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These notes provide the core material for a course on elementary number theory taught
at the University of Alberta. The reader is assumed to have had a first course in basic
ring theory, covering (i) basic modular arithmetic, (ii) basic properties of rings, (iii) the
notions of integral domain and field, and (iv) unique factorization domains.

All proofs are given, although many are in the Appendix instead of the main text.

Notation

• The floor of a real number x, i.e., the greatest integer less than or equal to x, will
be denoted ⌊x⌋.

• The symbol ≈ will mean is approximately equal to.

• Occasionally, when required to because of limited space, we will abbreviate a
congruence x ≡ y mod m to x ≡ y (m).

• The set of units in a unital ring R will be denoted R×.
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(I) Preliminaries
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I – 1 Basic properties of integers

We recall some basic concepts and properties concerning the integers. If a, b ∈ Z, then
b is said to divide a if there is c ∈ Z such that a = bc. The following fact is fundamental
to the integers:

Let a, b ∈ Z, and assume that b ̸= 0. Then there are unique integers q and r with
0 ≤ r < |b| such that a = qb+ r.

The process of finding q and r as above is called division with remainder.
If a, b are integers, not both zero, then a greatest common divisor of a and b is a

positive common divisor of a and b that is divisible by all common divisors. The following
is proven in math 228.

Theorem 1.1 (G.C.D. Theorem). Let a, b ∈ Z, not both zero.

(i) A greatest common divisor of a and b exists and is unique. We denote it gcd(a, b).

(ii) There exist integers m and n such that gcd(a, b) = ma+ nb.

Example.

a b gcd(a, b)

4 6 2

−4 6 2

0 11 11

5 10 5

15 35 5

126 147 21

The Euclidean algorithm

We briefly recall the Euclidean algorithm from math 228. Suppose that a, b ∈ Z where
b ̸= 0, and write a = qb+r with 0 ≤ r < |b|. Then any common divisor of b and r divides
a as well and so is a common divisor of a and b. Also, because r = a− qb, any common
divisor of a and b is a common divisor of b and r. Thus, gcd(a, b) = gcd(b, r). The
Euclidean algorithm takes advantage of this fact to compute greatest common divisors.

Example. Find gcd(14 161, 11 011), and find integers m and n such that gcd(14 161, 11 011) =
m · 14 161 + n · 11 011.

Solution: We repeatedly apply division with remainder:

14 161 = 11 011 + 3150

11 011 = 3 · 3150 + 1561

3150 = 2 · 1561 + 28

1561 = 55 · 28 + 21
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28 = 21 + 7

Because 7 | 21, we see that gcd(14 161, 11 011) = 7. Further,

7 = 28− 21

= 28− (1561− 55 · 28)

= 56 · 28− 1561

= 56(3150− 2 · 1561)− 1561

= 56 · 3150− 113 · 1561

= 56 · 3150− 113(11 011− 3 · 3150)

= 395 · 3150− 113 · 11 011

= 395(14 161− 11 011)− 113 · 11 011

= 395 · 14 161− 508 · 11 011

The two main steps above—finding the greatest common divisor, and then expressing
it in terms of the two original integers—together form the Euclidean algorithm.

The Fundamental Theorem of Arithmetic

Theorem 1.2 (Fundamental Theorem of Arithmetic). Every positive integer can be
factorized into a product of primes, and the factorization is unique up to the order of
the prime factors. (We allow 1 to be considered the empty product of primes, i.e., the
product of no primes.)

The theorem is proven in math 228. Here are the prime factorizations of the first 20
positive integers:

n Prime factorization of n n Prime factorization of n

1 1 11 11

2 2 12 22 · 3
3 3 13 13

4 22 14 2 · 7
5 5 15 3 · 5
6 2 · 3 16 24

7 7 17 17

8 23 18 2 · 32

9 32 19 19

10 2 · 5 20 22 · 5

Valuations

Because of the Fundamental Theorem of Arithmetic, every non-zero rational number
can be expressed uniquely as a product

a = ϵ(a)
∏
p

pvp(a),
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where ϵ(a) ∈ {1,−1}, p runs through the primes, vp(a) ∈ Z for each prime p, and
vp(a) = 0 for all but finitely many p. The integer vp(a) is called the p-adic valuation of
a.

Example. If a = 35/169 = 51 · 71 · 13−2, then

ϵ(a) = 1, v5(a) = 1, v7(a) = 1, v13(a) = −2,

and vp(a) = 0 for all other primes.

Example. If a = −100/21 = 22 · 3−1 · 52 · 7−1, then

ϵ(a) = −1, v2(a) = 2, v3(a) = −1, v5(a) = 2, v7(a) = −1,

and vp(a) = 0 for all other primes.

If we define vp(0) = ∞, then the function vp : Q → Z ∪ {∞} satisfies the following
properties, where a, b ∈ Q:

vp(a+ b) ≥ min(vp(a), vp(b))

vp(ab) = vp(a) + vp(b)

From these properties, a third follows, namely, that

vp(a+ b) = min(vp(a), vp(b)) if vp(a) ̸= vp(b).

We leave these facts regarding vp as exercises.

Remark. We make a cautionary remark regarding the last fact, which applies only when
vp(a) ̸= vp(b). If, instead, vp(a) = vp(b), then both the following can occur: vp(a+ b) =

min(vp(a), vp(b)), and vp(a + b) > min(vp(a), vp(b)). For example, if p = 3, a = 3, and
b = 12, then v3(a) = v3(b) = 1, and v3(a + b) = v3(15) = 1 = min(v3(a), v3(b)). By
contrast, if p = 3, a = 3, and b = 6, then v3(a) = v3(b) = 1 again, but this time,
v3(a+ b) = v3(9) = 2 > min(v3(a), v3(b)).

Exercise. Let X be a non-empty set and f : Z≥0 → X a periodic function. Let m be
the minimum period of f , and let n be any period of f . Show that the remainder on
dividing m into n is zero, so that m in fact exactly divides n. (If n = qm+ r, consider
f(a+ r) = f(a+ n− qm) for integers a ≥ 0.)
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I – 2 Induction

We briefly recall the two forms of induction.

First form

Let n0 ∈ Z, and for each n ≥ n0, let P (n) be a statement depending on n. Assume that

(i) P (n0) is true, and

(ii) for all n ≥ n0, if P (n) is true, then P (n+ 1) is true.

Then P (n) is true for all n ≥ n0.

Example. Show by induction that
∑n

k=0
k

(k+1)! = 1− 1
(n+1)! for all n ≥ 0.

Solution: The statement holds when n = 0, because both sides are zero in that case.
Now let n ≥ 0, and assume that

∑n
k=0

k
(k+1)! = 1− 1

(n+1)! . Then

n+1∑
k=0

k

(k + 1)!
=

n+ 1

(n+ 2)!
+

n∑
k=0

k

(k + 1)!

=
n+ 1

(n+ 2)!
+ 1− 1

(n+ 1)!
by the inductive hypothesis

= 1 +
(n+ 1)− (n+ 2)

(n+ 2)!
= 1− 1

(n+ 2)!
,

and the induction is complete.

Second form

Let n0 ∈ Z, and for each n ≥ n0, let P (n) be a statement depending on n. Assume that

(i) P (n0) is true, and

(ii) for all n ≥ n0, if P (k) is true for all k ∈ {n0, . . . , n}, then P (n+ 1) is true.

Then P (n) is true for all n ≥ n0.

Example. Show by induction that every positive integer is a product of primes. (This
is one part of the statement of the Fundamental Theorem of Arithmetic.)

Solution: The case n = 1 holds, because 1 is the empty product of primes. Now let n ≥ 1,
and assume that every k ∈ {1, . . . , n} is a product of primes. There are two cases: (i)
n+ 1 is prime, in which case we are done immediately. (ii) n+ 1 is not prime, meaning
that n+ 1 = ab where a, b ∈ {1, . . . , n}. In this case, by the inductive hypothesis, each
of a and b is a product of primes, so the same is true of ab = n+ 1. This completes the
induction.
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(II) Congruences
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II – 1 The integers mod m

Recall from math 228 that if m is a positive integer, and if a, b ∈ Z, we write a ≡
b mod m if m | a−b. The relationship a ≡ b mod m is read “a is congruent to b mod m”.

It is often convenient to reformulate a congruence mod m as an equality in the ring
Z/mZ of integers mod m. Let us recall Z/mZ. For each a ∈ Z, let [a]m be its residue
class mod m, i.e.,

[a]m = {b ∈ Z | b ≡ a mod m} = {a+ km | k ∈ Z}.

Example. In the case m = 3,

[0]3 = {. . . ,−3, 0, 3, 6, 9, . . .},

[1]3 = {. . . ,−2, 1, 4, 7, 10, . . .},

[2]3 = {. . . ,−1, 2, 5, 8, 11, . . .}.

The set of residue classes mod m is denoted Z/mZ, i.e.,

Z/mZ = {[a]m | a ∈ Z} = {[0]m, [1]m, . . . , [m− 1]m}.

Observe, now, the relationship between congruence of integers and equality in Z/mZ,
namely, a ≡ b mod m if and only if [a]m = [b]m.

The set Z/mZ is in fact a ring with respect to the operations

[a]m + [b]m = [a+ b]m,

[a]m · [b]m = [ab]m,

both well-defined. The ring Z/mZ is commutative and unital, the identity being [1]m.

Remark. If the modulus m is understood, we will usually omit the subscript on [a]m

and write simply [a].

The congruence ax ≡ b mod m

Proposition 1.1. Let m be a positive integer, let a, b ∈ Z, and let d = gcd(a,m). Then
the congruence ax ≡ b mod m has a solution if and only if d | b. In this case, there are
exactly d solutions mod m.

Proof. Suppose that x is a solution, i.e., ax ≡ b mod m. Then m | ax−b, so also d | ax−b

because d |m. But then d | b because d | a.
Conversely, suppose that d | b. Write a = da′, b = db′, and m = dm′. Then ax ≡

b mod m if and only if a′x ≡ b′ mod m′. But gcd(a′,m′) = 1, so there is c ∈ Z such
that ca′ ≡ 1 mod m′, and hence

a′x ≡ b′ mod m′ ⇐⇒ ca′x ≡ cb′ mod m′ ⇐⇒ x ≡ cb′ mod m′.
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Thus, the set of solutions is {cb′ + km′ | k ∈ Z}. Now, two solutions cb′ + km′ and
cb′ + lm′ are congruent mod m if and only if

⇐⇒

m | (cb′ + km′)− (cb′ + lm′) = (k − l)m′

⇐⇒ dm′ | (k − l)m′

⇐⇒ d | k − l.

Therefore, the solutions cb′ + km′ with 0 ≤ k ≤ d − 1 represent all the solutions
mod m.

Example. Find all solutions to 55x ≡ 10 mod 105, and give your answer first as a single
congruence x ≡ a mod n for appropriate a and n, and second as a set of congruences
x ≡ a1, . . . , ak−1, or ak mod 105.

Solution:

55x ≡ 10 mod 105 ⇐⇒ 11x ≡ 2 mod 21

⇐⇒ 2 · 11x ≡ 2 · 2 mod 21

⇐⇒ x ≡ 4 mod 21 because 2 · 11 ≡ 1 mod 21

⇐⇒ x ≡ 4, 25, 46, 67, or 88 mod 105.

Prime residue classes

A residue class [a] ∈ Z/mZ is called a prime residue class if it is a unit (i.e., is invertible)
in the ring, i.e., if there is [b] ∈ Z/mZ such that [a][b] = [1]. The set of prime residue
classes is denoted (Z/mZ)×. It follows from the G.C.D. Theorem that

(Z/mZ)× = {[a] ∈ Z/mZ | gcd(a,m) = 1}.

The number of prime residue classes mod m is denoted ϕ(m). The function ϕ : Z≥1 →
Z≥1 is called Euler’s totient function.

Example.

(Z/21Z)× = {[1], [2], [4], [5], [8], [10], [11], [13], [16], [17], [19], [20]},

and ϕ(21) = 12.

Remark. One always has [1] ∈ (Z/mZ)×. If α, β ∈ (Z/mZ)×, then αβ and α−1 are in
(Z/mZ)× as well.

If α ∈ Z/mZ and n ∈ Z≥0, then αn = α · · ·α︸ ︷︷ ︸
n

, where α0 = [1] by definition. In the

special case where α ∈ (Z/mZ)×, we may even define αn = (α−n)−1 when n < 0.
We have the following rules of exponentiation:

αn1+n2 = αn1αn2 , (αn1)n2 = αn1n2 .

For an arbitrary α ∈ Z/mZ, these rules hold for n1, n2 ≥ 0, and they hold for all
n1, n2 ∈ Z when α ∈ (Z/mZ)×.
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II – 2 The Chinese Remainder Theorem

We recall the Chinese Remainder Theorem from math 228. Let m1, . . . ,mr be pairwise-
coprime positive integers, and let m = m1 · · ·mr. Then the map

Z/mZ → Z/m1Z× · · · × Z/mrZ

[a]m 7→ ([a]m1 , . . . , [a]mr )

is a ring isomorphism. In particular, for any a1, . . . , ar ∈ Z, there is a ∈ Z such that
a ≡ ai mod mi for all i, and a is determined uniquely mod m.

In the case where r = 2, the simultaneous congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

}
(2.1)

are solved as follows. First, write 1 = s1m1 + s2m2 with s1, s2 ∈ Z—via the Euclidean
algorithm, for example. Then the general solution to (2.1) is

x ≡ a1s2m2 + a2s1m1 mod m1m2.

Example. Solve the simultaneous congruences

x ≡ 14 mod 19

x ≡ 4 mod 8

Solution: From the Euclidean algorithm, one finds that 1 = 3 · 19− 7 · 8, so the solution
is

x ≡ 14(−7) · 8 + 4 · 3 · 19 mod 19 · 8

= −556,

i.e., x ≡ 52 mod 152.

The Chinese Remainder Theorem for prime residue classes

The map Z/mZ → Z/m1Z × · · · × Z/mrZ in the Chinese Remainder Theorem gives a
map

(Z/mZ)× → (Z/m1Z)× × · · · × (Z/mrZ)×

[a]m 7→ ([a]m1
, . . . , [a]mr

)

that is again a bijection. In other words, if ai is coprime to mi for all i, then the solutions
a ∈ Z to the system x ≡ ai mod mi, i = 1, . . . , r, are coprime to m.

Example. Consider the coprime moduli 11 and 14. Because gcd(3, 11) = gcd(5, 14) = 1,
the solutions to the system

x ≡ 3 mod 11

x ≡ 5 mod 14
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are coprime to 11 · 14 = 154. We leave it as an exercise to find the solutions and verify
that they are indeed coprime to 154.

ϕ(m) via prime factorization

Proposition 2.1. Let m be a positive integer, and let m = pa1
1 · · · par

r be its prime
factorization, where ai > 0 for all i. Then

ϕ(m) = ϕ(pa1
1 ) · · ·ϕ(par

r ) = (p1 − 1)pa1−1
1 · · · (pr − 1)par−1

r .

Proof. By the Chinese Remainder Theorem for prime residue classes,

ϕ(m) = |(Z/mZ)×| = |(Z/pa1
1 Z)× × · · · × (Z/par

r Z)×|

= |(Z/pa1
1 Z)×| · · · |(Z/par

r Z)×| = ϕ(pa1
1 ) · · ·ϕ(par

r ).

It remains to show that ϕ(pa) = (p − 1)pa−1 when p is prime and a > 0. The residue
classes that are not coprime to pa are represented by the multiples kp of p satisfying
0 ≤ kp < pa. There are pa−1 of these, corresponding to k ∈ {0, . . . , pa−1 − 1}, so there
are pa − pa−1 = (p− 1)pa−1 prime residue classes.

Example.

ϕ(36) = ϕ(4 · 9) = ϕ(4)ϕ(9) = 2 · (2 · 3) = 12

ϕ(525) = ϕ(3 · 52 · 7) = ϕ(3)ϕ(52)ϕ(7) = 2 · (4 · 5) · 6 = 240

Notice how the formula ϕ(m) = ϕ(pa1
1 ) · · ·ϕ(par

r ) in Proposition 2.1 shows that
ϕ(mn) = ϕ(m)ϕ(n) when m and n are coprime positive integers. This fact will be
significant later when we come to study arithmetic functions.
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II – 3 Definition of order and first properties

If α ∈ (Z/mZ)×, then there is a positive integer n such that αn = [1]. Indeed, because
there are only finitely many prime residue classes, there are integers l1, l2 with l1 < l2

such that αl1 = αl2 . Hence,

[1] = α−l1αl2 = αl2−l1 = αn where n = l2 − l1 > 0.

We define the order of α to be the least positive integer n such that αn = [1]. Also, if
a ∈ Z and gcd(a,m) = 1, then we write

ordm(a) = ord([a]m).

Example. Let us find ord9(2) by brute force, simply multiplying successively by 2 until
we obtain 1 mod 9: 21 = 2, 22 = 4, 23 = 8, 24 ≡ 7 mod 9, 25 ≡ 5 mod 9, 26 ≡ 1 mod 9.
The least positive integer n such that 2n ≡ 1 mod 9 is 6, so ord9(2) = 6.

Example. Similarly, multiplying successively by 7, we find that ord11(7) = 10: 71 = 7,
72 = 49 ≡ 5 mod 11, 73 ≡ 7 · 5 mod 11 ≡ 2 mod 11, and so on, until we find that 710 ≡
1 mod 11, with no smaller positive n satisfying 7n ≡ 1 mod 11. Thus, ord11(7) = 10.

We will develop tools to make the calculation of orders quicker.

Proposition 3.1 (Ord-1). If α ∈ (Z/mZ)× and l ∈ Z, then αl = [1] if and only if
ord(α) | l.

Proof. Let n = ord(α), and write l = qn+ r where 0 ≤ r < n. Then

αl = [1] ⇐⇒ αqn+r = [1]

⇐⇒ (αn)qαr = [1]

⇐⇒ [1]αr = [1] because αn = [1]

⇐⇒ αr = [1]

⇐⇒ r = 0 by the minimality of n

⇐⇒ n | l.

Proposition 3.2 (Ord-2). Let α ∈ (Z/mZ)×. Then

(i) αϕ(m) = [1], and

(ii) ord(α) |ϕ(m).

Proof. By Proposition Ord-1, (i) and (ii) are equivalent, so it is enough to prove (i). We
leave it as an exercise to show that the map

(Z/mZ)× → (Z/mZ)×

β 7→ αβ
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is bijective. Hence, ∏
β∈(Z/mZ)×

β =
∏

β∈(Z/mZ)×
(αβ) = αϕ(m)

∏
β∈(Z/mZ)×

β,

the last equality because |(Z/mZ)×| = ϕ(m). Multiplying both sides by the inverse of∏
β∈(Z/mZ)× β leaves [1] = αϕ(m).

Proposition Ord-2 is often referred to by the name Euler’s Theorem.

Example. A widely used special case of Proposition Ord-2 is Fermat’s Little Theorem:

ap−1 ≡ 1 mod p when p is prime and p ∤ a.

Let us prove this. If p ∤ a, then gcd(a, p) = 1 because p is prime. Therefore, applying
Proposition Ord-2 with m = p gives [a]ϕ(p) = [1], i.e., aϕ(p) ≡ 1 mod p. But ϕ(p) =

|(Z/pZ)×| = p− 1, again because p is prime.

Example. Find the remainder on dividing 32023 by 17.

Solution: Note that 2023 = 126 · 16 + 7, so

32023 = 3126·16+7 = (3126)16 · 37 ≡ 1 · 37 mod 17 by Fermat’s Little Theorem.

To calculate 37 mod 17, let ≡ denote congruence mod 17, and observe that

37 = 33 · 34 = 27 · 81 ≡ (−7)(−4) = 28 ≡ 11.

Thus, the remainder is 11.

Example. Find the remainder on dividing 131 234 567 by 36.

Solution 1: One finds that ϕ(36) = 12, so a12 ≡ 1 mod 36 for all a coprime to 36. Now,
division with remainder shows that 1 234 567 = 12q + 7 for some q ∈ Z, so

131 234 567 = 1312q+7 = (13q)12 · 137 ≡ 137 mod 36 by Proposition Ord-2

= 62 748 517 ≡ 13 mod 36,

so the remainder is 13.

Solution 2: Computing the first few powers of 13, we find that ord36(13) = 3. Therefore,
we need only consider the remainder on dividing 1 234 567 by 3, not 12. It is easy to see
that the remainder is 1, i.e., 1 234 567 = 3q + 1 for some q ∈ Z, so

131 234 567 = 133q+1 = (133)q · 13 ≡ 1q · 13 mod 36

= 13.
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II – 4 Further results concerning order

Proposition 4.1 (Ord-3). Let α ∈ (Z/mZ)×, and let n = ord(α). Then for any k ∈ Z,

ord(αk) =
n

gcd(n, k)
.

Proof. Let d = gcd(n, k), and let n′ = n/d and k′ = k/d. Then for any l ∈ Z,

(αk)l = [1] ⇐⇒ αkl = [1] ⇐⇒ n | kl by Proposition Ord-1

⇐⇒ n′d | k′dl ⇐⇒ n′ | k′l ⇐⇒ n′ | l

because gcd(n′, k′) = 1. Thus, ord(αk) = n′ = n/d.

Example. In (Z/27Z)×, ord([2]) = 18 (exercise). Use this fact to do the following:

(i) Find ord([8]).

(ii) Find an element β ∈ (Z/27Z)× of order 18 that is not equal to [2].

Solution: To find ord([8]), observe that [8] = [2]3. Therefore, remembering that ord([2]) =
18, we may apply Proposition Ord-3 as follows:

ord([8]) = ord([2]3) =
18

gcd(18, 3)
=

18

3
= 6.

For the second part of the problem, let k be any integer coprime to 18, and let β =

[2]k = [2k]. Then by Proposition Ord-3,

ord(β) =
18

gcd(18, k)
=

18

1
= 18.

For example, we could take k = 5, and then β = [25] = [32] = [5].

Proposition 4.2 (Ord-4). If m and n are positive integers with m |n, then for any
a ∈ Z coprime to n, ordm(a) | ordn(a).

Proof. Let k = ordn(a). By definition, ak ≡ 1 mod n, so ak ≡ 1 mod m because m |n,
and so ordm(a) | k by Proposition Ord-1.

Example. Consider m = 7 and n = 35, and note that m |n. We tabulate ord35(a) and
ord7(a) for the first few positive integers a coprime to 35:

a coprime to 35 ord35(a) ord7(a)

1 1 1

2 12 3

3 12 6

4 6 3

6 2 2

8 4 1
...

...
...
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Proposition 4.3 (Ord-5). Suppose that m1, . . . ,mr are pairwise-coprime positive in-
tegers, and let a ∈ Z be coprime to m = m1 · · ·mr. Then

ordm(a) = lcm(ordm1(a), . . . , ordmr (a)).

Proof. We use the fact that, because the mi are pairwise coprime, a given integer is
divisible by all of m1, . . . ,mr if and only if it is divisible by their product. This is a
consequence of the G.C.D. Theorem.

Now, let l ∈ Z. Then by the fact just mentioned,

al ≡ 1 mod m ⇐⇒ al ≡ 1 mod mi for all i

⇐⇒ ordmi(a) | l for all i by Proposition Ord-1

⇐⇒ lcm(ordm1(a), . . . , ordmr (a)) divides l.

Example. Find ord105(17) by considering 17 mod 3, 5, 7.

Solution: Note that 105 = 3 · 5 · 7. The following orders are easily computed:

ord3(17) = ord3(2) = 2

ord5(17) = ord5(2) = 4

ord7(17) = ord7(3) = 6

Hence, because 3, 5, 7 are pairwise coprime, ord105(17) = lcm(2, 4, 6) = 12.

Example. Given that ord9(2) = 6 and ord22(7) = 10, find an integer a coprime to
198 = 9 · 22 such that ord198(a) = 30.

Solution: Suppose we can find a ∈ Z satisfying

a ≡ 2 mod 9

a ≡ 7 mod 22

}
(4.1)

Then because gcd(9, 22) = 1,

ord198(a) = lcm(ord9(a), ord22(a)) = lcm(ord9(2), ord22(7)) = lcm(6, 10) = 30,

and we will be done. We use the Chinese Remainder Theorem to solve (4.1). The Eu-
clidean algorithm proceeds as follows: 22 = 2 · 9 + 4, 9 = 2 · 4 + 1, so

1 = 9− 2 · 4 = 9− 2(22− 2 · 9) = 5 · 9− 2 · 22.

Hence, the solution to the system of congruences is

a ≡ 2(−2) · 22 + 7 · 5 · 9 mod 198

= 227

≡ 29 mod 198.

Thus, ord198(29) = 30.
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II – 5 Wilson’s Theorem

Theorem 5.1 (Wilson’s Theorem). If p is prime, then (p− 1)! ≡ −1 mod p.

Proof. Several proofs exist. We give one that uses Fermat’s Little Theorem and some
basic theory of polynomial rings. Assume that p is odd, the case p = 2 being immediate.
Consider the polynomial f(x) = xp−1 − [1] ∈ (Z/pZ)[x], viewed as a polynomial with
coefficients in the field Fp = Z/pZ. By Fermat’s Little Theorem,

f(α) = αp−1 − [1] = [0] for all α ∈ (Z/pZ)×,

so because f(x) has degree p− 1 and there are exactly p− 1 prime residue classes α, it
follows that

f(x) =
∏

α∈(Z/pZ)×
(x− α) =

p−1∏
a=1

(x− [a]),

i.e., xp−1 − [1] =

p−1∏
a=1

(x− [a]).

Taking x = [0] gives

[−1] =

p−1∏
a=1

(−[a]) =

p−1∏
a=1

[a] because p− 1 is even

= [(p− 1)!].

Example. Find the remainder on dividing 40! by 1763 = 41 · 43.

Solution: Observe that 41 and 43 are prime. Therefore, by Wilson’s Theorem, 40! ≡
−1 mod 41, and

−1 ≡ 42! mod 43

= 42 · 41 · 40!

≡ (−1)(−2) · 40! mod 43

= 2 · 40!,

so inverting 2 mod 43 we obtain −22 ≡ 40! mod 43. Now we use the Chinese Remainder
Theorem to solve the system

x ≡ −1 mod 41

x ≡ −22 mod 43

We have 1 = 21 · 41− 20 · 43 (by the Euclidean algorithm, for example), so

40! ≡ (−1)(−2) · 43− 22 · 21 · 41 mod 41 · 43

= −18 082,

i.e., 40! ≡ 1311 mod 1763.
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II – 6 Quadratic residues

Let p be a prime. An integer a is called a quadratic residue mod p if there is b ∈ Z such
that a ≡ b2 mod p, i.e., if [a] is the square of some element of Z/pZ.

Example. In the case p = 5,

02 = 0

12 = 1

22 = 4

32 ≡ 4 mod 5

42 ≡ 1 mod 5,

so the squares mod 5 are 0, 1, 4.

Especially, we will be interested in the prime quadratic residues, i.e., the quadratic
residues that represent prime residue classes, or, put even more simply, the quadratic
residues not divisible by p.

Proposition 6.1. Let p be an odd prime. Then there are exactly (p − 1)/2 prime
quadratic residues mod p. Thus, half of the prime residue classes are quadratic residues.

Proof. Since p is odd, α ̸= −α when α is a prime residue class, so (Z/pZ)× can be
partitioned into (p− 1)/2 pairs {α,−α}. Let S be the set of such pairs. Then the map

S → (Z/pZ)×

{α,−α} 7→ α2

is injective (exercise), and its image is the set of quadratic prime residue classes, by
definition. Therefore, the number of prime quadratic residues mod p is the cardinality
of S, which is (p− 1)/2.

The Legendre Symbol

Let p be an odd prime, and let a ∈ Z. Then we define the Legendre symbol
(

a
p

)
by

(
a

p

)
=


1 if a is coprime to p and is a quadratic residue,

−1 if a is coprime to p but is not a quadratic residue,

0 otherwise, i.e., if p | a.

It satisfies the following:

(i)
(

a
p

)
depends only on the class of a mod p, i.e.,

(
a+kp

p

)
=
(

a
p

)
for all k ∈ Z.

(ii)
(

ab
p

)
=
(

a
p

)(
b
p

)
for all a, b ∈ Z (exercise).
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Proposition 6.2. If p is an odd prime and a an integer, then(
a

p

)
≡ a

p−1
2 mod p.

Proof. If p | a, then the statement is obvious, so assume that p ∤ a.
Case (i):

(
a
p

)
= 1. In this case, a ≡ b2 mod p for some b ∈ Z, so mod p we have

a
p−1
2 ≡ bp−1 ≡ 1 =

(
a

p

)
.

Case (ii):
(

a
p

)
= −1. In this case, if β ∈ (Z/pZ)×, then the unique β′ ∈ (Z/pZ)×

such that ββ′ = [a] cannot be equal to β, because [a] is not square in (Z/pZ)×, so
(Z/pZ)× can be partitioned into (p−1)/2 pairs {β, β′} satisfying ββ′ = [a] with β ̸= β′.
Hence,

[a]
p−1
2 =

∏
{β,β′}

(ββ′) =

p−1∏
b=1

[b] = [(p− 1)!] = [−1]

by Wilson’s Theorem. Thus, mod p we have

a
p−1
2 ≡ −1 =

(
a

p

)
.

Example. Consider p = 29, a = 3. Here,

a
p−1
2 = 314 = 4782 969 ≡ −1 mod 29 (direct calculation),

so
(

3
29

)
= −1, i.e., 3 is not square mod 29.

Example. Consider now p = 29, a = 5. This time,

a
p−1
2 = 514 = 6103 515 625 ≡ 1 mod 29 (direct calculation),

so
(

5
29

)
= 1, i.e., 5 is square mod 29.
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II – 7 Relationship to quadratic congruences

Proposition 7.1. Let p be an odd prime, and let a, b, c ∈ Z with p ∤ a. Then the
congruence ax2 + bx+ c ≡ 0 mod p has

2 solutions mod p if
(

b2−4ac
p

)
= 1,

no solutions if
(

b2−4ac
p

)
= −1,

1 solution mod p if
(

b2−4ac
p

)
= 0.

The solutions, if any exist, are given by

[x]p = [2a]−1
p (−[b]p ± [

√
b2 − 4ac]p),

where
√
b2 − 4ac denotes any integer whose square is congruent to b2 − 4ac mod p.

Proof. Let α = [a], β = [b], γ = [c] in Z/pZ. By assumption, α ̸= [0]. Then for X ∈ Z/pZ,

αX2 + βX + γ = [0] ⇐⇒ X2 +
β

α
X +

γ

α
= [0]

⇐⇒
(
X +

β

2α

)2

− β2

4α2
+

γ

α
= [0]

⇐⇒
(
X +

β

2α

)2

=
β2

4α2
− γ

α
=

1

4α2
(β2 − 4αγ). (7.1)

This has a solution X if and only if β2−4αγ is square in Z/pZ, specifically, two solutions
mod p when β2 − 4αγ is the square of a non-zero residue class, and one solution when
it is zero. Solving for X in (7.1) shows that the solutions are as claimed.

Example. The discriminant of the polynomial x2 +x+1 is 12 − 4 · 1 · 1 = −3, so if p is
odd, the congruence x2 + x+ 1 ≡ 0 mod p has a solution if and only if

(
−3
p

)
∈ {0, 1}.

Obviously,
(

−3
p

)
= 0 if and only if p = 3, so there is only one solution mod p in that

case. We will see shortly how to determine for which primes p the Legendre symbol
(

−3
p

)
takes the value 1. For now, simply verify directly that

(
−3
p

)
= 1 if p ∈ {7, 13, 19} (the

congruence then having two solutions mod p), and that
(

−3
p

)
= −1 if p ∈ {5, 11, 17}

(no solutions to the congruence).

Remark. The case p = 2 is excluded from Proposition 7.1, but this case is easily worked
out. If x ∈ Z, then x2 ≡ x mod 2, so

x2 + bx+ c ≡ x+ bx+ c mod 2

= (b+ 1)x+ c.

Therefore, the solutions to the congruence x2 + bx+ c ≡ 0 mod 2 are as follows:

• If b is odd and c is even, every integer x is a solution.

• If b and c are both odd, there are no solutions.

• If b is even, there is only the solution x ≡ c mod 2.
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II – 8 Quadratic reciprocity

Theorem 8.1 (Quadratic reciprocity). If p and q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 , i.e.,

(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

Additionally, (
2

p

)
= (−1)

p2−1
8 and

(
−1

p

)
= (−1)

p−1
2 .

For a proof, see Section 2 of the Appendix.

Remark. The determination of the signs, i.e., (−1)?, in the theorem can be sped up
via the following observations:

• p−1
2

q−1
2 is even if and only if at least one of p or q is congruent to 1 mod 4.

• p2−1
8 is even if and only if p ≡ ±1 mod 8.

• p−1
2 is even if and only if p ≡ 1 mod 4.

Example. Find
(

3
29

)
and

(
5
29

)
using quadratic reciprocity.

Solution: (
3

29

)
=

(
29

3

)
(29 ≡ 1 mod 4)

=

(
2

3

)
(29 ≡ 2 mod 3)

= −1 (3 ̸≡ ±1 mod 8),

and (
5

29

)
=

(
29

5

)
(29 ≡ 1 mod 4)

=

(
4

5

)
=

(
22

5

)
=

(
2

5

)2

= 1.

Example. Find
(

7
23

)
using quadratic reciprocity.

Solution: (
7

23

)
= −

(
23

7

)
(7 ≡ 23 ≡ −1 mod 4)

= −
(
2

7

)
= −(1) (7 ≡ −1 mod 8)

= −1.
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Example. Find
(
302
541

)
using quadratic reciprocity.

Solution:(
302

541

)
=

(
2

541

)(
151

541

)
(factorize 302)

= (−1)

(
541

151

)
(541 ≡ 5 mod 8, 541 ≡ 1 mod 4)

= −
(

88

541

)
= −

(
8

151

)(
11

151

)
= −

(
2

151

)3(
11

151

)
= −

(
2

151

)(
11

151

)
= −(1) · (−1)

(
151

11

)
(151 ≡ 7 mod 8, 11 ≡ 151 ≡ −1 mod 4)

=

(
8

11

)
=

(
2

11

)3

=

(
2

11

)
= −1 (11 ≡ 3 mod 8).

Example. For which primes p does the congruence x2+6x+2 ≡ 0 mod p have (a) two
distinct solutions mod p, (b) a unique solution mod p, and (c) no solutions?

Solution: For p = 2, the congruence becomes x2 ≡ 0 mod 2, which has the unique
solution x ≡ 0 mod 2. Assume, henceforth, that p > 2. The discriminant of the given
quadratic polynomial is ∆ = 36− 4 · 1 · 2 = 28 = 4 · 7. If p = 7, then p |∆, so there is a
unique solution mod 7.

Now assume that p ̸∈ {2, 7}. Then(
∆

p

)
=

(
4 · 7
p

)
=

(
2

p

)2(
7

p

)
=

(
7

p

)
= (−1)

7−1
2

p−1
2

(p
7

)
= (−1)

p−1
2

(p
7

)
.

Let A = (−1)
p−1
2 and B =

(
p
7

)
, and note that

(
∆
p

)
= 1 if and only if A = B = 1 or

A = B = −1. We consider these two cases separately.

(i) A = B = 1 if and only if p ≡ 1 mod 4 and p ≡ 1, 2, or 4 mod 7. Now use the
Chinese Remainder Theorem:

a ≡ 1 mod 4, a ≡ 1 mod 7 ⇐⇒ a ≡ 1 mod 28

a ≡ 1 mod 4, a ≡ 2 mod 7 ⇐⇒ a ≡ 9 mod 28

a ≡ 1 mod 4, a ≡ 4 mod 7 ⇐⇒ a ≡ 25 mod 28

(ii) A = B = −1 if and only if p ≡ 3 mod 4 and p ≡ 3, 5, or 6 mod 7. Use the Chinese
Remainder Theorem again:

a ≡ 3 mod 4, a ≡ 3 mod 7 ⇐⇒ a ≡ 3 mod 28

a ≡ 3 mod 4, a ≡ 5 mod 7 ⇐⇒ a ≡ 19 mod 28

a ≡ 3 mod 4, a ≡ 6 mod 7 ⇐⇒ a ≡ 27 mod 28

In summary, the congruence x2+6x+2 ≡ 0 mod p has (a) two distinct solutions mod p

if p ≡ 1, 3, 9, 19, 25, or 27 mod 28, has (b) a unique solution mod p if p ∈ {2, 7}, and
has (c) no solutions otherwise, i.e., if p ≡ 5, 11, 13, 15, 17, or 23 mod 28.
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II – 9 Primitive roots

Let m be a positive integer. A primitive root mod m is an integer a coprime to m such
that every prime residue class mod m is a power of [a].

Example. The integer 2 is a primitive root mod 9 because each of the six prime residue
classes mod 9, namely, [1], [2], [4], [5], [7], [8], is a power of [2]:

[2]0 = [1], [2]1 = [2], [2]2 = [4], [2]3 = [8], [2]4 = [7], [2]5 = [5].

Proposition 9.1. If [a] ∈ (Z/mZ)×, then a is primitive mod m if and only if ordm(a) =

ϕ(m).

Proof. If ordm(a) = ϕ(m), then all ϕ(m) powers [a]0, [a]1, [a]2, . . . , [a]ϕ(m)−1 are distinct,
so since there are ϕ(m) of them, they must consitute all the elements of (Z/mZ)×.

Conversely, if every prime residue class is a power of [a], then there can be no
repetitions among [a]0, [a]1, [a]2, . . . , [a]ϕ(m)−1, so none of these is equal to [1] except the
zeroth power, and so the first positive k with [a]k = [1] is k = ϕ(m).

Example. In (Z/12Z)×, each element has order dividing 2 (check for yourself), so there
is no prime residue class of order ϕ(12) = 4, and so there is no primitive root mod 12.

Proposition 9.2. Assume that the modulus m has a primitive root, suppose that b ∈ Z
is coprime to m, and let n be a positive integer. Then the congruence

xn ≡ b mod m

has a solution if and only if bϕ(m)/d ≡ 1 mod m, where d = gcd(ϕ(m), n). In this case,
there are d solutions mod m.

Proof. Let α = [a] be a primitive root mod m, let β = [b], and write β = αl with l ∈ Z.
Observe that the congruence is equivalent to the equation

[x]n = β (9.1)

in Z/mZ. Further, if (9.1) has a solution x, then x must be coprime to m, because
[x]n−1β−1 is a multiplicative inverse to [x] in Z/mZ. Therefore, we can replace [x] in
(9.1) with αk for an integer k ∈ {0, . . . , ϕ(m)−1}. But (αk)n = β if and only if αnk = αl,
if and only if

nk ≡ l mod ϕ(m), (9.2)

and we know from Proposition 1.1 that the congruence (9.2) has a solution if and only
if

⇐⇒

gcd(ϕ(m), n) | l

⇐⇒ gcd(ϕ(m), n) | gcd(ϕ(m), l)

⇐⇒ ϕ(m)

gcd(ϕ(m), l)

∣∣∣∣∣ ϕ(m)

gcd(ϕ(m), n)
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⇐⇒ ordm(b)

∣∣∣∣∣ ϕ(m)

gcd(ϕ(m), n)
by Proposition Ord-3

⇐⇒ bϕ(m)/d ≡ 1 mod m by Proposition Ord-1,

where d = gcd(ϕ(m), n). Further, if (9.2) has a solution, the number of solutions k ∈
{0, . . . , ϕ(m)− 1} is d by Proposition 1.1.

Example. Solve x21 ≡ 8 mod 27 using the fact that 2 is a primitive root mod 27.

Solution: Note that gcd(ϕ(27), 21) = gcd(18, 21) = 3, and

818/3 = (23)18/3 = 218 ≡ 1 mod 27 by Proposition Ord-2,

so there are solutions. In fact, there are 3 solutions mod 27. Let us find them.
The congruence is equivalent to [x]21 = [8] in Z/27Z. Let [x] = [2]k with k ∈

{0, . . . , 17}. (The congruence implies that [x] is a prime residue class, as explained in
the proof of Proposition 9.2, and therefore is a power of [2].) Then

[x]21 = [8] ⇐⇒ [2]21k = [2]3

⇐⇒ [2]21k−3 = [1]

⇐⇒ ord27(2) | 21k − 3 by Proposition Ord-1

⇐⇒ 18 | 21k − 3

⇐⇒ 21k ≡ 3 mod 18

⇐⇒ 7k ≡ 1 mod 6

⇐⇒ k ≡ 1 mod 6

⇐⇒ k ≡ 1, 7, or 13 mod 18

⇐⇒ [2]k = [2]1, [2]7, or [2]13.

Remembering, then, that [2]k = [x], we see that x is a solution to the original congruence
if and only if

[x] = [2]1, [2]7, or [2]13

= [2], [2]6 · [2], or [2]12 · [2]

= [2], [10] · [2], or [10]2 · [2] because [2]6 = [64] = [10]

= [2], [20], or [11] (multiply by [10] each time).

Thus, the solutions to x21 ≡ 8 mod 27 are x ≡ 2, 11, or 20 mod 27.
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II – 10 Primitive roots continued

We study another congruence that can be handled via primitive roots, if one exists.

Proposition 10.1. Assume that m has a primitive root, and let b, c ∈ Z be coprime to
m. Then the congruence

bx ≡ c mod m

has a solution x ∈ Z≥0 if and only if ordm(c) | ordm(b). In this case, there is a unique
solution x ∈ {0, . . . , ordm(b)− 1}.

Proof. Let α ∈ (Z/mZ)× be primitive, let β = [b] and γ = [c], and write

β = αk, γ = αl with k, l ∈ Z.

Then

βx = γ has a solution ⇐⇒ αkx = αl has a solution

⇐⇒ αkx−l = [1] has a solution

⇐⇒ kx ≡ l mod ord(α) has a solution

⇐⇒ gcd(ϕ(m), k) | l by Proposition 1.1

⇐⇒ gcd(ϕ(m), k) | gcd(ϕ(m), l) (exercise)

⇐⇒ ϕ(m)

gcd(ϕ(m), l)

∣∣∣∣∣ ϕ(m)

gcd(ϕ(m), l)

⇐⇒ ordm(c) | ordm(b) by Proposition Ord-3.

The uniqueness of a solution x ∈ {0, . . . , ord(b) − 1} follows from the observation that
βx = βy if and only if x ≡ y mod ord(β).

Example. Using the fact that 17 has a primitive root, decide whether the congruence
9x ≡ 4 mod 17 has a solution. If so, find the least non-negative solution.

Solution: Observe that 42 ≡ −1 mod 17, so 44 ≡ 1 mod 17 and ord17(4) = 4. Now,

92 = 81 ≡ −4 mod 17,

so 94 ≡ (−4)2 ≡ −1 mod 17,

and 98 ≡ (−1)2 ≡ 1 mod 17.

Thus, ord17(9) | 8, but the foregoing calculations rule out 1, 2, 4 as possibilities for the
order, so in fact ord17(9) = 8. Therefore, ord17(4) | ord17(9), so by the proposition, the
congruence 9x ≡ 4 mod 17 has a solution.

To find the least non-negative solution, observe from the congruences 92 ≡ −4 mod 17

and 94 ≡ −1 mod 17 found above that 96 ≡ 4 mod 17, so x = 6 is a solution. Since
6 < 8 = ord17(9), there can be no smaller solution than this.
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Criterion for the existence of a primitive root

Theorem 10.2. Let m ≥ 2 be an integer.

(i) There is a primitive root mod m if and only if either of the following holds:

(a) m is equal to 2 or 4.

(b) m is a power of an odd prime or twice such a power.

(ii) If a is a primitive root mod p, where p is an odd prime, then either a or a+ p is
a primitive root mod p2.

(iii) If b is primitive mod p2, where p is an odd prime, then b is primitive mod pj for
all j ≥ 1.

A proof is given in Section 3 of the Appendix.

Example. Show that 2 is primitive mod 5k for all positive integers k.

Solution: By Theorem 10.2, it is enough to show that 5 is primitive mod 52 = 25. We
know by Proposition Ord-2 that ord25(2) |ϕ(25) = 20. Now, because 20 = 22 · 5, every
positive divisor of 20 less than 20 divides either 2 · 5 = 10 or 22 · 50 = 4. But

210 = 1024 ̸≡ 1 mod 25,

and 24 = 16 ̸≡ 1 mod 25,

so if d | 20 and 1 ≤ d < 20, then 2d ̸≡ 1 mod 25. Thus, ord25(2) = 20.

Example. It is a fact that 18 is primitive mod 37 but not mod 372. (Verify these
assertions for yourself.) Therefore, by Theorem 10.2, a primitive root mod 372 is 18 +

37 = 55, and then this is a primitive root mod 37k for all k ≥ 1.
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II – 11 Polynomial congruences and Hensel’s Lemma

We now make a systematic study of congruences of the form f(x) ≡ 0 mod m, where
f(x) ∈ Z[x], i.e., f(x) is a polynomial with integer coefficients, beginning with the case
where m is a power of a prime p. The key idea is to use already-known solutions to the
congruence f(x) ≡ 0 mod pk to find solutions to f(x) ≡ 0 mod pk+1. This process is
known as lifting.

Example. Consider the congruence x2 + 1 ≡ 0 mod 5, which has the solutions x ≡
2 or 3 mod 5. Let us focus on the solution x ≡ 2 mod 5, for example. Note that 2 is not
a solution mod 25. However, we may hope that 2 + 5t is a solution mod 25 for some
t ∈ Z. In fact, t = 1 works in this case:

(2 + 5)2 + 1 = 72 + 1 = 50 ≡ 0 mod 25.

Thus, 2 + 5 = 7 is a lift of the mod 5 solution 2 to a mod 52 solution.
Similarly, 3 + 3 · 5 = 18 is a lift of the mod 5 solution 3 to a mod 52 solution:

182 + 1 = 325 ≡ 0 mod 25.

Lemma 11.1. If f(x) ∈ Z[x] and a ∈ Z, then there is g(x) ∈ Z[x] such that

f(x) = f(a) + f ′(a)(x− a) + (x− a)2g(x).

Proof. Let F (x) = f(x) − f(a) − f ′(a)(x − a), and note that F (a) = 0 and F ′(a) = 0.
Because F (a) = 0 and x−a is monic, polynomial division shows that F (x) = (x−a)h(x)

where h(x) ∈ Z[x]. Then
F ′(x) = h(x) + (x− a)h′(x),

so h(a) = F ′(0) = 0, and so polynomial division used again, this time on h(x), gives
h(x) = (x− a)g(x) for some g(x) ∈ Z[x]. Thus, F (x) = (x− a)2g(x).

Theorem 11.2 (Hensel’s Lemma). Let f(x) ∈ Z[x], let p be a prime, let k ≥ 1, and
suppose that a ∈ Z is a solution to f(x) ≡ 0 mod pk. Consider the congruence

f(x) ≡ 0 mod pk+1. (11.1)

(i) If p ∤ f ′(a), then there is a unique solution to (11.1) of the form a + tpk with
0 ≤ t ≤ p− 1. It is found by solving

f(a)

pk
+ f ′(a)t ≡ 0 mod p for t ∈ {0, . . . , p− 1}.

(ii) If p | f ′(a) and a is a solution to (11.1), then a+ tpk is a solution for all t.

(iii) If p | f ′(a) and a is not a solution to (11.1), then (11.1) has no solution of the
form a+ tpk.
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Proof. Let t ∈ Z. By Lemma 11.1,

f(a+ tpk) = f(a) + f ′(a)tpk + t2p2kc where c = g(a+ tpk) ∈ Z

≡ f(a) + f ′(a)tpk mod pk+1,

so

f(a+ tpk) ≡ 0 mod pk+1 ⇐⇒ f(a) + f ′(a)tpk ≡ 0 mod pk+1

⇐⇒ f(a)

pk
+ f ′(a)t ≡ 0 mod p.

If f ′(a) ̸≡ 0 mod p, there is a unique solution t ∈ {0, . . . , p − 1}, found by inverting
f ′(a) mod p. If f ′(a) ≡ 0 mod p, then any t works as long as f(a)/pk ≡ 0 mod p, i.e.,
f(a) ≡ 0 mod pk+1. Otherwise, no t works.

Example. Let f(x) = x3 + 2x + 3 and p = 5. Observe that the congruence f(x) ≡
0 mod 5 has the solution x ≡ 2 mod 5: f(2) = 15 ≡ 0 mod 5. Let us apply Hensel’s
Lemma in the case p = 5 and k = 1 to see whether this solution can be lifted to a
solution mod 52:

f ′(x) = 3x2 + 2, so f ′(2) = 14 ̸≡ 0 mod 5.

This is case (i) of the theorem, so there is a unique lift 2 + 5t with 0 ≤ t ≤ 4, found by
solving

f(2)

5
+ f ′(2)t ≡ 0 mod 5,

i.e., 3 + 14t ≡ 0 mod 5,

i.e., t = 3.

Thus, 2+3 · 5 = 17 is a solution mod 52, and is in fact the unique one lifting the mod 5

solution 2.

Example. Let f(x) = x4+5x2+337 and p = 7, and note that x ≡ 1 mod 7 is a solution
to the congruence f(x) ≡ 0 mod 7, since f(1) = 343 = 73. Now, f ′(x) = 4x3 + 10x, so
f ′(1) = 14 ≡ 0 mod 7. The additional fact that f(1) = 73 ≡ 0 mod 72 puts us in case
(ii) of Hensel’s Lemma rather than case (iii), so every 1 + 7t with t ∈ Z is a solution to
the congruence f(x) ≡ 0 mod 72.

Example. Let f(x) = x3 − x2 + 4x+ 2 and p = 11. The congruence f(x) ≡ 0 mod 11

has the solution x ≡ 4 mod 11. Now, f ′(x) = 3x2 − 2x + 4, so f ′(4) = 44 ≡ 0 mod 11.
However, this time f(4) = 66 ̸≡ 0 mod 112, so we are in case (iii) of Hensel’s Lemma,
and there are no solutions to the mod 112 congruence of the form 4 + 11t. We further
observe that x ≡ 4 mod 11 is the only solution to the mod 11 congruence (exercise), so
the failure of this solution to be lifted means that there are no solutions whatsoever to
the congruence f(x) ≡ 0 mod 112.
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II – 12 Hensel’s Lemma continued

Proposition 12.1. Assume that we are in case (i) or (ii) of Hensel’s Lemma. If b =

a+ tpk is a solution mod pk+1 lifting the mod pk solution a, then f ′(b) ≡ f ′(a) mod p.
In particular, f ′(b) ≡ 0 mod p if and only if f ′(a) ≡ 0 mod p.

Proof. Applying Lemma 11.1 to f ′(x) instead of f(x), we have

f ′(b) = f ′(a) + f ′′(a)tpk + t2p2kc′ for some c′ ∈ Z,

so f ′(b) ≡ f ′(a) mod p.

A consequence of this proposition is that, if we are lifting repeatedly, we need cal-
culate the derivative mod p only once. Case (i) is always followed by case (i), and case
(ii) can be followed only by case (ii) or case (iii).

Example. Here is an example of repeated lifting in case (i). Let f(x) = x3 − 10x + 5

and p = 29, and note that f(4) = 29 ≡ 0 mod 29. Now, f ′(x) = 3x2 − 10, so f ′(4) =

38 ≡ 9 mod 29, so we are indeed in case (i), and the unique lift of the form 4+29t with
t ∈ {0, . . . , 28} is found by solving

f(4)

29
+ f ′(4)t ≡ 0 mod 29,

i.e., 1 + 9t ≡ 0 mod 29. Inverting 9 mod 29 (do this yourself for practice), we find that
t = 16, so 4 + 16 · 29 = 468 is the unique lift of the mod 29 solution 4 to 292.

By Proposition 12.1, if we wish to lift further to a solution mod 293, we know already
that we are in case (i) again, so we proceed straight to finding the unique t ∈ {0, . . . , 28}
such that

f(468)

292
+ f ′(468)t ≡ 0 mod 29.

Further, by the same proposition, f ′(468) ≡ f ′(4) ≡ 9 mod 29, i.e., we do not need to
recalculate f ′(468), so we have only to solve

f(468)

292
+ 9t ≡ 0 mod 29, i.e., 121 877 + 9t ≡ 0 mod 29,

for t ∈ {0, . . . , 28}, and we find easily that t = 14. Thus, 468 + 14 · 292 = 12 242 is the
unique lift to 293.

Example. Here is an example of repeated lifting in case (ii). Let f(x) = x2 + 4x+ 22

and p = 3. Observe that 1 is a solution mod 3. Find the mod 9 and mod 27 solutions
lifting 1.

Solution: We find easily that f ′(1) = 6 ≡ 0 mod 3 and f(1) = 27 ≡ 0 mod 9, so in
attempting to lift from 3 to 9, we are in case (ii), and 1, 4, 7 are all solutions mod 9.

Now, f(1) ≡ 0 mod 27, so case (ii) applies again to show that 1, 10, 19 are all solu-
tions mod 27. Also, f(4) = 54 ≡ 0 mod 27, so here as well we remain in case (ii). Thus,
4, 13, 22 are all solutions mod 27. However, f(7) = 99 ̸≡ 0 mod 27, so case (iii) applies,
and there are no solutions mod 27 of the form 7+9t. A summary of the solutions mod 9

and 27 that lift 1 is therefore as follows:
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1 10 19 4 13 22

1
4 7

1
mod 3

mod 9

mod 27

A weakened hypothesis for indefinite lifting

We know from Proposition 12.1 that solutions may be lifted indefinitely when p ∤ f ′(a).
In fact, we can weaken this assumption and still be guaranteed to be able to lift indefi-
nitely, as in the following result.

Proposition 12.2. If f(x) ∈ Z[x], p is prime, and a ∈ Z satisfies vp(f(a)) > 2vp(f
′(a)),

then there are integers a0, a1, a2, . . ., with a0 = a, such that

f(an) ≡ 0 mod pn+1 and an+1 ≡ an mod pn+1 for all n ≥ 0.

For a proof, see Section 4 of the Appendix, where it is also explained how to construct
a0, a1, a2, . . . in this situation.

Example. Consider f(x) = x2 − x + 25 and p = 3. Observe that f(−1) = 27 and
f ′(−1) = −3, so v3(f(−1)) = 3 > 2 = 2v3(f

′(−1)). Therefore, the hypotheses of
Proposition 12.2 are met, and one can lift indefinitely to obtain solutions to f(x) ≡
0 mod 3k for all k ≥ 1. For example, x = 2+2 ·32+33+2 ·36+2 ·38+39+2 ·311+2 ·313

is a solution mod 314.

Arbitrary moduli

Hensel’s Lemma applies to moduli that are prime powers. For a general modulus, we
can combine Hensel’s Lemma with the Chinese Remainder Theorem.

For example, consider the polynomial f(x) = x2−x+25 again, and suppose we wish
to find solutions to f(x) ≡ 0 mod 10 125. For this, we note that 10 125 = 81·125 = 34 ·53.
We know from the previous example that solutions mod 34 can be found via Hensel’s
Lemma, and we leave it as an exercise to show, via Hensel’s Lemma, that solutions exist
mod 53 as well (in fact, modulo any given power of 5). Hence, if a is a solution mod 81

and b is a solution mod 125, then we have only to solve the system

x ≡ a mod 81

x ≡ b mod 125

so obtain a solution mod 10 125.
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(III) Gaussian Methods
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III – 1 Sums of two squares: introduction

In number theory, a square is an integer that is the square of some integer. The squares
are thus 0, 1, 4, 9, 16, . . . . It is natural to ask which positive integers n are sums of two
squares, and for each n that is such a sum, in how many ways n can be so expressed.
We represent this problem by the equation

x2 + y2 = n, (1.1)

where we are trying to solve for x, y ∈ Z.
A fruitful line of attack is via the observation that x2 + y2 = (x+ yi)(x− yi), where

i is a fixed square root of −1 in C, i.e., i2 = −1. Thus, if α = x + yi, then (1.1) is
equivalent to

αα = n,

where the bar denotes complex conjugation.

The Gaussian integers and uniqueness of factorization

Recall from math 228 the ring Z[i] = {a + bi ∈ C | a, b ∈ Z}, the ring of Gaussian
integers. It is a unique factorization domain. Let us review this notion from math 228.

In an integral domain R, a prime element is an element a ∈ R satisfying all of the
following: (i) a ̸= 0, (ii) a ̸∈ R×, and (iii) for all b, c ∈ R such that a divides bc, either a
divides b or a divides c.

In an integral domain R, an irreducible element is an element a ∈ R satisfying all
of the following: (i) a ̸= 0, (ii) a ̸∈ R×, and (iii) for all b, c ∈ R such that a = bc, either
b ∈ R× or c ∈ R×.

If a, b ∈ R, we say that a is associate to b, written a ∼ b, if there is u ∈ R× such
that a = ub. In this case, of course, b = u−1a, so b ∼ a as well.

A unique factorization domain (UFD) is an integral domain R such that, for every
non-zero a ∈ R that is not a unit, the following both hold:

(i) a is a product of irreducible elements.

(ii) The factorization of a into irreducibles is essentially unique, in the sense that
if π1 · · ·πm and π′

1 · · ·π′
n are two such factorizations, then m = n and, after a

reordering of the factors if necessary, πi ∼ π′
i for all i.

Remark.

• In any integral domain, every prime element is irreducible (short exercise).

• In a unique factorization domain, it is conversely true that every irreducible ele-
ment is a prime element (see math 228). This fact will be crucial later on.
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The norm map

A useful tool in the ring Z[i] of Gaussian integers is the norm map,

N : Z[i] → Z≥0

a+ bi 7→ (a+ bi)(a− bi) = a2 + b2.

The following facts, both left as exercises, are crucial:

(i) N(αβ) = N(α)N(β) for all α, β ∈ Z[i], and

(ii) α ∈ Z[i]× if and only if N(α) = 1.

Example. Observe that 5 = (1 + 2i)(1− 2i). We may use the norm map to show that
1 + 2i and 1 − 2i are irreducible in Z[i], so 5 cannot be factorized in Z[i] any further
than this factorization. Indeed, if 1 + 2i = αβ for some α, β ∈ Z[i], then applying N to
both sides of this equation gives N(1 + 2i) = N(αβ), i.e., 5 = N(α)N(β), so because 5

is a prime number and N(α), N(β) ∈ Z≥1, either N(α) = 1, in which case α is a unit,
or N(β) = 1, in which case β is. The same argument shows that 1− 2i is irreducible as
well.

We leave it as a short exercise to show that 1+2i and 1−2i are not associate in Z[i],
i.e., there is no unit u ∈ Z[i]× = {1, i,−1,−i} such that 1+2i = u(1−2i). Therefore, the
factorization 5 = (1 + 2i)(1− 2i) is a factorization of 5 into non-associate irreducibles.

Example. We have just seen that 5 is not irreducible in Z[i]. Let us show that, by
contrast, 3 is irreducible. Suppose that 3 = αβ where α, β ∈ Z[i]. Then

9 = N(3) = N(αβ) = N(α)N(β),

so by uniqueness of factorization in Z, the only three possibilities are

• N(α) = 1, N(β) = 9,

• N(α) = N(β) = 3,

• N(α) = 9, N(β) = 1.

In fact, the middle option cannot occur, for if α = x+ yi, where x, y ∈ Z, then N(α) =

x2+y2, and there are no integers x, y such that x2+y2 = 3. Therefore, either N(α) = 1,
in which case α is a unit, or N(β) = 1, in which case β is.

Some prime numbers, then, are irreducible in Z[i], such as 3, and some are not, such
as 5. In fact, there is a simple rule to determine which prime numbers are irreducible
in Z[i], which we will see shortly. The question is intimately linked to the equation
x2 + y2 = n.

Exercise. The prime number 2 exhibits a special property with regard to factorization
in Z[i]. Show that 2 = ππ′ where π and π′ are irreducible Gaussian integers that are
associate to each other, i.e., π = uπ′ for some u ∈ Z[i]× = {1, i,−1,−i}.
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III – 2 Gaussian splitting

Lemma 2.1 (Gaussian splitting lemma). Let p be a prime. Then p is a sum of two
squares if and only if p = 2 or p ≡ 1 mod 4.

Proof. Assume first that p = x2 + y2 where x, y ∈ Z. Because the squares mod 4 are 0

and 1, the only possibilities for p mod 4 are (i) 0 + 0 = 0, (ii) 0 + 1 = 1, (iii) 1 + 0 = 1,
and (iv) 1+ 1 = 2. The first is impossible because 4 ∤ p, and the last implies that p = 2.

Conversely, assume that p = 2 or p ≡ 1 mod 4. Since 2 = 12 + 12, we may assume
immediately that p ≡ 1 mod 4. Then

(
−1
p

)
= 1 by Theorem 8.1 in Section II, so −1 is

square mod p, i.e., there is c ∈ Z such that −1 ≡ c2 mod p, and so there is k ∈ Z such
that c2 + 1 = kp. Hence,

(c+ i)(c− i) = kp,

so p divides the product (c+i)(c−i) in Z[i]. But one verifies easily that p divides neither
c + i nor c − i in Z[i], so p is not a prime element of the Gaussian integers. Therefore,
because Z[i] is a unique factorization domain, p is not an irreducible element either, so

p = αβ

for some α, β ∈ Z[i]∖Z[i]×. Hence,

p2 = N(p) = N(αβ) = N(α)N(β).

But N(α), N(β) ̸= 1, so N(α) = N(β) = p. Thus, if α = x+ yi, then

p = N(α) = x2 + y2.

Gaussian irreducibles

If p is a prime number, define

πp =


1 + i if p = 2,

x+ yi if p ≡ 1 mod 4, where x2 + y2 = p and 0 < x < y,

p if p ≡ 3 mod 4.

By Lemma 2.1, x and y as above exist if p ≡ 1 mod 4. Further, one verifies that, with
the extra constraint 0 < x < y, the integers x and y are uniquely determined by p

(exercise).
For example,

π3 = 3, π5 = 1 + 2i, π7 = 7, π11 = 11, π13 = 2 + 3i.

Let

Π = {π2} ∪ {πp | p ≡ 1 mod 4} ∪ {πp | p ≡ 1 mod 4} ∪ {πq | q ≡ 3 mod 4}
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= {1 + i, 3, 1 + 2i, 1− 2i, 7, 11, 2 + 3i, 2− 3i, 1 + 4i, 1− 4i, . . .}.

Recall that if α, β ∈ Z[i], then we say that α is associate to β (and write α ∼ β) if there
is u ∈ Z[i]× = {1, i,−1,−i} such that α = uβ.

Proposition 2.2 (Gaussian irreducibles).

(i) Every element of Π is irreducible in Z[i].

(ii) Every irreducible element of Z[i] is associate to exactly one element of Π.

We refer the reader to Section 5 of the Appendix for a proof. Lemma 2.1 plays a
crucial role.

As a consequence of Proposition 2.2 and uniqueness of factorization in Z[i], we
see that for every non-zero α ∈ Z[i], there are unique non-negative integers r, sp, s′p
(p ≡ 1 mod 4), and tq (q ≡ 3 mod 4), and a unique unit u, satisfying

α = uπr
2

 ∏
p≡1 (4)

(
πsp
p π

s′p
p

) ∏
q≡3 (4)

πtq
q

 .

Example. Here are some factorizations in Z[i]:

−13 + 4i = (−1)π5π37

123 = π3π41π41

190 + 1729i = π2
17π19π29

54 390− 84 770i = iπ3
2π

4
5π5π

2
7π

2
13

In each case, one could verify the factorization by expanding out the right-hand side and
ensuring that we obtain the left-hand side, but in fact there is a method for taking any
non-zero Gaussian integer and producing its factorization into a unit times a product
of elements of Π.

To learn about splitting in a more general context, see Neukirch’s Algebraic Number
Theory [5], for example.
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III – 3 Counting solutions to the equation x2 + y2 = n

Recall the p-adic valuation vp defined in Section I – 1.

Theorem 3.1. Let n be a positive integer.

(i) The equation x2+ y2 = n has a solution (x, y) ∈ Z×Z if and only if vq(n) is even
for all primes q ≡ 3 mod 4.

(ii) If solutions exist, the number of solutions is

4
∏

p≡1 (4)

(vp(n) + 1).

Proof. (i) We use the observation that an integer is a sum of two squares if and only if
it is equal to N(α) for some α ∈ Z[i], because x2 + y2 = N(α) where α = x+ yi.

Suppose, then, that n = x2 + y2 = N(α), where α = x+ yi. Write

α = uπr
2

 ∏
p≡1 (4)

(
πsp
p π

s′p
p

) ∏
q≡3 (4)

πtq
q

 ,

where u ∈ Z[i]× and r, sp, s
′
p, tq ∈ Z≥0. Then

n = N(α) = 2r

 ∏
p≡1 (4)

psp+s′p

 ∏
q≡3 (4)

q2tq

 ,

so vq(n) = 2tq for all primes q ≡ 3 mod 4.
Conversely, if vq(n) is even for all such q, then

n = 2v2(n)

 ∏
p≡1 (4)

pvp(n)

 ∏
q≡3 (4)

qvq(n)

 by definition

= N(α)

where

α = π
v2(n)
2

 ∏
p≡1 (4)

πvp(n)
p

 ∏
q≡3 (4)

πvq(n)/2
q

 ,

so n is a sum of two squares.
(ii) Assume that solutions exist. By part (i), vq(n) is even for all primes q ≡ 3 mod 4.

Define

X0 = {0, 1, 2, 3}

Xp = {0, . . . , vp(n)} for p ≡ 1 mod 4

X = X0 ×
∏

p≡1 (4)
p |n

Xp
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If ξ = (k, (sp)p) ∈ X, let

αξ = ikπ
v2(n)
2

 ∏
p≡1 (4)
p |n

(
πsp
p πvp(n)−sp

p

)
 ∏

q≡3 (4)
q |n

πvq(n)/2
q

 .

Then

N(αξ) = 2v2(n)

 ∏
p≡1 (4)
p |n

(
psppvp(n)−sp

)
 ∏

q≡3 (4)
q |n

qvq(n)

 = n,

so (x, y) = (Re(αξ), Im(αξ)) is a solution to x2 + y2 = n. Therefore, if

Y = {(x, y) ∈ Z× Z | x2 + y2 = n},

we have a map

f : X → Y

ξ 7→ (Re(αξ), Im(αξ)).

To finish our proof, it is enough to show that f is bijective, because the cardinality of Y is
the number of solutions to x2+y2 = n, and the cardinality of X is 4

∏
p≡1 (4)(vp(n)+1).

For injectivity, note that if αξ1 = αξ2 , then ξ1 = ξ2 by Proposition 2.2. As for surjectivity,
suppose that x2 + y2 = n, i.e., N(α) = αα = n where α = x+ yi. Then writing

α = uπr
2

 ∏
p≡1 (4)

(
πsp
p π

s′p
p

) ∏
q≡3 (4)

πtq
q

 (u ∈ Z[i]×),

we see from the equality N(α) = n that r = v2(n), sp + s′p = vp(n) when p ≡ 1 mod 4,
and 2tq = vq(n) when q ≡ 3 mod 4, so α = αξ where ξ = (k, (sp)p) ∈ X, k here being
the unique integer in {0, 1, 2, 3} such that u = ik. Thus,

(x, y) = (Re(α), Im(α)) = (Re(αξ), Im(αξ)) = f(ξ).

Example. Let n = 29 · 175 · 292 · 234 · 316. Decide whether the equation x2 + y2 = n

has any integral solutions, and determine how many if so.

Solution: The primes congruent to 3 mod 4 that divide n are 23 and 31, which both
occur to even powers, so integral solutions exist. The number of solutions is

4(v17(n) + 1)(v29(n) + 1) = 4 · 6 · 3 = 72.

Example. Repeat the preceding problem with n = 372 · 74 · 437 instead.

Solution: The prime divisor 43 is congruent to 3 mod 4 and occurs to an odd power, so
the equation x2 + y2 = n has no integral solutions.
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III – 4 The equation y2 = xn − 1

Let n be a positive integer, and consider the equation y2 = xn − 1, where x and y are
integers to be solved for. The case n = 1 is trivial: there are infinitely many solutions
in this case, because for each y ∈ Z, we may let x = y2 + 1. The case n = 2 can be
solved by observing that y2 = x2 − 1 if and only if (x + y)(x − y) = 1, if and only if
x+ y = x− y = 1 or x+ y = x− y = −1. The solutions in the case n = 2 are therefore
x = ±1, y = 0.

For higher values of n, one may approach the equation by considering factorization
in the Gaussian integers. A key ingredient is the following, which is proven in Section 6
of the Appendix.

Lemma 4.1. Suppose that

• R is a unique factorization domain,

• a, b ∈ R∖{0},

• n is a positive integer.

If a, b are coprime and ab = cn for some c ∈ R, then there are units u, v in R and
elements a′, b′ ∈ R such that a = u(a′)n and b = v(b′)n.

Let us illustrate the relevance of this lemma for solving the equation y2 = xn − 1 by
considering the case n = 3 as an example; see also [2, Sect. 1.5] for this case. We show
that the only solution in integers to the equation y2 = x3 − 1 is (x, y) = (1, 0). To see
this, assume that x, y ∈ Z satisfy the equation, and rearrange it to read

(y + i)(y − i) = x3,

i.e., αα = x3

where α = y + i ∈ Z[i] and the bar denotes complex conjugation, as usual. We claim
that the Gaussian integers α and α are coprime. Suppose, for a contradiction, that π is a
Gaussian irreducible that divides both α and α. Then π divides also α−α = 2i = (1+i)2,
so π is associate to 1 + i by uniqueness of factorization in Z[i]. Therefore, 1 + i divides
α, so (1 + i)(1− i) divides αα, i.e., 2 divides x3—in Z[i], but also then in Z. Hence, x
is even, so x3 is divisible by 8, and we arrive at the congruence y2 ≡ −1 mod 8. But
this is impossible, because −1 is not square mod 8. Thus, α and α have no common
Gaussian irreducible divisor, so they are coprime as claimed.

We may now apply Lemma 4.1, remembering that Z[i] is a unique factorization
domain. By the lemma, the fact that αα = x3, a cube, implies that α is associate to a
cube (and α is also). That is, α = ηβ3 where β ∈ Z[i] and η ∈ Z[i]×. In fact, since every
unit in Z[i] is a cube, we have η = (η′)3 for some unit η′, and then α = (η′β)3, so we
may in fact assume that η = 1. Thus, α = β3 for some β ∈ Z[i].

Write β = a+ bi with a, b ∈ Z. Then

y + i = (a+ bi)3 = a3 − 3ab2 + (3a2b− b3)i,
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so

y = a3 − 3ab2 = a(a2 − 3b2),

and 1 = 3a2b− b3 = b(3a2 − b2).

This last line shows that b = ±1 and, subsequently, that 3a2 − 1 = ±1. We cannot have
3a2 − 1 = 1, because 3 ∤ 2, so 3a2 − 1 = −1, i.e., a = 0. But then y = 0, so x = 1.

Exercise. Solve the equation y2 = x4 − 1 for x, y ∈ Z by considering the solutions to
the equation y2 = x2 − 1 discussed above.

Exercise. Solve the equation y2 = x5−1 for x, y ∈ Z by following the method illustrated
above in the case n = 3.

Exercise. Solve the equation y2 = x6 − 1 for x, y ∈ Z by following the method alluded
to in the exercise above concerning the case n = 4. How do the cases n = 4 and n = 6

generalize?

Exercise. How might one solve y2 = x21 − 1 by using an example we have already
considered, but without any reasoning any further in terms of Gaussian integers?

Remark. An exercise in Washington’s book [11, Chap. 1] considers the related equation
y2 = x3 − 5. The method used above for the equation y2 = x3 − 1 may be extended to
handle this related equation, although further considerations come into play that are
beyond the scope of this course. The difficulty, which can be overcome, lies in the fact
that the ring Z[

√
−5] does not have uniqueness of factorization. The subject of algebraic

number theory provides tools for overcoming this difficulty.

Remark. A more recent approach to the study of equations such as y2 = x3+k, where
k is an integer, is via the theory of elliptic curves, which in fact concerns even more
general equations than this. See Silverman’s book [9] for an introduction.
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III – 5 Pythagorean triples

A Pythagorean triple is a triple (x, y, z) of positive integers satisfying x2 + y2 = z2.
Observe that if x, y, z, d ∈ Z≥1, then

x2 + y2 = z2 ⇐⇒ d2(x2 + y2) = d2z2 ⇐⇒ (dx)2 + (dy)2 = (dz)2,

so (x, y, z) is a Pythagorean triple if and only if (dx, dy, dz) is. Therefore, to find all
Pythagorean triples, it is enough to find all those for which the only positive common
divisor of the three numbers is 1, and then scale them.

Lemma 5.1. Let (x, y, z) be a Pythagorean triple such that the only positive common
divisor of x, y, z is 1. Then

(i) x, y, z are pairwise coprime,

(ii) exactly one of x and y is even, and

(iii) z is odd.

Proof. (i) We show that x and y are coprime, the proof for the other two pairs being
similar. Let d be a positive divisor of x and y. Then d2 divides x2 and y2, so d2 divides
x2 + y2 = z2 as well, and so d divides z. (Exercise: If a, b ∈ Z, then a | b if and only if
a2 | b2.) Therefore, d |x, y, z, so d = 1.

(ii) Because x and y are coprime, they cannot both be even. If they were both odd,
then z2 = x2 + y2 would be congruent to 2 mod 4, which is impossible because 2 is not
square mod 4.

(iii) This follows immediately from (ii) and the equality z2 = x2 + y2.

In light of Lemma 5.1, if (x, y, z) is a Pythagorean triple such that the only positive
common divisor of x, y, z is 1, then either x is even or y is even, but not both, and there
is nothing lost in assuming that y is the even one. We will therefore define a primitive
Pythagorean triple to be one such that the numbers are coprime and y is even.

Theorem 5.2. Let x, y, z ∈ Z≥1. Then (x, y, z) is a primitive Pythagorean triple if and
only if there are coprime positive integers u and v such that

u > v, u ̸≡ v mod 2, and (x, y, z) = (u2 − v2, 2uv, u2 + v2).

Proof. We will employ a proof that uses uniqueness of factorization in Z[i], although an
elementary proof may be given as well; see Section 7 of the Appendix.

Suppose first that (x, y, z) is a primitive Pythagorean triple. Then αα = z2 where
α = x+ yi. We claim that α and α are coprime in Z[i]. Indeed, if not, then both would
be divisible by some Gaussian irreducible π, and then π would divide both α+ α = 2x

and α−α = 2yi. If π ̸∼ π2, then we would have π |x and π | y, and hence N(π) |x2 and
N(π) | y2, which is impossible because x and y are coprime. Therefore, π ∼ π2, but from
this we deduce that 2 divides N(α) = z2 in Z, contradicting the fact that z is odd.
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Knowing now that α and α are coprime in Z[i], we return to the equation αα = z2

and realize, then, that it implies via Lemma 4.1 that α = εβ2 for some β ∈ Z[i] and
some ε ∈ Z[i]. The fact that x is odd rules out ε ∈ {i,−i}, and if ε = −1, then α = (iβ)2,
so we may in fact assume that ε = 1, that is, α = β2 for some β = u+ vi ∈ Z[i].

Hence, x+ yi = (u+ vi)2 = u2 − v2 + 2uvi, so

x = u2 − v2, y = 2uv.

Because y > 0, we may assume, replacing both u and v by their negatives as necessary,
that u, v > 0. Next, because x > 0, we deduce that u > v. Also, the fact that x is odd
implies that u ̸≡ v mod 2. Finally, if d is some positive common divisor of u and v, then
d divides u2 − v2 = x and 2uv = y, so d = 1. Thus, u and v are coprime.

Conversely, suppose that u and v are coprime positive integers satisfying the prop-
erties in the theorem, and let x = u2 − v2, y = 2uv, and z = u2 + v2, all positive.
Then

x2 + y2 = (u2 − v2)2 + (2uv)2 = (u2 + v2)2 = z2.

Note that x is odd. To complete the proof, it is sufficient to show that x and z are
coprime. To that end, let d be a positive common divisor of x and z. Then d divides
z+ x = 2u2 and also divides z− x = 2v2, so because d is odd, it divides u2 and v2. But
u and v are coprime, so u2 and v2 are coprime, and so d = 1.

We use Theorem 5.2 to tabulate the first few primitive Pythagorean triples. It suffices
to run through pairs (u, v) as in the theorem.

u v x = u2 − v2 y = 2uv z = u2 + v2

2 1 3 4 5

3 2 5 12 13

4 1 15 8 17

4 3 7 24 25

5 2 21 20 29

5 4 9 40 41

6 1 35 12 37

6 5 11 60 61

Exercise. Let (x, y, z) be a primitive Pythagorean triple, and let (u, v) be the pair
corresponding to it via Theorem 5.2. Show that u2 and v2 are positive coprime integers
such that u2 > v2 and u2 ̸≡ v2 mod 2, and find the primitive Pythagorean triple
(x′, y′, z′) corresponding to (u2, v2) via the theorem, expressing each of x′, y′, z′ in terms
of x, y, z.
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(IV) Arithmetic Functions
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IV – 1 Definitions and first examples

An arithmetic function is any function f : Z≥1 → C. The following are all arithmetic
functions:

(i) f : m 7→ 1

(ii) f : m 7→ m

(iii) f : m 7→ m2

(iv) f : m 7→
(

m
p

)
, where p is a fixed odd prime

(v)

f : m 7→



0 if m ≡ 0 mod 5

1 if m ≡ 1 mod 5

i if m ≡ 2 mod 5

−i if m ≡ 3 mod 5

−1 if m ≡ 4 mod 5

(vi) f : m 7→ ϕ(m) (Euler’s ϕ-function)

(vii) f : m 7→ m+ 1

There are two important types of arithmetic function, one a special case of the other:

• A completely multiplicative arithmetic function is an arithmetic function f that is
not identically zero and that satisfies f(mn) = f(m)f(n) for all positive integers
m and n. Examples (i)–(v) above are all completely multiplicative.

• A multiplicative arithmetic function is an arithmetic function f that is not iden-
tically zero and that satisfies f(mn) = f(m)f(n) for all coprime positive integers
m and n. Example (vi) above, Euler’s ϕ-function, is multiplicative, as we saw in
Proposition 2.1 in Section II.

Every completely multiplicative arithmetic function is multiplicative, but not conversely,
ϕ being a multiplicative arithmetic function that is not completely multiplicative.

The Möbius function

Define

µ : Z≥1 → C

m 7→

(−1)r if m = p1 · · · pr where p1, . . . , pr are distinct primes,

0 otherwise.

Note that the positive integer 1 is viewed as being a product p1 · · · pr where r = 0,
so µ(1) = (−1)0 = 1. It is a short exercise—one well worth doing—to show that µ

is multiplicative. However, it is not completely multiplicative, because µ(4) = 0 while
µ(2)µ(2) = (−1)2 = 1.
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Example. µ(21) = (−1)2 = 1, µ(105) = (−1)3 = −1, µ(99) = 0 (because 32 | 99).

Example. If p is a prime, then µ(pk) is 1 if k = 0, is −1 if k = 1, and is 0 otherwise.

Some useful properties

(i) If f is multiplicative and m ∈ Z≥1 has prime factorization m = pa1
1 · · · par

r , then
f(m) = f(pa1

1 ) · · · f(par
r ) because the factors p

aj

j are pairwise coprime.

(ii) If f is multiplicative, then f(1) = 1. Let us prove this. Observe that f(1) =

f(1 · 1) = f(1)f(1) because 1 is coprime to itself, so f(1)(f(1) − 1) = 0, and so
either f(1) = 0 or f(1) = 1. If the former, we would have, for all m ∈ Z≥1,

f(m) = f(1 ·m) = f(1)f(m) = 0f(m) = 0,

contradicting the assumption that f is not the zero function. Thus, f(1) = 1.

Of course, an arithmetic function f for which f(1) = 1 need not be multiplicative.
An easy example is the function f given by f(1) = 1, f(2) = f(3) = f(6) = 2,
and f(m) = 0 for all other m ∈ Z≥1.

(iii) If f and g are multiplicative arithmetic functions, then the pointwise product fg

of f and g, defined by (fg)(m) = f(m)g(m), is multiplicative. The same fact
holds if one replaces multiplicative by completely multiplicative in both places in
the assertion.

Dirichlet convolution

Let f and g be arithmetic functions, not necessarily multiplicative. The Dirichlet con-
volution f ∗ g is the arithmetic function defined by (f ∗ g)(m) =

∑
d |m f(d)g(m/d), the

sum running over all positive divisors of m.

Example. If f(m) = m2 and g(m) = m, then (f ∗ g)(m) =
∑

d |m d2(m/d) =

m
∑

d |m d. Here is a table of the first few values of f ∗ g:

m 1 2 3 4 5 6

(f ∗ g)(m) 1 6 12 28 30 72

The set of arithmetic functions is a commutative unital ring where addition is the
pointwise addition of functions and the product is Dirichlet convolution. We highlight
some of the key properties, left as exercises along with the other ring properties:

• (f ∗ g) ∗ h = f ∗ (g ∗ h) (associativity of ∗)

• f ∗ g = g ∗ f (commutativity of ∗)

• f ∗ (g + h) = f ∗ g + f ∗ h (distributivity)

• ι ∗ f = f where ι is the arithmetic function defined by ι(1) = 1 and ι(m) = 0 for
m > 1
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IV – 2 Inverses and sums

Inverses

An arithmetic function f is called invertible if there exists an arithmetic function g such
that f ∗ g = ι.

Proposition 2.1. An arithmetic function f is invertible if and only if f(1) ̸= 0.

Proof. If f ∗ g = ι, then in particular, (f ∗ g)(1) = ι(1) = 1, i.e., f(1)g(1/1) = 1, so
f(1) ̸= 0.

Conversely, assume that f(1) ̸= 0, and define g(m) recursively for m ≥ 1 by

g(1) = 1/f(1)

g(m) = − 1

f(1)

∑
d |m,
d̸=1

f(d)g(m/d) if m > 1.

By construction, (f ∗ g)(1) = 1 and (f ∗ g)(m) = 0 if m > 1, so f ∗ g = ι.

If f is invertible, then the arithmetic function g such that f ∗ g = ι is unique
(exercise). It is called the Dirichlet inverse of f , and is denoted f−1.

Example. Let f : m 7→ m2, and let g = f−1. Find g(m) for m ∈ {1, . . . , 6}.

Solution:

g(1) = 1/f(1) = 1

g(2) = −1

1
f(2)g(1) = −4

g(3) = −1

1
f(3)g(1) = −9

g(4) = −1

1
(f(4)g(1) + f(2)g(2)) = −(16 + (−16)) = 0

g(5) = −1

1
f(5)g(1) = −25

g(6) = −1

1
(f(6)g(1) + f(3)g(2) + f(2)g(3)) = −(36− 36− 36) = 36

Theorem 2.2.

(i) If f and g are multiplicative arithmetic functions, then so is f ∗ g.

(ii) If f is a multiplicative arithmetic function, then so is f−1, its Dirichlet inverse.

Proof. Let us prove (i) here and leave the proof of (ii) to the Appendix (Section 8).
Let m,n ∈ Z≥1 be coprime. Then the positive divisors of mn correspond bijectively

to the pairs (d, e) ∈ Z≥1×Z≥1 such that d |m and e |n, with (d, e) corresponding to de.
Then because f and g are multiplicative,

(f ∗ g)(mn) =
∑
d |m

∑
e |n

f(de)g
(
mn
de

)
=
∑
d |m

∑
e |n

f(d)f(e)g
(
m
d

)
g
(
n
e

)

Paul Buckingham Elementary Number Theory (MATH 324) – v 1.02 | 47



=

∑
d |m

f(d)g
(
m
d

)∑
e |n

f(e)g
(
n
e

) = (f ∗ g)(m) (f ∗ g)(n).

Sums

If f is an arithmetic function, let f̂ be the arithmetic function defined by

f̂(m) =
∑
d |m

f(d).

Note that f̂ = 1 ∗ f where 1 is the constant arithmetic function, i.e., 1 : m 7→ 1. Indeed

f̂(m) =
∑
d |m

f(d) =
∑
d |m

f(d)1(m/d) = (f ∗ 1)(m) = (1 ∗ f)(m).

Observe the following:

If f is a multiplicative arithmetic function, then so is f̂ .

Indeed, 1 is multiplicative, so if f is multiplicative, then the Dirichlet convolution 1∗f =

f̂ is multiplicative.

Example. Let τ be the arithmetic function that counts the number of positive divisors
of a given positive integer, that is,

τ(m) = #{d | d ≥ 1 and d |m} =
∑
d |m

1 = 1̂(m).

Then being equal to 1̂, the arithmetic function τ is multiplicative. Now, if p is prime
and a ≥ 0, then the positive divisors of pa are 1, p, . . . , pa, so τ(pa) = a+ 1. Therefore,
because τ is multiplicative, if a positive integer m has prime factorization pa1

1 · · · par
r ,

then
τ(m) =

∏
j=1

(aj + 1).

Example. Let σ be the arithmetic function that adds the positive divisors of a given
positive integer. Thus, if f : m 7→ m, then

σ(m) =
∑
d |m

d = f̂(m).

Hence, because f is multiplicative, the same is true of σ. We may therefore compute σ

via prime powers, as we did for τ . Specifically, if p is prime and a ≥ 0, then

σ(pa) = 1 + p+ · · ·+ pa =
pa+1 − 1

p− 1
,

so if m ∈ Z≥1 has prime factorization pa1
1 · · · par

r ,

σ(m) =

r∏
j=1

p
aj+1
j − 1

pj − 1
.

Exercise. Use the above to show that σ(14 175) = 30 008.
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IV – 3 Möbius inversion

Proposition 3.1 (Möbius inversion).

(i) µ ∗ 1 = ι, i.e., 1−1 = µ. Equivalently, µ̂ = ι.

(ii) If f is an arithmetic function, then µ ∗ f̂ = f .

Proof. (i) Because µ and 1 are multiplicative, so is µ ∗ 1, so it is enough to show that
µ ∗ 1 and ι agree on prime powers, ι being multiplicative as well, of course. Therefore,
it is enough to show that (µ ∗1)(pa) = ι(pa) for all positive integers a. (Why is the case
a = 0 automatically true?) Now, µ(pk) is equal to 1 if k = 0, to −1 if k = 1, and to 0

otherwise, so for a ≥ 1,

(µ ∗ 1)(pa) = 1− 1(p) = 1− 1 = 0 = ι(pa),

as claimed.
(ii) This follows from (i):

µ ∗ f̂ = µ ∗ (1 ∗ f) = (µ ∗ 1) ∗ f = ι ∗ f = f.

Example. Consider the von Mangoldt function, the arithmetic function defined by

Λ : m 7→

log(p) if m = pk, where p is prime and k ≥ 1,

0 otherwise.

(Note that Λ is not multiplicative, because Λ(1) = 0.) We will use Möbius inversion to
give an alternative description of Λ. Let m ∈ Z≥1 have prime factorization pa1

1 · · · par
r .

Then because Λ(n) = 0 when n is not a prime power,

Λ̂(m) =
∑
d |m

Λ(d) =

r∑
j=1

aj∑
k=1

Λ(pkj ) =

r∑
j=1

aj∑
k=1

log(pj) =

r∑
j=1

aj log(pj) = log(m).

Hence, by Möbius inversion,

Λ(m) = (µ ∗ Λ̂)(m) =
∑
d |m

µ(d)Λ̂
(
m
d

)
=
∑
d |m

µ(d) log
(
m
d

)
=
∑
d |m

µ(d) log(m)−
∑
d |m

µ(d) log(d)

= log(m)µ̂(m)−
∑
d |m

µ(d) log(d)

= −
∑
d |m

µ(d) log(d),

because log(m) = 0 if m = 1, and µ̂(m) = ι(m) = 0 if m > 0.
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IV – 4 A strategy for computing a multiplicative function

Suppose that f is a multiplicative arithmetic function. A common strategy to find an
explicit formula for f(m) is as follows:

(i) Justify first that f really is multiplicative. Refer to any relevant facts: If f and g

are multiplicative arithmetic functions, then f ∗ g, f−1, f̂ , and fg, for example,
are all multiplicative.

(ii) Find f(pa) where p is prime and a ∈ Z≥1.

(iii) Put the above together to obtain an expression for f(m) via the fact that m =∏
p |m pvp(m).

Example. Show that ϕ̂(m) = m for all positive integers m, where ϕ is Euler’s ϕ-
function.

Solution: We know already that ϕ is multiplicative, so ϕ̂ is also multiplicative. Now, if
p is prime and a ∈ Z≥1, then

ϕ̂(pa) =

a∑
k=0

ϕ(pk) = 1 +

a∑
k=1

ϕ(pk) = 1 +

a∑
k=1

(pk − pk−1) = pa, (4.1)

the last sum being a telescoping one. Therefore,

ϕ̂(m) = ϕ̂

∏
p |m

pvp(m)

 =
∏
p |m

ϕ̂(pvp(m)) because ϕ̂ is multiplicative

=
∏
p |m

pvp(m) by (4.1)

= m.

Example. Let f = µϕ, the pointwise product of µ and ϕ, that is, f(m) = µ(m)ϕ(m),
and consider f̂ = 1 ∗ f . Show that for all m ∈ Z≥1,

f̂(m) =
∏
p |m

(2− p),

the product running over all primes p that divide m.

Solution: The arithmetic functions µ and ϕ are multiplicative, so their pointwise product
f = µϕ is as well, and so f̂ is multiplicative. Now, if p is prime and a ∈ Z≥1,

f̂(pa) =

a∑
k=0

f(pk) =

a∑
k=0

µ(pk)ϕ(pk) = 1− (p− 1) = 2− p.

Hence, because f̂ is multiplicative,

f̂(m) =
∏
p |m

f̂(pvp(m)) =
∏
p |m

(2− p).
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IV – 5 Bell series

A formal power series (over C) is an expression of the form F (x) =
∑∞

n=0 anx
n where

the coefficients an are in C and x is an indeterminate. We add and multiply formal
power series as follows:

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn)x
n,( ∞∑

n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

(
n∑

k=0

akbn−k

)
xn.

These operations make the set of formal power series a commutative unital ring.
It is useful to be able to reindex : If k + l ≥ 0, then

∞∑
n=k

anx
n+l =

∞∑
n=k+l

an−lx
n.

For example,
∑∞

n=3 n
2 sin(n)xn+2 =

∑∞
n=5(n− 2)2 sin(n− 2)xn.

Formal differentiation of power series is defined term by term: If F (x) =
∑∞

n=0 anx
n,

then

F ′(x) =

∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n.

The product rule holds for formal differentiation: (FG)′ = F ′G + FG′. If G(x) is a
power series with zero constant term (i.e., the coefficient of x0 is zero), then for any
power series F (x), the substitution F (G(x)) is possible. The power series F (G(x)) is
denoted (F ◦ G)(x). In this situation, the chain rule holds for formal differentiation:
(F ◦G)′(x) = G′(x)F ′(G(x)).

One often uses the power series (1 − tx)−1, where t is some fixed complex number.
As an explicit power series, it is given by

1

1− tx
=

∞∑
n=0

tnxn.

To see this, we multiply
∑∞

n=0 t
nxn by 1− tx:

(1− tx)

∞∑
n=0

tnxn =

∞∑
n=0

tnxn −
∞∑

n=0

tn+1xn+1

=

∞∑
n=0

tnxn −
∞∑

n=1

tnxn (reindexing)

= 1.

Example. Let us find 1
1−2x

1

1− 1
2x

as an explicit power series:

1

1− 2x

1

1− 1
2x

=

( ∞∑
n=0

2nxn

)( ∞∑
n=0

(1
2

)n
xn

)
=

∞∑
n=0

(
n∑

k=0

2k
(1
2

)n−k
)
xn
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=

∞∑
n=0

(
n∑

k=0

22k−n

)
xn

=

∞∑
n=0

4n+1 − 1

3 · 2n
xn,

the last step using the observation that

n∑
k=0

22k =

n∑
k=0

4k =
4n+1 − 1

4− 1
=

4n+1 − 1

3
.

Now let f be an arithmetic function and p a prime number. The Bell series of f at
p is the formal power series

Bf,p(x) =

∞∑
n=0

f(pn)xn.

Example.

Bι,p(x) =

∞∑
n=0

ι(pn)xn = 1

B1,p(x) =

∞∑
n=0

1(pn)xn =

∞∑
n=0

xn =
1

1− x

Bµ,p(x) =

∞∑
n=0

µ(pn)xn = 1− x

Example. The computation of Bϕ,p(x) requires a little more manipulation:

Bϕ,p(x) =

∞∑
n=0

ϕ(pn)xn = 1 +

∞∑
n=1

ϕ(pn)xn

= 1 +

∞∑
n=1

(pn − pn−1)xn

= 1 +

∞∑
n=1

pnxn −
∞∑

n=1

pn−1xn

=

∞∑
n=0

pnxn −
∞∑

n=0

pnxn+1

= (1− x)

∞∑
n=0

pnxn =
1− x

1− px
.

Example. Let N be the arithmetic function m 7→ m, i.e., N(m) = m. Then

BN,p(x) =

∞∑
n=0

N(pn)xn =

∞∑
n=0

pnxn =
1

1− px
.
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IV – 6 Bell series continued

Proposition 6.1. If f and g are arithmetic functions, and if p is prime, then

Bf∗g,p(x) = Bf,p(x)Bg,p(x).

Proof.

Bf,p(x)Bg,p(x) =

( ∞∑
n=0

f(pn)xn

)( ∞∑
n=0

g(pn)xn

)
=

∞∑
n=0

(
n∑

k=0

f(pk)g(pn−k)

)
xn

=

∞∑
n=0

∑
d | pn

f(d)g
(pn
d

)xn

=
∞∑

n=0

(f ∗ g)(pn)xn = Bf∗g,p(x).

Example. Show that τ = 1 ∗ 1, and use this fact to show that

Bτ,p(x) =
1

1− 2x+ x2
.

Solution: By definition,

τ(m) =
∑
d |m

1 =
∑
d |m

1(d)1
(m
d

)
= (1 ∗ 1)(m).

Hence, by Proposition 6.1,

Bτ,p(x) = B1∗1,p(x) = B1,p(x)
2 =

1

(1− x)2
=

1

1− 2x+ x2
.

Example. Show that σ = N ∗ 1, where N : m 7→ m, and use this fact to show that

Bσ,p(x) =
1

1− (p+ 1)x+ px2
.

Solution: For all m ≥ 1,

σ(m) =
∑
d |m

d =
∑
d |m

N(d)1
(m
d

)
= (N ∗ 1)(m),

so σ = N ∗ 1 and

Bσ,p(x) = BN∗1,p(x) = BN,p(x)B1,p(x) =
1

1− px

1

1− x
=

1

1− (p+ 1)x+ px2
.

Proposition 6.2. If f and g are multiplicative arithmetic functions (note especially the
word multiplicative here), then f = g if and only if Bf,p(x) = Bg,p(x) for all primes p.
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Proof. If Bf,p(x) = Bg,p(x), then
∑∞

n=0 f(p
n)xn =

∑∞
n=0 g(p

n)xn, so equating coeffi-
cients, we obtain f(pn) = g(pn) for all n ≥ 0. If this is true for all primes p, it follows
from the assumption that f and g are multiplicative that f = g.

Example. If m ∈ Z≥1 has prime factorization pa1
1 · · · par

r , where p1, . . . , pr are distinct
primes and ai > 0 for all i, let ω(m) = r (and define ω(1) = 0). Then the arithmetic
function f : m 7→ 2ω(m) is multiplicative (exercise). Use Bell series to express f as a
convolution of well-known functions.

Solution: We begin with the definition of Bf,p(x) and then manipulate the series:

Bf,p(x) =

∞∑
n=0

f(pn)xn = 1 +

∞∑
n=1

2xn = −1 + 2

∞∑
n=0

xn = −1 +
2

1− x

=
1 + x

1− x
=

1

1− x
(1 + x).

Now, we know that 1
1−x = B1,p(x), and it is easy to verify that 1+x = Bµ2,p(x), where

µ2 is the pointwise product of µ with itself, i.e., (µ2)(m) = µ(m)2, so

Bf,p(x) = B1,p(x)Bµ2,p(x) = B1∗(µ2),p(x).

Hence, because f and 1 ∗ (µ2) are multiplicative, it follows from Proposition 6.2 that
f = 1 ∗ (µ2).
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IV – 7 The Möbius function and roots of unity

The Möbius function µ, which we introduced in Section 1 and subsequently saw is the
Dirichlet inverse of the constant function 1, has an elegant description in terms of roots
of unity.

A complex number ζ is called a root of unity if ζn = 1 for some positive integer n.
In this case, ζ is called an nth root of unity.

If ζ is a root of unity, then the least positive integer n such that ζn = 1 is called its
order. A root of unity of order n is called a primitive nth root of unity. For example,
−1 is a root of unity of order 2, so it is a primitive 2nd root of unity. It is also a 4th
root of unity, but not a primitive one. The primitive 4th roots of unity are i and −i.

Proposition 7.1. For each positive integer n, there are n distinct nth roots of unity in
C.

The proof of this proposition is straightforward, resting on only some basic trigonom-
etry, and is given in Section 1 of the Appendix.

Lemma 7.2. If ζ is an nth root of unity, then its order divides n.

Proof. Let m be the order of ζ, and write n = qm + r where q, r ∈ Z and 0 ≤ r < m.
Then

ζr = ζn−qm

= ζn because ζm = 1

= 1 because ζn = 1.

Hence, by the minimality of m, r must be zero.

Proposition 7.3. For each positive integer n, µ(n) is the sum of all primitive nth roots
of unity in C.

Proof. Define arithmetic functions F and f by letting F (n) be the sum of all nth roots
of unity in C and letting f(n) be the sum of all primitive nth roots of unity, i.e., roots
of unity of order n. Because the order of an nth root of unity divides n by Lemma 7.2,
we see that

F (n) =
∑
d |n

f(d),

i.e., F = 1 ∗ f .
We show that F = ι. It is clear that F (1) = 1, because the only 1st root of unity is

1. Now we let n > 1 and show that F (n) = 0. By Proposition 7.1, there are n distinct
nth roots of unity in C, say ζ1, . . . , ζn, so the polynomial xn − 1 factorizes as

xn − 1 = (x− ζ1) · · · (x− ζn).

Expanding the right-hand side out, we see that the coefficient of xn−1 is −(ζ1+ · · ·+ζn),
while on the left-hand side the corresponding coefficient is 0 because n > 1. Thus,
F (n) = 0, as desired.
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In summary, we have 1 ∗ f = F = ι, so Möbius inversion (Proposition 3.1) gives
f = µ.

Example. The sum of the primitive cubic (3rd) roots of unity in C is µ(3), which is
−1 according to the definition of µ in Section 1. More generally, if p is a prime, then
the sum of the primitive pth roots of unity in C is µ(p) = −1.

Example. The sum of the primitive 15th roots of unity in C is µ(15) = 1. More
generally, if p and q are distinct primes, then the sum of the primitive (pq)th roots of
unity in C is µ(pq) = 1.

Example. If n is divisible by the square of some prime, then the sum of the primitive
nth roots of unity in C is µ(n) = 0. For example, the sum of the primitive 45th roots of
unity in C is 0.

An application to sums of cosines

As discussed in Section 1 of the Appendix, the nth roots of unity in C are

cos( 2πkn ) + i sin( 2πkn )

with k ∈ {0, . . . , n − 1}. By the same argument as in the proof of Proposition Ord-3,
the primitive nth roots of unity are obtained by restricting k to be coprime to n. For
example, the primitive 15th roots of unity are

cos( 2πk15 ) + i sin( 2πk15 ) with k ∈ {1, 2, 4, 7, 8, 11, 13, 14}.

But by Proposition 7.3, the sum of these is µ(15) = 1, so

14∑
k=0,

gcd(k,15)=1

cos( 2πk15 ) + i

14∑
k=0,

gcd(k,15)=1

sin( 2πk15 ) = 1.

In particular, equating real parts we obtain

14∑
k=0,

gcd(k,15)=1

cos( 2πk15 ) = 1. (7.1)

Using the identity cos(2π − x) = cos(x), we rewrite four of the eight terms in the sum
as follows:

cos( 14π15 ) = cos( 16π15 ), cos( 22π15 ) = cos( 8π15 ), cos( 26π15 ) = cos(4π15 ), cos( 28π15 ) = cos( 2π15 ).

Hence, making these substitutions in (7.1), and then dividing by 2, we arrive at

cos( 2π15 ) + cos( 4π15 ) + cos(8π15 ) + cos( 16π15 ) =
1

2
.
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(V) Pell’s Equation and Continued Fractions
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V– 1 Pell’s equation: introduction

Let d be a positive integer that is not a square. Pell’s equation for the integer d can
refer to either of the following equations:

x2 − dy2 = 1,

x2 − dy2 = −1.

The second is often called the negative Pell equation. In either case, we seek positive
integral solutions, i.e., solutions in which both x and y are positive integers.

It is a fact (see Section 14 of the Appendix for a proof) that the equation x2−dy2 = 1,
where d is a positive integer that is not a square, always has positive integral solutions.
We will see a method to find the solutions, involving the theory of continued fractions.
Before we start on that theory, we will make some preliminary observations.

The norm map

We have already seen, in Section III, the norm map on the Gaussian integers, i.e., the
map N : Z[i] → Z≥0 sending x+ yi to x2 + y2. More generally, if d is an integer that is
not a square, and if

√
d is a fixed square root of d in C, then we have the map

Nd : Z[
√
d] → Z

x+ y
√
d 7→ x2 − dy2,

where Z[
√
d] = {x+ y

√
d | x, y ∈ Z}. The relevance of Nd to Pell’s equation lies in the

fact that x2 − dy2 = 1 (or −1) if and only if Nd(x + y
√
d) = 1 (or −1). If there is no

confusion, we will omit the subscript d and write just N for the norm map on Z[
√
d].

Example. In the case d = 5, N(7 + 3
√
5) = 72 − 5 · 32 = 4.

As with the map N on the Gaussian integers, we have Nd(αβ) = Nd(α)Nd(β) for
all α, β ∈ Z[

√
d]. We leave this observation as a short exercise and use it to prove the

following.

Proposition 1.1. Let d be a positive integer that is not a square, and suppose that
x, y ∈ Z≥1 satisfy x2 − dy2 = 1. For each n ≥ 1, write (x + y

√
d)n = xn + yn

√
d with

xn, yn ∈ Z≥1. Then the pairs (xn, yn) constitute infinitely many integral solutions to
x2 − dy2 = 1.

Proof. Suppose that α = a+ b
√
d and α′ = a′ + b′

√
d correspond to solutions to Pell’s

equation for d, i.e., N(α) = N(α′) = 1 where N = Nd. Then because N respects
multiplication, N(αα′) = N(α)N(α′) = 1 · 1 = 1, so αα′ also corresponds to a solution
to the equation. Therefore, if x2 − dy2 = 1, i.e., N(x+ y

√
d) = 1, then induction on n

shows that for all n ≥ 1,

N((x+ y
√
d)n) = 1,
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i.e., N(xn + yn
√
d) = 1 in the notation of the proposition,

i.e., x2
n − dy2n = 1.

It remains only to show that the (xn, yn) yield infinitely many pairs. But

xn+1 + yn+1

√
d = (x+ y

√
d)(xn + yn

√
d) = xxn + dyyn + (xyn + yxn)

√
d,

so xn+1 = xxn + dyyn > xn.

Example. One solution to the equation x2−3y2 = 1 is (x, y) = (2, 1), which corresponds
to 2 +

√
3 ∈ Z[

√
3]. Therefore, another solution is obtained from

(2 +
√
3)2 = 7 + 4

√
3,

i.e., (x, y) = (7, 4) is another solution. (Check: 72 − 3 · 42 = 49 − 48 = 1.) Yet another
solution can be found by multiplying by 2 +

√
3 again:

(2 +
√
3)(7 + 4

√
3) = 26 + 15

√
3,

so (x, y) = (26, 15) is a solution. (Check: 262 − 3 · 152 = 676− 675 = 1.) Of course, this
process may be iterated as many times as one wishes.

Exercise. If (x, y) is a solution to the negative Pell equation for d, i.e., x2 − dy2 = −1,
and if (x + y

√
d)n = xn + yn

√
d, show that x2

n − dy2n = (−1)n. One may use the same
argument as in the proof of Proposition 1.1.

Note that Proposition 1.1 does not guarantee the existence of solutions (x, y) ∈
Z≥1×Z≥1 to Pell’s equation, only that if at least one such solution exists, then there are
infinitely many. To tackle the existence of solutions, we turn to the theory of continued
fractions.

Historical note

The problem of solving x2 − dy2 = 1 goes back well over a thousand years, with the
mathematician Brahmagupta making important progress on it in the 7th century [10,
Sect. 5.4]. Brahmagupta’s contributions include the discovery of the equality Nd(αβ) =

Nd(α)Nd(β), in different notation. While many mathematicians subsequently found and
refined methods for obtaining solutions to the equation, it was Lagrange, around 1768,
who provided the first rigorous proof of the validity of a method, employing continued
fractions to do so [10, Sect. 3.4]. Lagrange’s proof can be found in his collected works [3].
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V– 2 Definition of continued fractions and first examples

Let (a0; a1, a2, . . . , an) be an (n + 1)-tuple of real numbers a0, a1, . . . , an with ai > 0

for all i ≥ 1. (There is no restriction on a0.) The continued fraction associated to
(a0; a1, . . . , an) is the real number

[a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

an

Example.

[3; 1, 4, 7] = 3 +
1

1 +
1

4 +
1

7

Example.

[1; 2, 3, 4, 5] = 1 +
1

2 +
1

3 +
1

4 +
1

5

Observe that if a0, a1, . . . , an ∈ Z and ai > 0 for i ≥ 1, then [a0; a1, . . . , an] ∈ Q.
Conversely, we have:

Proposition 2.1. Every rational number can be expressed uniquely in the form [a0; a1, . . . , an]

where ai ∈ Z for all i, ai ∈ Z≥1 for i ≥ 1, and an ≥ 2 if n ≥ 1.

Proof. Let c, d ∈ Z with d > 0, and consider the rational number c/d. Let c0 = c and
c1 = d, and perform the Euclidean algorithm on c0 and c1:

c0 = a0c1 + c2 (0 ≤ c2 < c1) (2.1)

c1 = a1c2 + c3 (0 ≤ c3 < c2) (2.2)

c2 = a2c3 + c4 (0 ≤ c4 < c3) (2.3)
...

cn−1 = an−1cn + cn+1 (0 ≤ cn+1 < cn)

cn = ancn+1

Hence,

c

d
=

c0
c1

(2.1)
= a0 +

c2
c1

= a0 +
1

c1/c2

(2.2)
= a0 +

1

a1 +
c3
c2
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= a0 +
1

a1 +
1

c2/c3

(2.3)
= a0 +

1

a1 +
1

a2 +
c4
c3

= · · · = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

an

= [a0; a1, . . . , an].

If n ≥ 1, then because cn+1 < cn and cn = ancn+1, we have an ≥ 2.
The uniqueness is proven in Section 9 of the Appendix.

If q is a rational number, the representation q = [a0; a1, . . . , an] provided by Propo-
sition 2.1 will be called the canonical continued-fraction representation of q.

Example. Find the canonical continued-fraction representation of 121/84.

Solution:

121 = 1 · 84 + 37

84 = 2 · 37 + 10

37 = 3 · 10 + 7

10 = 1 · 7 + 3

7 = 2 · 3 + 1

3 = 3 · 1,

so 121/84 = [1; 2, 3, 1, 2, 3].
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V– 3 Explicit computation of [a0; a1, . . . , an]

If α = (a0; a1, . . . , an), where ak ∈ R for all k and ak > 0 for k ≥ 1, then for each
k ∈ {0, . . . , n}, let

Ck(α) = [a0; a1, . . . , ak] ∈ R.

Define numbers pk(α) and qk(α) recursively by

p0(α) = a0 q0(α) = 1

p1(α) = a1a0 + 1 q1(α) = a1

pk(α) = akpk−1(α) + pk−2(α) qk(α) = akqk−1(α) + qk−2(α) for k ≥ 2

Theorem 3.1. If α = (a0; a1, . . . , an), where ak ∈ R for all k and ak > 0 for k ≥ 1,
then

Ck(α) =
pk(α)

qk(α)
for all k ∈ {0, . . . , n}.

Before proving the theorem, let us make some observations, which are left as short
exercises.

(i) If α = (a0; a1, a2, . . . , ak+1) and β = (a0; a1, a2, . . . , ak−1, ak+
1

ak+1
), then Ck+1(α) =

Ck(β).

(ii) If α = (a0; a1, . . . , am) and β = (b0; b1, . . . , bn), and if k ≤ min(m,n) is such that
ai = bi for all i ≤ k, then

(a) Ci(α) = Ci(β) for all i ≤ k, and

(b) pi(α) = pi(β) and qi(α) = qi(β) for all i ≤ k.

Proof. (Theorem 3.1) We prove by induction on k ≥ 0 the statement that if n ≥ k and
α = (a0; a1, . . . , an), then Ck(α) = pk(α)/qk(α). The cases k = 0, 1 are obvious. Let us
treat the case k = 2 separately. Let β = (a0; a1 +

1
a2
). Then

C2(α) = C1(β) by (ii)(a) and (i)

=
p1(β)

q1(β)
by the k = 1 case applied to β

=
(a1 +

1
a2
)a0 + 1

a1 +
1
a2

=
a2(a1a0 + 1) + a0

a2a1 + 1
=

a2p1(α) + p0(α)

a2q1(α) + q0(α)
=

p2(α)

q2(α)
.

Now let k ≥ 2, and assume that the statement is true for this k. Let α = (a0; a1, . . . , an)

where n ≥ k + 1, and let

α′ = (a0; a1, a2, . . . , ak+1)

β = (a0; a1, a2, . . . , ak−1, ak + 1
ak+1

)

Then

Ck+1(α) = Ck+1(α
′) by (ii)(a)
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= Ck(β) by (i)

=
pk(β)

qk(β)
by the inductive hypothesis applied to β

=
(ak + 1

ak+1
)pk−1(β) + pk−2(β)

(ak + 1
ak+1

)qk−1(β) + qk−2(β)

=
(ak + 1

ak+1
)pk−1(α) + pk−2(α)

(ak + 1
ak+1

)qk−1(α) + qk−2(α)
by (ii)(b)

=
ak+1(akpk−1(α) + pk−2(α)) + pk−1(α)

ak+1(akqk−1(α) + qk−2(α)) + qk−1(α)

=
ak+1pk(α) + pk−1(α)

ak+1qk(α) + qk−1(α)

=
pk+1(α)

qk+1(α)
.

This completes the induction.

The algorithm for finding the numbers Ck via the pk and qk will be called the (p, q)-
algorithm.

Example. Use the (p, q)-algorithm to find [4; 2, 5, 3] as an explicit rational number.

Solution: Let α = (4; 2, 5, 3). Then

p0(α) = 4 q0(α) = 1

p1(α) = 2 · 4 + 1 = 9 q1(α) = 2

p2(α) = 5 · 9 + 4 = 49 q2(α) = 5 · 2 + 1 = 11

p3(α) = 3 · 49 + 9 = 156 q3(α) = 3 · 11 + 2 = 35

Thus, [4; 2, 5, 3] = 156/35. Note that this fraction is in lowest terms. We will soon see
why.

Example. Find [2; 3, 5, 7, 11] as an explicit rational number.

Solution: Let α = (2; 3, 5, 7, 11). Then

p0(α) = 2 q0(α) = 1

p1(α) = 3 · 2 + 1 = 7 q1(α) = 3

p2(α) = 5 · 7 + 2 = 37 q2(α) = 5 · 3 + 1 = 16

p3(α) = 7 · 37 + 7 = 266 q3(α) = 7 · 16 + 3 = 115

p4(α) = 11 · 266 + 37 = 2963 q4(α) = 11 · 115 + 16 = 1281

Thus,

[2; 3, 5, 7, 11] =
2963

1281
.
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V– 4 Towards infinite continued fractions

Proposition 4.1. Let α = (a0; a1, . . . , an) where ak ∈ Z for all k and ak > 0 for k ≥ 1.
Then

pk(α)qk−1(α)− pk−1(α)qk(α) = (−1)k−1 for all k ≥ 1.

Proof. This is done by induction on k. We abbreviate pk(α), qk(α) to pk, qk. The case
k = 1 is immediate: p1q0 − p0q1 = a1a0 + 1− a0a1 = 1. Now let k ≥ 1 and assume the
equality for this k. Then

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1) = pk−1qk − pkqk−1

= (−1)k,

the last equality by the inductive hypothesis.

Corollary 4.2 (C-cor 1). In the notation of the proposition, pk(α) and qk(α) are co-
prime for all k ≥ 0.

Proof. The case k = 0 is obvious because q0 = 1. If k ≥ 1, then any positive common
divisor of pk and qk divides pkqk−1 − pk−1qk = (−1)k−1 and so must be 1.

Corollary 4.3 (C-cor 2). In the notation of the proposition,

Ck(α)− Ck−1(α) =
(−1)k−1

qk(α)qk−1(α)
for all k ≥ 1,

Ck(α)− Ck−2(α) =
(−1)kak

qk(α)qk−2(α)
for all k ≥ 2.

Proof. Again omitting the α’s, we have, for k ≥ 1,

Ck − Ck−1 =
pk
qk

− pk−1

qk−1
=

pkqk−1 − pk−1qk
qkqk−1

=
(−1)k−1

qkqk−1

by the proposition. If k ≥ 2, then again forming a common denominator, we have

Ck − Ck−2 =
pkqk−2 − pk−2qk

qkqk−2
=

(akpk−1 + pk−2)qk−2 − pk−2(akqk−1 + qk−2)

qkqk−2

=
ak(pk−1qk−2 − pk−2qk−1)

qkqk−2
=

(−1)kak
qkqk−2

by the proposition again.

Corollary 4.4 (C-cor 3). In the notation of the proposition,

(i) C0(α) < C2(α) < C4(α) < · · · ,

(ii) C1(α) > C3(α) > C5(α) > · · · ,

(iii) C2k(α) < C2j+1(α) for all k, j ≥ 0 (every odd is greater than every even).
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Proof. For the first two assertions, observe that, by C-cor 2,

Ck − Ck−2 =
(−1)kak
qkqk−2

,

which is positive when k is even and negative when k is odd. For the last assertion, note
that

C2m+1 − C2m =
(−1)2m

q2m+1q2m
=

1

q2m+1q2m
> 0,

i.e.,
C2m+1 > C2m. (4.1)

Hence, if k, j ≥ 0,

C2j+1

(ii)
≥ C2j+2k+1

(4.1)
> C2j+2k

(i)
≥ C2k.

Theorem 4.5. Let (an)n≥0 be a sequence of integers with an > 0 for all n ≥ 1. For
each k ≥ 0, let Ck = [a0; a1, . . . , ak] ∈ Q. Then the sequence (Ck)k≥0 converges in R.
We denote its limit by [a0; a1, a2, . . .].

Proof. By C-cor 3, the sequence C0, C2, C4, . . . is monotone increasing and has an upper
bound (e.g., C1), so it has a limit x− in R. Similarly, the sequence C1, C3, C5, . . .,
monotone decreasing and bounded below, has a limit x+. Further, the proof of C-cor 3
shows that C2m+1 − C2m = 1/(q2m+1q2m) → 0 as m → ∞, so

0 = lim
m→∞

(C2m+1 − C2m) = lim
m→∞

C2m+1 − lim
m→∞

C2m = x+ − x−.

Therefore, (Ck)k≥0 converges to x+ = x−.

Here is a visual illustration of the convergence of the Ck(α):

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11
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V– 5 Infinite continued fractions

Recall that if (a0; a1, a2, . . .) is a sequence of integers with ak > 0 for all k ≥ 1, then
limn→∞[a0; a1, a2, . . . , an] exists and is denoted [a0; a1, a2, . . .]. The following facts are
proven in Section 10 of the Appendix:

(i) [a0; a1, a2, . . .] is irrational.

(ii) Every irrational real number can be expressed as x = [a0; a1, a2, . . .] for some
sequence as above.

(iii) The integers a0, a1, a2, . . . are uniquely determined by the irrational number x.
That is, if [a0; a1, a2, . . .] = [b0; b1, b2, . . .], then an = bn for all n ≥ 0.

There is therefore a bijection between R∖Q and the set of integer sequences of the
above kind. The rational numbers [a0; a1, a2, . . . , ak] are called the convergents to the
irrational number [a0; a1, a2, . . .].

The existence part of Section 10 of the Appendix shows that the continued-fraction
representation of an irrational number x is [a0; a1, a2, . . .] where

x0 = x, ak = ⌊xk⌋, xk+1 =
1

xk − ak
(k ≥ 0).

Example. The continued-fraction representation [a0; a1, a2, . . .] of π2 begins π2 =

[9; 1, 6, 1, . . .]. Indeed, the first few iterations of the above algorithm are

x0 = π2 ≈ 9.870, a0 = 9

x1 =
1

x0 − 9
≈ 1.150, a1 = 1

x2 =
1

x1 − 1
≈ 6.669, a2 = 6

x3 =
1

x2 − 6
≈ 1.495, a3 = 1

Quadratic irrationals and periodic continued fractions

Let x ∈ R∖Q. We will say that x has a periodic continued-fraction representation
[a0; a1, a2, . . .] if it takes the form [a0; a1, . . . , ak−1, b0, . . . , bl−1, b0, . . . , bl−1, . . .] for some
repeating sequence b0, . . . , bl−1, where k ≥ 0 and l ≥ 1. A common notation in this
situation is to indicate the repeating sequence by a bar:

[a0; a1, . . . , ak−1, b0, . . . , bl−1, b0, . . . , bl−1, . . .] = [a0; a1, . . . , ak−1, b0, . . . , bl−1].

Example.

[1] = [1; 1, 1, 1, . . .]

[1; 2] = [1; 2, 1, 2, . . .]

[1; 2, 3, 4] = [1; 2, 3, 4, 2, 3, 4, . . .]

[1; 2, 3, 4, 5] = [1; 2, 3, 4, 5, 3, 4, 5, . . .]
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The periodic continued fractions have a number-theoretic description. A real number
is called a quadratic irrational if it is a root of a polynomial x2 + bx+ c where b, c ∈ Q
and b2 − 4c is not the square of a rational number. The quadratic irrationals are the
real numbers of the form (u±

√
d)/v where u, v, d ∈ Z, v, d > 0, and d is not square.

Theorem 5.1. A real number is a quadratic irrational if and only if it has a periodic
continued-fraction representation.

The proof that a quadratic irrational has a periodic continued-fraction representation
is given in Section 12 of the Appendix. The other direction, that [a0; a1, a2, . . .] is a
quadratic irrational if the sequence of integers is periodic, is easier. For this, suppose
that x = [a0; a1, . . . , ak−1, b0, . . . , bl−1], and observe that

x = [a0; a1, . . . , ak−1, y] (5.1)

where

y = [b0; b1, . . . , bl−1] = [b0; b1, . . . , bl−1, b0, . . . , bl−1] = [b0; b1, . . . , bl−1, y]. (5.2)

We can now use the (p, q)-algorithm (Section 3) to express y in terms of itself. Specifi-
cally, if β = (b0; b1, . . . , bl−1, y), then

y = [b0; b1, . . . , bl−1, y] =
pl(β)

ql(β)
=

ypl−1(β) + pl−2(β)

yql−1(β) + ql−2(β)
,

and rearranging gives

ql−1(β)y
2 + (ql−2(β)− pl−1(β))y − pl−2(β) = 0,

showing that y is a rational or a quadratic irrational. We now use the (p, q)-algorithm
again, but this time on α = (a0; a1, . . . , ak−1, y):

x = [a0; a1, . . . , ak−1, y] =
pk(α)

qk(α)
=

ypk−1(α) + pk−2(α)

yqk−1(α) + qk−2(α)
.

This quotient is either a rational or a quadratic irrational because the same is true of the
numerator and denominator. However, x cannot be rational, because it has an infinite
continued-fraction representation. Thus, x is a quadratic irrational.

Remark. Our proof tacitly assumed that k, l ≥ 2. We leave it as an exercise to make
the necessary modifications in the remaining cases.

Remark. The justification for the equality at (5.1) and the final equality in (5.2) is
given by Proposition 11.2 in the Appendix.

The period length of the continued-fraction representation of a quadratic irrational
is the minimum period of the repeating part of the sequence. For example, the pe-
riod length of the quadratic irrational [5; 2, 6, 10, 9, 8, 7] is 4. The period length of
[5; 2, 6, 3, 7, 3, 7] may also appear to be 4 at first sight, but it is in fact 2, as the pe-
riodic sequence (3,7,3,7,. . . ) has minimum period 2. In fact, we would usually prefer to
write this second quadratic irrational as [5; 2, 6, 3, 7].
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V– 6 Examples of quadratic irrationals as continued fractions

Let us give an example of the fact that a quadratic irrational has a periodic continued-
fraction representation.

Example. Find the continued-fraction representation of (23−
√
37)/12.

Solution: We construct the xk and ak as in the usual algorithm for finding the continued-
fraction representation of an irrational number. If x = (23−

√
37)/12, then

x0 = x =
23−

√
37

12
≈ 1.410, a0 = 1

x1 =
1

23−
√
37

12 − 1
=

12

11−
√
37

=
12(11 +

√
37)

84
=

11 +
√
37

7
≈ 2.440, a1 = 2

x2 =
1

11+
√
37

7 − 2
= · · · = 3 +

√
37

4
≈ 2.271, a2 = 2

x3 =
1

3+
√
37

4 − 2
= · · · = 5 +

√
37

3
≈ 3.694, a3 = 3

x4 =
1

5+
√
37

3 − 3
= · · · = 4 +

√
37

7
≈ 1.440, a4 = 1

x5 =
1

4+
√
37

7 − 1
= · · · = 3 +

√
37

4
= x2.

Since x5 = x2, it follows that we have the repeating pattern

(a2, a3, a4, a5, a6, . . .) = (2, 3, 1, 2, 3, 1, 2, 3, 1, . . .),

so (23−
√
37)/12 = [1; 2, 2, 3, 1]. The period length, incidentally, is 3.

Remark. Note that we do not carry forward the approximations from each step to
the next, instead using each approximation only to obtain the current integer ak. This
approach eliminates the possibility of rounding errors accumulating. Once we have found
ak, we compute xk+1 using ak and the exact value of xk, not any approximation of xk.

Next, we illustrate how to obtain a quadratic irrational explicitly from a periodic
continued fraction.

Example. Find [2; 1] as an explicit quadratic irrational.

Solution: Let x = [2; 1], and note that x = [2; 1, x]. The (p, q)-algorithm gives

p0 = 2 q0 = 1

p1 = 3 q1 = 1

p2 = 3x+ 2 q2 = x+ 1
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Hence,

x =
3x+ 2

x+ 1
,

i.e., x2 + x = 3x+ 2,

i.e., x2 − 2x− 2 = 0,

i.e., x =
1

2
(2±

√
12)

= 1±
√
3.

But x = [2; 1] > 2, so we must have x = 1 +
√
3.

Example. Find [−2; 3, 5, 2, 2] as an explicit quadratic irrational.

Solution: First, let y = [5; 2, 2]. Then y = [5; 2, 2, y], so the (p, q)-algorithm gives

p0 = 5 q0 = 1

p1 = 11 q1 = 2

p2 = 27 q2 = 5

p3 = 27y + 11 q3 = 5y + 2

Therefore,

y = [5; 2, 2, y] =
27y + 11

5y + 2
,

i.e., 5y2 − 25y − 11 = 0, i.e., y = 1
10 (25±

√
845). But y = [5; 2, 2] > 5, so we must have

y = 1
10 (25 +

√
845). For x = [−2; 3, y], we use the (p, q)-algorithm again:

p0 = −2 q0 = 1

p1 = −5 q1 = 3

p2 = −5y − 2 q2 = 3y + 1

Then

x = [−2; 3, y] = −5y + 2

3y + 1
= −10(5y + 2)

10(3y + 1)

= −125 + 5
√
845 + 20

75 + 3
√
845 + 10

= −145 + 5
√
845

85 + 3
√
845

= − (145 + 5
√
845)(85− 3

√
845)

852 − 845 · 32

= −35 +
√
845

38
.
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V– 7 Quadratic irrationals defined by regular expressions

Consider the following problem: For an integer d ≥ 2, show that√
d2 − 1 = [d− 1; 1, 2d− 2].

We may prove this by beginning with [d − 1; 1, 2d− 2] and using the (p, q)-algorithm
to obtain the desired equality. To that end, let y = [1; 2d− 2], and note that y =

[1; 2d− 2, y]. The (p, q)-algorithm applied to the sequence (1; 2d− 2, y) gives

p0 = 1 q0 = 1

p1 = 2d− 1 q1 = 2d− 2

p2 = (2d− 1)y + 1 q2 = (2d− 2)y + 1

Therefore,

y =
(2d− 1)y + 1

(2d− 2)y + 1
,

and rearranging this equation yields y2 − y − 1
2d−2 = 0, so that

y =
1

2

(
1±

√
1 +

2

d− 1

)
. (7.1)

But y = [1; 2d− 2] > 1, so the sign in (7.1) is a plus. Hence,

[d− 1; 1, 2d− 2] = [d− 1; y]

= d− 1 +
1

y

= d− 1 +
2

1 +
√
1 + 2

d−1

= d− 1 +
2
(√

1 + 2
d−1 − 1

)
2/(d− 1)

(rationalizing the denominator)

= d− 1 + (d− 1)
(√

1 + 2
d−1 − 1

)
=
√
(d− 1)2 + 2(d− 1)

=
√
d2 − 1.

An alternative method

Suppose that, in the above problem, we had not been given an equality to prove, but
instead had been given only the expression

√
d2 − 1 and been asked to find its continued-

fraction representation in terms of d. Let us illustrate how one might tackle such a
problem. We will use a different expression for our example.
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Example. Let d be a positive integer. Find the continued-fraction representation of√
d2 + 2 in terms of d.

Solution: We use the usual algorithm for finding the continued-fraction representation
of a real number, beginning with x0 = x =

√
d2 + 2. It is clear that x0 > d, but also

x0 < d+ 1, as we may see as follows:√
d2 + 2 < d+ 1 ⇐⇒ d2 + 2 < (d+ 1)2 = d2 + 2d+ 1,

⇐⇒ 1 < 2d.

Because the last assertion is true and we have ⇐⇒ the whole way, the original claim
is true as well. Therefore, a0 = ⌊x0⌋ = d.

Next, let

x1 =
1

x0 − a0
=

1√
d2 + 2− d

=

√
d2 + 2 + d

2
> d.

We claim that x1 < d+ 1:
√
d2 + 2 + d

2
< d+ 1 ⇐⇒

√
d2 + 2 < d+ 2,

⇐⇒ d2 + 2 < d2 + 4d+ 4,

⇐⇒ 0 < 4d+ 2.

Hence, because d < x1 < d+ 1, we have a1 = ⌊x1⌋ = d.
Continuing, we let

x2 =
1

x1 − a1
=

1
√
d2+2+d

2 − d
=

2√
d2 + 2− d

=
2(
√
d2 + 2 + d)

2

=
√

d2 + 2 + d,

whose floor is d+ d = 2d, so a2 = 2d.
Finally, we let

x3 =
1

x2 − a2
=

1√
d2 + 2− d

= x1.

Thus,
√
d2 + 2 = [d; d, 2d]. Observe that the period length is 2.
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V– 8 The solutions to Pell’s equation

We may now solve Pell’s equation. Let d be a positive integer that is not a square.

Theorem 8.1. Let ϵ ∈ {1,−1}, let n be the period length of the continued-fraction
representation of

√
d, and let pk, qk be the numbers appearing in the (p, q)-algorithm for

the continued-fraction representation of
√
d. Then the solutions (x, y) ∈ Z≥1 × Z≥1 to

the equation x2 − dy2 = ϵ are the pairs (prn−1, qrn−1) for which the positive integer r

satisfies (−1)rn = ϵ.

A proof is given in Section 14 of the Appendix.

Example. Find the first three positive solutions to x2 − 6y2 = 1, and decide whether
the equation x2 − 6y2 = −1 has a solution.

Solution: We begin by finding the periodic continued-fraction representation of
√
6. In

fact, since 6 = d2 + 2 with d = 2, we may use the fact that
√
d2 + 2 = [d; d, 2d], as we

saw in Section 7. Thus, √
6 = [2; 2, 4].

Observe that the period length is 2, so the solutions to x2 − 6y2 = 1 are (p2r−1, q2r−1)

where (−1)2r = 1, i.e., 1r = 1. There is consequently no restriction on r, so the solutions
are simply (p2r−1, q2r−1) with r running through all positive integers, i.e.,

(p1, q1), (p3, q3), (p5, q5), . . . .

The (p, q)-algorithm yields

p0 = 2 q0 = 1

p1 = 5 q1 = 2

p2 = 22 q2 = 9

p3 = 49 q3 = 20

p4 = 218 q4 = 89

p5 = 485 q5 = 198

Therefore, the first three solutions are (5, 2), (49, 20), and (485, 198).
Finally, since the period length n = 2 is even, there are no integers r satisfying

(−1)rn = −1, so the equation x2 − 6y2 = −1 has no integral solutions.

Example. Use the (p, q)-algorithm on the periodic continued-fraction representation√
41 = [6; 2, 2, 12] to find the first positive solution to x2 − 41y2 = −1 and the first

positive solution to x2 − 41y2 = 1.

Solution: We can see right away from the fact that the period length n = 3 is odd that
the negative Pell equation does indeed have solutions, and they are (p3r−1, q3r−1) where
(−1)3r = −1, i.e., (−1)r = −1, i.e., r is odd. The first is therefore (p2, q2). Further, the
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solutions to x2 − 41y2 = 1 are (p3r−1, q3r−1) where (−1)3r = 1, i.e., (−1)r = 1, i.e., r
is even. The first solution to the positive Pell equation therefore corresponds to r = 2,
i.e., is (p5, q5). We now perform the (p, q)-algorithm:

p0 = 6 q0 = 1

p1 = 13 q1 = 2

p2 = 32 q2 = 5

p3 = 397 q3 = 62

p4 = 826 q4 = 129

p5 = 2049 q5 = 320

Thus, the first solution to the negative equation is (32, 5), and the first solution to the
positive equation is (2049, 320).

The following example illustrates a slight modification of the above strategy, one
that is a little more efficient.

Example. By calculating the q’s, but not the p’s, in the (p, q)-algorithm for
√
31 =

[5; 1, 1, 3, 5, 3, 1, 1, 10], find the first positive solution to the equation x2 − 31y2 = 1.

Solution: The period length is 8, so the solutions to the positive equation are (p8r−1, q8r−1)

where (−1)8r = 1, i.e., 1r = 1. There is no restriction on r, so the first solution cor-
responds to r = 1 and is therefore (p7, q7). Note that the equality p27 − 31q27 = 1 gives
p7 =

√
31q27 + 1, so it suffices to find q7 and from there obtain p7. The (p, q)-algorithm

can be applied to the q’s alone, without reference to the p’s, and one finds that q0, . . . , q7
are 1, 1, 2, 7, 37, 118, 155, 273. Hence, p7 =

√
31 · 2732 + 1 = 1520, so the first positive

solution to x2 − 31y2 = 1 is (1520, 273).

Determining whether the negative Pell equation has a solution

From Theorem 8.1, we see that the equation x2 − dy2 = −1, i.e., the negative equation,
has a solution if and only if the period length of

√
d is odd. However, sometimes, one can

see that there is no solution to the negative Pell equation simply by reducing modulo
some appropriate modulus.

Example. By choosing an appropriate modulus, show that there are no integral solu-
tions to x2 − 15y2 = −1.

Solution: If a solution existed, then reducing mod 3, we would have x2 ≡ −1 mod 3.
But we know that −1 is not square mod 3, so no solution exists.

Exercise. One may show directly that −1 is square mod 146. Does it follow that the
equation x2 − 146y2 = −1 does have integral solutions? Are there, in fact, any integral
solutions to this equation? How can you find out one way or the other?
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Appendix: 1 Roots of unity in C

We prove that for each positive integer n, there are n distinct nth roots of unity in C.
The well-known formulas from trigonometry for cos(x+ y) and sin(x+ y) show that(

cos(x) + i sin(x)
)(
cos(y) + i sin(y)

)
= cos(x+ y) + i sin(x+ y)

for all x, y ∈ R, and then induction on n yields(
cos(x) + i sin(x)

)n
= cos(nx) + i sin(nx) (1.1)

for all n ∈ Z≥0. It then follows that (1.1) holds for all integers n, simply by the fact that(
cos(x) + i sin(x)

)−1
= cos(x)− i sin(x) = cos(−x) + i sin(−x). The formula in (1.1) is

known as de Moivre’s formula.
Now consider the complex numbers

ζk = cos( 2πkn ) + i sin( 2πkn )

with k ∈ {0, . . . , n − 1}. They are distinct by basic properties of cos and sin, and it
follows immediately from de Moivre’s formula that

ζnk = cos(2πk) + i sin(2πk) = 1

for all k. Thus, ζ0, . . . , ζn−1 constitute n distinct nth roots of unity in C.

Appendix: 2 Proof of quadratic reciprocity

Many proofs of quadratic reciprocity exist. We follow the one given in Lang’s Alge-
braic Number Theory [4, Chapter IV, Sect. 2]. Its value may be found not only in its
demonstrating the truth of quadratic reciprocity, but also in its providing, in addition,
a method for constructing square roots of integers explicitly in terms of roots of unity.
We hope that this additional benefit will justify the choice of a proof of quadratic reci-
procity that is longer than some others. (See Section 1 above for a construction of roots
of unity in C.)

Recall that for an odd prime p and an integer a, the Legendre symbol
(

a
p

)
depends

only on the residue class of a mod p. Therefore, we may define
(

α
p

)
for a residue class

α ∈ Z/pZ by
(

α
p

)
=
(

a
p

)
for any a with [a] = α.

Lemma 2.1. Let n ≥ 2. If ω ∈ C is an nth root of unity other than 1, then
∑n−1

k=0 ω
k =

0.

Proof. Because ωn = 1, we have

0 = ωn − 1 = (ω − 1)

(
n−1∑
k=0

ωk

)
.

Therefore, since ω ̸= 1, the sum is zero.
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Fix a primitive pth root of unity ζ ∈ C, i.e., a root of unity of order p. If α ∈ Z/pZ,
define ζα = ζa where a is any integer satisfying [a] = α. This is well defined, since
ζa = ζb whenever a ≡ b mod p. Hence, we may define

Sp =
∑

α∈(Z/pZ)×

(
α

p

)
ζα.

This is called a Gauss sum.

Proposition 2.2. With notation as above,

S2
p =

(
−1

p

)
p.

Proof. For brevity, let G = (Z/pZ)×. Then

S2
p =

(∑
α∈G

(
α

p

)
ζα

)∑
β∈G

(
β

p

)
ζβ


=
∑
α∈G

∑
β∈G

(
αβ

p

)
ζα+β

=
∑
α∈G

∑
β∈G

(
αβ2

p

)
ζαβ+β (replace α with αβ)

=
∑
α∈G

∑
β∈G

(
α

p

)
ζ(α+1)β

=
∑
β∈G

(
−1

p

)
+

∑
α∈G∖{[−1]}

(
α

p

)∑
β∈G

(ζα+1)β

=

(
−1

p

)
(p− 1) +

∑
α∈G∖{[−1]}

(
α

p

)∑
β∈G

(ζα+1)β . (2.1)

Now, if α ∈ G∖{[−1]}, then ζα+1 is a pth root of unity different from 1, so by Lemma 2.1,∑
β∈G(ζ

α+1)β = −1. Therefore, continuing from (2.1), we have

S2
p =

(
−1

p

)
(p− 1)−

∑
α∈G∖{[−1]}

(
α

p

)

=

(
−1

p

)
p−

∑
α∈G

(
α

p

)
=

(
−1

p

)
p,

the last equality holding because
(

α
p

)
takes the value 1 as many times as it does −1 as

α runs through the prime residue classes mod p; see Proposition 6.1 in Section II.

If A is a commutative ring and q a prime number, we will write a ≡ b mod qA for
elements a, b ∈ A if a− b is in the ideal qA of A.
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Lemma 2.3. If A is a commutative ring and q a prime number, then (a + b)q ≡
aq + bq mod qA for all a, b ∈ A.

Proof. Because q is prime,
(
q
k

)
≡ 0 mod q for every k ∈ {1, . . . , q− 1}, so expanding out

(a+ b)q using the binomial theorem, we obtain the result.

Lemma 2.4. If ω is a root of unity, then Q ∩ Z[ω] = Z.

Proof. Let a ∈ Q ∩ Z[ω]. Then a is an algebraic integer (because ω is) and a rational
number. Being an algebraic integer, a is a root of a monic polynomial in Z[x]. But a
rational root of such a polynomial must lie in Z.

Theorem 2.5. Let p and q be distinct odd primes. Then(
−1

p

)
= (−1)

p−1
2 ,

and
(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

Proof. The first equality follows from Proposition 6.2 in Section II: Take a = −1 and

note that, because p divides
(

−1
p

)
− (−1)

p−1
2 ∈ {−2, 0, 2} and p is odd, we must have(

−1
p

)
= (−1)

p−1
2 .

For the second equality, we compute Sq
p mod qA in two different ways, where A =

Z[ζ], with ζ being a primitive pth root of unity. On the one hand,

Sq
p = Sp(S

2
p)

q−1
2

= Sp

(
−1

p

) q−1
2

p
q−1
2 by Proposition 2.2

= Sp(−1)
p−1
2

q−1
2 p

q−1
2 by the first equality of the theorem

≡ Sp(−1)
p−1
2

q−1
2

(
p

q

)
mod qA by Proposition 6.2 in Section II again.

On the other hand, treating Sq
p another way, we have

Sq
p =

(∑
α∈G

(
α

p

)
ζp

)q

≡
∑
α∈G

(
α

p

)q

ζqα mod qA by Lemma 2.3

=
∑
α∈G

(
α

p

)
ζqα because q is odd

=

(
q

p

)∑
α∈G

(
qα

p

)
ζqα

=

(
q

p

)∑
α∈G

(
α

p

)
ζα (replace qα with α)
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=

(
q

p

)
Sp.

Combining this with the above, we have

Sp(−1)
p−1
2

q−1
2

(
p

q

)
≡ Sp

(
q

p

)
mod qA,

so S2
p(−1)

p−1
2

q−1
2

(
p

q

)
≡ S2

p

(
q

p

)
mod qA,

i.e.,
(
−1

p

)
p(−1)

p−1
2

q−1
2

(
p

q

)
≡
(
−1

p

)
p

(
q

p

)
mod qA,

i.e., p(−1)
p−1
2

q−1
2

(
p

q

)
≡ p

(
q

p

)
mod qA.

Because p is invertible mod q, we deduce that

(−1)
p−1
2

q−1
2

(
p

q

)
≡
(
q

p

)
mod qA,

i.e., a/q ∈ A where a = (−1)
p−1
2

q−1
2

(
p
q

)
−
(

q
p

)
. Hence, a/q ∈ Q∩A = Z by Lemma 2.4,

so a ∈ qZ. Therefore, since a ∈ {−2, 0, 2}, and since q ≥ 3, a = 0.

Complementing Theorem 2.5, we have the following.

Proposition 2.6. If p is an odd prime, then(
2

p

)
= (−1)(p

2−1)/8.

Proof. We give a proof that follows similar lines to that of Theorem 2.5. Let G =

(Z/8Z)×, and define

χ : G → {1,−1}

α 7→

1 if α = [1] or [7],

−1 if α = [3] or [5].

By a slight abuse of notation, if a is an odd integer then χ(a) will mean χ([a]). Note
that χ(αβ) = χ(α)χ(β). Now fix a primitive 8th root of unity ζ, and let

S2 =
∑
α∈G

χ(α)ζα.

A short calculation shows that S2
2 = 8. Therefore,

Sp
2 = S2(S

2
2)

p−1
2

= S2 · 8
p−1
2

≡ S2

(
8

p

)
mod pA by Proposition 6.2 in Section II, where A = Z[ζ]
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= S2

(
2

p

)
.

But we also have

Sp
2 =

(∑
α∈G

χ(α)ζα

)p

≡
∑
α∈G

χ(α)pζpα mod pA by Lemma 2.3

=
∑
α∈G

χ(α)ζpα because p is odd

= χ(p)
∑
α∈G

χ(pα)ζpα

= χ(p)
∑
α∈G

χ(α)ζα (replace pα with α)

= χ(p)S2.

Hence, S2

(
2
p

)
≡ S2χ(p) mod pA, so S2

2

(
2
p

)
≡ S2

2χ(p) mod pA, i.e., 8
(

2
p

)
≡ 8χ(p) mod pA,

and so
(

2
p

)
≡ χ(p) mod pA because 8 is invertible mod p. By the same argument as

appears at the end of the proof of Theorem 2.5, this congruence implies that
(

2
p

)
=

χ(p). It is an easy matter to check, by referring to the definition of χ, that χ(p) =

(−1)(p
2−1)/8.

Appendix: 3 Determination of the moduli admitting primitive
roots

We determine which moduli admit primitive roots, adopting the approach taken in
Rosen’s book [6, Chap. 9]. The proofs of Lemma 3.1 and Theorem 3.3 below, while
based on proofs in Rosen’s book, are also the same in essence as arguments given in
Serre’s book [8, Chap. I, Sect. 1.2].

Lemma 3.1. Let p be a prime, and for each positive divisor d of p− 1, let

f(d) = #{α ∈ (Z/pZ)× | ord(α) = d}.

Then f(d) ≤ ϕ(d).

Proof. We show more, namely, that f(d) is either 0 or ϕ(d). Assume, then, that f(d) > 0,
so that there is at least one α ∈ (Z/pZ)× such that ord(α) = d. Then the powers
α0, α1, . . . , αd−1 are d distinct roots of the polynomial xd − 1 ∈ Fp[x], where Fp is the
field Z/pZ. But a polynomial of degree d over a field cannot have more than d roots
in that field, so α0, α1, . . . , αd−1 must be all of the roots of xd − 1. Therefore, every
β ∈ (Z/pZ)× of order d, being necessarily a root of xd − 1, is a power of α. Hence,

f(d) = #{k ∈ {0, . . . , d− 1} | ord(αk) = d}

Paul Buckingham Elementary Number Theory (MATH 324) – v 1.02 | 79



= #

{
k ∈ {0, . . . , d− 1}

∣∣∣∣∣ d

gcd(d, k)
= d

}
by Proposition Ord-3

= #{k ∈ {0, . . . , d− 1} | gcd(d, k) = 1}

= ϕ(d).

Lemma 3.2. If m is a positive integer, then
∑

d |m ϕ(d) = m, the sum running through
the positive divisors of m.

Proof. Later in the course, we will develop tools to prove this via the theory of multi-
plicative arithmetic functions, but for now we will adopt the approach given in [6]. A
bridge between m and

∑
d |m ϕ(d), the two sides of the equation, is provided by the sets

Ad = {a ∈ {0, . . . ,m− 1} | gcd(a,m) = d},

Bd = {b ∈ {0, . . . , m
d − 1} | gcd(b, m

d ) = 1},

where d is a positive divisor of m. On the one hand, the set {0, . . . ,m−1} is partitioned
by the sets Ad as d runs through the positive divisors of m, so that

m =
∑
d |m

#Ad.

On the other hand, as d runs through the positive divisors of m, so does m/d, and we
consequently have ∑

d |m

ϕ(d) =
∑
d |m

ϕ(m/d) =
∑
d |m

#Bd,

the last equality by definition of ϕ. Therefore, the proof may be completed by showing
that #Ad = #Bd for all divisors of m. We leave it as a short exercise to verify that the
sets Ad and Bd are in fact in bijection via the map

f : Ad → Bd

a 7→ a/d.

Theorem 3.3. Let p be a prime, and recall from Lemma 3.1 the number f(d) defined
for each positive divisor d of p− 1. Then in fact f(d) = ϕ(d) for every d. In particular,
there are ϕ(p) = p− 1 primitive roots mod p.

Proof. By Proposition Ord-2, ord(α) | p − 1 for every α ∈ (Z/pZ)×, so the number of
elements in (Z/pZ)× equals the sum of the numbers f(d), i.e.,

p− 1 =
∑

d | p−1

f(d)

≤
∑

d | p−1

ϕ(d) by Lemma 3.1
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= p− 1 by Lemma 3.2.

If there were any divisor d of p − 1 with f(d) < ϕ(d), then the inequality above would
be a strict inequality, giving p− 1 < p− 1, a contradiction.

Proposition 3.4. Let p be an odd prime, and let a be a primitive root mod p. Then
either a or a+ p is a primitive root mod p2.

Proof. By Proposition Ord-4, ordp(a) | ordp2(a), i.e., p−1 | ordp2(a). On the other hand,
Proposition Ord-2 tells us that ordp2(a) |ϕ(p2) = p(p− 1). Therefore,

ordp2(a) ∈ {p− 1, p(p− 1)},

and similarly, because the integer b = a + p is also a primitive root mod p, we have
ordp2(b) ∈ {p− 1, p(p− 1)} as well.

Suppose, then, that a is not a primitive root mod p2, so that ap−1 ≡ 1 mod p2. Then

bp−1 = (a+ p)p−1

= ap−1 + p(p− 1)ap−2 + cp2 for some c ∈ Z by the binomial theorem

≡ ap−1 − ap−2 mod p2

≡ 1− ap−2 mod p2

̸≡ 1 mod p2 because a is coprime to p.

Hence, ordp2(b) is not equal to p − 1 and therefore is equal to p(p − 1), that is, b is a
primitive root mod p2.

Proposition 3.5. Let p be an odd prime. If a is a primitive root mod p2, then it is a
primitive root mod pk for all k ≥ 1.

Proof. Note first that if a is a primitive root mod p2, then for any b not divisible by
p, there exists by definition some integer n ≥ 0 such that an ≡ b mod p2, and then of
course this congruence holds mod p as well, so a is a primitive root mod p.

To treat the case k > 2, we first show, by induction on k, that ap
k−2(p−1) ̸≡ 1 mod pk

for all k ≥ 2. The case k = 2 holds because a is assumed to be a primitive root mod p,
so ap−1 ̸≡ 1 mod p2. Assume that the statement is true for some k ≥ 2. Now,

1 ≡ aϕ(p
k−1) mod pk−1 by Proposition Ord-2

= ap
k−2(p−1),

so ap
k−2(p−1) = 1 + bpk−1 for some b ∈ Z. If p divided b, then ap

k−2(p−1) would be
congruent to 1 mod pk, contradicting the inductive hypothesis, so p ∤ b. But then

ap
k−1(p−1) = (1 + bpk−1)p

≡ 1 + bpk mod pk+1 by the binomial theorem (but see the remark below)

̸≡ 1 mod pk+1,
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completing the induction.
Now, Proposition Ord-4 shows that ordp2(a) | ordpk(a), i.e., p(p − 1) | ordpk(a). On

the other hand, ordpk(a) | pk−1(p− 1) by Proposition Ord-2. Therefore,

ordpk(a) = pn(p− 1)

for some n ∈ {1, . . . , k−1}. But if n ≤ k−2, then ap
k−2(p−1) ≡ 1 mod pk, contradicting

what we proved above, so n = k − 1. Thus, a is a primitive root mod pk.

Remark. There is one step in the proof of Proposition 3.5 that would fail if p were
2, and that is the step where we used the binomial theorem. Specifically, the step is
incorrect if p = 2 and k = 2. Of course, something in the proof has to go wrong in the
case p = 2, because there is no primitive root mod 2k when k ≥ 3, but it is satisfying to
pinpoint precisely the moment where we use the assumption that the prime p is greater
than 2.

It remains to show that if an integer m ≥ 2 admits a primitive root, and m is neither
2 nor 4, then m must be either a power of an odd prime or twice such a power.

Lemma 3.6. If k ∈ Z≥3 and a is an odd integer, then aϕ(2
k)/2 ≡ 1 mod 2k. In partic-

ular, 2k does not admit a primitive root.

Proof. Fix an odd integer a. We prove by induction on k ≥ 3 the assertion that
aϕ(2

k)/2 ≡ 1 mod 2k. For the case k = 3, write a = 1 + 2b with b ∈ Z, and observe
that

aϕ(2
3)/2 = a2 = (1 + 2b)2 = 1 + 4b+ 4b2 = 1 + 4b(1 + b)

≡ 1 mod 23,

because b(1 + b) is even.
Now let k ≥ 3, and assume that aϕ(2

k)/2 ≡ 1 mod 2k, i.e., a2
k−2

= 1 + 2kc for some
c ∈ Z. Then

aϕ(2
k+1)/2 = a2

k−1

= (a2
k−2

)2 = (1 + 2kc)2 = 1 + 2k+1c+ 22kc2

≡ 1 mod 2k+1.

The induction is complete.

Lemma 3.7. Let t1, . . . , tr be positive integers and N their least common multiple. If
the product t1 · · · tr divides N , then t1, . . . , tr are pairwise coprime.

Proof. Let p be a prime, and observe that vp(N) = max(vp(t1), . . . , vp(tr)). Let mp be
this maximum, and choose i such that vp(ti) = mp. If t1 · · · tr divides N , then

vp(t1 · · · tr) ≤ vp(N),

i.e., vp(t1) + · · ·+ vp(tr) ≤ max(vp(t1), . . . , vp(tr)),
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i.e., vp(ti) +
∑
j ̸=i

vp(tj) ≤ mp,

i.e., mp +
∑
j ̸=i

vp(tj) ≤ mp,

i.e.,
∑
j ̸=i

vp(tj) ≤ 0,

so each vp(tj) with j ̸= i is zero. Therefore, p can divide at most one of t1, . . . , tr. This
being true for an arbitrary prime p, the claim of the lemma follows.

Proposition 3.8. Let m ∈ Z≥2, and assume that m has a primitive root. If m is neither
2 nor 4, then m is a power of an odd prime or twice such a power.

Proof. Let a be a primitive root mod m, and write m = pk1
1 · · · pkr

r , where the pi are
pairwise distinct primes and ki ≥ 1 for all i. Let N be the least common multiple
of ϕ(pk1

1 ), . . . , ϕ(pkr
r ). For each i, aϕ(p

ki
i ) ≡ 1 mod pki

i by Proposition Ord-2, so also
aN ≡ 1 mod pki

i because ϕ(pki
i ) |N . Thus, pki

i | aN − 1 for all i. But the integers pki
i

are pairwise coprime, so their product, m, divides aN − 1, i.e., aN ≡ 1 mod m. Hence,
ordm(a) |N by Proposition Ord-1, i.e., ϕ(m) |N because a is primitive mod m. Conse-
quently, ϕ(pk1

1 ) · · ·ϕ(pkr
r ) |N , because ϕ is multiplicative. But N is the least common

multiple of the ϕ(pki
i ), so these numbers are pairwise coprime by Lemma 3.7.

Now, if m had two distinct odd prime divisors, say pi and pj , then both ϕ(pki
i ) and

ϕ(p
kj

j ) would be even, contradicting what we found above. Therefore, m = 2kpl, where
p is an odd prime and k, l ≥ 0. If l = 0, then m = 2k, so Lemma 3.6 shows that k ≤ 2.
Otherwise, if l ≥ 1, so that ϕ(pl) is even, then ϕ(2k) must be odd, i.e., k ≤ 1.

Appendix: 4 Proof of Proposition 12.2 in Section II

We recall the statement to be proven:

If f(x) ∈ Z[x], p is prime, and a ∈ Z satisfies vp(f(a)) > 2vp(f
′(a)), then there are

integers a0, a1, a2, . . ., with a0 = a, such that

f(an) ≡ 0 mod pn+1 and an+1 ≡ an mod pn+1 for all n ≥ 0.

We in fact prove the following, from which the above can be deduced immediately
by induction.

Proposition 4.1. Assume that f(x) ∈ Z[x], p is prime, and a0 ∈ Z satisfies vp(f(a0)) >
2vp(f

′(a0)). Suppose that for some n ≥ 0, an integer an satisfies

vp(f(an)) ≥ vp(f(a0)) + n (4.1)

vp(f
′(an)) = vp(f

′(a0)) (4.2)
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Then if f(an) ̸= 0, there are λn, µn ∈ Z, not divisible by p, and tn ≥ n+ 1 such that

f(an)

f ′(an)
=

λn

µn
ptn .

Further, if bn ∈ Z satisfies λn + µnbn ≡ 0 mod p and we let an+1 = an + bnp
tn ∈ Z,

then (4.1) and (4.2) hold with n replaced by n+ 1.

Proof. Observe that

vp(f(an)/f
′(an)) ≥ n+ vp(f(a0))− vp(f

′(a0)) > n+ vp(f
′(a0)) ≥ n.

This tells us immediately that, as long as f(an) ̸= 0,

f(an)

f ′(an)
=

λn

µn
ptn

for some λn, µn ∈ Z coprime to p and some tn ≥ n+ 1. Let bn ∈ Z be chosen such that
λn + µnbn ≡ 0 mod p, and let an+1 = an + bnp

tn ∈ Z.
Write

f(x) = f(an) + f ′(an)(x− an) + gn(x)(x− an)
2

for some gn(x) ∈ Z[x]. Then

f(an+1) = f(an) + f ′(an)bnp
tn + gn(an+1)b

2
np

2tn

=
f ′(an)

µn
(λn + µnbn)p

tn + gn(an+1)b
2
np

2tn .

Now, the p-adic valuation of the first main term here is at least

vp(f
′(an)) + 1 + tn = vp(f(an)) + 1

by definition of tn. Further, the p-adic valuation of the second main term is at least

2tn = 2vp(f(an))− 2vp(f
′(an)) by definition of tn

= vp(f(an)) + vp(f(an))− 2vp(f
′(an))

≥ vp(f(an)) + vp(f(a0))− 2vp(f
′(a0)) because vp(f

′(an)) = vp(f
′(a0))

≥ vp(f(an)) + 1.

Hence,
vp(f(an+1)) ≥ vp(f(an)) + 1 ≥ vp(f(a0)) + n+ 1.

Next, we write

f ′(x) = f ′(an) + f ′′(an)(x− an) + hn(x)(x− an)
2

for some hn(x) ∈ Z[x]. Then

f ′(an+1) = f ′(an) + f ′′(an)bnp
tn + hn(an+1)b

2
np

2tn ,
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but

vp(f
′(an)) = vp(f(an))− tn

≥ vp(f(a0))− tn

> 2vp(f
′(a0))− tn

= 2vp(f
′(an))− tn,

so tn > vp(f
′(an)), and so

vp(f
′(an+1)) = vp(f

′(an)) = vp(f
′(a0)).

Appendix: 5 Proof of Proposition 2.2 in Section III

We recall the statement to be proven:

(i) Every element of Π is irreducible in Z[i].

(ii) Every irreducible element of Z[i] is associate to exactly one element of Π.

First, we prove that every element of Π is irreducible in Z[i]. If π2 = αβ, then

2 = N(π2) = N(αβ) = N(α)N(β),

so N(α) = 1 or N(β) = 1.
If p ≡ 1 mod 4 and πp = αβ, then

p = N(πp) = N(αβ) = N(α)N(β),

so N(α) = 1 or N(β) = 1. The argument is the same for πp.
If q ≡ 3 mod 4 and πq = αβ, i.e., q = αβ, then

q2 = N(q) = N(αβ) = N(α)N(β).

The Gaussian splitting lemma, i.e., Lemma 2.1 in Section III, shows that we cannot
have N(α) = N(β) = p, so either N(α) = 1 or N(β) = 1.

Next, we prove that every irreducible element of Z[i] is associate to exactly one
element of Π. Let π ∈ Z[i] be any irreducible element. Then N(π) ∈ Z≥2, so ππ =

p1 · · · pr for some prime numbers p1, . . . , pr. Thus, π | p1 · · · pr, so because π is irreducible
and therefore prime in the unique factorization domain Z[i], π divides some p = pj in
Z[i], say p = πα with α ∈ Z[i]. If α ∈ Z[i]×, then p is irreducible in Z[i] and is therefore
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congruent to 3 mod 4 by the Gaussian splitting lemma again, so πp = p ∼ π. Otherwise,
i.e., if α ̸∈ Z[i]×, then because

p2 = N(p) = N(πα) = N(π)N(α)

and π is not a unit either, we must have N(π) = N(α) = p, and then p = 2 or
p ≡ 1 mod 4 by the Gaussian splitting lemma once more. Hence,

πpπp = p = N(π) = ππ,

so uniqueness of factorization in Z[i] implies that π ∼ πp or π ∼ πp.
Finally, to show that no two elements of Π are associate, suppose that πp1 is associate

to πp2 or πp2 . Then N(πp1) = N(πp2), so because N(πp1) ∈ {p1, p21} and N(πp2) ∈
{p2, p22}, it follows that p1 = p2. It therefore remains to show that πp ̸∼ πp when
p ≡ 1 mod 4. But πp = x + yi with 0 < x < y, and πp = x − yi, so because |x| ≠ |y|,
there is no u ∈ {1, i,−1,−i} such that uπp = πp.

Appendix: 6 Products of coprime elements in a UFD

We prove a lemma that we used in Sections III – 4 and III – 5, regarding products of
coprime elements in a unique factorization domain. We recall the statement to be proven:

Suppose that

• R is a unique factorization domain,

• a, b ∈ R∖{0},

• n is a positive integer.

If a, b are coprime and ab = cn for some c ∈ R, then there are units u, v in R and
elements a′, b′ ∈ R such that a = u(a′)n and b = v(b′)n.

Proof. Write

a = upr11 · · · prkk
b = vqs11 · · · qsll

where p1, . . . , pk, q1, . . . , ql are pairwise non-associate irreducible elements of R, and
u, v ∈ R×. Then uvpr11 · · · prkk qs11 · · · qsll is an nth power, say

uvpr11 · · · prkk qs11 · · · qsll = wnπnt1
1 · · ·πntm

m ,

where π1, . . . , πm are pairwise coprime irreducible elements, and w ∈ R×. By uniqueness
of factorization, p1 is associate to one of π1, . . . , πm, say to πi, and then r1 = nti.
Similarly, each of the other rj is a multiple of n, and then a is the product of u and an
nth power. In the same way, we see that b is the product of v and an nth power.
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Appendix: 7 An elementary derivation of the formula for prim-
itive Pythagorean triples

Let (x, y, z) be a primitive Pythagorean triple. We show by elementary means that

(x, y, z) = (u2 − v2, 2uv, u2 + v2)

for coprime positive integers u and v satisfying u > v and u ̸≡ v mod 2. We begin by
rearranging the Pythagorean equation to read

z2 − x2 = y2,

i.e., (z + x)(z − x) = y2,

i.e.,
z + x

2

z − x

2
=
(y
2

)2
(remember that x and z are odd).

Since z+x
2 + z−x

2 = z and z+x
2 − z−x

2 = x, any common divisor of z+x
2 and z−x

2 divides
z and x, which are coprime, so z+x

2 and z−x
2 are coprime. But if a and b are coprime

positive integers whose product is square, then each of a and b is square. Therefore,
there are positive integers u and v such that

z + x

2
= u2 and

z − x

2
= v2.

Note that these equations give x = u2−v2 and z = u2+v2, and of course (y/2)2 = u2v2,
so y = 2uv.

Now, u > v because x is positive, and u2 and v2 are coprime, so u and v are coprime.
Also, u2 = v2 + x, and x is odd, so u2 ̸≡ v2 mod 2, and so u ̸≡ v mod 2. Thus, u and v

satisfy all the desired properties.

Appendix: 8 Proof that the Dirichlet inverse of a multiplicative
arithmetic function is multiplicative

If f is a multiplicative arithmetic function, then the fact that its Dirichlet inverse, f−1,
is multiplicative follows immediately from the proposition below upon taking g = f−1.

Proposition 8.1. If f and g are arithmetic functions such that f and f ∗ g are multi-
plicative, then g is multiplicative.

Proof. We prove by induction on N ≥ 1 the assertion that, if m and n are coprime
positive integers such that mn = N , then g(mn) = g(m)g(n). For the case N = 1, we
observe that

1 = (f ∗ g)(1) = f(1)g(1) = g(1),

so g(12) = g(1) = 1 = g(1)2. Now let N > 1, and assume the statement for all smaller
values of N . Let m and n be coprime positive integers such that mn = N , let

S = {(d, e) ∈ Z≥1 × Z≥1 | d |m and e |n},
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and let S′ = S∖{(m,n)}. Then

(f ∗ g)(mn) =
∑

(d,e)∈S

f
(
mn
de

)
g(de)

=
∑

(d,e)∈S′

f
(
mn
de

)
g(de) + g(mn)

=
∑

(d,e)∈S′

f
(
m
d

)
f
(
n
e

)
g(d)g(e) + g(mn) by the inductive hypothesis

=
∑

(d,e)∈S

f
(
m
d

)
f
(
n
e

)
g(d)g(e)− g(m)g(n) + g(mn)

=

∑
d |m

f
(
m
d

)
g(d)

∑
e |n

f
(
n
e

)
g(e)

− g(m)g(n) + g(mn)

= (f ∗ g)(m)(f ∗ g)(n)− g(m)g(n) + g(mn)

= (f ∗ g)(mn)− g(m)g(n) + g(mn),

so g(mn) = g(m)g(n), and the induction is complete.

Appendix: 9 The uniqueness part of Proposition 2.1 in Sec. V

We show the uniqueness of the representation of a rational number in the form [a0; a1, . . . , an],
where the ai are integers, ai ≥ 1 if i ≥ 1, and an ≥ 2 if n ≥ 1.

It will help to introduce some ad hoc terminology, namely, if n ≥ 0, a well-formed
n-tuple will mean an n-tuple (a0; a1, . . . , an) such that ai ∈ Z for all i, ai ≥ 1 for i ≥ 1,
and, if n ≥ 1, then an ≥ 2.

Given n ≥ 0, let P (n) be the following assertion: For all n′ ≥ n, if (a0; a1, . . . , an)
is a well-formed n-tuple, (b0; b1, . . . , bn′) is a well-formed n′-tuple, and [a0; a1, . . . , an] =

[b0; b1, . . . , bn′ ], then n = n′ and ai = bi for all i. We prove P (n) by induction.
Let us first prove P (0). Suppose that n′ ≥ 0, a0 ∈ Z, and (b0; b1, . . . , bn′) is a well-

formed n′-tuple such that a0 = [b0; b1, . . . , bn′ ]. Assume, for a contradiction, that n′ ≥ 1.
Then

a0 = [b0; b1, . . . , bn′ ] = b0 +
1

[b1; b2, . . . , bn′ ]
,

so
|a0 − b0| =

1

[b1; b2, . . . , bn′ ]
.

If n′ = 1, then b1 ≥ 2, so the left-hand side is less than 1, and if n′ ≥ 2, then
[b1; b2, . . . , bn′ ] > b1 ≥ 1, so the left-hand side is again less than 1. Either way, the non-
negative integer |a0−b0| is less than 1 and is therefore zero, showing that 1/[b1; b2, . . . , bn′ ] =

0, a contradiction. Thus, n′ = 0, and then a0 = b0.
Now let n ≥ 0, and assume P (n). Let n′ ≥ n + 1, let (a0; a1, . . . , an+1) be a

well-formed (n + 1)-tuple and (b0; b1, . . . , bn′) a well-formed n′-tuple, and assume that
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[a0; a1, . . . , an+1] = [b0; b1, . . . , bn′ ]. Then

|a0 − b0| =
∣∣∣∣ 1

[b1; b2, . . . , bn′ ]
− 1

[a1; a2, . . . , an+1]

∣∣∣∣ ,
so since the right-hand side is less than 1 and the left-hand side is a non-negative integer,
both sides are zero and we obtain a0 = b0 and [a1; a2, . . . , an+1] = [b1; b2, . . . , bn′ ]. Hence,
by the inductive hypothesis, n′ = n + 1 and ai = bi for all i ≥ 1. The induction is
complete.

Appendix: 10 On infinite continued fractions

We prove the facts (i)–(iii) concerning infinite continued fractions stated at the beginning
of Section V– 5.

Irrationality

First, we show that if a0, a1, a2, . . . are integers with ak > 0 for all k ≥ 1, then the real
number x = [a0; a1, a2, . . .] is irrational. The proof of Theorem 4.5 in Section V shows
that

C2n < x < C2n+1 for all n ≥ 0,

i.e., 0 < x− C2n < C2n+1 − C2n,

i.e., 0 < x− p2n
q2n

<
1

q2n+1q2n
,

i.e., 0 < q2nx− p2n <
1

q2n+1
.

If x were rational, say x = a/b with a, b ∈ Z and b > 0, then multiplying the last line
by b, we would have

0 < q2na− p2nb <
b

q2n+1
.

But the sequence (qk)k≥0 is a monotone-increasing sequence of integers and is therefore
unbounded above, so we may choose n such that b/q2n+1 < 1, contradicting the fact
that q2na− p2nb ∈ Z.

Existence

Next, we show that if x ∈ R is irrational, then there are integers a0, a1, a2, . . ., with
ak > 0 for all k ≥ 1, such that x = [a0; a1, a2, . . .]. Recall that for a real number y, ⌊y⌋
denotes its floor, i.e., the greatest integer less than or equal to y. If y is irrational, then
certainly y ̸∈ Z, so y − ⌊y⌋ > 0 and 1/(y − ⌊y⌋) is still irrational. Therefore, we may
define irrational numbers xk and integers ak recursively by

x0 = x, ak = ⌊xk⌋, xk+1 =
1

xk − ak
(k ≥ 0).
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Note that 0 < xk − ak < 1 for all k ≥ 0, so xk+1 > 1, and so ak+1 ≥ 1.
Now, since

[a0; a1, a2, . . . , ak, xk+1] = [a0; a1, a2, . . . , ak, ak+1 +
1

xk+2
]

= [a0; a1, a2, . . . , ak, ak+1, xk+2],

it is clear by induction on k that

x = [a0; a1, a2, . . . , ak, xk+1] for all k ≥ 0.

Hence, if Ck = [a0; a1, a2, . . .], and if pk and qk are defined in terms of a0, a1, a2, . . . as
usual, i.e., via the (p, q)-algorithm, then for all k ≥ 1,

|x− Ck| = |[a0; a1, a2, . . . , ak, xk+1]− Ck|

=

∣∣∣∣xk+1pk + pk−1

xk+1qk + qk−1
− pk

qk

∣∣∣∣ by Theorem 3.1 in Section V

=

∣∣∣∣xk+1pkqk + pk−1qk − xk+1pkqk − pkqk−1

(xk+1qk + qk−1)qk

∣∣∣∣
=

∣∣∣∣ (−1)k

(xk+1qk + qk−1)qk

∣∣∣∣ by Proposition 4.1 in Section V

=
1

(xk+1qk + qk−1)qk
because xk+1, qk, qk−1 > 0.

But ak+1 = ⌊xk+1⌋ < xk+1, so

1

(xk+1qk + qk−1)qk
<

1

(ak+1qk + qk−1)qk
=

1

qk+1qk
.

Finally, using again the fact that the sequence (qk)k≥0 is a monotone-increasing sequence
of integers, we observe that 1/(qk+1qk) → 0 as k → ∞, so Ck → x.

Uniqueness

We show that if a0, a1, a2, . . . and b0, b1, b2, . . . are integers such that ak, bk > 0 for all
k ≥ 1 and such that [a0; a1, a2, . . .] = [b0; b1, b2, . . .], then ak = bk for all k ≥ 0. The core
idea is contained in the following lemma.

Lemma 10.1. If a′0, a
′
1, a

′
2, . . . and b′0, b

′
1, b

′
2, . . . are integers such that a′k, b

′
k > 0 for

all k ≥ 1 and such that [a′0; a′1, a′2, . . .] = [b′0; b
′
1, b

′
2, . . .], then a′0 = b′0 and [a′1; a

′
2, . . .] =

[b′1; b
′
2, . . .].

Proof. For brevity, we omit the primes, i.e., write simply ak and bk instead of a′k
and b′k. Let x = [a0; a1, a2, . . .] = [b0; b1, b2, . . .], and let α = (a0; a1, a2, . . .) and β =

(b0; b1, b2, . . .). By the proof of Theorem 4.5,

C0(α) < x < C1(α),

i.e., a0 < x < a0 +
1

a1
≤ a0 + 1,
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so ⌊x⌋ = a0. Similarly, ⌊x⌋ = b0, so a0 = b0. Further,

x = lim
n→∞

[a0; a1, a2, . . . , an]

= lim
n→∞

(
a0 +

1

[a1; a2, . . . , an]

)
= a0 +

1

limn→∞[a1; a2, . . . , an]

= a0 +
1

[a1; a2, . . .]
,

and similarly

x = b0 +
1

[b1; b2, . . .]
.

Therefore, because a0 = b0, it follows that [a1; a2, . . .] = [b1; b2, . . .].

Now let a0, a1, a2, . . . and b0, b1, b2, . . . be as above. We show by induction on n ≥ 0

that an = bn and [an+1; an+2, an+3, . . .] = [bn+1; bn+2, bn+3, . . .]. The case n = 0 is
simply the lemma with a′k = ak and b′k = bk for all k ≥ 0. Next, let n ≥ 0 and assume
the statement for this n. Then the lemma applied with a′k = an+1+k and b′k = bn+1+k

for all k ≥ 0 yields an+1 = bn+1 and [an+2; an+3, . . .] = [bn+2; bn+3, . . .], completing the
induction.

Appendix: 11 Substitution of infinite continued fractions

Lemma 11.1. Let k, l ≥ 0, let a0, a1, . . . , ak+l be real numbers with ai > 0 for i ≥ 1,
and let

x = [a0; a1, a2, . . . , ak+l],

y = [ak; ak+1, ak+2, . . . , ak+l].

Then x = [a0; a1, a2, . . . , ak−1, y].

Proof. Fix l ≥ 0. We proceed by induction on k. For k ≥ 0, let P (k) be the assertion
that, for all real numbers a0, . . . , ak+l with ai > 0 for i ≥ 1, the claimed equality holds.
The case k = 0 is vacuous. Now let k ≥ 0 and assume P (k). Let a0, . . . , ak+1+l be real
numbers with ai > 0 for i ≥ 1. Then by the inductive hypothesis, x′ = [a1; a2, . . . , ak, y]

where

x′ = [a1; a2, . . . , ak+1+l],

y = [ak+1; ak+2, . . . , ak+1+l].

Then

[a0; a1, a2, . . . , ak+1+l] = a0 +
1

x′ = a0 +
1

[a1; a2, . . . , ak, y]
= [a0; a1, a2, . . . , ak, y],

and the induction is complete.
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Proposition 11.2. Let a0, a1, a2, . . . be integers with ai > 0 for i ≥ 1, and let x =

[a0; a1, a2, . . .]. Suppose that k ≥ 0, and let y = [ak; ak+1, ak+2, . . .]. Then

x = [a0; a1, a2, . . . , ak−1, y].

Proof. For each l ≥ 0, let yl = [ak; ak+1, . . . , ak+l]. Then

x = lim
n→∞

[a0; a1, a2, . . . , an]

= lim
l→∞

[a0; a1, a2, . . . , ak−1, ak, ak+1, . . . , ak+l]

= lim
l→∞

[a0; a1, a2, . . . , ak−1, yl] by Lemma 11.1

= [a0; a1, a2, . . . , ak−1, lim
l→∞

yl] by standard properties of limits

= [a0; a1, a2, . . . , ak−1, y].

Appendix: 12 The continued-fraction representation of a quadratic
irrational

We prove that the continued-fraction representation of a quadratic irrational is periodic,
following the method of proof given in [6].

Lemma 12.1. Every quadratic irrational can be expressed in the form (S +
√
d)/T

where S, T, d are integers such that T ̸= 0, d is positive and not a square, and T |S2−d.

Proof. The formula for the roots of a quadratic polynomial shows that a quadratic
irrational may be expressed in the form (u+

√
v)/w where u, v, w are integers such that

v is positive and not a square, and w ̸= 0. Multiplying the numerator and denominator
by |w| then shows that our quadratic irrational is equal to (S+

√
d)/T , where S = |w|u,

T = |w|w, and d = w2v. That d is positive and not a square is an immediate consequence
of the fact that v is, and we may easily verify that T |S2 − d:

S2 − d = w2u− w2v = w2(u− v) = ±T (u− v).

Lemma 12.2. Fix a positive integer d that is not a square. Suppose that, for some
k ≥ 0, Sk and Tk are integers such that Tk ̸= 0 and Tk |S2

k −d. If bk = ⌊(Sk +
√
d)/Tk⌋,

Sk+1 = bkTk − Sk, and Tk+1 = (d − S2
k+1)/Tk, then Sk+1 and Tk+1 are integers such

that Tk+1 ̸= 0 and Tk+1 |S2
k+1 − d.

Proof. It is obvious that Sk+1 ∈ Z. As for Tk+1, we have

Tk+1 =
d− S2

k+1

Tk
=

d− (bkTk − Sk)
2

Tk
=

d− S2
k

Tk
+ 2bkSk − b2kTk.
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Since Tk | d−S2
k by assumption, it follows that Tk+1 ∈ Z. Further, the fact that d is not

a square shows that Tk+1, by its definition, is non-zero. Finally, it is obvious from the
fact that TkTk+1 = d− S2

k+1 that Tk+1 |S2
k+1 − d.

Fix a quadratic irrational x. By Lemma 12.1, there are integers S0, T0, d such that
d is positive and not a square, T0 ̸= 0, T0 |S2

0 − d, and x = (S0 +
√
d)/T0. Hence, by

Lemma 12.2, we may construct numbers yk, bk, Sk, Tk (k ≥ 0) recursively by

yk =
Sk +

√
d

Tk
,

bk = ⌊yk⌋,

Sk+1 = bkTk − Sk,

Tk+1 =
d− S2

k+1

Tk
,

the numbers Sk and Tk being, by the same lemma, integers such that Tk ̸= 0 and
Tk |S2

k − d. We will call the algorithm for constructing the integers Sk and Tk as above
the (S, T )-algorithm.

Also, define the numbers ak and xk, as in Section V– 5, by x0 = x, ak = ⌊xk⌋, and
xk+1 = 1/(xk − ak).

Proposition 12.3. With notation as above, ak = bk and xk = yk for all k ≥ 0. In
particular, x = [b0; b1, b2, . . .].

Proof. Observe first that yk+1 = 1/(yk − bk):

yk − bk =
Sk +

√
d

Tk
− bk

=
Sk +

√
d− bkTk

Tk

=

√
d− Sk+1

Tk

=
d− S2

k+1

Tk(Sk+1 +
√
d)

=
Tk+1

Sk+1 +
√
d
=

1

yk+1
.

Now, x = [a0; a1, a2, . . .] by the existence part of Section 10. Since x0 = x = y0 and
a0 = ⌊x0⌋ = ⌊y0⌋ = b0, and since also xk+1 = 1/(xk − ak) and yk+1 = 1/(yk − bk),
induction shows that the pair (ak, xk) is equal to the pair (bk, yk) for all k ≥ 0. In
particular, x = [a0; a1, a2, . . .] = [b0; b1, b2, . . .].

Before completing the proof that a quadratic irrational has a periodic continued-
fraction representation, we introduce the notion of conjugation. If b and c are rational
numbers such that b2−4c is not the square of any rational number, then the polynomial
f(x) = x2+bx+c has two distinct roots in C, both non-rational. These roots, say x1, x2,
are said to be conjugate to each other, and we define x1 = x2 and x2 = x1. It is easy
to see that if u, v, w are rational numbers, and if v is not the square of any rational
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number, then u + w
√
v and u − w

√
v are the two roots of a polynomial f(x) as above

and are therefore conjugate to each other. We also define the conjugate of a rational
number to be that rational number itself.

We will need the following fact about conjugation, which we leave as an exercise:
If u, v, w, z ∈ Q, y is a quadratic irrational, and w and z are not both zero, then
(uy + v)/(wy + z) is either a rational or a quadratic irrational, and its conjugate is
(uy + v)/(wy + z).

Now let x be a quadratic irrational, write it as x = (S0 +
√
d)/T0 as in Lemma 12.1,

and construct the numbers yk, bk, Sk, Tk (k ≥ 0) as above, via the (S, T )-algorithm. As
we saw in Proposition 12.3, each pair (bk, yk) is equal to (ak, xk) where the latter is as
in the existence part of Section 10, so then by that same section,

x = [b0; b1, b2, . . . , bk−1, yk]

for all k ≥ 1. Hence, by the (p, q)-algorithm,

x =
pk−1yk + pk−2

qk−1yk + qk−2

for all k ≥ 2, where the pk and qk are the integers associated to the sequence (b0; b1, b2, . . .)
via the (p, q)-algorithm. Taking conjugates of both sides gives

x =
pk−1yk + pk−2

qk−1yk + qk−2
,

i.e., qk−1x yk + qk−2x = pk−1yk + pk−2,

i.e., (qk−1x− pk−1)yk = pk−2 − qk−2x,

i.e., yk =
pk−2 − qk−2x

qk−1x− pk−1
= −qk−2

qk−1

x− pk−2

qk−2

x− pk−1

qk−1

.

Both x− pk−2

qk−2
and x− pk−1

qk−1
tend to the same non-zero real number x− x as k → ∞, so

since −qk−2/qk−1 < 0, there is N ≥ 2 such that yk < 0 for all k ≥ N . Hence, because
yk > 0 for all k ≥ 1, it follows that for all k ≥ N ,

0 < yk − yk =
Sk +

√
d

Tk
− Sk −

√
d

Tk
=

2
√
d

Tk
,

so Tk > 0 for such k. Therefore, again for k ≥ N ,

0 < Tk ≤ TkTk+1 = d− S2
k+1 ≤ d,

so we deduce simultaneously that 0 < Tk ≤ d and that S2
k+1 < d, the latter, of course,

being equivalent to −
√
d < Sk+1 <

√
d. We take from all this simply the following:

0 < Tk ≤ d and −
√
d < Sk <

√
d for all k > N .

There are thus only finitely many possibilities for each of the pairs (Sk, Tk) when k > N ,
so there are integers j > i such that Sj = Si and Tj = Ti. Therefore, because each pair
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(Sk, Tk) is determined purely in terms of the previous pair, we must have Sj+l = Si+l

and Tj+l = Ti+l for all l ≥ 0, and the periodicity of the Sk and Tk follows, as does,
consequently, the periodicity of the bk. Now use Proposition 12.3.

Appendix: 13 Purely periodic continued fractions

Lemma 13.1. Let k ∈ Z≥1. If a0, . . . , ak are positive real numbers, and if α = (a0; a1, . . . , ak),
then

pk(α)

pk−1(α)
= [ak; ak−1, . . . , a1, a0]

qk(α)

qk−1(α)
= [ak; ak−1, . . . , a2, a1]

Proof. We prove the assertions by induction on k ≥ 1. For k = 1, observe that

p1(α)

p0(α)
=

a1a0 + 1

a0
= a1 +

1

a0
= [a1; a0],

q1(α)

q0(α)
=

a1
1

= a1.

Now let k ≥ 1, and assume the assertions for all α = (a0; a1, . . . , ak). Let α = (a0; a1, . . . , ak+1).
Then

pk+1(α)

pk(α)
=

ak+1pk(α) + pk−1(α)

pk(α)

= ak+1 +
1

pk(α)/pk−1(α)

= ak+1 +
1

pk(α′)/pk−1(α′)
where α′ = (a0; a1, . . . , ak)

= ak+1 +
1

[ak; ak−1, . . . , a0]
by the inductive hypothesis

= [ak+1; ak, . . . , a0].

The inductive step for the q’s proceeds in identical fashion.

If x is a quadratic irrational, it is said to be reduced if x > 1 and −1 < x < 0, where,
as in Appendix Section 12, the bar denotes the conjugate of x.

Proposition 13.2. A real number x is a reduced quadratic irrational if and only if it has
a purely periodic continued-fraction representation, that is, there are positive integers
a0, a1, a2, . . . , an−1 such that x = [a0; a1, a2, . . . , an−1].

Proof. Assume that x is a reduced quadratic irrational, and let the numbers ak, xk be
defined in the usual way, according to the algorithm for the continued-fraction repre-
sentation of x. Then for all k ≥ 0, xk+1 = 1/(xk − ak), so taking conjugates gives

xk+1 =
1

xk − ak
.
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We prove by induction on k that −1 < xk < 0 for all k ≥ 0. The case k = 0 is
given by assumption, x being reduced. Now assume the inequalities for some k ≥ 0.
Note that a0 = ⌊x⌋ ≥ 1 because x is reduced, and of course ak ≥ 1 if k ≥ 1. Therefore,
xk − ak < −1, so since xk+1 = 1/(xk − ak), it follows immediately that −1 < xk+1 < 0,
completing the induction.

Hence, for all k ≥ 0,

−1 < ak +
1

xk+1
< 0 because xk = ak +

1

xk+1
,

i.e., − 1− ak <
1

xk+1
< −ak,

i.e., ak < − 1

xk+1
< ak + 1,

so ⌊−1/xk+1⌋ = ak.
Now, the proof in Section 12 of the periodicity of the continued-fraction representa-

tion of a quadratic irrational shows that there are integers k, l ≥ 0 with k < l such that
xk = xl. We claim that, for all i ∈ {0, . . . , k}, both ak−i = al−i and xk−i = xl−i. We pro-
ceed by induction on i. The case i = 0 is given: xk = xl, so also ak = ⌊xk⌋ = ⌊xl⌋ = al.
Now let i ∈ {0, . . . , k − 1}, and assume the equalities for this i. Then

ak−(i+1) = ⌊−1/xk−i⌋ = ⌊−1/xl−i⌋ = al−(i+1),

and
xk−(i+1) = ak−(i+1) +

1

xk−i
= al−(i+1) +

1

xl−i
= xl−(i+1).

The induction is complete.
In particular, in the case i = k, we have x0 = xl−k, and then the algorithm for

generating the aj and xj shows that the sequence a0, a1, a2, . . . is purely periodic.
Conversely, assume that a real number x has a purely periodic continued-fraction

representation, say x = [a0; a1, . . . , ak]. Doubling the period if necessary, we may assume
that k ≥ 1. Also, let x′ = [ak; ak−1, . . . , a0]. We show that x and −1/x′ are conjugate.
Since they are distinct, one being positive and the other negative, it is enough to show
that they are both roots of the same quadratic polynomial with rational coefficients.

Let the integers pk and qk be those arising from the (p, q)-algorithm for the continued-
fraction representation of x, and let p′k and q′k be the corresponding integers for x′. Then

x = [a0; a1, . . . , ak, x] =
xpk + pk−1

xqk + qk−1
,

so
qkx

2 + (qk−1 − pk)x− pk−1 = 0.

Also,

x′ = [ak; ak−1, . . . , a0, x
′] =

x′p′k + p′k−1

x′q′k + q′k−1

,

so

q′k(x
′)2 + (q′k−1 − p′k)x

′ − p′k−1 = 0,
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i.e., p′k−1 − (q′k−1 − p′k)x
′ − q′k(x

′)2 = 0,

i.e., p′k−1

(
− 1

x′

)2
+ (q′k−1 − p′k)

(
− 1

x′

)
− q′k = 0. (13.1)

Now, by Lemma 13.1,

pk
pk−1

= [ak; ak−1, . . . , a0] = Ck(x
′) =

p′k
q′k

,

qk
qk−1

= [ak; ak−1, . . . , a1] = Ck−1(x
′) =

p′k−1

q′k−1

,

so because all four fractions involved are in lowest terms and the q’s are all positive, we
have

p′k = pk,

q′k = pk−1,

p′k−1 = qk,

q′k−1 = qk−1.

Using these equations to replace the primed numbers in (13.1) with the unprimed ones,
we see that

qk

(
− 1

x′

)2
+ (qk−1 − pk)

(
− 1

x′

)
− pk−1 = 0,

as desired.
We have thus succeeded in showing that x = −1/x′. Since x′ > 1, it follows that

−1 < x < 0, and of course x > 1, so x is reduced.

Appendix: 14 Proofs concerning Pell’s equation

The proof that the solutions to Pell’s equation are as claimed in Theorem 8.1 in Section V
comprises naturally two parts:

• Part I: Show that if (x, y) is a solution, then there is a convergent p/q to
√
d such

that (x, y) = (p, q).

• Part II: Among all convergents to
√
d, determine precisely which ones yield so-

lutions.

The books of Barbeau [1], Rosen [6], and Schmidt [7] were all invaluable for the following
proofs.

Part I

Lemma 14.1. Let n ∈ Z≥2, let a0, . . . , an ∈ R with ai > 0 for i ≥ 1, let x =

[a0; a1, a2, . . . , an], and let pk, qk for k ∈ {0, . . . , n} be the numbers appearing in the
(p, q)-algorithm for the sequence (a0; a1, a2, . . . , an). Then

qn−1x− pn−1 =
(−1)n−1

anqn−1 + qn−2
.
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Proof.

qn−1x− pn = qn−1
pn
qn

− pn

=
pnqn−1 − pn−1qn

qn

=
(−1)n−1

qn

=
(−1)n−1

anqn−1 + qn−2
.

Theorem 14.2 (Legendre). Let x ∈ R∖Q, and suppose that p and q are integers such
that q ̸= 0 and ∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
.

Then p/q is equal to a convergent to x.

Proof. First, we reduce to the case where p and q are coprime and q > 0, as follows.
Assume the statement to hold in this case, and let p, q be any integers satisfying the
assumptions of the theorem. Write p/q = p′/q′ where p′ and q′ are coprime and q′ > 0.
Observe that |q′| ≤ |q|. Hence,∣∣∣∣x− p′

q′

∣∣∣∣ = ∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
≤ 1

2(q′)2
,

so p′/q′ is a convergent to x, i.e., p/q is a convergent to x.
We now assume that p and q are coprime with q > 0 and follow the proof in Schmidt’s

Diophantine Approximation; see [7, Chap. I, Theorem 5C]. By hypothesis, we may write

x− p

q
= ϵ

y

q2

where ϵ ∈ {1,−1} and 0 < y < 1/2. Also, we may write

p

q
= [a0; a1, a2, . . . , an−1]

for some n ≥ 1, where ai ∈ Z for all i, ai > 0 for i ≥ 1, and (−1)n−1 = ϵ. (Express p/q

in terms of its continued-fraction representation as in Proposition 2.1 in Section V, and
if n has the wrong parity, replace an−1 by (an−1 − 1) + 1

1 .)
Right away, we dispense with the case where n = 1. In this case, ϵ = (−1)0 = 1, and

p/q = a0 ∈ Z, so q = 1 and x− p = y. Thus, 0 < x− p < 1/2, so p = ⌊x⌋ = a0, and so
p = p/q is indeed a convergent to x.

For the remainder of the proof, we assume that n ≥ 2. Let pk, qk, with k ∈ {0, . . . , n−
1}, be the numbers appearing in the (p, q)-algorithm for (a0; a1, . . . , an−1). Then p/q =

pn−1/qn−1, so because p and q are coprime and q > 0, we have p = pn−1 and q = qn−1.

Paul Buckingham Elementary Number Theory (MATH 324) – v 1.02 | 98



Now, if z ∈ R, then

[a0; a1, a2, . . . , an−1, z] = x

⇐⇒ zpn−1 + pn−2

zqn−1 + qn−2
= x (14.1)

⇐⇒ (pn−1 − xqn−1)z = xqn−2 − pn−2.

Since x is irrational, ensuring that pn−1 − xqn−1 ̸= 0, this last equation has a unique
solution z, and z is also necessarily irrational by (14.1).

Our immediate task is to show that z > 1. To that end, observe that

ϵ
y

q2
= x− p

q

=
1

qn−1
(qn−1x− pn−1)

=
1

qn−1

(−1)n−1

zqn−1 + qn−2
by Lemma 14.1

=
1

qn−1

ϵ

zqn−1 + qn−2
.

Therefore, because q = qn−1, we have

y =
qn−1

zqn−1 + qn−2
,

and rearranging this gives

z =
1

y
− qn−2

qn−1
.

Hence, because 0 < y < 1/2, so that 1/y > 2, and because qn−2 < qn−1, it follows that
z > 2− 1 = 1, as desired.

If the continued-fraction representation of z is

z = [an; an+1, an+2, . . .],

where of course an+1, an+2, . . . are positive, then because z > 1, an is positive as well.
Therefore,

x = [a0; a1, a2, . . . , an−1, z] = [a0; a1, a2, . . .] by Proposition 11.2.

As p/q = [a0; a1, a2, . . . , an−1], this shows that p/q is a convergent to x.

Corollary 14.3. Let d be a positive integer that is not a square, and n an integer such
that |n| <

√
d. If x and y are positive integers such that x2 − dy2 = n, then x/y is a

convergent to
√
d.

Proof. Observe that because x, y > 0 and d is not a square, n must be non-zero. Assume
first that n > 0. Then 0 < n = (x+ y

√
d)(x− y

√
d), so x− y

√
d > 0, i.e., x > y

√
d and

x
y >

√
d. Hence,

0 <
x

y
−
√
d =

x− y
√
d

y
=

x2 − dy2

y(x+ y
√
d)

=
n

y(x+ y
√
d)

<
n

y · 2y
√
d
<

√
d

2y2
√
d
=

1

2y2
,
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so by the theorem, x/y is a convergent to
√
d.

Now assume that n < 0. Then

0 < −n

d
= y2 − 1

d
x2 =

(
y + x

1√
d

)(
y − x

1√
d

)
,

so y > x 1√
d
, i.e., y

x > 1√
d
, and in a similar way to the above, we find that

0 <
y

x
− 1√

d
=

−n/d

x
(
y + x 1√

d

) <
−n/d

x · 2x 1√
d

<
1/
√
d

2x2 1√
d

=
1

2x2
,

so y/x is a convergent to 1/
√
d. This implies that x/y is a convergent to

√
d, for if

√
d = [a0; a1, a2, . . .],

then
1√
d
= [0; a0, a1, a2, . . .],

so y/x = [0; a0, a1, . . . , ak] for some k ≥ 0, and then

x

y
= [a0; a1, . . . , ak],

a convergent to
√
d.

Taking n = 1 and n = −1 in the corollary shows that any solution to x2 − dy2 = 1

or x2 − dy2 = −1 with x, y ∈ Z≥1 must be such that x/y is a convergent to
√
d, say

x/y = pk/qk for some k ≥ 0. Further, because the equation x2 − dy2 = ±1 forces x and
y to be coprime, we must in fact have x = pk and y = qk.

Part II

Lemma 14.4. Let x ∈ R∖Q, and for k ≥ 0 let ak, xk be the usual numbers appearing in
the construction of the continued-fraction representation of x, so that x = [a0; a1, a2, . . .].
Also, let l and n be integers with l ≥ 0 and n ≥ 1. Then the following are equivalent:

(i) xk+n = xk for all k ≥ l.

(ii) ak+n = ak for all k ≥ l.

Proof. That (i) implies (ii) is obvious: Just take the floor of both sides of the equation
and use the fact that ak = ⌊xk⌋.

Conversely, assume (ii). We saw in the existence part of Section 10 that

x = [a0; a1, a2, . . . , ak−1, xk]

for all k ≥ 0, so by Proposition 11.2,

xk = [ak; ak+1, ak+2, . . .].
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Hence, if k ≥ l, then

xk+n = [ak+n; ak+n+1, ak+n+2, . . .]

= [ak; ak+1, ak+2, . . .] by the periodicity assumption on the ai

= xk.

If x ∈ R∖Q and the numbers ak, xk are as usual, then define τk(x) = xk for each
k ≥ 0. We saw in the proof of Lemma 14.4 that

τk(x) = [ak; ak+1, ak+2, . . .] (14.2)

for all k ≥ 0.

Lemma 14.5. If x ∈ R∖Q and c ∈ Z, then τk(x+ c) = τk(x) for all k ≥ 1.

Proof. The case k = 1 holds because

τ1(x+ c) =
1

(x+ c)− ⌊x+ c⌋
=

1

x+ c− ⌊x⌋ − c
=

1

x− ⌊x⌋
= τ1(x).

Hence, the desired equality holds for all k ≥ 1 by induction:

τk+1(x+ c) =
1

τk(x+ c)− ⌊τk(x+ c)⌋
=

1

τk(x)− ⌊τk(x)⌋
= τk+1(x).

Lemma 14.6. If x ∈ R∖Q and the integers pk, qk are those appearing in the (p, q)-
algorithm applied to x, then for all k ≥ 1,

x =
τk+1(x)pk + pk−1

τk+1(x)qk + qk−1
.

Proof. Write x = [a0; a1, a2, . . .]. Then using once again the observation that
x = [a0; a1, a2, . . . , ak, xk+1] where xk+1 = τk+1(x), we deduce the claimed expression
from Theorem 3.1 in Section V.

In the remainder, d is a positive integer that is not a square, and ξ = ⌊
√
d⌋+

√
d. We

let yk, bk, Sk, Tk be the numbers appearing in the (S, T )-algorithm of Section 12 applied
to x = ξ with S0 = ⌊

√
d⌋ and T0 = 1. Note, in particular, that τk(ξ) = yk = (Sk+

√
d)/Tk

for all k ≥ 0.

Proposition 14.7. Let notation be as above, and let pk, qk be the integers appearing in
the (p, q)-algorithm applied to

√
d. Then p2k − dq2k = (−1)k+1Tk+1 for all k ≥ 0.

Proof. Apply the (S, T )-algorithm to
√
d with the initial S and T equal to 0 and 1

respectively, and let the S’s and T ’s in this case be denoted S′
k and T ′

k. Then τk(
√
d) =
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(S′
k +

√
d)/T ′

k, but by Lemma 14.5, τk(
√
d) = τk(ξ) for all k ≥ 1, so in particular,

S′
k = Sk and T ′

k = Tk for all k ≥ 1. Hence, for all k ≥ 1,

√
d =

τk+1(
√
d)pk + pk−1

τk+1(
√
d)qk + qk−1

by Lemma 14.6

=
(Sk+1 +

√
d)pk + Tk+1pk−1

(Sk+1 +
√
d)qk + Tk+1qk−1

.

Rearranging this and using the linear independence of 1 and
√
d over Q, we obtain

Sk+1qk + Tk+1qk−1 = pk,

Sk+1pk + Tk+1pk−1 = dqk.

Multiply the first of these two equations by pk and the second by qk, and then perform
the obvious subtraction of equations:

p2k − dq2k = Tk+1(pkqk−1 − pk−1qk).

Recall from Proposition 4.1 in Section V that

pkqk−1 − pk−1qk = (−1)k−1 = (−1)k+1.

Thus, p2k − dq2k = (−1)k+1Tk+1 for all k ≥ 1. In fact, this equality holds for k = 0 as
well. Indeed, by the formulas for S1 and T1 (for the real number ξ = ⌊

√
d⌋ +

√
d), we

have

T1 =
d− S2

1

T0

= d− (b0T0 − S0)
2

= d− (2⌊
√
d⌋ − ⌊

√
d⌋)2

= d− ⌊
√
d⌋2,

while p20 − dq20 = ⌊
√
d⌋2 − d. In summary, then, we have

p2k − dq2k = (−1)k+1Tk+1 for all k ≥ 0.

We recall that our only assumption on d is that it be a positive integer that is not
a square.

Theorem 14.8. Let ϵ ∈ {1,−1}, let n be the period length of the continued-fraction
representation of

√
d, and let pk, qk be the numbers appearing in the (p, q)-algorithm

for the continued-fraction representation of
√
d. Then the solutions (x, y) to the equa-

tion x2 − dy2 = ϵ are the pairs (prn−1, qrn−1) for which the positive integer r satisfies
(−1)rn = ϵ.
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Proof. By the discussion following Corollary 14.3, any solution to x2 − dy2 = ϵ has to
be (pk, qk) for some k ≥ 0. Therefore, in light of Proposition 14.7, we will be done if we
can show all of the following concerning the numbers Tk:

(i) For all k ≥ 0, Tk ̸= −1.

(ii) If Tk+1 = 1, then n divides k + 1.

(iii) Trn = 1 for all r ≥ 1.

Let us note, before continuing, that since ξ > 1 and −1 < ξ < 0, i.e., ξ is reduced,
Proposition 13.2 tells us that the continued-fraction representation of ξ is purely peri-
odic. But ξ and

√
d differ only by an integer, so their minimum periods are equal, and

so in fact ξ is purely periodic with minimum period n. Now let us continue to the proofs
of (i)–(iii).

(i) Assume that Tk = −1. Then yk = −Sk −
√
d. But by (14.2), yk = τk(ξ) has a

purely periodic continued-fraction representation because ξ does, so by Proposition 13.2,
−Sk −

√
d is reduced. In particular, −Sk −

√
d > 1 and −Sk +

√
d < 0, so

√
d < Sk < −1−

√
d,

giving 2
√
d < −1, a contradiction.

(ii) Suppose that Tk+1 = 1. Then yk+1 = Sk+1 +
√
d, but yk+1 = τk+1(ξ) has a

purely periodic continued-fraction representation, so Sk+1 +
√
d is reduced, and so in

particular,
−1 < Sk+1 −

√
d < 0,

or, to put it another way,
0 <

√
d− Sk+1 < 1.

Thus, ⌊
√
d⌋ = Sk+1, so

yk+1 =
Sk+1 +

√
d

Tk+1
= ⌊

√
d⌋+

√
d = y0.

The sequence y0, y1, y2, . . . is determined by the first-order recurrence relation yj+1 =

1/(yj − ⌊yj⌋), so the equality yk+1 = y0 implies that k + 1 is a period of the sequence
(y0, y1, y2, . . .), and so the period length, i.e., minimum period, of this sequence divides
k+1. (See the exercise on periodic functions in Section I – 1.) But by Lemma 14.4, this
period length is equal to the period length n of the continued-fraction representation of
ξ, so n divides k + 1, as desired.

(iii) Recall that τk(ξ) = yk = (Sk +
√
d)/Tk for all k ≥ 0. Now, by Lemma 14.4,

τk+n(ξ) = τk(ξ) for all k ≥ 0, so in particular, Tk+n = Tk. Because T0 = 1, we therefore
have Trn = 1 for all r ≥ 1.
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