa(z) = 9e2* —10e3.

SO

100. The system may be written as

(£) =)
(4

First, we show that A is diagonalizable and diagonalize it. The characteristic

where

polynomial is

pa(z) =det(xl —A)=(z —4)(z+3)+6=2>—2—6
= (z+2)(z = 3),

so the eigenvalues of A are —2 and 3. The eigenspace associated to —2 is the null
-6 -1 1
-2 — A= 6 > 6 ,
6 1 0 0
-1
6 .
The eigenspace associated to 3 is the null space of
9] A -1 -1 o 11 7
6 6 0 0
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so a basis is

)

The sum of the geometric multiplicities is 1 + 1 = 2, so A is diagonalizable.

P:_l_l,D:_2O,
6 1 0 3

then P is invertible and P~1AP = D.

Specifically, if

Now, define functions g1, g2 by
g1 _ p-1 i _
92 fa
9:1 _ p-1 f% —p-ly f1
92 I3 fa
—pap () = p () = ().
g2 g2 392

Hence, there are constants a1, as € R such that

Then

2z

g1(x) = a1e7*%,  go(x) = axe®™.

Therefore, because

() ()= () () ( )
fa 92 691 + g2
2 493" and fo(z) = 6a1e7% + age3®

we have f1(z) = —aje”

Finally, we use the given constraints. Because fi(z) = 2aj;e™2* — 3a2e3®, the

constaints f1(0) = 16 and f](0) = —3 yield the linear system

—a; — a2 = *3
2&1 — 3&2 = 16,
which has solution a1 = 5, as = —2. Thus,

fi(z) = —5e™2 + 263 fo(x) = 30e™ 2 — 237,

101. Define functions g1, g2, g3 by

g1 fi
e | =P f
g3 f3
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Then

/ I

91 1
g = PHS
95 5
fi
= PA|f
[3

9

= D|g

g3

—0

= —92

g3

Therefore, there are real constants ai, as, ag such that

gl(z) = ae®

g2(x) = age™®

g3(x) = aze”.

Now,
a 91(0)
as 93(0)

f1(0)
= P71 f2(0)

= p1| 3

To find a1, as, as, we solve the system

al 6

Pla|=1]-3

as 8
-1 1 1 | 6 1 0 012
1 0 -1|-3|l«<]0 1 0|3
0 1 1] 8 0 0 115
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Thus, g1(x) = 2e™%, go(x) = 3e™", and g3(x) = 5e®. Finally,

fi 91 —g1+ 92+ 93
fal =P lg2|= 91— 93 ;
fs g3 92+ 93
0
filr) = —2e7"+377 +5e”
= e ¥4 5e”
fo(x) = 277 —be”
fa(x) = 3e "+ 5e".

102. Note that the matrix describing this system of differential equations is

1 1 4
A=12 2 —4
-2 1 7
That is,
fi fi
2] =4|f
f3 f3
We saw in Section III -1 of the course notes that P~ AP = D where
1 2 1 300
P=12 0 -1 and D=0 3 0
01 1 0 0 4

Therefore, if we define functions g1, g2, g3 by

g1 fi

92 :P71 f2 )
g3 f3

we have

9 fi
g = P f
g5 f3
h

= PTUA|f

I3

g1

= P 'AP | g

g3
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= D]g
g3
391
= | 392
493
Hence, there exist constants ay, as, a3 € R such that g1 (z) = a1e3%, go (x) = ase3,
and g3(z) = aze?®.
Now,
4 f1(0)
31 = | f(0)
1 f3(0)
91(0)
= P g2(0)
93(0)
1 2 1 aq
= 2 0 -1 as
0 1 1 as
Solving the system
1 2 1 |4 1 0 0] 1
0O —-1|31<«< 110 1 0 21,
0O 1 1 |1 00 1|-1
we see that a3 = 1, ap = 2, and a3 = —1, so gi(z) = €%, go(x) = 2¢3%, and
g3(z) = —e**. Hence, because
f1 g1
fa = Plog
I3 g3
12 1\ (o
= (2 0 1| ]|g
0 1 1 gs
91+ 292 + g3
= 291 — g3 ;
g2+ g3

we have

fl(x) _ 6393 +4631 o 64:v

_ 5631’ o 64:5
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103. (a) The system may be written as

()10
-(32)

First, we show that A is diagonalizable and diagonalize it. The characteristic

where

polynomial is

pa(z) =det(z] — A) = (z+3)(x +6) +2 =2 + 9z + 20
= (z+4)(x+5),

so the eigenvalues of A are —4 and —5. The eigenspace associated to —4 is

the null space of
aroa— (! —2<_>127
1 2 0 0
-2
) .
The eigenspace associated to —5 is the null space of
T —2<_>117
1 1 0 0
-1
) .

The sum of the geometric multiplicities is 1 + 1 = 2, so A is diagonalizable.

so a basis is

so a basis is

Specifically, if

-2 -1 —4
P . D= '),
1 1 0 -5
then P is invertible and P~'AP = D.

Now, define functions g1, g2 by

()
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Then
9/1 _ p-! { —_plgp fi
95 I3 fo
_piap () _p () —4g1
g2 g2 —5g2 )

Hence, there are constants a1, as € R such that

4z

g1(x) = are™,  go(x) = aze .

Therefore, because

() =r(@)- (2 () (20)

we have . .
) = —2a1e” """ —age™ "
fi(z) 1 2 (36)
fa(z) = are % + age 5%,
(b) First, f1(0) = f2(0) if and only if —2ay — ag = a1 + ag, if and only if
3a1 + 2a9 = 0. (37)
Further, f](x) = 8aie™*® + 5aze™>* and fj(z) = —daje ** — 5agze 5%, so

7f1(0) = f5(0) if and only if 56a; + 35a2 = —4a; — Sag, if and only if 60a; +
40ay = 0, if and only if 3a; + 2as = 0. This is the same condition as (37), so

the desired functions are those in (36) where a; = —%as. Letting ¢ = fas (so
a1 = —2c¢ and ag = 3¢), we obtain the solutions
fi(z) = c(4e ™" — 3e757)

fa(z) = e(—2e74% 4 3¢757)

with ¢ € R. (Note that ¢, although arbitrary, is the same for both functions.)
104. The given system of differential equations can be expressed as
!/
ATTIAY
f2 f2
where the matrix A is as in the question. Hence,
/ !
9/1 _ pl f} —plgp bil
92 fa f2
—pltap(9) =B ("
92 92
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(0 ) 0)- )

105. (a) The equation g = —2g- says that there is a constant b € R such that go(z) =
be~2%. Hence, the equation g} = —2g; +go says that ¢} (z) = —2g; (v) +be 2%,
Therefore, by the fact given in the question, there is a constant a € R such

that g1(z) = (a + bz)e~2*. In summary,

g1(x) = (a +bx)e™™ (38)
g2(x) = be™>* (39)

for some constants a,b. Conversely, differentiation shows that functions g;
and g2 given by (38) and (39) satisfy the specified differential equations.

(b) We find that
fr) _ p(9) 3 1) (g1 _ (391 +92
fo 92 -3 0/ \g2 -3¢ )’

fi(x) = 3(a + bx)e ™" + be™2®
(3a + b+ 3bx)e™**
—3(a + bx)e "

SO

and  fa(z)

106. The characteristic polynomial of B is
pp(z) = det(z] — B) = 2* — 6z + 13,
whose complex roots are
%(GiM) =34+ 2i.

Note that both eigenvalues have algebraic multiplicity 1, so each geometric mul-
tiplicity is necessarily equal to the corresponding algebraic multiplicity because
of the inequalities 1 < d) < my. Therefore, Theorem 3.2 in Section III tells us
already that B is diagonalizable over C.

To diagonalize B, let us find the eigenspace associated to the eigenvalue 3 + 2i:
24+ 2 -2 1427 —1
@+20)i-B= (17 e (' ,
4 —24+2 0 0
. . 1
so the eigenspace is spanned by w = .
1+
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By Proposition 3.1 in Section III, the eigenspace associated to the eigenvalue 3 —2i

1
is spanned by the complex conjugate of w, i.e., (1 > .
—1

P 1 1 and D — 3+ 2t 0 7
1+¢ 1—34 0 3—2t

then P is invertible and P~*BP = D.

Hence, if

107. The complex eigenvalues of A are the roots of pa(z) = (z +1)(2% — 4z +5), which
are —1, 2+, and 2 — i. Let us find the eigenspace associate to A = —1 first:

-4 -4 -2 2 01
—I-A=|-4 -4 2|« |0 1 0],
4 9 2 0 0 0

so a basis for this eigenspace is

Next, we turn to the eigenspace associated to A = 2 + i:

“14i -4 =2 13 0 5+i
C+i—A=| —4 —1+i 2|0 13 5+i
4 9  b+i 0 0 0

(Please see eClass for a video showing the row operations that bring us to this

row-echelon form.) We may read off from this row-echelon form the basis

o+t
S+t
—-13

for the eigenspace associated to 2 + 1.

A basis for the remaining eigenspace, for 2 — ¢, may be obtained by taking the

complex conjugate of the basis vector we found for the previous eigenspace:

5—1
5—1
—13

We have found a basis for C? consisting of eigenvectors of A, namely,

-1 5+1 5—1
0 5 5+7/ ) 5_Z 9
2 —13 —13
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108.

so if

-1 54¢ 5—1 -1 0 0
P=10 5+i¢ 5—i]|, D=0 2+ 0 ;
2 —-13 -13 0 0 2—1

then P is invertible and P~ AP = D. We have thus diagonalized A over C.

The complex eigenvalues of A are the roots of p4(z) = (x — 3)(2? — 2z + 2), which
are 3, 1 + 4, and 1 — 4. Let us find the eigenspace associate to A = 3 first:

2 3 2

M-A=]-1 1 -1|+
1 -1 1

o O =
o = O

1
0f,
0

so a basis for this eigenspace is

-1

Next, we turn to the eigenspace associated to A =1+ i:

) 3 2
1+HI—-A = -1 -14¢ -1
1 -1 -1+
1 —3i —2i
> -1 -1+ -1
1 -1 -1+
1 —3i —2i
> 0 —-1—-20 —-1-2;
0 —1+4+3¢ —1+3i
1 -3¢ —2i
~ 0 1 1
0 O 0
1 0 2
> 0 1 1
0 0 O

We may read off from this row-echelon form the basis
i
1
-1

for the eigenspace associated to 1 4 1.
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109.

110.

A basis for the remaining eigenspace, for 1 — ¢, may be obtained by taking the
complex conjugate of the basis vector we found for the previous eigenspace:

—1

1

-1

We have found a basis for C? consisting of eigenvectors of A, namely,

1 ) —1
o, 11,11 )
-1 -1 -1
so if
1 v —t 3 0 0
P=1]10 1 1|, D=0 1+1 0 ,
-1 -1 -1 0 0 1—1

then P is invertible and P~ AP = D. We have thus diagonalized A over C.

(a) Multiplying both sides of the equation 22 + v/3z 4 3 = 0 by z, we obtain
0=23+v322+32=23+V3(22+V32) = 2* + V3(-3),
so 2% = 3V/3.

(b) As noted in the question, A is diagonalizable over C. Let us find the eigen-
values. Let the two roots of the polynomial 22 + v/3z + 3 be z,w € C, and
note that the roots of 22 + 3 are ++/3i. Then the complex eigenvalues of A
are /314, —+/31, z,w, so there is an invertible matrix P € My(C) such that
P~'AP = D, where D is the diagonal matrix with v/34, —v/34, z,w on the
diagonal. Now, (v/3i)'2 = 3%i'2 = 93 = 729, and similarly for (—/34)'%.
Further, using part (a), we have 212 = (23)* = (3v/3)* = 35 = 729 again, and

similarly for w'2. Hence,
A2 = (PDP Y2 = pPD¥ P~ = P(7291) P~ = 7291,

the last equality holding because scalar matrices commute with all matrices.

(a) The characteristic polynomial of A is
pa(z) =det(xl — A) = (x — 2)(z — 4) + 28 = z? — 62 + 36,

whose roots are (6 +/=3-36) = 3 + 3v/3i. We work with the eigenvalue

3 — 3v/3i (although either eigenvalue is permissible):

) 1—3v3i 4
(3—3\/??@)1—/1_( e _1_3\/32,)
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111.

7(1—3v3i) 28
(1 — 33
—

1-—- ) 4
<—> ( BV3i ) (row 2 times —1 + 3v/37)

4
0 O) (row 2 minus 7 times row 1),

so an eigenvector with this eigenvalue is

4
W = .
<—1 - 3\@>
Hence, we let

4 0
Q= (Re(w) Tm(w)) = (_1 , \/§> .
By Proposition 4.1 in Section III, @ is invertible and
3 —3V3 1 v
~1AQ = =6 2 2 ) =6R,
©A= 35 3 3 1

where R is a rotation matrix.

~ [cos(m/3) —sin(m/3)
= (sin(W/S) cos(7r/3)> ’

which is the matrix for rotation anticlockwise by angle 7/3.

If we had chosen to work with the eigenvalue 3 + 3v/34 instead, then the
anticlockwise angle of rotation would have been 57/3.

Note first that p4(z) = det(x] — A) = 2% — 102 + 169, which has complex roots
1 1
5(10 % V100 —4-169) = (10 £ v/=576) = 5+ 12,

because 576 = 242. We choose to work with the eigenvalue A = 5 — 12i. (Either
eigenvalue is acceptable.) For the eigenspace associated to A, we row reduce as

follows:

4-12i -1 2 6i
(5-12))] — A= ! )L 6r)
10 —4-12 0 0

We see, then, that the eigenspace is spanned by
2+ 617
w = .
5

s=|A =52+ 122 =13,

Hence, we let
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Q= (Re(w) Im<w>)=<§ ﬁ)

and R:l 5 —12 :i ) —12.
s\12 5 13\12 5

Then according to Proposition 4.1 in Section III, Q is invertible, and Q' AQ = sR.
Further, R is a rotation matrix, because it takes the form

1 a b
Va2 +b \-b a
for real numbers a and b (not both zero), specifically, « =5 and b = —12.

If we had chosen to work with the eigenvalue 5 + 12¢, then the rotation matrix

1[5 12
13\-12 5

instead, and the matrix @@ would have been different as well, e.g.,
2 —6

112. (a) The matrix A has characteristic polynomial ps(z) = 2% — 6z + 12, whose
roots are 3 + v/3i. We choose to work with the eigenvalue A = 3 — V3i. To

find the corresponding eigenspace, we row-reduce as follows:

2-V3i -7 1 —2-3i
AI_A:( 1 —2—\/?31')9(0 0 >

A non-zero eigenvector for X is
(2 + \/§Z>
w = ) ,

Q = (Re(w) Tm(w)) = (

would have been

so letting

2 V3
1 0)’
we find that

_ B Re(\) Im()\)
QAQ = (—Im()\) Re(/\)>

(3 -3
=5 3
_ V32 -1/2
B 2\/?:<1/2 \/3/2>
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113. (a)

= 2V3R,

where

_ [cos(m/6) —sin(m/6)
= (sin(W/G) cos(7r/6)> ’

rotation anticlockwise by angle 7 /6.

If we had chosen Q = (Re(@) Im(ﬁ)) instead, then the anticlockwise angle

of rotation would have been 117/6.

If k£ is a positive integer, then

AF e Span(I) < (Q(2V3R)Q™1)* e Span(T)
& (2V3)*QRFQ! e Span(T)
& QRFQ™! € Span(1)
& RF e Span(I).
Because R is a rotation matrix, R¥ € Span(I) if and only if R¥ = 41, and

this happens if and only if 6 divides k, because the angle of rotation of R is
7/6. The smallest such k£ > 0 is 6. Then we compute

AG _ (2\/3)6QR6Q—1
26.33(—1)

~[-17128 0
N 0 —1728 ) °

The matrix B has characteristic polynomial pp(r) = 22 — 6z + 25, whose
roots are 3 & 4. We choose to work with the eigenvalue A = 3 — 44. To find

the corresponding eigenspace, we row-reduce as follows:

\ B — 2 — 43 —4. o 1—-—2¢ -2 .
5 —2— 43 0 0

A non-zero eigenvector for A is

so letting

we find that

0-1BO — ( Re(\) Im(A))

—Im(A) Re(})
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114.

where R is the rotation matrix
3/5 —4/5
4/5  3/5)°
If we had chosen @ = (Re(@) Im(@)) instead, then the rotation matrix

would have been
3/5 4/5
—4/5 3/5)°

(b) By the same argument as in part (b) of question 112, if k is a positive integer,
then B* € Span([) if and only if R¥ = +1. If this occurred, then R?* would
be equal to I. But here, R is a rotation matrix with rational entries and is not
equal to any of the four matrices given in the question, so no positive power
of it can be the identity.

We are told that
1 a b\ ([cos(n/3) —sin(n/3))
Va2 + 2 \ b a) \sin(z/3) cos(m/3) ]
so using the fact that va? + b2 = | )|, we obtain

1
a= =\, b:—?

_ V3
2
1>’
2

m‘% Wl
w

[Al-

It remains to find |A|. For this, we use Proposition 4.1 in Section III, which tells
us that there is an invertible matrix Q € M3(R) such that Q~'CQ = |A|R. Note,
then, that C = |\ QRQ™!. Now, because R represents rotation by angle /3,
R3? = —I where I is the 2 x 2 identity matrix. Therefore,

O = NP(QRQ)
— NPQRQ
= PPR(=NQ™!
= —|A\*I because Q7' IQ=Q'Q =1

(=P
Lo R

Hence, because the top-left entry of C® is —64, we conclude that [A]* = 64, i.e.,
|A| = 4. Thus, a = 2 and b = —2/3.
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115. (a)

116. (a)

Paul Buckingham

The characteristic polynomial of B is det(zI — B) = (z — 3)?(x + 2), so the
eigenvalues of B are 3 and —2. The characteristic polynomial of

B* =

o O ©
S © O
=~ O O

is det(x] — B%) = (z — 9)%(z — 4), so the eigenvalues of B2 are 9 and 4. These

are the squares of 3 and —2 respectively.

One could take

1 0 0
C=10 0 -11,
01 0
for example. The matrix
1 0 0
c*=10 -1 0
0o 0 -1

has eigenvalues 1 and —1, so it has a negative eigenvalue.

Let A be any matrix whose square has a negative eigenvalue A, such as the
matrix C above. Since )\ is negative, it cannot be the square of any real

number, so certainly it is not the square of a real eigenvalue of A.

Note that, because uT Av is a 1 x 1 matrix, we consider it as simply a real

number. Note further that any 1 x 1 matrix is symmetric.
Now, if u,v € R", then

(u,v) = uTAv
= (u"Av)T because uT Av is a 1 x 1 matrix

= vTATu (astandard property of the transpose)

= vTAu because A is symmetric by assumption

= (v,u).
This establishes the first axiom of an inner product.
Next, if u,v,w € R™, then

utA(v+w)

(u,v+w)

= uTAv+uTAw

(0, v) + (u, w),

establishing the second axiom.
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117. (a)

118. (a)

119. (a)

If u,v € R” and ¢ € R, then
(ew,v) = (cu)TAv
= c(uTAv)
= c¢(u,v),
so the third axiom holds.

Finally, if u € R", then (u,u) = uT Au > 0 by the assumption given in the

question, and uT Au = 0 if and only if u = 0, by the same assumption.

The standard inner product corresponds to the case where A is the n x n

identity matrix.

Note that (u,v) = uT Av where

=5 7))

Axioms (i), (ii), and (iii) hold by the arguments given in the solution to
Question 116. However, axiom (iv) does not hold, because we can find u € R?
such that (u,u) < 0. An example is u = (0, 1), which satisfies (u,u) = —8.

The pairing does not define an inner product, because it fails axiom (iv).

Note that (u,v) = uT Av where

e 16 12.
12 9

Axioms (i), (ii), and (iii) hold by the arguments given in the solution to
Question 116. However, axiom (iv) does not hold, because we can find a non-

zero vector u € R? such that (u,u) = 0. An example is u = (—3,4).

The pairing does not define an inner product, because it fails axiom (iv).

Note that (u,v) = uT Av where

e 13 -11 .
-7 10

Axioms (ii) and (iii) hold by the arguments given in the solution to Ques-
tion 116, but axiom (i) fails because, for example, (e;,e3) = —11 while

(eg,e1> =-T.

Finally, we show that axiom (iv) holds. Observe that, for a vector u =
(ul, ’U,Q) S R27

(w,u) = 13uf — 18ujus + 10u3
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120.

121.

122.

= (2U1 — 3’lL2>2 + <3U1 — ’U,Q)Q

by the identity given in the question. This expression is always non-negative,
and further, it is zero if and only if

2U1 —3UQ =0

3u1 — U = O7

if and only if u1 = us = 0 (because the determinant of the system is non-zero),
if and only if u = 0.

(b) The pairing does not define an inner product, because it fails axiom (i).

Let u = (21,29, x3). Then
(w,u) = 2? + 523 + 4woxs + 2503 = 27 + (202 + 323)% + (12 — 4ag)?

by the equation given in the question. Because each term on the right is the square
of a real number, (u,u) > 0. Further, (u,u) = 0 if and only if 2 = (225 +3x3)? =

(w9 — 4x3)? = 0, if and only if
Ty = 2T + 3x3 = To — 423 = 0.

We thus have immediately that z; = 0, and x2 = x3 = 0 because the matrix

2
<1 34) is invertible. Therefore, (u,u) = 0 if and only if u = 0.

Let p = axz? + bz + c. Then

(px)y=(a=b+c)(-1)+0+(a+b+c)(1) =2b
(p,x?) = (a—b+c)(1) +0+ (a+b+c)(1) = 2a+2c,

so p is orthogonal to both x and 22 if and only if 2b = 2a + 2¢ = 0, if and only
if b =0 and ¢ = —a, if and only if p = a(2? — 1). Among the polynomials of the

form p = a(2? — 1), we want those of norm 1, i.e., ||p|| = 1. But
lpll = lla(z* = DIl = lal 2* = 1|| = |alv0 +1+0 = |al,
so |lp|l = 1 if and only if |a| = 1, if and only if @ € {—1, 1}. Thus, the polynomials
of norm 1 that are orthogonal to both x and z? are 22 — 1 and —(2? — 1).
If p = az?® + bx + ¢, then

11=(p1)=(a—b+c)+c+(at+b+c)=2a+3c
—6=(p,z) =(a—b+¢c)(—1) + 0+ (a+b+c) =20,
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10 =(p,2®) = (a—b+c)+ 0+ (a+b+c)=2a+2c
The unique solution to the system

2a +3c= 11
2b =—6
2a +2c= 10

isa=4,b=-3,c=1. Thus, p =422 — 3z + 1.

123. (a) We use the well-known identity cos(A + B) = cos(A) cos(B) — sin(A) sin(B):

cos((m+mn)x) = cos(mz)cos(nz) — sin(ma) sin(nx)

cos(ma) cos(nz) + sin(ma) sin(nx).

cos((m — n)x)

Subtracting the first of these two equations from the second and then dividing

through by 2 yields

sin(mz) sin(nz) = %(cos((m —n)z) — cos((m +n)x)). (40)

(b) The assumption |m| # |n| says that both m + n and m — n are non-zero.

Hence,

G f) = [ : sin(mz) sin(nz) d
_ ;/_:(cos((m—n)x)—cos((m—l—n)x)) dz by (10)
_ ;[ml_nsin((mn)x) ——sin((m +n)2) :r
= 0

)

because m —n,m +n € Z.

124. Note first that, for any ¢ € {1,...,k},

(ug, w) = (ug, byug + - - + bpug)
=bi{u;,uy) + - + bp{u;,ug) by linearity
= b;(u;,u;) by orthogonality

= byllug |,
Hence,

(viw) = {au; + - -+ + agug, w)

=ai;{u;,w) + -+ + ar(ug,w) by linearity
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= arby | [* + - + arbellue .

125. (a)

s

VA2 = (i, o) :/ dx = 27,

—T

Il = (o) = [ siwtyar =5 [ (1= cosea o=

—Tr —T
s

If5]1* = (f3, f3) = / sin®(2z) do = %/ﬂ (1 — cos(4z)) dr = 7.

(b) Let h =ayf1 + asfo + asfs, where ay,as,a3 € R. Then

(h,g1) = az||f2|* — as]| fs]|* by Question 124
=7(ay — a3),

(h, g2) = a1|| f1l|* + 2az|| f2||* + 4as]|| f3]|> by Question 124 again
= m(2a1 + 2ay + 4as).

Therefore, the equations (h, g1) = (h, g2) = 0 are equivalent to the system

ag — a3:0

2a1 + 2a9 +4a3 =0

This system has general solution a; = 3¢, as = —c¢, ag = —c, where ¢ € R.
Hence, the desired functions are the functions h = ¢(3f; — fo — f3) with ¢ € R.

(¢) For functions h as above,

[h]1? = P3f1 = fo — f5l1?
= O f1)* + 1 f2I> + I fs]*) by Question 124
= c2(207),

so ||h|| =1 if and only if |¢[v/20r = 1, if and only if
1

c=+—+.
AVA8

Thus, there are only two functions meeting all the criteria:
1
2v/5m

o

(Bf1 = f2 = f3), on

(3f1 = f2 = f3).

126. (a) We let
Pt = ¢
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_ <p1,QQ>
p2 = Q— 77—
<p1,171>
= z—0p
= "I/"
i <p1= Q3> <p2; CI3>
pPs = 43— P1— b2
(p1,p1) (p2,p2)
8
2
= ——==0
z 3 P2
- 2-8
3

Then {p1, p2, p3} is an orthogonal basis. The norms of py, ps, and p3 are /3,

V8, and \/32/3 respectively, so

11 3,5 4
{ﬁwﬂ”’@” ‘3)}

is an orthonormal basis for Py with respect to the given inner product.

(b) We let
P = @1
= 1,
B <P1,(J2>
P2 = Qq2— 1
<p1ap1>
= z—0p
= m,
_ (P1,q3) (P2, q3)
b3 = 43— p1— b2
(p1,p1) (P2, P2)
16/3
_ P
= 4 Op2
4
_ 2 _ =
= x 3

Then {p1,p2,ps} is an orthogonal basis. The norms of p;, ps, and ps are 2,
4/+/3, and 16/+/45 respectively, so

{1 V3 \/4>5(x2_4)}

217716

is an orthonormal basis for Py with respect to the given inner product.

127. We first let u; = vy. Next,

Vg — <u1’v2>u1 —
<u17u1>

O = O =
S O = =
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1
=5, |
0
so scaling, as we may, we let
1
-1
o =
? 2
0
Finally,
1 1 1
(ui, vs) (uz,vs) 0 1)1 1] -1
V3 — u; — u = — —
(ug,uy) (ug,uz) 0 210 61 2
1 0
1
1|
3=
3
Again, scaling this vector, we let
1
-1
Uz =
R
3

If we normalize the vectors uy, us, uz, we find the orthonormal basis

1 1
1| -1 1 [ -1
Vel 2 |'viz |1
0 3

V2

O O = =

of U.

128. We use the formula for orthogonal projection:

. _ (9 (p2,9) (p3,9)
proIP, (q) B <p1,p1> bt <p2,p2> P2 <p37p3>

Here,

(p1,q) = (1,2>) =0+ 1+8+27 =136
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(p2,q) = (&= §,2") =0 - +4+35-27=44
(p3,q) = (2® =32 +1,2°) =0-1-8+27=18.

Thus, using the given equalities (p1,p1) = 4, (p2,p2) = 5, (ps3,p3) = 4, we obtain

projp, (q) = % + 45—4(x - %) + %(mg —3z+1)= %xg - ‘%m—l— 13—0

129. (a) Following the Gram-Schmidt process, we let

n=q=1,
_ (p1,42) s 6 5 3
b2 = (p1,p1) ! 1" 2’
s = g5 — (p1,qs) oy (P2, 43)
<p1 ) p1> <p2, p2>
8 20 3 20 4
_.3_0_ 2V 2 S\ _ 3 Yo =
= 1 9 <33 2) T gx +3.

Then {p1,p2,ps} is an orthogonal basis for U, and the p; are all monic.

(b)
. <p1;r> <p2,7“> <p3ar>
pProjy(r) = p p
u(r) (p1,p1) ' (p2,p2) ? (p3;p3)
10 B, 3\ (s 20, 4
4 9 2 50 9 3
38, 3., 9
“n" 5" Toy
130. (a) Let
u; =Vvy = (172717 _2) (41)
up - Vo
U = Vo — u;
u; - U
4 1
= (0, 1,0, —1) — E(l,?, 1, —2) = g(-?, 1,-2, —1). (42)

To avoid working with denominators, we choose to scale us by 5 and instead
take ug = (—2,1,—2, —1). Note that we have scaled by a positive scalar, which
will be important when we come to find the totally positive ) R-factorization
of A in part (b). Next, we let

u; - vg ug - vg
us — Vg — u; — U
u; - U U2 - U2
=(2,1,1,-1) 7(121 2) _4(21 2,-1)
- ) ) b 10 ) b ) 10 ) b )
1
= 5(1,0,-1,0). (43)
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Finally, we let w; = m u; fori=1,2,3:

1
Wi = ——(1,2,1,-2
1= o )
1
Wy = ——(=2,1,-2, -1
1
Wy = —(1,0,—1,0
3 \/i( )

Then {w1,wa, w3} is an orthonormal basis for Col(A).

(b) From (41), (42), and (43), along with the definitions of wy, wa, w3, we see
that

vi=(1,2,1,-2) = V10w,

2 1
vo= £(1,2,1,-2) + £(-2.1,-2,-1)
24/10 v 10
=W+ —Wwsy
5 5
7 2 1
=—(1,2,1,-2) — =(—2,1,—-2, -1 —(1,0,—-1
V3 10(7 5 Ly ) 5( 5 Ly 3 )+2(707 70)
7V10 2v/10 V2
S To M Ty Wty ws

Thus, the totally positive Q R-factorization of A is

1 2 1
VIO Voo V2 A0 2/10 710
2 L 0 075 10
A= | V10 V10 0 V10 _ 2/10
1 2 1 5 5
Vio Vo V2 V2
) ) 0 0 52
Vo v
131. Let
1 1 1
1 1 1 -1 1 -1
wW; = — , W — , W3 = ——
T2 o PTG 2 TV |1
0 0 3
From the calculations in Question 127, we see that
Vi = \[2W1
V2 N V6
Vo= — Wi+ — W
2 5 Wi 5 W2
V2 V6 V12
VaT Ty Wity et W

Hence, A = QR where

Q:(W1 Wo W3)

Paul Buckingham Linear Algebra Il (MATH 225): Solutions to the Practice Problems — v1.12 | 87



1/vV2 1/vV6  1/V/12
1/vV2 —1/V/6 —1/V/12
2/V6  —1/V12
3/V12

and R=

0

0

V2
0
0

S ol
S ol ol T

132. Let the columns of A be vy, vs, vs in that order. Then we let

u; =Vy = (17171,1)
ujp - Vo
Uy = Vo — up
u; - up
3 1
= (Oa 1» ]-a 1) - Z(la 1, ]-7 ]-) = 1(737 1, ]-7 1)

At this point, we will replace us by (—3,1,1,1) to avoid working with denomina-
tors. Note that, to obtain the totally positive QR-factorization, we should scale
the vectors u; only by positive scalars (in this case, the positive scalar 4). Hence,
we let

_ u; - Vg Uz - vy
uz = V3 — u; — Uz
u; - up - u2

2 2 1
=(0,0,1,1) = =(1,1,1,1) — ==(=3,1,1,1) = =(0,—2,1,1).
(77?) 4(777) 12( 7?5) 3(7 ?5)

flul

Now we normalize by letting w; = u; fori =1,2,3:

L, L 31,11 L 0,—2,1,1)
wi =L LL L), Woe=——+(—9, L, L,1), W3=-—F7(U —41,1).
1=5 2 5 3 NG
Next, we express the v; in terms of the w;:
Vi = (1, ].7].7].) = 2W1
3 1 3 V3
Vo = 1(17 ]-a 1; 1) + 1(73, 17 ]-7 1) = §W1 + 7“’2
1 1 1
=—(1,,1,1)+ =(-3,1,1,1) + =(0,—2,1,1
V3 2( ) Ly by )+ 6( ’ )+ 3( )
3 6
=w; + £WQ + £Wg.
3 3
Therefore, the @ R-factorization of A is
1/2 -3/v12 0

2 3/2 1
12 11z —2/v6
A= 1/2 1/V12  1/V6 g \/:(’2)/2 ﬁ;g
/2 1/V/12  1/V6
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133.

dist(u,v) = |jlu—o|

= (u—v,u—v)

= V{uu) — (u,0) — (v,u) + (v,0)
V/(u,u) + (v,v)  because (u,v) = 0 by assumption
Vlul? + (o]

134. Following the Gram—Schmidt process, we define vectors vy, vo, vg as follows:

Vi =e€e; = (1,0,0)

(vi,e2)
(vi,v1)

1
= (Oa 170) - 5(13050)

Vo = €9 —

=(-1/2,1,0)
V3 =e3 — (v1, e3) Vi — (va, e3) \L
<V1,V1> <V2,V2>
=(0,0,1) — Ovy — Ovg
=(0,0,1)

The Gram—Schmidt process ensures that v, vo, v3 are mutually orthogonal, though
not necessarily unit vectors. To obtain an orthonormal basis, we therefore scale
each v; by m, where the norm here is, of course, taken with respect to the given

inner product:
1 -1 2
{(55:0.0).(F5. 5.0, 0.0.1)}.

135. (a)
> 1
2 _
ol = 3 Gy
_ ii
- n:3n2
_o®_ 1 1
6 12 22
_ 5
6 4
and
> 1 =1 7?2
2 _ —_— = _— = —,
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oo

1 > 1
D D ) O SV
> 1
- Zz:(n+3)(n—|—1)

(a, B)
lle]| I8]] by Cauchy—Schwarz

35
-

136. Let f,g € B(M) and t € [0,1]. Then

IN

/ (@) + (1 (@)’ da
= 147 + (1= gl
< (I + 11— Dgl))” by the triangle inequality
= (it 171+ 11—l gl
< (|t\\/M+ - WM)Q because f, g € B(M)
- M(|t| +1 —t\)

=M({t+1—1t) becauset € [0,1]

137. According to the proof of the triangle inequality on page 65 of the course notes,

we have equality if and only if

(u,u) + 2{(u,v) + (v,v) = (u,u) + 2|{u, v)| + (v, v)
and  (u,u) +2[(u, v)[ + (v,v) = (w,u) + 2|[uf| [v[]| + (v,v)

The first equality holds if and only if (u,u) > 0, and the second holds if and only
if v. = cu for some ¢ € R by Theorem 5.1 in Section IV of the course notes. But
if v = cu, then (u,v) > 0 if and only if ¢(u,u) > 0, if and only if ¢ > 0 (because

(u,u) > 0).

138. We verify each of the axioms of a metric in turn:
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(i) If u,v € V, then

dlu,v)=0 <= |u-v|=0
<= u-—v=0 by axiom (iv) of an inner product
<~ u=yv.
(ii) If u,v € V, then
d(u,v) = [lu—v]
= [I(=D(v -]
=[=1[lv—u]
= [lv—u]
=d(v,u).
(iii) If u,v,w € V, then
d(u,w) = |lu—w]|

=[[(a=v) + (v -w)

<|Jlu—v| +]|lv—w| by the triangle inequality
for inner product spaces

=d(u,v) +d(v,w).

139. (a) Let
3 T
v=\|4]|,z=|2x2],
5 T3

with x assumed to satisfy 2% + 23 + 23 = 1, i.e., ||z||* = 1. Then

|3I1 +4l‘2+5a:3| = ‘/U.T|
< [ollllzll by Cauchy-Schwarz

= vl

= 5V2,

with equality holding if and only if x is a scalar times v. Only when zx is a
positive scalar times v can v - z be the maximum, for otherwise v - x < 0.
Therefore, to find the z where the maximum is attained, we solve ||cv|| = 1
for ¢ > 0, i.e., c = 1/||v|| = 1/5v/2. So

3
9c:cv:L 4
5v/2 . ’
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and the maximum is attained when

(b) Let
5 T
v=112|,z= |29 |,
13 T3

with x assumed to satisfy 5x1 + 12z + 1323 = 26, i.e., v - x = 26. Then

witastay = ol
(v-2)?
[[v]]*
262
2.132
22.132

2-132
= 2

by Cauchy—Schwarz

)

with equality holding if and only if 2 € Span(v). Therefore, the minimum is
2, attained at x € Span(v) satisfying v-x = 26. We can find such z by solving
v (cv) =26 for c € R, i.e.,

o 26 2-13 1
C |2 2-132 0 137
Then
1 5 5/13
T=cv=Tg 12| =] 12/13 |,
13 1

and the minimum of 2 is attained when

T = 5/13, To = 12/13, T3 = 1.

140. (a) Let
—2 T
v=|1|,z2=|2s|,
-1 T3

with z assumed to satisfy 2% + 23 + 23 = 1, i.e., ||z||> = 1. Then

—2x14+10—23 = v-x

IN

llollllz]] (Cauchy—Schwarz)

o]l
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N

with equality holding if and only if  is a positive scalar times v. (If  were a
negative scalar times v, then v-x would be equal to —||v]| [|z]].) The maximum
is therefore /6, and to find the x where it is attained, we solve ||cv|| = 1 for
c>0,ie,c=1/|v|| =1/V6. So

1 -2

r=cvo=—4=|1 1,

V6
-1
and the maximum is attained when

(I’l,IQ,Z'g) = (72/\/6, 1/\/6, 71/\/6)

(b) Let
4 T
v=|[1]|,x=|x22|,
5 T3

with = assumed to satisfy 4x1 + x5 + bxz = 2, i.e., v - & = 2. Then

ritaitay = |zl
(v-z)?
[[o]?
4

42

2

21°
with equality holding if and only if 2 € Span(v). Therefore, the minimum is

(Cauchy—Schwarz)

2/21, as long as there is « € Span(v) with v -2z = 2. We can find such z by
solving v - (cv) = 2 for ¢ € R, i.e.,
2 2 1

TP T2 2

Then
4
1 1
T=cv=—
21 ’
5

and the minimum of 2/21 is attained when

($1,$2,$3) = (4/217 1/21,5/21).

141. (a) Let
1/3 T
v=|[1/2]|,x= |22 ],
1 T3
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with x assumed to satisfy z% + 23 + 2% = 1, i.e., [|x||> = 1. Then

§x1+%xg+x3:v~xg|v-x|

<||v|l Ix|| by Cauchy—Schwarz

7

= [Ivll =5

with equality holding if and only if x is a positive scalar times v. Therefore,
to find the x where the maximum is attained, we solve ||cv|| = 1 for ¢ > 0,
ie., ¢ = 1/|lv|]] = 6/7. Thus, the maximum is 7/6, and it is attained when
x=2%v=(2/7,3/7,6/7).

(b) We find the minimum of 2 + 22 + 23 subject to 271 + 374 + 673 = a, where
a is unknown for the time being. Let v = (2,3,6) and x = (z1, z2, x3), with

x assumed to satisfy 2z1 4+ 3x2 + 6x3 = a, i.e., v-x = a. Then

2 2 2 _ 5o (v x)? N
7+ a5 + a5 = ||x]|° > TV by Cauchy—Schwarz
\%
a2
T a9’

with equality holding if and only if x € Span(v). Therefore, the minimum is
a? /49, attained at x € Span(v) satisfying v - x = a. We can find such x by
solving v - (ev) = a for c € R, i.e.,

a a
c= s = —.
[vi[> 49
Then
a
= =—(2,3,6).
X =cv 49( ,3,6)
The minimum is 1 if and only if a?/49 = 1, i.e., a = —7 (since a was as-
sumed negative). The minimum in this case occurs at x = —1(2,3,6) =

(—2/7,-3/7,—6/7).

142. Note that the condition foﬂ/‘l f(z)g(x)dx = % says (f,g) = 1/2 in the notation of

inner products. For such a g,

/4
/0 g()? de = |g||?

(f,9)?
STE
1

AlAIP

and equality holds if and only if ¢ = c¢f for some ¢ € R. The unique ¢ € R for
which (f,cf) =1/2 is

by the Cauchy—Schwarz inequality

121
(A2
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It remains, then, to find ||f||?, which we achieve via a couple of trigonometric
identities:
f(z)? = sin*(x) — 2sin(z) cos(z) + cos?(x) = 1 — sin(2z),
S0
/4 /4 1
IfI1? = / (1 —sin(22)) dz = [z + £ cos(2z)]/" = Z(ﬂ' —2).
0
Thus, ¢ = 2/(7 — 2), so the function g we seek is g = %f, ie.,

2

g(z) = p— (sin(z) — cos(z)).

In this case,

/4 1 1
2
gx)'der = —5 = ——.
f) o= g =

143. (a)
1 1
p= 5(172)(5373)+(x71)(x73)+§(x71)(:072)
=222 — 8z + 7.

Alternatively, we may solve for p by letting p = ax? + bz + ¢ and observing

that the given conditions on p translate to the system

a+ b+c= 1
4da+2b+c=—1
9a+3b+c= 1,

which has solution a = 2, b = —8, ¢ = 7 (steps to this solution should be

shown).

(b) Endow P, with the inner product {-,-) given by

(riq) = r(1)q(1) +7(2)a(2) +7(3)a(3)-

The condition (1) + ¢(2)% + ¢(3)? = 1 says ||q||?> = 1, i.e., ||g|| = 1, and by

part (a),

q(1) —q(2) +4(3) = (p.9)
where p = 222 —8x+7, so we are trying to maximize (p, ¢) subject to ||q| = 1.
Now,

(p.q) < (p. q)|
<Ipll llg]] by Cauchy-Schwarz

= |lp|| by the condition ||¢|| = 1.
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Further, equality occurs if and only if ¢ is a positive-scalar multiple of p, i.e.,
g = cp with ¢ > 0. The unique ¢ > 0 such that ||cp|| =1 is ¢ = 1/||p].

It remains, then, to find ||p||. But we already know that p(1) = p(3) =1 and

p(2) = —1, s0 ||p|| = /12 + (—1)2 + 12 = /3. Thus, the polynomial we seek

144. We first find orthonormal bases for the eigenspaces, starting with the eigenvalue

—1:
-1 -2 1 2 -1
—I-A=|-2 -4 2 |«<|0 o0 0],
1 2 -1 0 0 O
S0 a basis is
-2 1
11,10
0 1
We apply Gram—Schmidt to
1 -2
v1=10 , U2 = 1 )
1 0
that is, we let u; = v; and
—2 5 -1
UQZUQ_Ul U2U1: 1 —— 10 -
Uy - U 2
0 1

Scaling, we obtain the orthonormal basis

1 -1
1L
\/51’\/5

Now for the eigenspace for the eigenvalue 5:

5 =21 1 0 1
5[—A=1-2 2 2|« ]|0 1 2/,
1 2 5 0 0 O
so a basis is
-1
_9 ,
1
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which we normalize to

—1
S
VG 1
Hence, if
1/vV2 —1/V/3 —1/V6 -1 0 0
P=1] 0 1/vV/3 —2/v6|, D=0 -1 0],
1/vV2 1/V/3  1/V6 0 0 5

then PTAP = D.

145. Let us begin with the eigenspace associated to —9:

-20 2 -6 3 01
-9 -A= 2 =20 6|« |0 3 1],
-6 -6 -4 0 0 O

so this eigenspace is 1-dimensional, spanned by (1,1, —3). A unit spanning vector

is (1/v/11,1/3/11,-3/y/11).

Next, we turn to the eigenspace associated to 13:

2 2 -6 1 1 -3
BI-A=] 2 2 6|« )10 0 0],
-6 —6 18 0 0 O

so this eigenspace has basis {v1,va} where vi = (=1,1,0) and vy = (3,0,1). To
perform Gram—Schmidt on this basis, we let u; = vy and

up - Vo

Uy = vy — u = (3,0,1) — 32(-1,1,0) = 1(3,3,2).

u; - Uy

Thus, this eigenspace has orthonormal basis

We have produced an orthonormal basis of R? consisting of eigenvectors, and using
this basis we see that PTAP = D, where

1/V/11 —1/v/2 3/V/22 -9 0 0
P=11//11 1/v2 3/V22|, D=0 13 0
-3/V11 0 2/V22 0 0 13
146.
f(x1, w9, 3) = —2% — 23 — 23 + da129 + 62123 + 102023,
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147.

1 1/2 —3/2
A= |12 -1 5/2
3/2 5/2 2
148.
. 2 3 9
A:§(B+BT): 3 45
9 5 6

149. If x = (x1,22), then
f(x) = (a® = *)x? 4+ 2(ab — cd)x 29 + (b* — d?) 3
= (a®z? + 2abxy 29 + b?23) — (a? + 2cdri 20 + d*23)
= (azy + bxy)? — (cxy + dao)?. (44)

a
Now, because (

b
d) is invertible, there is a solution to the equations
c

ary + brg =1

cx1 +dry =0,

and for such an x = <£L‘17$2>, (44) shows that f(x) = 12 — 0% = 1 > 0. Similarly,
there is a solution to

ary + bro =0

cx1 +dry =1,

and then f(x) =0%-12=-1<0.

150. (a) The symmetric matrix associated to f is

(1 32
A<3/2 3)’

which has characteristic polynomial pa(z) = (z —1)(z—3)— % = 2% — 4z + 3.
The roots are %(4j: V/13), so the maximum and minimum of f on unit vectors
are (4 + v/13) and (4 — V/13) respectively. Both roots are positive, so f is
positive definite.

(b) The symmetric matrix associated to f is

A_<1 —3>,
-3 9
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which has characteristic polynomial pa(z) = (x —1)(x —9) —9 = 22 — 10z =
x(x — 10). The roots are 0 and 10, so the maximum and minimum of f on
unit vectors are 10 and 0 respectively. Both roots are non-negative, but one

is zero, so f is non-negative definite but not positive definite.

(¢) The symmetric matrix associated to f is

1 0 1
A=|0 -3 -1/,
1 -1 -1

which has characteristic polynomial

z—1 0 -1
pa(z) = det 0 z+3 1
-1 1 z+1

=(x—1)(2* +42+2)— (z+3) (first row)
=23 +322 - 32 -5=(x+1)(z* + 22— 5).

The roots, in ascending order, are —1 — v/6, —1, and —1 + /6. Therefore,
the maximum and minimum of f on unit vectors are —1 + /6 and —1 —
V6 respectively. The maximum and minimum have opposite signs, so f is
indefinite.

151. We orthogonally diagonalize the real symmetric matrix

2 2
A= .
2 -1
The characteristic polynomial is

palx)=(x—2)(z+1)—4=2>-2—-6=(z+2)(z —3),

so the eigenvalues are —2 and 3.

3I_A:1—2<_>1—27
-2 4 0 0

2
so this eigenspace is spanned by <1> . A unit spanning vector is (

aroa- (TP L2 Y,
—2 -1 0 0
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2/\V/5
1/v5)°

Eigenspace for —2:



~1/v5
2/\V5 |

-1
so this eigenspace is spanned by ( 5 ) A unit spanning vector is <

_(2/v5 —1/VB (3 0
P<1/\/5 2/\/5>’ D(o —2)’

then PTAP = D. Hence, the quadratic form g(y) = f(Py) satisfies g(y1,v2) =
3yt — 203

Thus, if

The quadratic form f is indefinite, because the corresponding matrix A has both
a positive eigenvalue and a negative one (or because the diagonalized quadratic

form ¢ is indefinite).

152. We orthogonally diagonalize the real symmetric matrix

3 6
A= .
6 —2
The characteristic polynomial is

pa(z)=(x—-3)(x+2)—36 =22 -2 —42 = (x+6)(x —7),

so the eigenvalues are —6 and 7.

doa-(t 8 o2 3.
6 9 0 0

3
so this eigenspace is spanned by <2> . A unit spanning vector is (

oo (70 ) o (3 2)
6 —4 00

—2
so this eigenspace is spanned by < 5 ) A unit spanning vector is (

Eigenspace for 7:

3/V/13
2/V/13)°

Eigenspace for —6:

—2/4/13
3/V13 |
Thus, if
P 3/Vv13 —2/V13 p (7 0
C\2/v/13 3//13 ) T \o0 —6)’
then PTAP = D. Hence, the quadratic form g(y) = f(Py) satisfies g(y1,y2) =
Tyt — 6y3.

The quadratic form f is indefinite, because the corresponding matrix A has both
a positive eigenvalue and a negative one (or because the diagonalized quadratic
form g is indefinite).

Paul Buckingham Linear Algebra Il (MATH 225): Solutions to the Practice Problems —v1.12 | 100



153. The symmetric matrix corresponding to f is

0 2 -1
A=1] 2 3 -2
-1 -2 0

As we saw in Question 3 in the Week 12 practice problems, PTAP = D where

1/vV2 —1/v/3 —1/V6 -1 0 0
P=| 0 1/v3 —=2/v6|, D=0 -1 0
1/vV2 13  1/v6 0 0 5

Therefore, the quadratic form g(y) = f(Py) satisfies

9(y1,y2,y3) = —y7 — y3 + by

The quadratic form f is indefinite, because the corresponding matrix A has both
a positive eigenvalue and a negative one (or because the diagonalized quadratic
form ¢ is indefinite).

154.
T
fl x| =527 — 221 + 220)2 + 4(zy + 229 + 323)?
T3
= byi — 25 + 4u3
where
Y1 =71
Y2 = X1 + 2x2
ys = x1 + 222 + 3x3.
Hence,
Y1 1 0 x1 x1
Y2 = 1 2 0 i) = PT X9
Y3 1 2 3 I3 I3
where
1 1 1
P=1]10 2 2
0 0 3
Therefore, if
5 0 0
D=0 -2 0],
0 0 4
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then f(x) =y Dy = (PTx)"D(P'x).

155. (a)

Define y; = x1 + 329 and y; = 221 — x5. Then f ) 4y? + 3y3. Now, if

T
1 2
X = o and y = n , then y = PTx where P = , so letting
T2 Y2 3 -1
4 0
D= , we have
0 3

f(x) =4y + 3y3 =y Dy = (PTx)TD(PTx).

By part (a), if x € R?, then
xTAx = f(x) = (P*x)"D(P"x) = x"PDPTx,

so A = PDPT by the fact given in the question, because both A and PDPT
are symmetric. Alternatively, one may compute A and PDPT explicitly and
compare them.

156. The quadratic form f is indefinite. To see this, let the eigenvalues of A, counted
with multiplicity, be A1, Ao, A3, A, so that pa(z) = (x—A1)(z—X2)(z—A3)(x—N\y).
Then A A2AzAy = pa(0) = det(A) < 0, so at least one of the A; is negative and

at least one positive (because 4 is even). Now use Proposition 9.2 in Section IV of

the course notes.

157. (a)

158. (a)

For the quadratic form in Question 151, the maximum and minimum subject
to ||x|| = 1 are 3 and —2 respectively by Proposition 10.1 in Section IV of
the course notes. For the quadratic from in Question 152, the maximum and

minimum are 7 and —6.

For the quadratic form in Question 154, the maximum and minimum subject

to ||x]| =1 are 5 and —1 respectively.

Let us first find the eigenspace associated to —6:

-4 -2 —6 21 3
—6/-A=|-2 -1 -3|«< [0 0 0],
-6 -3 -9 0 00
so a basis for this eigenspace is {vq,va} where vi = (=1,2,0) and vy =

(—3,0,2). We apply Gram—Schmidt to these basis vectors, letting

u; =vy = (71a250)
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up - Vo

Ug = Vg — up

u; - ug

2
= (-3,0,2) — %—1,2,0) = £(-6,-3.5).

Scaling uy, us, we obtain the orthonormal basis

~1/v5 —6//70
2/vV5 |, | —=3/V/70
0 5//70

for this eigenspace.

We turn to the eigenspace associated to 8:

10 -2 —6 3.0 -2
8I—A=|[-2 13 3|« |0 3 -1],
-6 -3 5 00 0

so this eigenspace is spanned by (2, 1, 3). Scaling, we obtain the unit spanning

vector
2/V14
1/V14
3/V14
Hence, if
~1/V/5 —6/V/70 2//14 -6 0 0
P=1 2//5 -3/J/70 1/J/14| and D=0 -6 0],
0 5/V/70 3/y/14 0 0 38

then P is orthogonal and PTAP = D.

(b) By Proposition 10.1 in Section IV, the maximum of xT Ax subject to ||x|| = 1
occurs at the unit eigenvectors with eigenvalue 8. By our answer to part (a),
the corresponding eigenspace is spanned by the unit vector (2/v/14,1/1/14,3/\/14),
so the two vectors of norm 1 in this eigenspace are

(2/V14,1//14,3/v/14) and —(2/v14,1/V/14,3/V/14).

(c) Let x = (21,22, 73), and define y = (y1,y2,y3) by

-1/v5  2/V5 0 T
y=P'x=|-6/V70 —3/V70 5/V70| | x2
2/vV14  1/V/14  3/V14) \zs

1 2
\/51‘1 + \/ng
6 3 5
- V7o~ Jrgte T s
_2

1 3
\/ﬁxl + ﬁl’Q + \/ﬁfS
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159.

160.

Then
f(x) =xTAx
= yTDy because x = Py and PTAP =D
= —6y; — 6y3 + 83

2 2
_ 1 2 6 3 5

2
2 1 3
+8(Fgm + g + )
6 3
= fg(fxl + 219)% — g(fﬁxl — 329 + ba3)?

4
+ ?(Z’El + g + 3%3)2.

Let y1 = 21/23 and y2 = z2/x3. Then x172/2% = y1y2, and 27 + 23 = 23 if and
only if y? + y2 = 1. Thus, we are to find the maximum and minimum of y;y»

subject to y? + y3 = 1. The symmetric matrix associated to the quadratic form

Y1y2 is
0 1/2
/2 0 )’

whose characteristic polynomial is 22 —1/4. The roots of this polynomial are 4-1/2,

so the maximum and minimum in question are 1/2 and —1/2 respectively.

The symmetric matrix associated to f is

1 a/2 0
A=|a/2 2 01,
0 0 1/2

The roots of the quadratic factor are

1 / 1
E(gi 9_8+4(%)2):§(3i a2+1)7
so A has eigenvalues %, 3(3+ va? + 1), and £(3 — Va? +1).

(a) By Proposition 10.1 in Section IV of the course notes, we are looking for a € R
such that the least eigenvalue of A is 0. This amounts to finding a such that
%(3 Va2 +1)=0,ie,vVa2+1=3,ie,a>+1=09, ie., a =22 (because

a > 0 by assumption).
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(b) Let A be the difference between the maximum and minimum of f(x) subject

to [[x|| = 1, and for brevity, let ¢ = $v/a? + 1, so that the eigenvalues of A

are %, % — ¢, and % + ¢. The key observation for this question is that the

order of the eigenvalues depends on ¢, with the crossover between % and % —c
occurring when ¢ = 1. Thus,

3 1 .
s4+¢)—z=c+1 ife<1
(i ) - (45)
3

2
S+e)—(3—c)=2¢ ifc>1.

(i) Note that if ¢ < 1, then according to (45), A = ¢+ 1 < 2 < 4. Therefore,

A=4 ¢c>1 and 2c=4 by (45) again,
c>1 and c¢=2,
c=2,

$Va?+1=2,
a

=115 (because a > 0 by assumption).

Froeed

(#) This time, observe that if ¢ > 1, then (45) implies that A = 2¢ > 2 > 7/4.
Hence,

A:

w1

1111

% by (45) again,
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