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Searching for questions related to a given section

Each question in this set of practice problems is tagged with sections from the course
notes that the question is related to. For example, Question 28 is tagged as follows:
⟨I – 3, I – 4, I – 5, I – 6⟩. These tags are searchable (except for the four in the previous
sentence!). For example, to search for questions related to Section II – 1, type (II-1) or
(ii-1) into your PDF viewer’s search bar. Note that the separator in the search term
should be a hyphen with no surrounding spaces. Also, the brackets in the search should
be (round) parentheses and not angle brackets. The parentheses should be included to
prevent your search returning III – 1 or II – 10 when you mean II – 1.

1. ⟨(I-1)
I – 1⟩ Let V be a vector space.

(a) Show that 0v = 0 for all v ∈ V , where 0 is the zero vector in V . Hint:
Consider (0 + 0)v.

(b) Show that (−a)v = −(av) for all a ∈ R and all v ∈ V , that is, (−a)v is the
additive inverse of av. Hint: Use part (a).

2. ⟨(I-1)
I – 1,

(I-2)
I – 2⟩ In the vector space P2, show that we may express the polynomial

p = 2x2 + 7x+ 10 as a linear combination of the polynomials

p1 = (x+ 1)2, p2 = x+ 1, p3 = 1.

Find explicit a1, a2, a3 ∈ R such that p = a1p1 + a2p2 + a3p3.

3. ⟨(I-1)
I – 1,

(I-2)
I – 2⟩ Define functions f, g, h ∈ F by

f(x) = x3, g(x) = x+ 1, h(x) = ln(x2 + 1).

Decide whether f is a linear combination of g and h. If it is, find an explicit linear
combination. Otherwise, prove that no such linear combination exists.

4. ⟨(I-1)
I – 1,

(I-2)
I – 2⟩ Define sequences s, t, u ∈ S by

s = ((n+ 1)3)n, t = (n3 + 1)n, u = (n(n+ 1))n.

Express s as a linear combination of t and u, that is, find a, b ∈ R such that
s = at+ bu.

5. ⟨(I-1)
I – 1,

(I-2)
I – 2⟩ Let

A =

(
1 2

3 4

)
,
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an element of the vector space M2(R). Show that A2 is a linear combination of
A and I, where I is the 2 × 2 identity matrix. Find explicit c, d ∈ R such that
A2 = cA+ dI.

6. ⟨(I-1)
I – 1,

(I-2)
I – 2⟩ Let A ∈ M2(R), and suppose further that A has integer entries, has

trace zero, and is invertible. Show that there is a positive integer n such that
A4 = nI, where I is the 2× 2 identity matrix. Hint: Compute A2 first.

7. ⟨(I-1)
I – 1,

(I-2)
I – 2⟩ Define functions f, g, h ∈ F by

f(x) = cos(2x), g(x) = cos2(x), h(x) = 1.

Show that f is a linear combination of g and h. Find explicit a, b ∈ R such that
f = ag+ bh. (Note that the equality f = ag+ bh means that f(x) = ag(x)+ bh(x)

for all x ∈ R.)

8. ⟨(I-1)
I – 1,

(I-2)
I – 2⟩ Define functions f, g, h ∈ F by

f(x) = sin(2x), g(x) = cos(x), h(x) = sin(x).

Is f a linear combination of g and h? Justify your answer either way.

9. ⟨(I-1)
I – 1⟩ Suppose we give R≥0 the addition operation u ⊕ v = |u − v| and the

scalar multiplication operation a ⊙ u = |a|u. Decide which vector space axioms
are satisfied by R≥0 with these operations. Justify your answers.

10. ⟨(I-3)
I – 3⟩ Decide whether each of the following sets is a subspace of P. If it is, justify

your answer by showing that the set is non-empty and is closed under both addition
and scalar multiplication. Otherwise, explain why the set is not a subspace of P.

(a) B1 = {p ∈ P | p′(a) = 0}, where a is some fixed real number and p′ denotes
the derivative of p.

(b) B2 = {p ∈ P | p′(a) = 1}, where a is some fixed real number.

(c) B3 = {p ∈ P | p′ is the zero polynomial}.

(d) B4 = {p ∈ P | p(0) > deg(p)}, where deg(p) denotes the degree of p.

11. ⟨(I-3)
I – 3⟩ Decide whether each of the following sets is a subspace of S, the space of

sequences. If it is, justify your answer by showing that the set is non-empty and is
closed under both addition and scalar multiplication. Otherwise, explain why the
set is not a subspace of S.
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(a) B1 = {(an)n ∈ S | an = 2an−1 − 3an−2 for all n ≥ 2}.

(b) B2 = {(an)n ∈ S | an = 0 whenever 3 divides n}.

(c) B3 = {(an)n ∈ S | an = an−1 + 1 for all n ≥ 1}.

(d) B4 = {(an)n ∈ S | |an| ≥ n for all n}.

12. ⟨(I-3)
I – 3⟩ For each of the following sets Bi, decide whether it is a subspace of the given

vector space Vi. If it is, show that it is non-empty and is closed under both addition
and scalar multiplication. Otherwise, explain why the set is not a subspace of Vi.

(a) V1 = P2, B1 = {p ∈ P2 | p+ xp′ has degree exactly 2}.

(b) V2 =M2(R), B2 = {X ∈M2(R) | XA = 0}, where A =

(
1 2 3

4 5 6

)
.

(c) V3 = S, B3 = {(an)n ∈ S | an = a2n−1 for all n ≥ 1}.

(d) V4 = F , B4 = {f ∈ F | f(0) = f(1)}.

13. ⟨(I-3)
I – 3⟩ For each of the subsets of R3 below, decide whether it is closed under

addition, justifying your answer either way.

(a) A = {(x1, x2, x3) ∈ R3 | x1x2x3 > 1 and x1, x2, x3 > 0}.

(b) B = {(x1, x2, x3) ∈ R3 | x1x2x3 > 1}.

14. ⟨(I-4)
I – 4,

(I-5)
I – 5⟩ For each of the following sets of polynomials in P2, decide whether

it is linearly independent, a spanning set, both, or neither.

(a) B1 = {2x+ 1, 3x+ 2, 4x+ 3}

(b) B2 = {x, x+ 2,−x2}

(c) B3 = {2, x2}

(d) B4 = {x+ 2, x− 1, x2, x2 − 3}

15. ⟨(I-3)
I – 3⟩ Let F be the space of functions f : R → R.

(a) Find a non-empty subset of F that is closed under addition but not scalar
multiplication. Justify your claim.

(b) Find a non-empty subset of F that is closed under scalar multiplication but
not addition. Justify your claim.
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16. ⟨(I-4)
I – 4⟩ Let A =

(
2 3

5 7

)
. Decide whether the matrices I, A,A2 are linearly inde-

pendent in M2(R). Justify your answer either way.

17. ⟨(I-4)
I – 4⟩ Decide whether the sequences

s = (n+ 1)n, t = (2n+ 1)n, u = (n2)n

in S are linearly independent. Justify your answer either way.

18. ⟨(I-4)
I – 4⟩

(a) Show that if a is a non-zero real number and f ∈ F is the function x 7→ eax
2

,
then f , f ′, and f ′′ are linearly independent in F . (In fact, the whole family
{f (n)}n≥0 is linearly independent, but you do not need to prove this more
general assertion.)

(b) Show that if g ∈ F is the function x 7→ x sin(x), then g, g′, g′′, g′′′, g(4) are
linearly dependent.

19. ⟨(I-4)
I – 4,

(I-5)
I – 5⟩ Let u = (4n)n, v = (2n)n, and w = (n2)n be sequences in S.

(a) Show that u, v, w are linearly independent in S.

(b) Using part (a), show that the sequences α = (4n − 2n+2)n and β = (4n +

2n+2 − 2n2)n are linearly independent. Hint: First express each of α and β

as a linear combination of u, v, w.

(c) Show that the sequences

γ1 = ((2n − n)(2n + n))n

γ2 = ((2
n
2 − n

2 )(2
n
2 + n

2 ))n

are both in Span(α, β), and express each as a linear combination of α and β.

20. ⟨(I-5)
I – 5⟩ Let V be a vector space, and suppose v1,v2,v3 span V . If

u1 = v1 + v2, u2 = v1 − v2, u3 = 2v1 + 3v2 − v3,

show that u1,u2,u3 span V .

21. ⟨(I-5)
I – 5⟩ For an integer k ≥ 0, let sk ∈ S be the sequence

sk = (0, . . . , 0, 1, 1, 1, 1, . . .),
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where the number of zeroes occurring is k. Thus,

s0 = (1, 1, 1, 1, . . .)

s1 = (0, 1, 1, 1, 1, . . .)

s2 = (0, 0, 1, 1, 1, 1, . . .),

and so on. Let X = {s0, s1, s2, s3, . . .}.

(a) Is the sequence t = (1, 2, 3, 4, . . .) in Span(X)?

(b) Can you characterize the sequences in Span(X)?

22. ⟨(I-6)
I – 6⟩ Let V = {p ∈ P3 | p(1) = p(−1)}.

(a) If p = a3x
3 + a2x

2 + a1x + a0 ∈ P3, find a condition on the coefficients of p
for p to be in V .

(b) Find a basis for V , and write down dim(V ).

23. ⟨(I-6)
I – 6,

(I-7)
I – 7⟩ Let U = {A ∈M2(R) | AT = A}, and let

A1 =

(
1 0

0 0

)
, A2 =

(
0 0

0 1

)
, A3 =

(
0 1

1 0

)
.

(a) Show that B = {A1, A2, A3} is a basis for U .

(b) Any matrix of the form XTX is symmetric. If X ∈M2(R) has columns u,v,
i.e., X =

(
u v

)
, find [XTX]B in terms of u · u, v · v, and u · v.

24. ⟨(I-4)
I – 4,

(I-5)
I – 5,

(I-6)
I – 6,

(I-7)
I – 7⟩ Define functions f1, f2, f3 ∈ F by

f1(x) = cos(2πx), f2(x) = sin(2πx), f3(x) = x.

(a) Show that the set B = {f1, f2, f3} is linearly independent and is therefore a
basis for the space V = Span(f1, f2, f3).

(b) Let g ∈ V be the function with coordinate vector [g]B = (4,−1, 2) with
respect to B. Find g(3/8).

25. ⟨(I-3)
I – 3,

(I-4)
I – 4⟩ Let U = {(xn)n ∈ S | xn = xn−1 + xn−2 for all n ≥ 2}.

(a) Show that U is a subspace of S.
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(b) Let α = 1
2 (1 +

√
5) and β = 1

2 (1 −
√
5), and let s, t ∈ S be the sequences

defined by

s = (αn)n = (1, α, α2, α3, . . .)

t = (βn)n = (1, β, β2, β3, . . .)

Show that s, t ∈ U . Hint: Note that α2 = α+ 1 and β2 = β + 1.

(c) Show that s, t are linearly independent.

26. ⟨(I-4)
I – 4,

(I-5)
I – 5,

(I-6)
I – 6,

(I-7)
I – 7,

(I-8)
I – 8⟩ Let f, g ∈ F be the functions defined by f(x) =

e2x + x and g(x) = ex + 2x, and let V = Span(f, g).

(a) Show that f and g are linearly independent and therefore form a basis E =

{f, g} for V .

(b) Write down the coordinate vectors [h1]E and [h2]E where h1(x) = −2e2x + ex

and h2(x) = 3e2x − ex + x.

(c) Is {h1, h2} a linearly independent set? Does it span V ? Explain your answers
by using part (b).

27. ⟨(I-6)
I – 6,

(I-7)
I – 7,

(I-8)
I – 8⟩

(a) Define v1,v2 ∈ R4 by v1 = (2, 1, 1, 0), v2 = (1, 2, 1, 1). Extend the linearly
independent set {v1,v2} to a basis of R4.

(b) Extend the following linearly independent set to a basis of M2(R):{(
1 1

1 1

)
,

(
1 1

0 1

)}
.

28. ⟨(I-3)
I – 3,

(I-4)
I – 4,

(I-5)
I – 5,

(I-6)
I – 6⟩ Let W = {A ∈M2(R) | AT = A and Tr(A) = 0}.

(a) Show that W is a subspace of M2(R).

(b) Find a basis for W , and state the dimension of W .

29. ⟨(I-4)
I – 4,

(I-8)
I – 8⟩ Consider the polynomials

p1 = x3 + 2x2 − x+ 3

p2 = x3 + x2 − x+ 1

p3 = x3 + 2x2 + x− 1

p4 = 2x3 + 6x2 + 4x− 2
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Decide whether the polynomials p1, p2, p3, p4 are linearly independent. If they are,
explain why. If they are not, explain why not and express one of them as a linear
combination of the others, showing your working.

30. ⟨(I-6)
I – 6,

(I-8)
I – 8⟩

(a) Let U be the subspace of M2(R) spanned by

S =

{(
1 1

1 1

)
,

(
1 2

3 −1

)
,

(
2 3

4 0

)
,

(
1 0

1 0

)
,

(
−1 2

1 −1

)}
.

Find a basis for U contained in S.

(b) Let W be the subspace of P spanned by

T = {x3 + x2 − 1,−x3 + 2x+ 1, x3 + 2x2 + 2x− 1,

2x3 + x2 + x− 2, 4x3 + 2x2 − x− 4}.

Find a basis for W contained in T .

31. ⟨(I-8)
I – 8⟩ In Question 24, we saw that the functions f1, f2, f3 ∈ F defined by f1(x) =
cos(2πx), f2(x) = sin(2πx), and f3(x) = x are linearly independent. Using this
fact, decide in each of the following cases whether the given set of functions is a
linearly independent set.

(a) {g1, g2, g3}, where

g1(x) = cos(2πx) + 2 sin(2πx) + 3x

g2(x) = cos(2πx)− sin(2πx) + x

g3(x) = −3 cos(2πx) + 6 sin(2πx)− x

(b) {h1, h2, h3}, where

h1(x) = cos(2πx) + 3 sin(2πx) +−2x

h2(x) = 2 cos(2πx) + sin(2πx) + x

h3(x) = cos(2πx) + 4 sin(2πx) + 3x

32. ⟨(I-4)
I – 4,

(I-5)
I – 5,

(I-6)
I – 6⟩ Find a basis for the space V = {p ∈ P3 | p(2) = p′(2) = 0}.

33. ⟨(I-7)
I – 7,

(I-8)
I – 8⟩ We saw in Section I – 6 of the course notes a basis {A1, A2, A3} for

V = {A ∈M2(R) | Tr(A) = 0}. Denote that basis by C.
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(a) Find the coordinate vectors, with respect to the basis C, of each of the fol-
lowing matrices in V :

B1 =

(
1 1

1 −1

)
B2 =

(
1 −1

2 −1

)

B3 =

(
−1 3

−3 1

)
B4 =

(
3 −1

5 −3

)
.

(b) Decide whether B1, B2, B3, B4 span V .

34. ⟨(I-4)
I – 4,

(I-5)
I – 5,

(I-6)
I – 6,

(I-8)
I – 8⟩ For each of the following subsets ofM2(R), decide whether

it is linearly independent, a spanning set, both (i.e., a basis), or neither. You may
wish to use Proposition 8.1 in Section I of the course notes.

(a)

S1 =

{(
1 2

1 2

)
,

(
1 3

3 3

)
,

(
1 1

−1 1

)
,

(
−1 −1

2 −1

)
,

(
1 3

2 4

)}
.

(b)

S2 =

{(
1 2

1 2

)
,

(
1 3

−1 5

)
,

(
1 1

3 −1

)}
.

35. ⟨(I-10)
I – 10⟩ Let B = {v1, v2, v3} and C = {w1, w2, w3}, where

v1 =

11

−1

−1

 , v2 =

5

0

0

 , v3 =

 4

0

−1


and

w1 =

1

0

1

 , w2 =

−1

1

1

 , w3 =

 2

1

−1

 .

Given that B and C are bases for R3, find the change-of-basis matrix PC←B.

36. ⟨(I-10)
I – 10⟩ Consider the following bases B, C, and E for P1:

B = {3x+ 1, 8x+ 2}

C = {x+ 1, x− 1}

E = {x, 1}.

(a) Find each of PB←E , PC←B, and PC←E .
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(b) Verify that PC←E = PC←BPB←E .

37. ⟨(I-8)
I – 8⟩ Let p = ax2 + bx+ c be a polynomial of degree 2 (so a ̸= 0).

(a) Show that B = {p, p′, p′′} is a basis for P2.

(b) Write down the coordinate vectors of the polynomials

p, p+ p′, p+ p′ + p′′

with respect to the basis B.

(c) Deduce that {p, p+ p′, p+ p′ + p′′} is also a basis of P2.

38. ⟨(I-8)
I – 8⟩ Let V be an n-dimensional vector space with basis B = {u1, . . . , un}, let
v1, . . . , vn be any vectors in V , and let

A =
(
[v1]B [v2]B · · · [vn]B

)
.

Show that {v1, . . . , vn} is a basis for V if and only if det(A) ̸= 0.

39. ⟨(I-5)
I – 5,

(I-7)
I – 7⟩ In some 4-dimensional vector space V with basis B = {v1,v2,v3,v4},

there are vectors u1,u2,u3 whose coordinate vectors with respect to B are

[u1]B =


1

−1

1

3

 , [u2]B =


−2

3

−1

−5

 , [u3]B =


2

−1

4

9

 .

Show that v1 ∈ Span(u1,u2,u3), and express v1 as a linear combination of
u1,u2,u3. Hint: Begin with the equation v1 = c1u1 + c2u2 + c3u3, take coor-
dinate vectors of both sides, and show that the resulting equation has a solution in
c1, c2, c3.

40. ⟨(I-10)
I – 10⟩ Consider the following bases for R2:

B =

{(
11

2

)
,

(
30

5

)}

C =

{(
3

1

)
,

(
5

0

)}

E =

{(
1

2

)
,

(
2

−1

)}
.

(a) Find PC←B and PE←C .
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(b) Use your answers to part (a) to find PE←B via a single matrix multiplication.

(c) Use your answer to part (b) to find PB←E .

(d) Use your answer to part (c) to write

(
1

2

)
as a linear combination of

(
11

2

)

and

(
30

5

)
.

41. ⟨(I-10)
I – 10⟩ Let

p1(x) = 2x2 + 2x+ 2 p2(x) = 3x2 + 5x+ 6 p3(x) = 2x2 + 5x+ 6

q1(x) = x2 + x+ 2 q2(x) = x2 + 2x+ 2 q3(x) = x2 + 2x+ 3.

Given that the sets B = {p1, p2, p3} and C = {q1, q2, q3} are both bases for P2,
find the change-of-basis matrix PC←B. Show your steps.

42. ⟨(I-10)
I – 10⟩ Consider the invertible 3× 3 matrix A below and its inverse:

A =

 1 −1 2

−1 2 −3

1 1 1

 , A−1 =

 5 3 −1

−2 −1 1

−3 −2 1

 .

Suppose that B = {u1,u2,u3} and C = {v1,v2,v3} are bases for a 3-dimensional
vector space V , and suppose that PC←B = A.

(a) Express 2u1 + 3u2 + 5u3 as a linear combination of v1,v2,v3.

(b) Express v1 + 2v2 + 3v3 as a linear combination of u1,u2,u3.

43. ⟨(I-10)
I – 10⟩ Suppose f1, f2, f3 ∈ F are linearly independent, and let V = Span(f1, f2, f3).

(a) Define

g1 = −f1 − 2f2 − 3f3

g2 = −2f1 − f2 + 2f3

g3 = 2f1 + 2f2

h1 = f2 + 2f3

h2 = f1 + 2f2 + 3f3

h3 = f1 + f2 − f3.

By row-reducing an appropriate 3× 3 matrix, show that B = {g1, g2, g3} is a
basis for V .
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(b) By row-reducing an appropriate 3× 6 matrix, simultaneously show that C =

{h1, h2, h3} is a basis for V and find PC←B.

44. ⟨(I-9)
I – 9⟩ Let f1, f2, f3, f4 ∈ F , and let V = Span(f1, f2, f3, f4). Now suppose that

there are g1, g2, g3, g4 ∈ V such that the only solution to the equation c1g1 +

c2g2 + c3g3 + c4g4 = 0 is c1 = c2 = c3 = c4 = 0. Show that both {f1, f2, f3, f4}
and {g1, g2, g3, g4} are bases for V .

45. ⟨(I-9)
I – 9⟩ Let V be a 3-dimensional vector space with basis B = {v1,v2,v3}, and sup-

pose that u1,u2,u3 are vectors in V such that every vi ∈ B is a linear combination
of u1,u2,u3. Show that {u1,u2,u3} is a basis for V .

46. ⟨(I-6)
I – 6,

(I-7)
I – 7,

(I-8)
I – 8,

(I-10)
I – 10⟩ In this question, you may use the following fact: If

B = {u1,u2} is a basis for R2, then the area of the parallelogram formed by u1

and u2 is |det(PE←B)|, where E is the standard basis of R2.

Let D = {w1,w2} be a basis for R2, and define

v1 =
1

a+ b
(
√
2w1 +w2)

v2 =
1

a− b
(w1 +

√
2w2)

u1 = av1 + bv2

u2 = bv1 + av2

where a, b ∈ R satisfy a2 ̸= b2 (so all of the above vectors are well defined).

(a) Show that {u1,u2} is a basis for R2.

(b) Show that the area of the parallelogram formed by u1 and u2 remains constant
as a and b vary (subject to the constraint that a2 ̸= b2).

47. ⟨(I-6)
I – 6,

(I-7)
I – 7,

(I-8)
I – 8,

(I-10)
I – 10⟩ In this question, you may use the following fact: If

B = {u1,u2} is a basis for R2, then the area of the parallelogram formed by u1

and u2 is |det(PE←B)|, where E is the standard basis of R2.

Suppose now that C = {v1,v2} is a basis for R2 and that the area of the parallel-
ogram formed by v1 and v2 is 1/2.

(a) Show that, for any given x ∈ R, the vectors u1 = (x − 1)v1 − 5v2 and
u2 = 5v1 + (x− 3)v2 form a basis for R2.

(b) Find the area of the parallelogram formed by u1 and u2, expressing your
answer in terms of x. Hint: Use Proposition 10.2 in Section I of the course
notes.
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(c) Find x such that the area in part (b) is least. What is the area in that case?

48. ⟨(I-2)
I – 2,

(I-4)
I – 4⟩ Let f1, . . . , fn ∈ F be differentiable functions that are linearly in-

dependent. Suppose that there are x1, . . . , xm ∈ R, where m < n, such that
f ′j(xi) ∈ Q for all i ∈ {1, . . . ,m} and all j ∈ {1, . . . , n}. Show that there are
a1, . . . , an ∈ Z such that the function f = a1f1 + · · · + anfn satisfies f ′(xi) = 0

for all i and is not the zero function.

49. ⟨(I-4)
I – 4,

(I-5)
I – 5,

(I-7)
I – 7⟩ Define functions f1, f2, f3 ∈ F by

f1(x) =
1

x2 + 1
, f2(x) =

1

x2 + 2
, f3(x) =

1

x2 + 3
.

(a) Show that the function g ∈ F defined by

g(x) =
1

(x2 + 1)(x2 + 2)(x2 + 3)

is in the space W = Span(f1, f2, f3), and express g as a linear combination of
f1, f2, f3.

(b) Show that B = {f1, f2, f3} is a linearly independent set. You may refer to any
relevant calculations you performed in part (a).

(c) In light of part (b), the set B is a basis for W . Write down [g]B.

50. ⟨(I-7)
I – 7,

(I-8)
I – 8,

(I-9)
I – 9,

(I-10)
I – 10⟩ In this question, you may use the fact that the matrix

A below is invertible with the given inverse:

A =

 1 1 1

8 7 5

15 10 6

 , A−1 =

 4/3 −2/3 1/3

−9/2 3/2 −1/2

25/6 −5/6 1/6

 .

Define functions f1, f2, f3, g1, g2, g3 ∈ F by

f1(x) =
1

x2 + 2
f2(x) =

1

x2 + 3
f3(x) =

1

x2 + 5

g1(x) =
x4

p(x)
g2(x) =

x2

p(x)
g3(x) =

1

p(x)

where p(x) = (x2 + 2)(x2 + 3)(x2 + 5). You may assume that C = {g1, g2, g3} is a
linearly independent set and is therefore a basis for the space V = Span(g1, g2, g3).
(Show this yourself for extra practice.)

(a) Using the fact that f1(x) = (x2 + 3)(x2 + 5)/p(x), express f1 as a linear
combination of g1, g2, g3 and then write down the coordinate vector [f1]C .
Find [f2]C and [f3]C in the same way.
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(b) Using the coordinate vectors [f1]C , [f2]C , [f3]C found in part (a), show that
B = {f1, f2, f3} is a linearly independent set.

(c) Making reference to Proposition 9.2 in Section I of the course notes, explain
briefly why B must be a basis for V .

(d) Express each of g1, g2, g3 as a linear combination of f1, f2, f3.

51. ⟨(II-1)
II – 1⟩ Decide whether each of the following maps is a linear transformation.

Justify your answer in each case.

(a)

φ1 :Mn(R) → R

A 7→ Tr(AY )

where Y is some fixed matrix in Mn(R).

(b)

φ2 : R3 → Sx1x2
x3

 7→ (xn+1
1 + xn+1

2 + xn+1
3 )n

52. ⟨(II-1)
II – 1⟩ Decide whether each of the following maps is a linear transformation.

Justify your answer in each case.

(a)

φ1 : R3 → P2u1u2
u3

 7→ u1(x+ 1)2 + u2(x+ 1) + u3

(b)

φ2 : F → M2(R)

f 7→

(
f(1)2 f(1)f(2)

f(1)f(2) f(2)2

)

53. ⟨(II-1)
II – 1⟩ Decide whether each of the following maps is a linear transformation.

Justify your answer in each case.
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(a)

φ1 : R2 → P2(
a1

a2

)
7→ (a1 − a2)x

2 + (a1 + a2)x+ (2a1 + 3a2)

(b)

φ2 :M3(R) → R

(ai,j)i,j 7→ min
i,j

(ai,j)

(i.e., φ2(A) is the minimum of all 9 entries of the matrix A)

(c)

φ3 : S → S

(an)n 7→ (an2)n

(d)

φ4 : P3 → P9

p 7→ p(p(x))

54. ⟨(II-1)
II – 1⟩ Decide whether each of the following maps is a linear transformation.

Justify your answer in each case.

(a)

φ1 : R2 → R(
x1

x2

)
7→ |x1 + x2| − |x1 − x2|.

(b)

φ2 :M3(R) → M3(R)

A 7→ Tr(A)A.

(c)

φ3 : P3 → P4

p 7→ d

dx
((x2 + 1)p(x)).
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(d)

φ4 : C[1, 2] → R

f 7→
∫ 2

1

f(x)

x
dx,

where C[1, 2] is the space of continuous functions [1, 2] → R.

55. ⟨(II-2)
II – 2⟩ Decide whether the linear transformation

φ : P2 → R3

p 7→

 p(1)

p′(2)

p′′(3)


is injective. Justify your answer either way.

56. ⟨(II-2)
II – 2,

(II-3)
II – 3⟩ Is the trace map

φ :M3(R) → R

A 7→ Tr(A)

injective, surjective, both, or neither?

57. ⟨(II-2)
II – 2⟩ Find a non-zero polynomial in the kernel of the linear transformation

φ : P2 → M2(R)

ax2 + bx+ c 7→

(
a+ b+ c a+ 2b+ 3c

−a+ b+ 3c a− c

)
.

Also, find a non-zero matrix in the image of this linear transformation.

58. ⟨(II-3)
II – 3⟩ Is the linear transformation φ in Question 57 surjective? If not, find a

matrix in M2(R) that is not in Image(φ).

59. ⟨(II-2)
II – 2⟩ Show that the following linear transformation is injective:

φ : P2 → R3

p 7→

p(−1)

p(0)

p(1)

 .

60. ⟨(II-3)
II – 3⟩ Is the linear transformation φ in Question 59 surjective?
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61. ⟨(II-2)
II – 2,

(II-3)
II – 3⟩ Is the linear transformation

φ : P2 → M2(R)

p 7→

(
p(0) + p(1) p′(0) + p′(1)

p(0)− p(1) p′(0)− p′(1)

)
injective, surjective, both, or neither?

62. ⟨(II-2)
II – 2,

(II-3)
II – 3⟩ Consider the linear transformation

φ :M2(R) → P1

A 7→ Tr(A)x+Tr(BA),

where B =

(
1 1

1 1

)
.

(a) If

A =

(
a b

c d

)
,

express φ(A) as a polynomial whose coefficients are given explicitly in terms
of a, b, c, d.

(b) Show that φ is surjective.

(c) Find a non-zero matrix in Ker(φ).

63. ⟨(II-4)
II – 4⟩ Use the rank-nullity theorem to find the dimension of Image(φ), where φ

is the linear transformation in Question 61.

64. ⟨(II-3)
II – 3,

(II-4)
II – 4⟩ Let

X =

0 0 1

1 0 0

0 1 0

 ,

and consider the linear transformation

φ :M3(R) → R3

A 7→

 Tr(A)

Tr(XA)

Tr(X2A)

 .

Show that φ is surjective, and then use the rank-nullity theorem to find the di-
mension of Ker(φ).

65. ⟨(II-2)
II – 2,

(II-3)
II – 3⟩
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(a) Let E1, . . . , E4 ∈M2(R) be the matrices

E1 =

(
1 0

0 0

)
, E2 =

(
0 1

0 0

)
, E3 =

(
0 0

1 0

)
, E4 =

(
0 0

0 1

)
,

and let φ :M2(R) →M2(R) be the linear transformation such that φ(E1) =

E3, φ(E2) = E4, φ(E3) = 0, and φ(E4) = 0. Show that Ker(φ) = Image(φ).

(b) Let V be a vector space and π : V → V a linear transformation such that
π(π(v)) = π(v) for all v ∈ V . Show that if v is in both Ker(π) and Image(π),
then v = 0V .

66. ⟨(II-2)
II – 2,

(II-3)
II – 3,

(II-4)
II – 4⟩ Define

φ : P4 → M2(R)

p 7→

(
p(1)− p(2) p(2)− p(3)

p(3)− p(4) p(4)− p(1)

)
.

(a) Find a basis for Ker(φ). Hint: If p ∈ Ker(φ), consider the polynomial q(x) =
p(x)− p(1). What can you deduce about q?

(b) Write down nullity(φ), and use the rank-nullity theorem to find rank(φ).

(c) Find a basis for Image(φ).

67. ⟨(II-4)
II – 4⟩ Let U and V be vector spaces with dim(U) = 5 and dim(V ) = 3, and

suppose that φ : U → V is a linear transformation. If x ∈ Ker(φ), show that there
is y ∈ Ker(φ) such that y is not a scalar multiple of x. Hint: Suppose that every
y ∈ Ker(φ) were a scalar multiple of x. Use the rank-nullity theorem to arrive at
a contradiction.

68. ⟨(II-5)
II – 5,

(II-6)
II – 6⟩ Let f, g : R → R be the functions given by f(x) = ex and g(x) =

e−x, and let V = Span(f, g) ⊆ F . Define

φ : V → R2

h 7→

∫ ln(2)

0
h(x) dx∫ ln(3)

0
h(x) dx

 .

(a) Find [φ]C←B, where B = {f, g} and C = {e1, e2}, the standard basis of R2.

(b) Using [φ]C←B, show that φ is both injective and surjective.

69. ⟨(II-5)
II – 5⟩ For the linear transformation

φ :M2(R) → R

A 7→ Tr(A),
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find the matrix [φ]C←E , where

E =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}

and C = {1}.

70. ⟨(II-5)
II – 5,

(II-6)
II – 6⟩ Consider the linear transformation

φ : P2 → M2(R)

ax2 + bx+ c 7→

(
a+ b+ c a+ 2b+ 3c

−a+ b+ 3c a− c

)
.

(a) Find the matrix [φ]E←B, where B = {x2, x, 1} and E is as in Question 69.

(b) Use [φ]E←B to find a basis for Ker(φ) and a basis for Image(φ).

71. ⟨(II-5)
II – 5,

(II-6)
II – 6⟩ Consider the linear transformation

φ : P2 → M2(R)

p 7→

(
p(0) + p(1) p′(0) + p′(1)

p(0)− p(1) p′(0)− p′(1)

)
.

(a) Find the matrix [φ]E←B, where B = {x2, x, 1} and E is as in Question 69.

(b) Use part (a) to show that φ is injective and to find a basis for Image(φ).

72. ⟨(II-5)
II – 5,

(II-6)
II – 6⟩ Consider the linear transformation

φ : P3 → P2

p 7→ p′ + p′′ + p′′′ − p(0)(x2 + x+ 1).

(a) Find [φ]C←B, where B = {x3, x2, x, 1} and C = {x2, x, 1}.

(b) Using your answer to part (a), find a basis for Ker(φ).

(c) Is φ surjective? Briefly justify your answer.

73. ⟨(II-5)
II – 5,

(II-6)
II – 6⟩ A linear transformation φ : P4 →M2(R) has matrix

[φ]C←B =


1 1 2 1 −1

1 2 3 0 2

1 3 4 1 1

1 −1 0 0 −1

↔


1 0 1 0 0

0 1 1 0 1

0 0 0 1 −2

0 0 0 0 0


Paul Buckingham Linear Algebra II (MATH 225): Practice Problems – v 1.12 | 19



with respect to the basis B = {x4, x3, x2, x, 1} of P4 and the basis

C =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}

of M2(R).

(a) Find a basis for Ker(φ).

(b) Find a basis for Image(φ).

74. ⟨(II-5)
II – 5,

(II-6)
II – 6⟩ Let V = {(an)n ∈ S | an = an−1 + an−2 for all n ≥ 2}, and let

s, t ∈ V be the sequences beginning

s = (1, 0, 1, 1, 2, 3, 5, . . .)

t = (0, 1, 1, 2, 3, 5, 8, . . .)

It is a fact that B = {s, t} is a basis for V , and you may assume this fact. Now
consider the linear transformation

φ : V → R2

(an)n 7→

(
a2

a6

)
.

(a) Find [φ]E←B, where E = {e1, e2}, the standard basis of R2.

(b) Using part (a), show that if (an)n and (bn)n are sequences in V satisfying
a2 = b2 and a6 = b6, then an = bn for all n ≥ 0. Hint: What does your answer
to part (a) tell you about whether φ is injective?

75. ⟨(II-5)
II – 5,

(II-7)
II – 7⟩ Let V = {(an)n ∈ S | an = an−1 − an−2 for all n ≥ 2}. The space

V has basis C = {s, t}, where

s = (1, 0,−1,−1, 0, 1, . . .),

t = (0, 1, 1, 0,−1,−1, . . .).

Now consider the linear transformations

φ : P1 → V

p 7→ p(0)s+ p(1)t

ψ : V → M2(R)

(an)n 7→

(
a0 a1

a2 a3

)
.
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(a) For p ∈ P1, find ψ ◦ φ(p) as a matrix whose entries are given explicitly in
terms of p. Use your description of ψ ◦φ to find [ψ ◦φ]E←B, where B = {x, 1}
and E is as in Question 69.

(b) Find [φ]C←B and [ψ]E←C , and verify by direct calculation that
[ψ ◦ φ]E←B = [ψ]E←C [φ]C←B.

76. ⟨(II-2)
II – 2,

(II-3)
II – 3,

(II-5)
II – 5,

(II-7)
II – 7⟩ Consider again the space

V = {(an)n ∈ S | an = an−1 − an−2 for all n ≥ 2}.

Recall from Question 75 the basis C = {s, t} of V , where

s = (1, 0,−1,−1, 0, 1, . . .),

t = (0, 1, 1, 0,−1,−1, . . .).

This time, we define linear transformations

φ : V → M2(R)

(an)n 7→

(
a0 a1

a4 a3

)

ψ :M2(R) → R2

A 7→

(
Tr(A)

Tr(XA)

)
,

where X =

(
0 1

1 0

)
.

(a) Compute [φ]E←C and [ψ]D←E , where E is as in Question 69 and D is the
standard basis for R2.

(b) Show by direct calculation that [ψ]D←E [φ]E←C = 0, and deduce that ψ ◦ φ :

V → R2 is the zero map.

(c) Show that Image(φ) = Ker(ψ). Hint: Use part (b) and compare dimensions.

77. ⟨(II-8)
II – 8⟩ Show that the function

f : R>0 → R<2

x 7→ 2− 1

x

is invertible, and find its inverse f−1 : R<2 → R>0. Here, R<2 denotes the set of
real numbers less than 2, and R>0 denotes the set of positive real numbers.
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78. ⟨(II-5)
II – 5,

(II-7)
II – 7⟩ In this question, we will work with the basis B = {x2, x, 1} of P2

and the basis D = {X1, X2, X3, X4} of M2(R), where

X1 =

(
1 0

0 0

)
, X2 =

(
1 1

0 0

)
, X3 =

(
1 1

1 0

)
, X4 =

(
1 1

1 1

)
.

We also let V = {(an)n ∈ S | an = 2an−1 + an−2 − an−3 for all n ≥ 3}, a 3-
dimensional space.

Suppose that φ : P2 → V and ψ : V → M2(R) are linear transformations such
that

[φ]C←B =

1 0 1

0 1 1

1 −1 1

 , [ψ]D←C =


1 0 −1

0 1 −1

1 1 −2

1 −1 0


for some basis C of V . If p = ax2 + bx + c ∈ P2, find ψ ◦ φ(p) as a matrix whose
entries are given explicitly in terms of the real numbers a, b, c. Show your work.

79. ⟨(II-8)
II – 8⟩ Show that the function

f : R≥2 → R≥1
x 7→ ex

2−4x+4

is invertible, and find its inverse f−1 : R≥1 → R≥2. Here, R≥a denotes the set of
real numbers greater than or equal to a.

80. ⟨(II-8)
II – 8⟩ Without using Proposition 8.1 or Proposition 9.1 in Section II of the

course notes, decide whether the linear transformation

φ : R3 → P2a1a2
a3

 7→ (a1 − a2)x
2 + (a2 − a3)x+ a1 + a3

is invertible, and find its inverse φ−1 : P2 → R3 if so.

81. ⟨(II-5)
II – 5,

(II-8)
II – 8⟩ Define

φ :M2(R) → M2(R)

A 7→

(
1 2

2 1

)
A+

(
2 −1

−1 2

)
AT,
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and let C be the basis

C =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}

of M2(R). Calculate [φ]C , and use it to decide whether φ is an isomorphism.

82. ⟨(II-5)
II – 5,

(II-8)
II – 8⟩ Consider the linear transformation

φ : P2 → R3

p 7→

p(−1)− p′(−1)

p(0)− p′(0)

p(1)− p′(1)

 .

You may use the fact that

[φ]E←B =

 3 −2 1

0 −1 1

−1 0 1

 ,

where B = {x2, x, 1} and E = {e1, e2, e3}, the standard basis of R3.

(a) Show that φ is invertible, and find the polynomial φ−1(a1, a2, a3) for a given
vector (a1, a2, a3) ∈ R3.

(b) Find the polynomial p ∈ P2 such that p(−1) = p′(−1), p(1) = p′(1), and
p(0) = p′(0)− 1.

83. ⟨(II-8)
II – 8⟩ Show that the linear transformation

φ : S → S

(an)n 7→

(
n∑

k=0

ak

)
n

is invertible, and find its inverse φ−1 : S → S.

84. ⟨(II-2)
II – 2,

(II-3)
II – 3,

(II-8)
II – 8⟩ Let C ∈Mn(R), let s be a non-zero real number, and define

φ :Mn(R) → Mn(R)

A 7→ Tr(A)C − sA.

(a) Show that if Tr(C) ̸= s, then φ is an isomorphism. Hint: First show that φ is
injective.

(b) Now assume Tr(C) = s.
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(i) Show that Ker(φ) = Span(C).

(ii) Show that C ̸∈ Image(φ).

85. ⟨(I-4)
I – 4,

(II-5)
II – 5,

(II-8)
II – 8⟩ Let c, s ∈ R with s ̸= 0, and define differentiable functions f

and g by

f(x) = ecx sin(sx)

g(x) = ecx cos(sx).

(a) Show that f and g are linearly independent.

(b) Let V = Span(f, g), and define

φ : V → V

h 7→ h′.

Show that

[φ]B =

(
c −s
s c

)
,

where B = {f, g}.

(c) Show that [φ]B is invertible.

(d) Let h ∈ V . Using part (c), show that there is a unique function H ∈ V such
that H ′ = h. Denote the function H by

∫
h.

(e) Suppose h = λf + µg with λ, µ ∈ R. Again using part (c), express
∫
h as a

linear combination of f and g.

86. ⟨(II-5)
II – 5,

(II-7)
II – 7,

(II-8)
II – 8⟩ We continue with the notation of Question 85, taking c =

cos(2π/9) and s = sin(2π/9).

(a) Show that [φ]B is equal to the rotation matrix for rotation of the plane by
angle 2π/9 anticlockwise.

(b) Show that if h ∈ V , then h(9) = h, where h(9) denotes the 9th derivative of h.

(c) Deduce that
∫
h = h(8).

87. ⟨(II-5)
II – 5,

(II-6)
II – 6,

(II-8)
II – 8,

(II-9)
II – 9⟩ Let U and V be finite-dimensional vector spaces

with bases B and C respectively, and suppose that φ : U → V is a surjective linear
transformation. Suppose you also know that a row-echelon form of [φ]C←B has
a pivot in every column. Decide whether φ is invertible, explaining your answer
carefully. You may use any fact given in the course notes.
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88. ⟨(II-10)
II – 10⟩ Decide which of the following vector spaces are isomorphic to each other.

If you think, for example, that V1 and V4 are isomorphic, V2 and V3 are isomorphic,
and V5 and V6 are isomorphic, then give your answer as

{1, 4}, {2, 3}, {5, 6}.

You do not need to show your reasoning.

V1 = {(an)n ∈ S | an = 2an−1 − an−2 + 4an−3 for all n ≥ 3}

V2 = R8

V3 = {A ∈M2(R) | Tr(A) = 0}

V4 = Span(sin, cos)

V5 = M2,4(R)

V6 = Span(f, g, h) where f(x) = sin2(x), g(x) = cos2(x),
and h(x) = cos(2x)

Hint: A basis for V1 is {(1, 0, 0, 4, . . .), (0, 1, 0,−1, . . .), (0, 0, 1, 2, . . .)}.

89. ⟨(II-10)
II – 10⟩ Repeat Question 88 with the following vector spaces:

V1 = R6

V2 = P3

V3 = {(an)n ∈ S | an = an−1 + an−2 for all n ≥ 2}

V4 = M2(R)

V5 = P1

V6 = M2,3(R)

90. ⟨(II-10)
II – 10⟩ Define functions f1, f2, f3 ∈ F by

f1(x) = 1, f2(x) = cos(x), f3(x) = cos(x+ π
4 ),

and let V = Span(f1, f2, f3). Are the spaces R3 and V isomorphic to each other?
If so, provide an isomorphism φ : R3 → V . Otherwise, explain why not. In your
answer, you may use facts stated in the course notes, but anything else that you
assert or deduce must be justified.

91. ⟨(III-1)
III – 1⟩ Find the eigenvalues and eigenspaces of each of the following matrices.

(a)

A =

(
8 6

−3 −1

)
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(b)

B =

 7 −12 −6

3 −5 −3

−3 6 4



92. ⟨(III-1)
III – 1⟩ Decide whether the matrix

C =

 5 −3 −9

−12 5 18

6 −3 −10


is diagonalizable over R. If it is, diagonalize it. Otherwise, explain why it is not
diagonalizable. You may use the fact that pC(x) = (x+ 1)2(x− 2).

93. ⟨(III-1)
III – 1⟩ Decide whether the matrix

C =

 4 −1 1

2 1 1

−10 5 −3


is diagonalizable over R. If it is, diagonalize it. Otherwise, explain why it is not
diagonalizable. You may use the fact that pC(x) = (x+ 2)(x− 2)2.

94. ⟨(III-1)
III – 1⟩ Repeat Question 93 for each of the following matrices:

(a)

A =

 3 1 −3

−42 −3 −3

−14 −2 2

 , pA(x) = (x− 3)2(x+ 4).

(b)

B =

 4 5 1

−2 −3 −1

3 5 1

 , pB(x) = (x− 2)(x2 + 1).

95. ⟨(III-1)
III – 1⟩ For each of the matrices below, decide whether it is diagonalizable. If

it is, diagonalize it. Otherwise, explain briefly why it is not diagonalizable. Take
especial care over signs.

(a)

A =

−1 −5 5

5 −1 5

5 −5 9

 .
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(b)

B =

−1 5 −5

5 −1 5

5 −5 9

 .

96. ⟨(III-1)
III – 1⟩ Decide whether the matrix

C =


0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


is diagonalizable, explaining your answer. Note the value of 1 in the (1, 2)-entry
of C.

97. ⟨(III-1)
III – 1⟩ A matrix A ∈M5(R) has eigenvalues −2,−1, 0, 1, 2. Answer the following

questions about A, explaining your answers.

(a) Is A diagonalizable?

(b) Is A invertible?

(c) What are the eigenvalues of A2? Take especial care in explaining your answer
to this part.

98. ⟨(III-1)
III – 1⟩ Let b > 1 be a real number, and let

A =


1 −b b2 −b3

0 b −b2 b3

0 0 b2 −b3

0 0 0 b3

 .

(a) Find pA(x).

(b) How many eigenvalues does A have, and what is the geometric multiplicity of
each one? If you wish, you may use the fact that the geometric multiplicity
dλ and the algebraic multiplicity mλ always satisfy 1 ≤ dλ ≤ mλ. Caution:
Take care to justify why A has as many eigenvalues as you claim.

(c) By considering the sum of the geometric multiplicities of the eigenvalues, show
that A is diagonalizable.
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99. ⟨(III-2)
III – 2⟩ Solve the system of first-order differential equations

f ′1 = 8f1 + 2f2

f ′2 = −15f1 − 3f2

subject to the constraints f1(0) = 1 and f2(0) = −1.

100. ⟨(III-2)
III – 2⟩ Solve the system

f ′1 = 4f1 + f2

f ′2 = −6f1 − 3f2

of differential equations subject to the constraints f1(0) = −3 and f ′1(0) = 16.
Note that the second constraint involves the derivative of f1.

101. ⟨(III-2)
III – 2⟩ Solve the system of first-order differential equations

f ′1 = −3f1 − 2f2 + 2f3

f ′2 = 2f1 + f2 − 2f3

f ′3 = −2f1 − 2f2 + f3

subject to the constraints f1(0) = 6, f2(0) = −3, f3(0) = 8. You may use the fact
that P−1AP = D, where

A =

−3 −2 2

2 1 −2

−2 −2 1


P =

−1 1 1

1 0 −1

0 1 1


D =

−1 0 0

0 −1 0

0 0 1

 .

102. ⟨(III-2)
III – 2⟩ Solve the system of first-order differential equations

f ′1 = f1 + f2 + 4f3

f ′2 = 2f1 + 2f2 − 4f3

f ′3 = −2f1 + f2 + 7f3

subject to the constraints f1(0) = 4, f2(0) = 3, f3(0) = 1.
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103. ⟨(III-2)
III – 2⟩ Consider the system of differential equations

f ′1 = −3f1 + 2f2

f ′2 = −f1 − 6f2
(∗)

(a) Find the general solution to the system in (∗).

(b) Find all the solutions to (∗) that satisfy both of the following conditions
simultaneously:

f1(0) = f2(0)

7f ′1(0) = f ′2(0)

(If you find only the solution f1 = f2 = 0, then you have made a mistake
somewhere.)

104. ⟨(III-2)
III – 2⟩ Consider the following system of differential equations:

f ′1 = f1 + 3f2

f ′2 = −3f1 − 5f2

The matrix

A =

(
1 3

−3 −5

)
is not diagonalizable, but it does satisfy P−1AP = B where

P =

(
3 1

−3 0

)
, B =

(
−2 1

0 −2

)
.

Using this information, show that the functions g1, g2 defined by(
g1

g2

)
= P−1

(
f1

f2

)

satisfy g′1 = −2g1 + g2 and g′2 = −2g2.

105. ⟨(III-2)
III – 2⟩ This question carries on from Question 104.

(a) If b ∈ R is constant, the solutions g to the differential equation g′(x) =

−2g(x) + be−2x are given by g(x) = (a + bx)e−2x for a ∈ R. Using this fact,
solve the equations g′1 = −2g1 + g2 and g′2 = −2g2 for g1, g2.

(b) Using part (a) and the fact that(
f1

f2

)
= P

(
g1

g2

)
,
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solve the equations f ′1 = f1 + 3f2 and f ′2 = −3f1 − 5f2 introduced in Ques-
tion 104.

106. ⟨(III-3)
III – 3⟩ Decide whether the matrix

B =

(
1 2

−4 5

)
is diagonalizable over C. If it is, diagonalize it. Otherwise, explain why it is not
diagonalizable over C.

107. ⟨(III-3)
III – 3⟩ Show that the matrix

A =

 3 4 2

4 3 2

−4 −9 −3


is diagonalizable over C, and diagonalize it. You may use the fact that pA(x) =
(x+ 1)(x2 − 4x+ 5).

108. ⟨(III-3)
III – 3⟩ Repeat Question 107 with the matrix

A =

 1 −3 −2

1 2 1

−1 1 2

 ,

which has characteristic polynomial pA(x) = (x− 3)(x2 − 2x+ 2).

109. ⟨(III-3)III – 3⟩

(a) Show that if z ∈ C satisfies z2 +
√
3 z + 3 = 0, then z3 = 3

√
3.

(b) Suppose that A ∈M4(C) has characteristic polynomial

pA(x) = (x2 + 3)(x2 +
√
3x+ 3).

Find A12. You may use the fact that A is a 4 × 4 matrix with 4 distinct
complex eigenvalues and is therefore diagonalizable over C.

110. ⟨(III-4)
III – 4⟩ Let

A =

(
2 −4

7 4

)
.

(a) Find an invertible matrix Q ∈M2(R), a positive real number s, and a rotation
matrix R such that Q−1AQ = sR.
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(b) What is the angle of rotation of R, measured anticlockwise?

111. ⟨(III-4)
III – 4⟩ Let

A =

(
1 16

−10 9

)
.

Find an invertible matrix Q ∈ M2(R), a positive real number s, and a rotation
matrix R such that Q−1AQ = sR. You do not need to find the angle of rotation of
the rotation matrix R. Hint: When finding the eigenvalues, you may find it helpful
to know that 576 = 242.

112. ⟨(III-4)III – 4⟩ Let A =

(
1 7

−1 5

)
.

(a) Find an invertible matrix Q ∈ M2(R), a positive real number s, and a rota-
tion matrix R such that Q−1AQ = sR. What is the angle of rotation of R,
measured anticlockwise?

(b) Use your answer to part (a) to find the smallest positive integer k such that
Ak ∈ Span(I). What is Ak in this case?

113. ⟨(III-4)
III – 4⟩ Let B =

(
1 4

−5 5

)
.

(a) Find an invertible matrix Q ∈M2(R), a positive real number s, and a rotation
matrix R such that Q−1BQ = sR.

(b) Show that there is no positive integer k such that Bk ∈ Span(I). You may
use the following fact: If R is a 2 × 2 rotation matrix with rational entries,
and R is not one of the four matrices(

1 0

0 1

)
,

(
0 −1

1 0

)
,

(
0 −1

−1 0

)
,

(
0 1

−1 0

)
,

then there is no positive integer m such that Rm = I. (For those interested
in number theory, this is equivalent to the fact that the only roots of unity of
the form a+ bi with a, b ∈ Q are 1, i,−1,−i.)

114. ⟨(III-4)
III – 4⟩ Suppose that C ∈ M2(R) has a non-real eigenvalue λ = a + bi, and

suppose that the rotation matrix

R =
1√

a2 + b2

(
a b

−b a

)

has anticlockwise angle of rotation π/3. If the top-left entry of C3 is −64, find a

and b. Hint: Using Proposition 4.1 from Section III of the course notes, express
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C in terms of |λ|, R, and an invertible matrix Q ∈ M2(R), and then take cubes.
Note that it will not be possible to find Q.

115. ⟨(III-1)
III – 1⟩

(a) Let

B =

3 1 0

0 3 0

0 0 −2

 .

Find the eigenvalues of B and the eigenvalues of B2, and show that in this
case the eigenvalues of B2 are exactly the squares of the eigenvalues of B.

(b) Find a matrix C ∈M3(R) such that C2 has a negative eigenvalue.

(c) Show that the following statement is false: If A is a square matrix with real
entries, then the set of real eigenvalues of A2 is equal to the set of squares of
the real eigenvalues of A. Hint: Use part (b).

116. ⟨(IV-1)
IV – 1⟩ Suppose that A ∈Mn(R) is a symmetric matrix satisfying xTAx > 0 for

all non-zero vectors x ∈ Rn.

(a) Show that the pairing

⟨u,v⟩ = uTAv

defines an inner product on Rn.

(b) What choice of matrix A gives the standard inner product (i.e., the dot prod-
uct) on Rn?

117. ⟨(IV-1)
IV – 1⟩ Consider the pairing on R2 defined by

⟨u,v⟩ = 3u1v1 − 5u1v2 − 5u2v1 − 8u2v2

for vectors u = (u1, u2) and v = (v1, v2) in R2.

(a) Which axioms of an inner product does this pairing satisfy?

(b) Does it define an inner product?

118. ⟨(IV-1)
IV – 1⟩ Repeat Question 117 for the pairing defined by

⟨u,v⟩ = 16u1v1 + 12u1v2 + 12u2v1 + 9u2v2

for vectors u = (u1, u2) and v = (v1, v2) in R2. You may wish to consider the
vector u = (−3, 4).
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119. ⟨(IV-1)
IV – 1⟩ Repeat Question 117 for the pairing defined by

⟨u,v⟩ = 13u1v1 − 11u1v2 − 7u2v1 + 10u2v2

for vectors u = (u1, u2) and v = (v1, v2) in R2. You may wish to use the fact that

13x2 − 18xy + 10y2 = (2x− 3y)2 + (3x− y)2

for all x, y ∈ R.

120. ⟨(IV-1)
IV – 1⟩ Consider the pairing on R3 defined by

⟨u,v⟩ = x1y1 + 5x2y2 + 2x2y3 + 2x3y2 + 25x3y3,

where u = (x1, x2, x3) and v = (y1, y2, y3). Decide whether ⟨·, ·⟩ satisfies axiom (iv)
of an inner product, as in Section IV – 1 of the course notes. You may use the fact
that

5a2 + 4ab+ 25b2 = (2a+ 3b)2 + (a− 4b)2

for all a, b ∈ R.

121. ⟨(IV-2)
IV – 2⟩ Endow P2 with the inner product defined by

⟨p, q⟩ = p(−1)q(−1) + p(0)q(0) + p(1)q(1).

Find all polynomials p ∈ P2 of norm 1 that are orthogonal to both x and x2

simultaneously.

122. ⟨(IV-2)
IV – 2⟩ Endow P2 with the inner product ⟨·, ·⟩ defined by

⟨p, q⟩ = p(−1)q(−1) + p(0)q(0) + p(1)q(1).

If p ∈ P2 satisfies ⟨p, 1⟩ = 11, ⟨p, x⟩ = −6, and ⟨p, x2⟩ = 10, what is p? Show all
steps in your answer.

123. ⟨(IV-2)
IV – 2⟩ Let m,n ∈ Z.

(a) Prove the identity

sin(mx) sin(nx) =
1

2

(
cos((m− n)x)− cos((m+ n)x)

)
.

(b) Show that if |m| ≠ |n|, then the functions fm, fn ∈ C[−π, π] defined by
fm(x) = sin(mx) and fn(x) = sin(nx) are orthogonal in C[−π, π].
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124. ⟨(IV-2)
IV – 2⟩ Let u1, . . . ,uk be pairwise orthogonal vectors in an inner product space
(V, ⟨·, ·⟩), i.e., ⟨ui,uj⟩ = 0 for all i, j distinct. If

v = a1u1 + · · ·+ akuk

w = b1u1 + · · ·+ bkuk,

prove that ⟨v,w⟩ = a1b1∥u1∥2 + · · ·+ akbk∥uk∥2. Show your steps carefully.

125. ⟨(IV-2)
IV – 2⟩ Define the following functions in the inner product space C[−π, π]:

f1(x) = 1, f2(x) = sin(x), f3(x) = sin(2x),

g1(x) = sin(x)− sin(2x), g2(x) = 1 + 2 sin(x) + 4 sin(2x).

(a) By evaluating suitable integrals, show that

∥f1∥ =
√
2π, ∥f2∥ =

√
π, ∥f3∥ =

√
π.

(b) Using the fact that f1, f2, f3 are pairwise orthogonal, find all functions h ∈
Span(f1, f2, f3) such that ⟨h, g1⟩ = ⟨h, g2⟩ = 0. It will help to use Ques-
tion 124.

(c) Among the functions h that you found in part (b), find all those that have
norm 1.

126. ⟨(IV-2)
IV – 2,

(IV-3)
IV – 3⟩

(a) Define an inner product ⟨·, ·⟩ on P2 by

⟨p, q⟩ = p(−2)q(−2) + p(0)q(0) + p(2)q(2),

and let q1 = 1, q2 = x, q3 = x2. By applying the Gram–Schmidt process to
the basis {q1, q2, q3} of P2, find an orthonormal basis for P2 with respect to
this inner product.

(b) Repeat part (a) with the inner product

⟨p, q⟩ =
∫ 2

−2
p(x)q(x) dx

on P2, using the same polynomials q1, q2, and q3.

127. ⟨(IV-2)
IV – 2,

(IV-3)
IV – 3⟩ Endow R4 with the standard inner product, i.e., the dot product,

and let U = Span(v1,v2,v3) ⊆ R4, where

v1 =


1

1

0

0

 , v2 =


1

0

1

0

 , v3 =


1

0

0

1

 .
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By applying the Gram–Schmidt process to the basis {v1,v2,v3} of U , find an
orthonormal basis for U .

128. ⟨(IV-3)
IV – 3⟩ Endow P3 with the inner product ⟨·, ·⟩ defined by

⟨p, q⟩ = p(0)q(0) + p(1)q(1) + p(2)q(2) + p(3)q(3).

Find projP2
(q) where q = x3. You may use the fact that the subspace P2 of P3

has orthogonal basis {p1, p2, p3} where

p1 = 1, p2 = x− 3

2
, p3 = x2 − 3x+ 1,

and you may also use the equalities ∥p1∥ = 2, ∥p2∥ =
√
5, and ∥p3∥ = 2. (The

significance of projP2
(q) is that it is the polynomial in P2 that best approximates

the cubic polynomial q = x3 at the four values x = 0, 1, 2, 3.)

129. ⟨(IV-3)
IV – 3⟩ Endow P3 with the inner product ⟨·, ·⟩ defined by

⟨p, q⟩ = p(−1)q(−1) + p(0)q(0) + p(1)q(1) + p(2)q(2),

and let U = {p ∈ P3 | p′(0) = 0}, a subspace of P3 with basis {q1, q2, q3} where
q1 = 1, q2 = x2, and q3 = x3.

(a) Apply the Gram–Schmidt process to q1, q2, q3 to find an orthogonal basis
{p1, p2, p3} for U with respect to the given inner product. Choose p1, p2, p3
to all be monic.

(b) You should have found in part (a) that

p1 = 1, p2 = x2 − 3

2
, p3 = x3 − 20

9
x2 +

4

3

(but do not use this information when answering part (a)).

Find projU (r) where r = x3 + x. You may use the following information:

⟨p1, r⟩ = 10, ⟨p2, r⟩ = 25, ⟨p3, r⟩ =
76

9
,

⟨p1, p1⟩ = 4, ⟨p2, p2⟩ = 9, ⟨p3, p3⟩ =
50

9
.

(The significance of projU (r) is that it is the unique polynomial p ∈ U that
minimizes

∑2
k=−1(r(k)− p(k))2.)

130. ⟨(IV-3)
IV – 3,

(IV-4)
IV – 4⟩ Let

A =


1 0 2

2 1 1

1 0 1

−2 −1 −1

 .
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(a) By performing Gram–Schmidt on the columns of A, find an orthonormal basis
for Col(A).

(b) Use your answer to part (a) to find the totally positive QR-factorization of
A.

131. ⟨(IV-4)
IV – 4⟩ Find the totally positive QR-factorization of the matrix

A =


1 1 1

1 0 0

0 1 0

0 0 1

 .

Hint: Use Question 127.

132. ⟨(IV-4)
IV – 4⟩ Find the totally positive QR-factorization of the matrix

A =


1 0 0

1 1 0

1 1 1

1 1 1

 .

133. ⟨(IV-2)
IV – 2⟩ Let u and v be orthogonal vectors in an inner product space (V, ⟨·, ·⟩).

Show directly from the axioms of an inner product that

dist(u, v) =
√
∥u∥2 + ∥v∥2.

134. ⟨(IV-2)
IV – 2,

(IV-3)
IV – 3⟩ Endow R3 with the inner product ⟨·, ·⟩ defined by

⟨u,v⟩ = 2x1y1 + x1y2 + x2y1 + 5x2y2 + x3y3,

where u = (x1, x2, x3) and v = (y1, y2, y3). (This does indeed define an inner
product, and you may assume this fact here.) In this inner product space, apply
the Gram–Schmidt process to the standard basis {e1, e2, e3} of R3 to find an
orthonormal basis for R3 with respect to this inner product.

135. ⟨(IV-5)
IV – 5⟩ Let

S ′ = {(an)n ∈ S | there exists C > 0 such that, for all n ≥ 1, |an| ≤ C/n}.

This is a subspace of S, and we may endow it with the inner product

⟨α, β⟩ =
∞∑

n=0

anbn,
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where α = (an)n and β = (bn)n. Now let

α = (1/(n+ 3))n =

(
1

3
,
1

4
,
1

5
, . . .

)
∈ S ′

β = (1/(n+ 1))n =

(
1,

1

2
,
1

3
, . . .

)
∈ S ′.

(a) Calculate ∥α∥2 and ∥β∥2. You may use the fact that
∞∑

n=1

1

n2
=
π2

6
.

(b) Using the Cauchy–Schwarz inequality, deduce from your calculations in part (a)
that

∞∑
n=2

1

n2 − 1
≤ π2

6

√
1− 15

2π2
.

136. ⟨(IV-5)
IV – 5⟩ Fix real numbers a < b, let M be a positive real number, and define

B(M) =

{
f ∈ C[a, b]

∣∣∣∣∣
∫ b

a

f(x)2 dx ≤M

}
.

Show that if f, g ∈ B(M), then tf +(1− t)g ∈ B(M) for all t ∈ [0, 1]. Hint: Apply
the triangle inequality to the functions tf and (1− t)g.

137. ⟨(IV-5)
IV – 5⟩ Let (V, ⟨·, ·⟩) be an inner product space, and let u,v be vectors in V .

Recall the triangle inequality, which says that ∥u + v∥ ≤ ∥u∥ + ∥v∥. Under the
assumption that u ̸= 0, show that ∥u + v∥ = ∥u∥ + ∥v∥ if and only if v = cu

for some non-negative scalar c. Your proof should be algebraic; a diagram is not
sufficient.

138. ⟨(IV-1)
IV – 1,

(IV-5)
IV – 5⟩ A metric space consists of a non-empty set X together with a

function d : X ×X → R satisfying the following:

(i) For all x, y ∈ X, d(x, y) = 0 if and only if x = y.

(ii) For all x, y ∈ X, d(x, y) = d(y, x).

(iii) For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

The function d is called a metric (or distance function) on X.

Show that if (V, ⟨·, ·⟩) is an inner product space and d : V × V → R is defined by
d(u,v) = ∥u−v∥, then d is a metric on V , so that V has the structure of a metric
space.
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139. ⟨(IV-5)
IV – 5,

(IV-6)
IV – 6⟩ In this question, do not perform any differentiation; use only the

Cauchy–Schwarz inequality.

(a) Find the maximum value of 3x1 + 4x2 + 5x3 subject to the constraint x21 +
x22 +x23 = 1, and find the unique (x1, x2, x3) where the maximum is attained.

(b) Find the minimum value of x21+x22+x23 subject to the constraint 5x1+12x2+

13x3 = 26, and find the unique (x1, x2, x3) where the minimum is attained.

140. ⟨(IV-5)
IV – 5,

(IV-6)
IV – 6⟩ In this question, do not perform any differentiation; use only the

Cauchy–Schwarz inequality.

(a) Find the maximum value of −2x1 + x2 − x3 subject to the constraint x21 +
x22 +x23 = 1, and find the unique (x1, x2, x3) where the maximum is attained.

(b) Find the minimum value of x21 + x22 + x23 subject to the constraint 4x1 + x2 +

5x3 = 2, and find the unique (x1, x2, x3) where the minimum is attained.

141. ⟨(IV-5)
IV – 5,

(IV-6)
IV – 6⟩ In this question, do not perform any differentiation; use only the

Cauchy–Schwarz inequality.

(a) Find the maximum value of 1
3x1 +

1
2x2 + x3 subject to the constraint x21 +

x22 +x23 = 1, and find the unique (x1, x2, x3) where the maximum is attained.

(b) Find a < 0 such that the minimum of x21 + x22 + x23 subject to the constraint
2x1 +3x2 +6x3 = a is 1. Find also the point (x1, x2, x3) where the minimum
occurs for that value of a.

142. ⟨(IV-5)
IV – 5⟩ Define f ∈ C[0, π/4] by f(x) = sin(x) − cos(x). Among all functions
g ∈ C[0, π/4] such that ∫ π/4

0

f(x)g(x) dx =
1

2
,

find the unique one for which
∫ π/4

0
g(x)2 dx is least. What is

∫ π/4

0
g(x)2 dx for that

g? Explain your answer carefully.

143. ⟨(IV-5)
IV – 5⟩

(a) Find the unique polynomial p ∈ P2 such that p(1) = p(3) = 1 and p(2) = −1.

(b) Among all polynomials q ∈ P2 such that q(1)2 + q(2)2 + q(3)2 = 1, find
the unique one for which q(1) − q(2) + q(3) is greatest. Do not perform any
differentiation.
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144. ⟨(IV-3)
IV – 3,

(IV-7)
IV – 7⟩ Orthogonally diagonalize the real symmetric matrix

A =

 0 2 −1

2 3 −2

−1 −2 0

 ,

whose eigenvalues are −1 and 5.

145. ⟨(IV-3)
IV – 3,

(IV-7)
IV – 7⟩ Orthogonally diagonalize the real symmetric matrix

A =

11 −2 6

−2 11 6

6 6 −5

 .

You may use the fact that A has eigenvalues −9 and 13.

146. ⟨(IV-8)
IV – 8⟩ Find the quadratic form f : R3 → R associated to the real symmetric

matrix −1 2 3

2 −1 5

3 5 −1

 .

147. ⟨(IV-8)
IV – 8⟩ Find the real symmetric 3× 3 matrix A corresponding to the quadratic

form given by

f(x1, x2, x3) = x21 − x22 + 2x23 + x1x2 − 3x1x3 + 5x2x3.

148. ⟨(IV-8)
IV – 8⟩ Let

B =

2 5 10

1 4 3

8 7 6

 .

Find the real symmetric 3× 3 matrix A corresponding to the quadratic form

f : R3 → R

x 7→ xTBx.

149. ⟨(IV-8)
IV – 8⟩ Suppose that the matrix(

a b

c d

)
∈M2(R)
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is invertible, and let

A =

(
a2 − c2 ab− cd

ab− cd b2 − d2

)
.

Show that the quadratic form

f : R2 → R

x 7→ xTAx

is indefinite.

150. ⟨(IV-8)
IV – 8,

(IV-9)
IV – 9,

(IV-10)
IV – 10⟩ For each of the following quadratic forms f , find the

maximum and minimum of f(x) on unit vectors x, and decide whether f is positive
definite, negative definite, non-negative definite (but not positive definite), non-
positive definite (but not negative definite), or indefinite.

(a) f(x1, x2) = x21 + 3x1x2 + 3x22.

(b) f(x1, x2) = x21 − 6x1x2 + 9x22.

(c) f(x1, x2, x3) = x21 − 3x22 − x23 + 2x1x3 − 2x2x3. The factorization
x3 + 3x2 − 3x− 5 = (x+ 1)(x2 + 2x− 5) will help.

151. ⟨(IV-7)
IV – 7,

(IV-8)
IV – 8,

(IV-9)
IV – 9⟩ Orthogonally diagonalize the quadratic form

f : R2 → R(
x1

x2

)
7→ 2x21 + 4x1x2 − x22.

Decide whether f is positive definite, negative definite, non-negative definite, non-
positive definite, or indefinite.

152. ⟨(IV-7)
IV – 7,

(IV-8)
IV – 8,

(IV-9)
IV – 9⟩ Repeat Question 151 for the quadratic form

f : R2 → R(
x1

x2

)
7→ 3x21 + 12x1x2 − 2x22.

153. ⟨(IV-7)
IV – 7,

(IV-8)
IV – 8,

(IV-9)
IV – 9⟩ Repeat Question 151 for the quadratic form

f : R3 → Rx1x2
x3

 7→ 3x22 + 4x1x2 − 2x1x3 − 4x2x3.
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You may wish to look at Question 144.

154. ⟨(IV-8)
IV – 8⟩ Consider the quadratic form

f : R3 → Rx1x2
x3

 7→ 5x21 − 2(x1 + 2x2)
2 + 4(x1 + 2x2 + 3x3)

2.

Find P,D ∈M3(R), with D diagonal, such that

f(x) = (PTx)TD(PTx)

for all x ∈ R3.

155. ⟨(IV-8)
IV – 8⟩ Consider the quadratic form

f : R2 → R(
x1

x2

)
7→ 4(x1 + 3x2)

2 + 3(2x1 − x2)
2.

(a) Find matrices P,D ∈M2(R), with D diagonal, such that

f(x) = (PTx)TD(PTx)

for all x ∈ R2. The matrix P need not be orthogonal. Hint: Begin by writing
the expression 4(x1 + 3x2)

2 + 3(2x1 − x2)
2 in the form µ1y

2
1 + µ2y

2
2 for some

new variables y1, y2. How are the vectors (x1, x2) and (y1, y2) related?

(b) If A ∈M2(R) is the symmetric matrix associated to f , show that A = PDPT.
You may use the fact that if B,C ∈Mn(R) are symmetric and xTBx = xTCx

for all x ∈ Rn, then B = C.

156. ⟨(IV-8)
IV – 8,

(IV-9)
IV – 9⟩ Suppose that A ∈ M4(R) is symmetric and has negative deter-

minant. Decide whether the quadratic form

f : R4 → R

x 7→ xTAx

is positive definite, negative definite, non-negative definite, non-positive definite,
or indefinite. Justify your answer.

157. ⟨(IV-10)
IV – 10⟩
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(a) For each of the quadratic forms f : R2 → R in Questions 151 and 152, find
the maximum value and minimum value of f(x) subject to the constraint
∥x∥ = 1.

(b) For the quadratic form f : R3 → R in Question 153, find the maximum value
and minimum value of f(x) subject to the constraint ∥x∥ = 1.

158. ⟨(IV-7)
IV – 7,

(IV-8)
IV – 8,

(IV-9)
IV – 9,

(IV-10)
IV – 10⟩

(a) Orthogonally diagonalize the real symmetric matrix

A =

−2 2 6

2 −5 3

6 3 3

 .

You may use the fact that the eigenvalues of A are −6 and 8.

(b) Among all x ∈ R3 of norm 1, find the two such that xTAx is greatest. Justify
your answer briefly with reference, by number, to a result from the course
notes.

(c) A linear form is a function L : Rn → R given by L(x) = w · x for some
w ∈ Rn (in other words, a linear transformation from Rn to R). Express the
quadratic form f(x) = xTAx in the form

f(x) = µ1L1(x)
2 + µ2L2(x)

2 + µ3L3(x)
2,

where L1, L2, L3 are linear forms on R3 and µ1, µ2, µ3 ∈ R. Hint: See the
example on p. 72 of the course notes, running into p. 73.

159. ⟨(IV-8)
IV – 8,

(IV-10)
IV – 10⟩ Let C be the cone in R3 defined by x21 + x22 = x23. By applying

Proposition 10.1 in Section IV to an appropriate quadratic form, find the maximum
and minimum of x1x2/x23 for (x1, x2, x3) ∈ C∖{0}. Hint: Let y1 = x1/x3 and
y2 = x2/x3.

160. ⟨(IV-8)
IV – 8,

(IV-10)
IV – 10⟩ Let a be a non-negative real number, and consider the quadratic

form

f : R3 → R

(x1, x2, x3) 7→ x21 + 2x22 +
1

2
x23 + ax1x2.

(a) Find a such that the minimum of f(x) subject to the constraint ∥x∥ = 1 is 0.

(b) Find a such that the difference between the maximum and the minimum of
f(x) subject to ∥x∥ = 1 is
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(i) 4.

(ii) 7/4.
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