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These notes provide the core material for a course on elementary number theory taught
at the University of Alberta. The reader is assumed to have had a first course in basic
ring theory, covering (i) basic modular arithmetic, (ii) basic properties of rings, (iii) the
notions of integral domain and field, and (iv) unique factorization domains.

All proofs are given, although many are in the Appendix instead of the main text.

Notation

e The floor of a real number z, i.e., the greatest integer less than or equal to z, will
be denoted |z].

e The symbol ~ will mean is approzimately equal to.

e Occasionally, when required to because of limited space, we will abbreviate a

congruence z =y mod m to x =y (m).

e The set of units in a unital ring R will be denoted R*.
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(I) Preliminaries
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I-1 Basic properties of integers

We recall some basic concepts and properties concerning the integers. If a,b € Z, then
b is said to divide a if there is ¢ € Z such that a = be. The following fact is fundamental

to the integers:

Let a,b € Z, and assume that b # 0. Then there are unique integers ¢ and r with
0 < r < |b| such that a = gb+ r.

The process of finding ¢ and r as above is called division with remainder.
If a,b are integers, not both zero, then a greatest common divisor of a and b is a
positive common divisor of a and b that is divisible by all common divisors. The following

is proven in MATH 228.

Theorem 1.1 (G.C.D. Theorem). Let a,b € Z, not both zero.
(i) A greatest common divisor of a and b exists and is unique. We denote it gcd(a, b).
(i) There exist integers m and n such that ged(a,b) = ma + nb.

Example.

a b ged(a,b)

4 6 2
—4 6

0 11 11
5 10 )
15 35 5

126 147 21

The Euclidean algorithm

We briefly recall the Euclidean algorithm from MATH 228. Suppose that a,b € Z where
b # 0, and write a = gb+r with 0 < r < |b|. Then any common divisor of b and r divides
a as well and so is a common divisor of a and b. Also, because r = a — gb, any common
divisor of a and b is a common divisor of b and r. Thus, ged(a,b) = ged(b,r). The

Euclidean algorithm takes advantage of this fact to compute greatest common divisors.

Example. Find ged(14 161,11 011), and find integers m and n such that ged(14 161,11 011) =
m-14161 4+ n - 11011.

Solution: We repeatedly apply division with remainder:
14161 = 11011 + 3150
11011 = 3- 3150 + 1561
3150 =2- 1561 + 28
1561 = 5528 4+ 21
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28=21+47
Because 7|21, we see that ged(14161,11011) = 7. Further,

7T=28-21
= 28 — (1561 — 55 - 28)
=56 - 28 — 1561

= 56(3150 — 2 - 1561) — 1561

= 563150 — 113 - 1561

=56 3150 — 113(11011 — 3 - 3150)
=395-3150 — 113 -11011
=395(14161 — 11011) — 113 - 11011
=395-14161 — 508 - 11011

The two main steps above—finding the greatest common divisor, and then expressing
it in terms of the two original integers—together form the Euclidean algorithm.

The Fundamental Theorem of Arithmetic

Theorem 1.2 (Fundamental Theorem of Arithmetic). Every positive integer can be
factorized into a product of primes, and the factorization is unique up to the order of
the prime factors. (We allow 1 to be considered the empty product of primes, i.e., the

product of no primes.)

The theorem is proven in MATH 228. Here are the prime factorizations of the first 20

positive integers:

n  Prime factorization of n | n  Prime factorization of n
1 11 11
2 2 12 22.3
3 13 13
4 22 14 2.7
5 5 15 3-5
6 2-3 16 24
7 7 17 17
8 23 18 2.32
9 32 19 19
10 2-5 20 22.5
Valuations

Because of the Fundamental Theorem of Arithmetic, every non-zero rational number

can be expressed uniquely as a product

a = 6(@) Hp”p(a)’
P
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where €(a) € {1,—1}, p runs through the primes, v,(a) € Z for each prime p, and
vp(a) = 0 for all but finitely many p. The integer v,(a) is called the p-adic valuation of

a.
Example. If a = 35/169 = 5! - 7' - 1372, then
ela)=1, wvs(a)=1, wr(a)=1, wviz(a)=-2,
and v,(a) = 0 for all other primes.
Example. If a = —100/21 = 22 -371.52.771 then
ela) =—1, wvo(a)=2, w3(a)=-1, wvs(a)=2, wr(a)=—1,
and v, (a) = 0 for all other primes.

If we define v,(0) = oo, then the function v, : Q — Z U {oo} satisfies the following
properties, where a,b € Q:

vp(a+b) > min(vp(a), vy (b))
vp(ab) = vp(a) + vy(b)

From these properties, a third follows, namely, that

vpla+b) = min(vy(a), vy(b)) if vy(a) # vy (b).
We leave these facts regarding v, as exercises.

Remark. We make a cautionary remark regarding the last fact, which applies only when
vp(a) # vp(b). If, instead, vy,(a) = v, (b), then both the following can occur: vy,(a +b) =
min(vy(a), vp(b)), and vy(a + b) > min(v,(a), vp(b)). For example, if p = 3, a = 3, and
b = 12, then vz(a) = v3(b) = 1, and vz(a + b) = v3(15) = 1 = min(vs(a),v3(b)). By
contrast, if p = 3, a = 3, and b = 6, then v3(a) = v3(b) = 1 again, but this time,
vz(a +b) = v3(9) = 2 > min(vs(a), v3(d)).

Exercise. Let X be a non-empty set and f : Z>¢ — X a periodic function. Let m be
the minimum period of f, and let n be any period of f. Show that the remainder on
dividing m into n is zero, so that m in fact exactly divides n. (If n = gm + r, consider
fla+7r)= f(a+n — gm) for integers a > 0.)

Paul Buckingham Elementary Number Theory (MATH 324) —v1.02 | 8



I-2 Induction
We briefly recall the two forms of induction.

First form

Let ng € Z, and for each n > ng, let P(n) be a statement depending on n. Assume that
(i) P(ng) is true, and
(i) for all n > nyg, if P(n) is true, then P(n + 1) is true.

Then P(n) is true for all n > ng.

for all n > 0.

Example. Show by induction that >, _, (k_{fl)! =1- (nil)!

Solution: The statement holds when n = 0, because both sides are zero in that case.

Now let n > 0, and assume that ZZ:O ﬁ —1— (n+1) Then
n+1 n
k n+1
> = + Z
|
k=0 (k' + 1) n —+ 2 O +
1 1
= (:T_FZ)' +1- E) by the inductive hypothesis
=1 + (TL + 1) ( ) - 1_ ;’
(n+2)! (n+2)!

and the induction is complete.

Second form

Let ng € Z, and for each n > ng, let P(n) be a statement depending on n. Assume that
(i) P(ng) is true, and
(ii) for all n > ng, if P(k) is true for all k € {ny,...,n}, then P(n + 1) is true.

Then P(n) is true for all n > ny.

Example. Show by induction that every positive integer is a product of primes. (This
is one part of the statement of the Fundamental Theorem of Arithmetic.)

Solution: The case n = 1 holds, because 1 is the empty product of primes. Now let n > 1,
and assume that every k € {1,...,n} is a product of primes. There are two cases: (i)
n+ 1 is prime, in which case we are done immediately. (ii) n + 1 is not prime, meaning
that n + 1 = ab where a,b € {1,...,n}. In this case, by the inductive hypothesis, each
of a and b is a product of primes, so the same is true of ab = n + 1. This completes the

induction.
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(IT) Congruences
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II-1 The integers mod m

Recall from MATH228 that if m is a positive integer, and if a,b € Z, we write a =
b mod m if m | a—b. The relationship a = b mod m is read “a is congruent to b mod m”.

It is often convenient to reformulate a congruence mod m as an equality in the ring
Z/mZ of integers mod m. Let us recall Z/mZ. For each a € Z, let [a],, be its residue

class mod m, i.e.,
[a]m ={b€Z |b=amod m}={a+km | ke Z}.

Example. In the case m = 3,

0]3=1{...,—3,0,3,6,9,...},
s ={...,—2,1,4,7,10,.. .},
25 ={...,—1,2,58,11,...}.

The set of residue classes mod m is denoted Z/mZ, i.e.,
z/mZ = {[alm | a € Z} = {[0m, [Um, -, [m = Um}-

Observe, now, the relationship between congruence of integers and equality in Z/mZ,
namely, a = b mod m if and only if [a],, = [b].

The set Z/mZ is in fact a ring with respect to the operations

[@ + b]m,

[alm + [b]m
m = [ablm,

[a)m - 0]

both well-defined. The ring Z/mZ is commutative and unital, the identity being [1],,.

Remark. If the modulus m is understood, we will usually omit the subscript on [a],,

and write simply [a].

The congruence ax = b mod m

Proposition 1.1. Let m be a positive integer, let a,b € Z, and let d = ged(a, m). Then
the congruence ax = b mod m has a solution if and only if d|b. In this case, there are

exactly d solutions mod m.

Proof. Suppose that z is a solution, i.e., ax = b mod m. Then m |axz—b, so also d | ax—b
because d|m. But then d|b because d|a.

Conversely, suppose that d|b. Write a = da’, b = db’, and m = dm/. Then ax =
b mod m if and only if o’z = b’ mod m’. But ged(a’,m’) = 1, so there is ¢ € Z such

that ca’ = 1 mod m’, and hence

dxr=b modm < cdz=cb modm < z=cb modm.
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Thus, the set of solutions is {c¢b' + km’ | k € Z}. Now, two solutions ¢b’ + km’ and

¢’ +1m’ are congruent mod m if and only if

m| (cb’ +km') — (b +1m') = (k — )m/
<~ dm'|(k—1)m/
—= d|k-1.
Therefore, the solutions cb’ + km/ with 0 < k < d — 1 represent all the solutions
mod m. O

Example. Find all solutions to 55z = 10 mod 105, and give your answer first as a single
congruence r = a mod n for appropriate a and n, and second as a set of congruences

r=ay,...,ar_1, or ap mod 105.
Solution:
552 = 10 mod 105 <= 1lz = 2 mod 21
< 2-11x=2-2mod 21
<= x =4 mod 21 because 2-11 =1 mod 21
< x =4, 25, 46, 67, or 88 mod 105.

Prime residue classes

A residue class [a] € Z/mZ is called a prime residue class if it is a unit (i.e., is invertible)
in the ring, i.e., if there is [b] € Z/mZ such that [a][b] = [1]. The set of prime residue
classes is denoted (Z/mZ)*. It follows from the G.C.D. Theorem that

(Z/mZ)* ={[a] € Z/MmZ | ged(a,m) =1}.

The number of prime residue classes mod m is denoted ¢(m). The function ¢ : Z>; —

Z>, is called Euler’s totient function.

Example.
(z/21Z)" ={[1], 2], [4], [5], 18], [10], [11], [13], [16], [17], [19], [20]},
and ¢(21) = 12.

Remark. One always has [1] € (Z/mZ)*. If a, B € (Z/mZ)*, then o and o~ ! are in
(Z/mZ)* as well.

If « € Z/mZ and n € Z>o, then a™ = a---«a, where a® = [1] by definition. In the
= ——

n
special case where a € (Z/mZ)*, we may even define o = (a~")~! when n < 0.

We have the following rules of exponentiation:

qmtnz — a™an?, (anl)nz = ™"z,

For an arbitrary o € Z/mZ, these rules hold for nj,nes > 0, and they hold for all
ni,ng € Z when a € (Z/m7)*.
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IT-2 The Chinese Remainder Theorem

We recall the Chinese Remainder Theorem from MATH 228. Let my, ..., m, be pairwise-

coprime positive integers, and let m = my - - - m,.. Then the map
Z/mZ — Z)/miZXx---XZL/mZ
[a]m = ([a]m,, .., [alm,)

is a ring isomorphism. In particular, for any ai,...,a, € Z, there is a € Z such that
a = a; mod m; for all ¢, and a is determined uniquely mod m.

In the case where r = 2, the simultaneous congruences

T=a; mod ml}

(2.1)
T = as mod msy

are solved as follows. First, write 1 = symq + somso with s1, s € Z—via the Euclidean
algorithm, for example. Then the general solution to (2.1) is
T = a189mMo + assimi mod mims.
Example. Solve the simultaneous congruences
=14 mod 19

r=4 mod 8

Solution: From the Euclidean algorithm, one finds that 1 = 3-19 — 7- 8, so the solution

1S

x=14(-7)-8+4-3-19 mod 19-8
= —556,
ie, x=052 mod 152.

The Chinese Remainder Theorem for prime residue classes

The map Z/mZ — Z/miZ X - -- x Z/m,Z in the Chinese Remainder Theorem gives a

map
(Z/mZ)* — (Z/miZ)* X -+ x (Z/m,ZL)*
[alm = ([am,-- - [a]m,)

that is again a bijection. In other words, if a; is coprime to m; for all 7, then the solutions

a € Z to the system x = a; mod m;, i = 1,...,r, are coprime to m.

Example. Consider the coprime moduli 11 and 14. Because ged(3,11) = ged(5,14) = 1,

the solutions to the system

rz=3 mod 11
=5 mod 14
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are coprime to 11 - 14 = 154. We leave it as an exercise to find the solutions and verify
that they are indeed coprime to 154.

¢(m) via prime factorization

Proposition 2.1. Let m be a positive integer, and let m = p{*---p be its prime

factorization, where a; > 0 for all i. Then

Qb(m) = ¢(p(f1) T ¢(p§f’) = (p1 — 1)p‘f1_1 o (Pr _ 1)}7?"‘_1.

Proof. By the Chinese Remainder Theorem for prime residue classes,

¢(m) = [(Z/mZ)*| = (Z/py' L) x --- x (Z/p} L)

(Z/p* )| (Z/prZ) | = d(pi") -~ dpy7)-

It remains to show that ¢(p®) = (p — 1)p®~! when p is prime and a > 0. The residue
classes that are not coprime to p* are represented by the multiples kp of p satisfying
0 < kp < p®. There are p®~! of these, corresponding to k € {0,...,p?"t — 1}, so there
are p® — p?~1 = (p — 1)p®~?! prime residue classes. O

Example.
6(36) = 6(4-9) = G(4)9(9) = 2- (2-3) = 12
$(525) = ¢(3-5% - 7) = ¢(3)p(5°)p(7) = 2+ (4-5) - 6 = 240

Notice how the formula ¢(m) = &(p7') - ¢(p¢) in Proposition 2.1 shows that
d(mn) = ¢(m)p(n) when m and n are coprime positive integers. This fact will be
significant later when we come to study arithmetic functions.
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I1-3 Definition of order and first properties

If o € (Z/mZ)*, then there is a positive integer n such that o™ = [1]. Indeed, because
there are only finitely many prime residue classes, there are integers [1,ls with I} < 3
such that a!* = of2. Hence,

[1] = alalr =l =" wheren =1y —1; > 0.

We define the order of a to be the least positive integer n such that o™ = [1]. Also, if
a € Z and ged(a, m) = 1, then we write

ord,,(a) = ord([a]m,).

Example. Let us find ordg(2) by brute force, simply multiplying successively by 2 until
we obtain 1 mod 9: 28 =2,22 =4, 23 =8,2* =7mod 9, 2° =5 mod 9, 26 = 1 mod 9.
The least positive integer n such that 2” = 1 mod 9 is 6, so ordg(2) = 6.

Example. Similarly, multiplying successively by 7, we find that ord;;(7) = 10: 7t = 7,
72 =49 =5mod 11, 72 =7-5 mod 11 = 2 mod 11, and so on, until we find that 71° =
1 mod 11, with no smaller positive n satisfying 7" = 1 mod 11. Thus, ordy;(7) = 10.

We will develop tools to make the calculation of orders quicker.

Proposition 3.1 (Ord-1). If a € (Z/mZ)* and | € Z, then o' = [1] if and only if
ord(a) | 1.

Proof. Let n = ord(«), and write | = gn + r where 0 < r < n. Then
ol = 1] <= " =]1]

()" = 1

[1]Ja” =[1] because " = [1]

a" =1

r =0 by the minimality of n

[ A

n|l.

Proposition 3.2 (Ord-2). Let o € (Z/mZ)*. Then
(i) a®™ = 1], and
(i) ord(a) | $(m).

Proof. By Proposition Ord-1, (i) and (ii) are equivalent, so it is enough to prove (i). We
leave it as an exercise to show that the map

(Z/mZ)* — (Z/mZ)*
B = aB

Paul Buckingham Elementary Number Theory (MATH 324) —v1.02 | 15



is bijective. Hence,

II 8= I @)= ] &

BE(Z/mE)> BE(Z/mIZ)x BE(Z)mZ)>

the last equality because |(Z/mZ)*| = ¢(m). Multiplying both sides by the inverse of
[T se (2 mzy 5 leaves [1] = a®(m), !

Proposition Ord-2 is often referred to by the name Euler’s Theorem.

Example. A widely used special case of Proposition Ord-2 is Fermat’s Little Theorem:
a’”'=1mod p when p is prime and pta.

Let us prove this. If p 1 a, then ged(a,p) = 1 because p is prime. Therefore, applying
Proposition Ord-2 with m = p gives [a]?®) = [1], i.e., a®®) = 1 mod p. But ¢(p) =
(Z/pZ)*| = p — 1, again because p is prime.

Example. Find the remainder on dividing 32Y2% by 17.
Solution: Note that 2023 = 126 - 16 4+ 7, so
32023 — g126:1647 _ (3126)16 .37 — 1. 37 mod 17 by Fermat’s Little Theorem.
To calculate 37 mod 17, let = denote congruence mod 17, and observe that
37=3%.31=27.81 = (-7)(—4) =28 = 11.
Thus, the remainder is 11.

Example. Find the remainder on dividing 13! 234567 by 36.

Solution 1: One finds that ¢(36) = 12, so a2 = 1 mod 36 for all a coprime to 36. Now,
division with remainder shows that 1234567 = 12¢q + 7 for some ¢q € Z, so

131234567 — 1312947 — (139)12. 137 = 13" mod 36 by Proposition Ord-2
= 62748517 = 13 mod 36,
so the remainder is 13.

Solution 2: Computing the first few powers of 13, we find that ordsg(13) = 3. Therefore,
we need only consider the remainder on dividing 1234 567 by 3, not 12. It is easy to see
that the remainder is 1, i.e., 1234567 = 3¢ + 1 for some g € Z, so

131234567 — 1330+ — (133)7. 13 = 19- 13 mod 36
=13.

Paul Buckingham Elementary Number Theory (MATH 324) —v1.02 | 16



II-4 Further results concerning order

Proposition 4.1 (Ord-3). Let « € (Z/mZ)*, and let n = ord(«). Then for any k € Z,
n

- ged(n, k)
Proof. Let d = ged(n, k), and let n’ =n/d and k¥’ = k/d. Then for any I € Z,

ord(a®)

(@) =[] < o =[1] <= n|kl by Proposition Ord-1
<~ nd|kdl < 0|kl <= 1|l
because ged(n/, k') = 1. Thus, ord(a¥) =n' = n/d. O
Example. In (Z/27Z)*, ord([2]) = 18 (exercise). Use this fact to do the following:
(i) Find ord([8]).

(ii) Find an element 8 € (Z/27Z)* of order 18 that is not equal to [2].

Solution: To find ord([8]), observe that [8] = [2]3. Therefore, remembering that ord([2]) =
18, we may apply Proposition Ord-3 as follows:

18 18
-~ =6

ord([8]) = ord([2) = agay = 3

For the second part of the problem, let & be any integer coprime to 18, and let § =
[2]¥ = [2¥]. Then by Proposition Ord-3,

18 18
ord(B) = wcd8h) 1 18.

For example, we could take k = 5, and then 3 = [2°] = [32] = [5].

Proposition 4.2 (Ord-4). If m and n are positive integers with m|n, then for any

a € Z coprime to n, ordy,(a)| ord,(a).

Proof. Let k = ord,,(a). By definition, a* = 1 mod n, so a* = 1 mod m because m |n,
and so ord,,(a) | k by Proposition Ord-1. O

Example. Consider m = 7 and n = 35, and note that m | n. We tabulate ordss(a) and

ordz(a) for the first few positive integers a coprime to 35:

a coprime to 35 ordss(a) ordr(a)

1
12
12

6

2

CoO O = W N
— N W o W
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Proposition 4.3 (Ord-5). Suppose that mq,...,m, are pairwise-coprime positive in-

tegers, and let a € Z be coprime to m = my ---m,.. Then
ord,, (a) = lem(ord,,, (a),...,ordy,, (a)).

Proof. We use the fact that, because the m; are pairwise coprime, a given integer is
divisible by all of mq,...,m, if and only if it is divisible by their product. This is a
consequence of the G.C.D. Theorem.
Now, let I € Z. Then by the fact just mentioned,
ad=1mod m < d' =1 modm; foralli
<= ord,(a)|l for all i by Proposition Ord-1

<= lem(ordy, (a),...,ordy,, (a)) divides I.

Example. Find ord;o5(17) by considering 17 mod 3,5, 7.

Solution: Note that 105 = 3 -5 7. The following orders are easily computed:

ord;(17) = ords(2) = 2
ords(17) = ords(2) =4
ord7(17) = ord;(3) = 6

Hence, because 3,5, 7 are pairwise coprime, ordios(17) = lem(2,4,6) = 12.

Example. Given that ordg(2) = 6 and orde2(7) = 10, find an integer a coprime to
198 = 9 - 22 such that ord;gg(a) = 30.

Solution: Suppose we can find a € 7Z satisfying

a=2 mod 9
a="7 mod 22

Then because ged(9,22) =1,
ordjgg(a) = lem(ordg(a), ordas(a)) = lem(ordg(2), ords2(7)) = lem(6,10) = 30,

and we will be done. We use the Chinese Remainder Theorem to solve (4.1). The Eu-
clidean algorithm proceeds as follows: 22 =2-9+4,9=2-4+1, so

1=9-2-4=9-2(22—-2-9)=5-9—-2-22.
Hence, the solution to the system of congruences is

a=2(—2)-224+7-5-9 mod 198
=227
=29 mod 198.

Thus, 0rd198(29) = 30.
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IT-5 Wilson’s Theorem

Theorem 5.1 (Wilson’s Theorem). If p is prime, then (p —1)! = —1 mod p.

Proof. Several proofs exist. We give one that uses Fermat’s Little Theorem and some
basic theory of polynomial rings. Assume that p is odd, the case p = 2 being immediate.
Consider the polynomial f(z) = 2P~! — [1] € (Z/pZ)[z], viewed as a polynomial with
coefficients in the field F,, = Z/pZ. By Fermat’s Little Theorem,

fla)=a?P"' —[1] =[0] forall a € (Z/pZ)*,

so because f(x) has degree p — 1 and there are exactly p — 1 prime residue classes «, it
follows that

fay= I @-a= ﬁ(w = la]),
a€(Z/pL)* a=1
ie, 2P o[l = Zﬁ(m ~ [a])
Taking z = [0] gives -
1] = ﬁ(—[a]) = ﬁ[a] because p — 1 is even
- = F(; —1)]]

Example. Find the remainder on dividing 40! by 1763 = 41 - 43.

Solution: Observe that 41 and 43 are prime. Therefore, by Wilson’s Theorem, 40!
—1 mod 41, and

—1=42! mod 43
=42-41 - 40!
= (—1)(—2) - 40! mod 43
=240

so inverting 2 mod 43 we obtain —22 = 40! mod 43. Now we use the Chinese Remainder

Theorem to solve the system

rz=-1 mod 41
r=-22 mod 43

We have 1 = 21 -41 — 20 - 43 (by the Euclidean algorithm, for example), so

40! = (—-1)(—2) -43—22-21-41 mod 41 - 43
= —18082,
ie., 40!'=1311 mod 1763.
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II-6 Quadratic residues

Let p be a prime. An integer a is called a quadratic residue mod p if there is b € Z such

that a = b? mod p, i.e., if [a] is the square of some element of Z/pZ.

Example. In the case p = 5,

02=0
12=1
22 =4
32 =4mod 5
4%2 =1 mod 5,

so the squares mod 5 are 0,1, 4.

Especially, we will be interested in the prime quadratic residues, i.e., the quadratic
residues that represent prime residue classes, or, put even more simply, the quadratic

residues not divisible by p.

Proposition 6.1. Let p be an odd prime. Then there are exactly (p — 1)/2 prime

quadratic residues mod p. Thus, half of the prime residue classes are quadratic residues.

Proof. Since p is odd, a@ # —« when « is a prime residue class, so (Z/pZ)* can be

partitioned into (p — 1)/2 pairs {o, —a}. Let S be the set of such pairs. Then the map

S = (z/pz)*

{a,—a} — o

is injective (exercise), and its image is the set of quadratic prime residue classes, by
definition. Therefore, the number of prime quadratic residues mod p is the cardinality
of S, which is (p — 1)/2. O

The Legendre Symbol

Let p be an odd prime, and let a € Z. Then we define the Legendre symbol (%) by

1 if a is coprime to p and is a quadratic residue,
a
() =4 —1 if a is coprime to p but is not a quadratic residue,
0  otherwise, i.e., if p|a.
It satisfies the following:
(1) (%) depends only on the class of a mod p, i.e., (%’“’) = (%) for all k € Z.

(ii) (%’) = (%) (%) for all a,b € Z (exercise).
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Proposition 6.2. If p is an odd prime and a an integer, then

p—1
(a) =a 2 mod p.
p

Proof. If p|a, then the statement is obvious, so assume that p t a.
Case (i): (%) = 1. In this case, a = b% mod p for some b € Z, so mod p we have

—1
a%szflzlz <a>.
p

Case (ii): (%) = —1. In this case, if 8 € (Z/pZ)*, then the unique g’ € (Z/pZ)*
such that 85" = [a] cannot be equal to 3, because [a] is not square in (Z/pZ)*, so
(Z/pZ)* can be partitioned into (p—1)/2 pairs {3, 8’} satisfying 88’ = [a] with 8 # (.

Hence,
1 p—l

> = T 88) = [l = [(p— 1)) = [-1]

{8.8'} b=1
by Wilson’s Theorem. Thus, mod p we have

—1
ST == (2),
p

Example. Consider p =29, a = 3. Here,

p—1
a2 =3"=4782969= —1mod 29 (direct calculation),
SO (2%) = —1, i.e., 3 is not square mod 29.

Example. Consider now p = 29, a = 5. This time,

p—1
a2 =5"=6103515625=1mod 29 (direct calculation),

SO (2—59) =1, i.e., 5 is square mod 29.
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II-7 Relationship to quadratic congruences

Proposition 7.1. Let p be an odd prime, and let a,b,c € Z with p ¥ a. Then the
congruence az® + bx + ¢ =0 mod p has

2 solutions mod p if (b2*4ac) =1,

no solutions if (bQ_p‘*“C) =1,
1 solution mod p  if (bz_p‘lac) =0.

The solutions, if any exist, are given by

(2], = [2a], " (= [B], & [V'? — 4ac],),

where Vb2 — dac denotes any integer whose square is congruent to b> — 4ac mod p.
Proof. Let a = [a], B = [b], v = [¢] in Z/pZ. By assumption, a # [0]. Then for X € Z/pZ,

aX?+ BX + =[0] <:>X2+§X+%:[O]
B\ B~y
BN B v 1,

This has a solution X if and only if 3% —4av is square in Z/pZ, specifically, two solutions
mod p when 32 — 4avy is the square of a non-zero residue class, and one solution when
it is zero. Solving for X in (7.1) shows that the solutions are as claimed. O

Example. The discriminant of the polynomial 22 +z+1is1?—4-1-1= —3,s0if p is
odd, the congruence 2% + z + 1 = 0 mod p has a solution if and only if (?) € {0,1}.

Obviously, (773) = 0 if and only if p = 3, so there is only one solution mod p in that
case. We will see shortly how to determine for which primes p the Legendre symbol (_73)
takes the value 1. For now, simply verify directly that (_73) =1if p e {7,13,19} (the

congruence then having two solutions mod p), and that (_73) =—1if p € {5,11,17}
(no solutions to the congruence).

Remark. The case p = 2 is excluded from Proposition 7.1, but this case is easily worked
out. If z € Z, then 22 = = mod 2, so

2> +br+c=x+bxr+cmod 2
=(b+1z+ec
Therefore, the solutions to the congruence x2 + bx + ¢ = 0 mod 2 are as follows:

e If bis odd and c is even, every integer z is a solution.
e If b and ¢ are both odd, there are no solutions.

e If b is even, there is only the solution = ¢ mod 2.
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II-8 Quadratic reciprocity

Theorem 8.1 (Quadratic reciprocity). If p and q are distinct odd primes, then

B)@ - s ()= ().

Additionally,
2 p°-1 -1 p—1
- ) =(-1) 8 and — | =(-1) 2.
(3)-c (5)-c

For a proof, see Section 2 of the Appendix.

Remark. The determination of the signs, i.e., (—1), in the theorem can be sped up

via the following observations:

° %%1 is even if and only if at least one of p or ¢ is congruent to 1 mod 4.
2

oz ;1 is even if and only if p = £1 mod 8.

° % is even if and only if p =1 mod 4.

Example. Find (%) and (25—9) using quadratic reciprocity.

Solution:
3 29 B
2
= (3) (29 = 2 mod 3)
=-1 (3% %1 mod 8),
and

(3)-(2) oo
©-6)--

) using quadratic reciprocity.

<273> _— <273> (7=23 = —1 mod 4)

i

Example. Find (23

Solution:
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Example. Find (%) using quadratic reciprocity.

Solution:

302 2 151 .
(Ml) = (541) <Ml) (factorize 302)

541
=(-1) <151> (541 = 5 mod 8, 541 = 1 mod 4)

()=~ () () =) ()=~ (i) (30
=—(1)-(-1) (11511> (151 = 7 mod 8, 11 = 151 = —1 mod 4)

- (181> - (121>3 = (121) = —1 (11=3mod 8).

Example. For which primes p does the congruence 22+ 6x+2 = 0 mod p have (a) two

distinct solutions mod p, (b) a unique solution mod p, and (c) no solutions?

2 = 0 mod 2, which has the unique

Solution: For p = 2, the congruence becomes z
solution = 0 mod 2. Assume, henceforth, that p > 2. The discriminant of the given
quadratic polynomial is A =36—4-1-2=28=4-7.If p=7, then p| A, so there is a
unique solution mod 7.

Now assume that p ¢ {2,7}. Then

(5)-(5)-0) ()-6)-com G- ()

Let A = (—1)172;1 and B = (Z), and note that (%) =1lifand only if A= B =1 or
A = B = —1. We consider these two cases separately.

(i) A= B =1if and only if p = 1 mod 4 and p = 1, 2, or 4 mod 7. Now use the

Chinese Remainder Theorem:

a=1mod4,a=1mod7 <= a=1mod 28
a=1mod4,a=2mod7 <= a=9 mod 28
a=1mod4,a=4mod7 < a=25mod 28

(ii) A=B=—1lifand only if p =3 mod 4 and p = 3, 5, or 6 mod 7. Use the Chinese
Remainder Theorem again:

a=3mod4,a=3mod7 <= a=3mod 28
a=3mod4,a=5mod 7 <= a =19 mod 28
a=3mod4,a=6mod7 <= a =27 mod 28

In summary, the congruence 22+ 6z +2 = 0 mod p has (a) two distinct solutions mod p

if p=1, 3,9, 19, 25, or 27 mod 28, has (b) a unique solution mod p if p € {2,7}, and
has (c¢) no solutions otherwise, i.e., if p =5, 11, 13, 15, 17, or 23 mod 28.
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IT-9 Primitive roots

Let m be a positive integer. A primitive root mod m is an integer a coprime to m such
that every prime residue class mod m is a power of [a].

Example. The integer 2 is a primitive root mod 9 because each of the six prime residue
classes mod 9, namely, [1], [2], [4], [5], [7],[8], is a power of [2]:

Proposition 9.1. If [a] € (Z/mZ)*, then a is primitive mod m if and only if ord,,(a) =

¢(m).

Proof. If ord,, (a) = ¢(m), then all ¢(m) powers [a]°, [a]', [a]?, ..., [a]*™ ! are distinct,

so since there are ¢(m) of them, they must consitute all the elements of (Z/mZ)*.
Conversely, if every prime residue class is a power of [a], then there can be no

repetitions among [a]®, [a]', [a]?, ..., [a]?™ 1, so none of these is equal to [1] except the

zeroth power, and so the first positive k¥ with [a]* = [1] is k = ¢(m). O

Example. In (Z/127)*, each element has order dividing 2 (check for yourself), so there
is no prime residue class of order ¢(12) = 4, and so there is no primitive root mod 12.

Proposition 9.2. Assume that the modulus m has a primitive root, suppose that b € Z

is coprime to m, and let n be a positive integer. Then the congruence
" =b mod m

has a solution if and only if b*(™/4 =1 mod m, where d = ged(p(m),n). In this case,
there are d solutions mod m.

Proof. Let a = [a] be a primitive root mod m, let 8 = [b], and write 8 = o! with [ € Z.
Observe that the congruence is equivalent to the equation

[2]" =5 (9-1)

in Z/mZ. Further, if (9.1) has a solution z, then x must be coprime to m, because
[z]*718~! is a multiplicative inverse to [z] in Z/mZ. Therefore, we can replace [z] in
(9.1) with o for an integer k € {0,...,¢(m)—1}. But (o*)" = g if and only if a"* = !,
if and only if

nk =1 mod ¢(m), (9.2)

and we know from Proposition 1.1 that the congruence (9.2) has a solution if and only
if
ged(g(m),n) [1
< ged(¢(m),n) | ged(d(m), 1)

6(m) 6(m)
7 ged(@(m), 1) | ged(¢(m), )
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__om)
ged(¢(m), n)

<« p?™/d =1 mod m by Proposition Ord-1,

<= ord,, () by Proposition Ord-3

where d = ged(¢(m), n). Further, if (9.2) has a solution, the number of solutions k €
{0,...,¢(m) — 1} is d by Proposition 1.1. O

21

Example. Solve z 8 mod 27 using the fact that 2 is a primitive root mod 27.

Solution: Note that ged(¢(27),21) = ged(18,21) = 3, and
g18/3 — (23)18/3 =2'® =1 mod 27 by Proposition Ord-2,

so there are solutions. In fact, there are 3 solutions mod 27. Let us find them.
The congruence is equivalent to [z]?! = [8] in Z/27Z. Let [z] = [2]* with k €
{0,...,17}. (The congruence implies that [z] is a prime residue class, as explained in

the proof of Proposition 9.2, and therefore is a power of [2].) Then

212 = 2P

2213 = [1]

ords7(2) |21k — 3 by Proposition Ord-1
1821k — 3

21k = 3 mod 18

7k =1 mod 6

k=1mod 6

k=1,7,or 13 mod 18

2" = [2)*, [2]", or [2]®%.

Frorerrreee

Remembering, then, that [2]¥ = [z], we see that x is a solution to the original congruence

if and only if

21t
I [
], [10] - [2], or [10]% - [2] because [2]° = [64] = [10]
2], [20], or [11] (multiply by [10] each time).

]7’ or [2]13

[z]

N

=
=
=
=

Thus, the solutions to 22! = 8 mod 27 are z = 2, 11, or 20 mod 27.
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IT-10 Primitive roots continued

We study another congruence that can be handled via primitive roots, if one exists.

Proposition 10.1. Assume that m has a primitive root, and let b,c € Z be coprime to
m. Then the congruence

b* = c mod m

has a solution x € Z>¢ if and only if ord,,(c) | ord,,(b). In this case, there is a unique
solution x € {0, ..., ord,,(b) — 1}.

Proof. Let o € (Z/mZ)* be primitive, let 5 = [b] and v = [c], and write

B=a* ~=d withk,lecZ.

Then
% = ~ has a solution <= o** = ! has a solution
<= a"*~! = [1] has a solution
<= kx =1 mod ord(a) has a solution
< ged(p(m), k)|l by Proposition 1.1
<= ged(p(m), k)| ged(p(m),l) (exercise)
H(m) H(m)
—
ged(¢(m), 1) | ged(p(m), 1)
<= ord,,(c)| ord,,(b) by Proposition Ord-3.
The uniqueness of a solution z € {0,...,ord(b) — 1} follows from the observation that
B* = pY if and only if x = y mod ord(p). O

Example. Using the fact that 17 has a primitive root, decide whether the congruence

9% =4 mod 17 has a solution. If so, find the least non-negative solution.

Solution: Observe that 4> = —1 mod 17, so 4* = 1 mod 17 and ord;7(4) = 4. Now,

92 = 81 = —4 mod 17,
so 9*=(-4)? = -1 mod 17,
and 9% = (—1)>=1 mod 17.

Thus, ord;7(9) |8, but the foregoing calculations rule out 1,2,4 as possibilities for the
order, so in fact ord;7(9) = 8. Therefore, ord;7(4) | ordy7(9), so by the proposition, the
congruence 9¥ = 4 mod 17 has a solution.

To find the least non-negative solution, observe from the congruences 92 = —4 mod 17
and 9* = —1 mod 17 found above that 9° = 4 mod 17, so = = 6 is a solution. Since

6 < 8 = ordy7(9), there can be no smaller solution than this.
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Criterion for the existence of a primitive root

Theorem 10.2. Let m > 2 be an integer.
(i) There is a primitive root mod m if and only if either of the following holds:

(a) m is equal to 2 or 4.

(b) m is a power of an odd prime or twice such a power.

(i) If a is a primitive root mod p, where p is an odd prime, then either a or a + p is

a primitive root mod p?.

(iii) If b is primitive mod p?, where p is an odd prime, then b is primitive mod p’ for
all j > 1.

A proof is given in Section 3 of the Appendix.

Example. Show that 2 is primitive mod 5* for all positive integers k.

Solution: By Theorem 10.2, it is enough to show that 5 is primitive mod 52 = 25. We
know by Proposition Ord-2 that ordas(2) | ¢(25) = 20. Now, because 20 = 22 - 5, every
positive divisor of 20 less than 20 divides either 2 -5 = 10 or 22 - 5° = 4. But

210 = 1024 # 1 mod 25,
and 2% =16 # 1 mod 25,

so if d|20 and 1 < d < 20, then 2¢ # 1 mod 25. Thus, ordgs(2) = 20.

Example. It is a fact that 18 is primitive mod 37 but not mod 372. (Verify these
assertions for yourself.) Therefore, by Theorem 10.2, a primitive root mod 372 is 18 +
37 = 55, and then this is a primitive root mod 37* for all k > 1.
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II-11 Polynomial congruences and Hensel’s Lemma

We now make a systematic study of congruences of the form f(x) = 0 mod m, where
f(x) € Z[z], i.e., f(z) is a polynomial with integer coeflicients, beginning with the case
where m is a power of a prime p. The key idea is to use already-known solutions to the
congruence f(z) = 0 mod p* to find solutions to f(x) = 0 mod p**+1. This process is
known as lifting.

Example. Consider the congruence z? + 1 = 0 mod 5, which has the solutions = =
2 or 3 mod 5. Let us focus on the solution z = 2 mod 5, for example. Note that 2 is not
a solution mod 25. However, we may hope that 2 4 5¢ is a solution mod 25 for some
t € Z. In fact, t = 1 works in this case:

(2+45)%+1="7>+1=50=0mod 25.

Thus, 2+ 5 = 7 is a lift of the mod 5 solution 2 to a mod 52 solution.
Similarly, 3 + 3 -5 = 18 is a lift of the mod 5 solution 3 to a mod 52 solution:
182 +1 =325 = 0 mod 25.

Lemma 11.1. If f(z) € Z[z] and a € Z, then there is g(z) € Z[x] such that
f(@) = fla) + f'(a)(z — a) + (z — a)’g().

Proof. Let F(z) = f(x) — f(a) — f'(a)(z — a), and note that F(a) = 0 and F’'(a) = 0.
Because F'(a) = 0 and z—a is monic, polynomial division shows that F(x) = (z—a)h(z)
where h(z) € Z[z]. Then

F'(x) = h(z) + (v — a)l/ (),

so h(a) = F'(0) = 0, and so polynomial division used again, this time on h(z), gives
h(z) = (z — a)g(z) for some g(x) € Z[z]. Thus, F(z) = (z — a)?g(z). O

Theorem 11.2 (Hensel’s Lemma). Let f(x) € Z[z], let p be a prime, let k > 1, and

suppose that a € 7 is a solution to f(z) =0 mod p*. Consider the congruence
f(z) =0 mod p**ti. (11.1)

(i) If p t f'(a), then there is a unique solution to (11.1) of the form a + tp* with
0<t<p-—1. It is found by solving

%Jrf,(a)tz()modp fort€{0,....p—1}.

(ii) If p| f'(a) and a is a solution to (11.1), then a + tp* is a solution for all t.

(ii) If p| f'(a) and a is not a solution to (11.1), then (11.1) has no solution of the
form a + tp*.
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Proof. Let t € Z. By Lemma 11.1,

fla) + f'(a)tp® + t?p**c  where ¢ = g(a + tp*) € Z
f(a) + f'(a)tp" mod p**t,

fla+tp")

SO

fla+tp*) =0 mod p"*! «— f(a) + f'(a)tp" = 0 mod pF*!

f(a)

<~
pk

+ f'(a)t = 0 mod p.

If f'(a) # 0 mod p, there is a unique solution ¢ € {0,...,p — 1}, found by inverting
f'(a) mod p. If f'(a) = 0 mod p, then any ¢ works as long as f(a)/p* = 0 mod p, i.e.,
f(a) =0 mod p**1. Otherwise, no ¢ works. O

Example. Let f(z) = 2% + 2z + 3 and p = 5. Observe that the congruence f(x) =
0 mod 5 has the solution © = 2 mod 5: f(2) = 15 = 0 mod 5. Let us apply Hensel’s
Lemma in the case p = 5 and k = 1 to see whether this solution can be lifted to a

solution mod 52:
f'(x) =32 +2, so f'(2)=14% 0 mod 5.

This is case (i) of the theorem, so there is a unique lift 2 4+ 5¢ with 0 < ¢ < 4, found by

solving

2
% + f/(2)t =0 mod 5,
ie.,, 34 14t =0 mod 5,
ie, t=3.

Thus, 2+3-5 = 17 is a solution mod 52, and is in fact the unique one lifting the mod 5
solution 2.

Example. Let f(z) = 2*+522+337 and p = 7, and note that 2 = 1 mod 7 is a solution
to the congruence f(x) =0 mod 7, since f(1) = 343 = 7. Now, f’(z) = 42® + 10z, so
f'(1) = 14 = 0 mod 7. The additional fact that f(1) = 73 = 0 mod 72 puts us in case
(ii) of Hensel’s Lemma rather than case (iii), so every 1+ 7¢ with ¢ € Z is a solution to
the congruence f(z) = 0 mod 72.

Example. Let f(r) = 2% — 22 + 42 + 2 and p = 11. The congruence f(z) =0 mod 11
has the solution # = 4 mod 11. Now, f'(z) = 322 — 2z + 4, so f/(4) = 44 = 0 mod 11.
However, this time f(4) = 66 # 0 mod 112, so we are in case (iii) of Hensel’s Lemma,
and there are no solutions to the mod 112 congruence of the form 4 + 11t. We further
observe that £ = 4 mod 11 is the only solution to the mod 11 congruence (exercise), so
the failure of this solution to be lifted means that there are no solutions whatsoever to

the congruence f(x) =0 mod 112.
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IT-12 Hensel’s Lemma continued

Proposition 12.1. Assume that we are in case (i) or (ii) of Hensel’s Lemma. If b =
a+tp" is a solution mod p**1 lifting the mod p* solution a, then f'(b) = f'(a) mod p.
In particular, f'(b) =0 mod p if and only if f'(a) =0 mod p.

Proof. Applying Lemma 11.1 to f/(z) instead of f(x), we have
f'(b) = f'(a) + f"(a)tp® + t*p**¢  for some ¢ € Z,
so f'(b) = f'(a) mod p. O

A consequence of this proposition is that, if we are lifting repeatedly, we need cal-
culate the derivative mod p only once. Case (i) is always followed by case (i), and case
(ii) can be followed only by case (ii) or case (iii).

Example. Here is an example of repeated lifting in case (i). Let f(z) = 2% — 10z + 5
and p = 29, and note that f(4) = 29 = 0 mod 29. Now, f'(x) = 322 — 10, so f'(4) =
38 = 9 mod 29, so we are indeed in case (i), and the unique lift of the form 4 + 29¢ with
t € {0,...,28} is found by solving

G} + f'(4)t = 0 mod 29,
29
ie., 1+ 9t =0 mod 29. Inverting 9 mod 29 (do this yourself for practice), we find that
t =16, so 4 4 16 - 29 = 468 is the unique lift of the mod 29 solution 4 to 292.
By Proposition 12.1, if we wish to lift further to a solution mod 293, we know already
that we are in case (i) again, so we proceed straight to finding the unique ¢ € {0, ..., 28}

such that
£(468)
292
Further, by the same proposition, f'(468) = f'(4) = 9 mod 29, i.e., we do not need to
recalculate f’(468), so we have only to solve
£(468)
292
for t € {0,...,28}, and we find easily that ¢t = 14. Thus, 468 + 14 - 29?2 = 12242 is the
unique lift to 293.

+ f/(468)t = 0 mod 29.

4+ 9t =0 mod 29, i.e., 1218774 9t =0 mod 29,

Example. Here is an example of repeated lifting in case (ii). Let f(z) = 2% + 42 + 22
and p = 3. Observe that 1 is a solution mod 3. Find the mod 9 and mod 27 solutions
lifting 1.

Solution: We find easily that /(1) = 6 = 0 mod 3 and f(1) = 27 = 0 mod 9, so in
attempting to lift from 3 to 9, we are in case (ii), and 1,4, 7 are all solutions mod 9.

Now, f(1) = 0 mod 27, so case (ii) applies again to show that 1,10, 19 are all solu-
tions mod 27. Also, f(4) = 54 = 0 mod 27, so here as well we remain in case (ii). Thus,
4,13,22 are all solutions mod 27. However, f(7) = 99 # 0 mod 27, so case (iii) applies,
and there are no solutions mod 27 of the form 7+ 9¢. A summary of the solutions mod 9
and 27 that lift 1 is therefore as follows:
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mod 27
4 7 mod 9

mod 3

A weakened hypothesis for indefinite lifting

We know from Proposition 12.1 that solutions may be lifted indefinitely when p 1 f/(a).
In fact, we can weaken this assumption and still be guaranteed to be able to lift indefi-

nitely, as in the following result.

Proposition 12.2. If f(z) € Z[z], p is prime, and a € Z satisfies vy(f(a)) > 2v,(f'(a)),

then there are integers ag, a1, as, ..., with ag = a, such that
f(a,) =0 mod p" Tt and Uny1 = a, mod p"*tt for alln > 0.

For a proof, see Section 4 of the Appendix, where it is also explained how to construct

ag, a1, as, ... in this situation.

Example. Consider f(z) = 22 —x + 25 and p = 3. Observe that f(—1) = 27 and
f(=1) = =3, s0 v3(f(=1)) = 3 > 2 = 2v3(f'(—1)). Therefore, the hypotheses of
Proposition 12.2 are met, and one can lift indefinitely to obtain solutions to f(z) =
0 mod 3F for all k£ > 1. For example, © = 2+2-32+32+2.364+2.38+3942.311 +2.313

is a solution mod 34,

Arbitrary moduli

Hensel’s Lemma applies to moduli that are prime powers. For a general modulus, we
can combine Hensel’s Lemma with the Chinese Remainder Theorem.

For example, consider the polynomial f(z) = 22—+ 25 again, and suppose we wish
to find solutions to f(x) = 0 mod 10 125. For this, we note that 10 125 = 81-125 = 3*.53.
We know from the previous example that solutions mod 3* can be found via Hensel’s
Lemma, and we leave it as an exercise to show, via Hensel’s Lemma, that solutions exist
mod 5% as well (in fact, modulo any given power of 5). Hence, if a is a solution mod 81

and b is a solution mod 125, then we have only to solve the system

T=a mod 81

T=0b mod 125

so obtain a solution mod 10 125.

Paul Buckingham Elementary Number Theory (MATH 324) — v1.02 | 32



(IIT) Gaussian Methods
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IITI-1 Sums of two squares: introduction

In number theory, a square is an integer that is the square of some integer. The squares
are thus 0,1,4,9,16,.... It is natural to ask which positive integers n are sums of two
squares, and for each n that is such a sum, in how many ways n can be so expressed.

We represent this problem by the equation
z? +y° =n, (1.1)

where we are trying to solve for x,y € Z.

A fruitful line of attack is via the observation that 2%+ y? = (x +yi)(z — yi), where
i is a fixed square root of —1 in C, i.e., i = —1. Thus, if @ = x + yi, then (1.1) is
equivalent to

aa=n,

where the bar denotes complex conjugation.

The Gaussian integers and uniqueness of factorization

Recall from MATH 228 the ring Z[i] = {a + bi € C | a,b € Z}, the ring of Gaussian
integers. It is a unique factorization domain. Let us review this notion from MATH 228.

In an integral domain R, a prime element is an element a € R satisfying all of the
following: (i) a # 0, (ii) a € R*, and (iii) for all b, ¢ € R such that a divides be, either a
divides b or a divides c.

In an integral domain R, an irreducible element is an element a € R satisfying all
of the following: (i) a # 0, (ii) a ¢ R*, and (iii) for all b, ¢ € R such that a = bc, either
be R or c € R*.

If a,b € R, we say that a is associate to b, written a ~ b, if there is u € R* such

1

that a = ub. In this case, of course, b =u""a, so b ~ a as well.

A wunique factorization domain (UFD) is an integral domain R such that, for every

non-zero a € R that is not a unit, the following both hold:
(i) ais a product of irreducible elements.

(ii) The factorization of a into irreducibles is essentially unique, in the sense that
if w1+ my and 7 - -7, are two such factorizations, then m = n and, after a

reordering of the factors if necessary, m; ~ . for all i.
Remark.
e In any integral domain, every prime element is irreducible (short exercise).

e In a unique factorization domain, it is conversely true that every irreducible ele-

ment is a prime element (see MATH 228). This fact will be crucial later on.
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The norm map

A wuseful tool in the ring Z[i] of Gaussian integers is the norm map,

N:Zli] — Zso
a+bi — (a+bi)(a—Dbi)=a®+b%

The following facts, both left as exercises, are crucial:
(i) N(aB) = N(a)N(p) for all a, 8 € Z]i], and
(ii) « € Z[i]* if and only if N(«a) = 1.

Example. Observe that 5 = (1 + 2¢)(1 — 2¢). We may use the norm map to show that
1+ 2i and 1 — 2 are irreducible in Z[i], so 5 cannot be factorized in Z[i] any further
than this factorization. Indeed, if 1+ 2i = af for some «, 5 € Z[i], then applying N to
both sides of this equation gives N(1 + 2i) = N(af), i.e., 5 = N(a)N(B), so because 5
is a prime number and N(«), N(8) € Z>1, either N(a) = 1, in which case « is a unit,
or N(B) =1, in which case 3 is. The same argument shows that 1 — 2i is irreducible as
well.

We leave it as a short exercise to show that 1+2¢ and 1 —2i are not associate in Z[i],
i.e., there is no unit u € Z[i]* = {1,4,—1, —i} such that 14+2¢ = u(1—23). Therefore, the

factorization 5 = (1 4 2¢)(1 — 24) is a factorization of 5 into non-associate irreducibles.

Example. We have just seen that 5 is not irreducible in Z[i]. Let us show that, by
contrast, 3 is irreducible. Suppose that 3 = a8 where «, 8 € Z[i]. Then

9=N(3)=N(afB) = N(a)N(B),
so by uniqueness of factorization in Z, the only three possibilities are
e N(a) =1, N(B) =9,
e N(a)= N() =3,
e N(a)=9, N(B) = 1.

In fact, the middle option cannot occur, for if a« = = + yi, where z,y € Z, then N(a) =
2242, and there are no integers x,y such that x? +y? = 3. Therefore, either N(a) = 1,

in which case « is a unit, or N(8) = 1, in which case S is.

Some prime numbers, then, are irreducible in Z[i], such as 3, and some are not, such
as 5. In fact, there is a simple rule to determine which prime numbers are irreducible
in Z[i], which we will see shortly. The question is intimately linked to the equation

2?2 +y? =n.

Exercise. The prime number 2 exhibits a special property with regard to factorization
in Z[i]. Show that 2 = w7’ where m and 7’ are irreducible Gaussian integers that are
associate to each other, i.e., m = un’ for some u € Z[i|* = {1,i,—1, —i}.
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IITI-2 Gaussian splitting

Lemma 2.1 (Gaussian splitting lemma). Let p be a prime. Then p is a sum of two

squares if and only if p=2 or p =1 mod 4.

Proof. Assume first that p = 22 + y? where z,y € Z. Because the squares mod 4 are 0
and 1, the only possibilities for p mod 4 are (i) 0+0=0, (ii)) 0+1=1, (ili) 1+0=1,
and (iv) 1+ 1 = 2. The first is impossible because 4 { p, and the last implies that p = 2.

Conversely, assume that p = 2 or p = 1 mod 4. Since 2 = 12 + 12, we may assume
immediately that p = 1 mod 4. Then (‘71) =1 by Theorem 8.1 in Section II, so —1 is
square mod p, i.e., there is ¢ € Z such that —1 = ¢ mod p, and so there is k € Z such
that ¢ + 1 = kp. Hence,

(c+1i)(c—1i) = kp,

so p divides the product (c+1i)(c—1i) in Z[i]. But one verifies easily that p divides neither
¢+ nor ¢ — i in Z[i], so p is not a prime element of the Gaussian integers. Therefore,
because Z[i] is a unique factorization domain, p is not an irreducible element either, so

p=ap
for some a, 8 € Z[i]~Z[i]*. Hence,
p* = N(p) = N(aB) = N(a)N(B).
But N(a), N(8) # 1, so N(a) = N(B) = p. Thus, if & = = + yi, then

p=N(a)=2%+19°

Gaussian irreducibles

If p is a prime number, define

14+¢ ifp=2,
Tp=4z+yi ifp=1mod4, where 2> +y>=pand 0< z <y,
P if p =3 mod 4.

By Lemma 2.1, x and y as above exist if p = 1 mod 4. Further, one verifies that, with
the extra constraint 0 < = < y, the integers x and y are uniquely determined by p
(exercise).

For example,
7'('3:3, 7T5:1+2i, ’/T7:7, 7T11:].]., 7T13:2+3i.
Let

D={m}U{m, |p=1mod4} U{7T, | p=1mod 4} U {m, | ¢ =3 mod 4}
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={144,3,1+2i,1—2,7,11,2+3i,2— 3i,1+4i,1 — 4i,...}.

Recall that if a, 8 € Z]i], then we say that « is associate to § (and write o ~ () if there
is uw € Z[i]* = {1,4,—1, —i} such that a = ug.

Proposition 2.2 (Gaussian irreducibles).
(i) Fvery element of 11 is irreducible in Z[i].
(ii) Every irreducible element of Z[i] is associate to exactly one element of II.

We refer the reader to Section 5 of the Appendix for a proof. Lemma 2.1 plays a
crucial role.
As a consequence of Proposition 2.2 and uniqueness of factorization in Z[i], we

see that for every non-zero a € Z[i], there are unique non-negative integers r, s,, s,
(p=1mod 4), and ¢, (¢ = 3 mod 4), and a unique unit u, satisfying

’
T Sp="p tq
o = Umy Il <7Tp 7Tp) || Ty

p=1(4) q=3(4)

Example. Here are some factorizations in Z][i]:

—13+ 41 = (—1)m5737
123 = m3m41 741
190 + 17290 = 7}, 719729
54390 — 847700 = imsmaTsToTo5
In each case, one could verify the factorization by expanding out the right-hand side and
ensuring that we obtain the left-hand side, but in fact there is a method for taking any

non-zero Gaussian integer and producing its factorization into a unit times a product
of elements of II.

To learn about splitting in a more general context, see Neukirch’s Algebraic Number

Theory [5], for example.

Paul Buckingham Elementary Number Theory (MATH 324) — v1.02 | 37



III-3 Counting solutions to the equation 22 4 y? =

Recall the p-adic valuation v, defined in Section I-1.
Theorem 3.1. Let n be a positive integer.

(i) The equation 2% +y? = n has a solution (z,y) € Z x Z if and only if vy(n) is even
for all primes ¢ = 3 mod 4.

(i1) If solutions exist, the number of solutions is

4 H (vp(n) +1)

p=1(4)

Proof. (1) We use the observation that an integer is a sum of two squares if and only if
it is equal to N(«) for some « € Z[i], because z2 + y*> = N(a) where a = x + yi.
Suppose, then, that n = 22 + y? = N(a), where o = x + yi. Write

’
_ r sp=5p t
o = UTy I | (prﬁp T ]

p=1(4) =3 (4)

where u € Z[i]* and r, s, 5},,t4 € Z>0. Then

n— N(Oz) —9r H psp+s H q2tq ’

p=1(4) q=3(4)

so vg(n) = 2t, for all primes ¢ = 3 mod 4.
Conversely, if v,(n) is even for all such ¢, then

n = 2vz(") H ptr(m) H qa(™ by definition
p=1(4) q=3 (4)

= N(a)

where
o= W;&(") H 7rvp(n) H 7rvq(n 7
p=1(4) q=3(
so n is a sum of two squares.

(ii) Assume that solutions exist. By part (i), vq(n) is even for all primes ¢ = 3 mod 4.
Define

Xo = {0,1,2,3}
X, ={0,...,v,(n)} for p=1mod4

X=Xox [[ X

p=1(4)
pln
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If £ = (K, (sp)p) € X, let

ae :ikﬂgz(n) H (ﬂ;pﬁ;p(n)—sp) H 7T;fq(n)/z
)

p=1(4) q=3 (4
pln qln

Then

N(ag) — 2712(”) H (psppvp(”)_sp) H q’Uq(”) =n,
)

p=1(4) q=3 (4
pln qln

so (z,y) = (Re(ag),Im(ag)) is a solution to 22 + y? = n. Therefore, if
Y ={(z,9) €ZxZ| 2> +y* =n},
we have a map
f: X —- Y
£ = (Re(ag),Im(ag)).

To finish our proof, it is enough to show that f is bijective, because the cardinality of Y is
the number of solutions to *+y® = n, and the cardinality of X is 4]],_; 4)(vp(n) +1).
For injectivity, note that if g, = e, , then & = & by Proposition 2.2. As for surjectivity,

suppose that 22 + 4% = n, i.e., N(a) = a@ = n where a = x + yi. Then writing

a = unh H (ﬂzpﬁ;p> H o (u € Z[i]*),

p=1(4) q=3(4)

we see from the equality N(a) = n that r = va(n), s, + s}, = vp(n) when p = 1 mod 4,
and 2t; = vy(n) when ¢ = 3 mod 4, so o = a¢ where £ = (k, (sp)p) € X, k here being
the unique integer in {0, 1,2,3} such that u = i*. Thus,

(z,y) = (Re(a), Im(a)) = (Re(ag), Im(ag)) = f(£).
O

Example. Let n = 29175292 .23% . 315, Decide whether the equation 22 + 3% = n

has any integral solutions, and determine how many if so.

Solution: The primes congruent to 3 mod 4 that divide n are 23 and 31, which both

occur to even powers, so integral solutions exist. The number of solutions is
4(’[)17(77/) + 1)(’(129(71) + 1) =4-6-3="T2.
Example. Repeat the preceding problem with n = 372 - 74 - 437 instead.

Solution: The prime divisor 43 is congruent to 3 mod 4 and occurs to an odd power, so

the equation 2 + y? = n has no integral solutions.
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IIT-4 The equation y* = 2" — 1

Let n be a positive integer, and consider the equation y? = 2™ — 1, where x and y are
integers to be solved for. The case n = 1 is trivial: there are infinitely many solutions
in this case, because for each y € Z, we may let = 32 + 1. The case n = 2 can be
solved by observing that y?> = 22 — 1 if and only if (x + y)(z — y) = 1, if and only if
r+y=xz—y=1orx+y=x—y=—1. The solutions in the case n = 2 are therefore
xr==1,y=0.

For higher values of n, one may approach the equation by considering factorization
in the Gaussian integers. A key ingredient is the following, which is proven in Section 6

of the Appendix.

Lemma 4.1. Suppose that
e R is a unique factorization domain,
e a,be R~{0},
® 1 15 a positive integer.

If a,b are coprime and ab = ¢ for some ¢ € R, then there are units u,v in R and
elements a’, b’ € R such that a = u(a’)™ and b= v(b')".

Let us illustrate the relevance of this lemma, for solving the equation 3% = 2™ — 1 by
considering the case n = 3 as an example; see also [2, Sect. 1.5 for this case. We show
that the only solution in integers to the equation y? = 23 — 1 is (z,y) = (1,0). To see

this, assume that x,y € Z satisfy the equation, and rearrange it to read

(y+i)y —i) =,

ie, aa= x3

where o« = y + i € Z[i] and the bar denotes complex conjugation, as usual. We claim
that the Gaussian integers o and @ are coprime. Suppose, for a contradiction, that 7 is a
Gaussian irreducible that divides both o and @. Then 7 divides also a—a = 2i = (1+1i)?,
so 7 is associate to 1 + ¢ by uniqueness of factorization in Z[i]. Therefore, 1 4 ¢ divides
a, so (1 +1)(1 — i) divides a@, i.e., 2 divides 2*>—in Z[i], but also then in Z. Hence, x
is even, so z3 is divisible by 8, and we arrive at the congruence y?> = —1 mod 8. But
this is impossible, because —1 is not square mod 8. Thus,  and @ have no common
Gaussian irreducible divisor, so they are coprime as claimed.

We may now apply Lemma 4.1, remembering that Z[i] is a unique factorization

domain. By the lemma, the fact that a & = 23

, a cube, implies that « is associate to a
cube (and @ is also). That is, a = n3® where 8 € Z[i] and n € Z[i]*. In fact, since every
unit in Z[i] is a cube, we have n = (1/)? for some unit 7, and then o = (1/3)3, so we
may in fact assume that 7 = 1. Thus, o = 33 for some 3 € Z[i].

Write 8 = a + bi with a,b € Z. Then

y+i=(a+ bi)? = a® — 3ab® + (3a2b — )i,
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SO

y = a® — 3ab® = a(a® — 3b%),
and 1= 3a%b— b = b(3a® — b?).

This last line shows that b = 1 and, subsequently, that 3a® — 1 = £1. We cannot have
3a? —1 =1, because 312, 50 3a> —1 = —1, i.e., a = 0. But then y = 0, so z = 1.

Exercise. Solve the equation y?> = 2* — 1 for 2,y € Z by considering the solutions to

the equation y? = 22 — 1 discussed above.

Exercise. Solve the equation 32 = z°—1 for z, y € Z by following the method illustrated
above in the case n = 3.

Exercise. Solve the equation y? = z® — 1 for z,y € Z by following the method alluded
to in the exercise above concerning the case n = 4. How do the cases n =4 and n =6

generalize?

2

Exercise. How might one solve y? = z2! — 1 by using an example we have already

considered, but without any reasoning any further in terms of Gaussian integers?

Remark. An exercise in Washington’s book [11, Chap. 1| considers the related equation
y? = 23 — 5. The method used above for the equation y? = 22 — 1 may be extended to
handle this related equation, although further considerations come into play that are
beyond the scope of this course. The difficulty, which can be overcome, lies in the fact
that the ring Z[v/—5] does not have uniqueness of factorization. The subject of algebraic

number theory provides tools for overcoming this difficulty.

Remark. A more recent approach to the study of equations such as y? = z + k, where
k is an integer, is via the theory of elliptic curves, which in fact concerns even more

general equations than this. See Silverman’s book [9] for an introduction.
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IIT-5 Pythagorean triples

A Pythagorean triple is a triple (z,y, z) of positive integers satisfying x2? + y? = 22.

Observe that if z,y, 2,d € Z>1, then
Pty =22 = (2 +y?) = d?? = (do)? + (dy)? = (d2)?,

so (z,y,z) is a Pythagorean triple if and only if (dz,dy, dz) is. Therefore, to find all
Pythagorean triples, it is enough to find all those for which the only positive common

divisor of the three numbers is 1, and then scale them.

Lemma 5.1. Let (z,y,z2) be a Pythagorean triple such that the only positive common

divisor of x,y,z is 1. Then

(i) x,y,z are pairwise coprime,

(ii) exactly one of x and y is even, and
(#i) z is odd.

Proof. (i) We show that x and y are coprime, the proof for the other two pairs being
similar. Let d be a positive divisor of x and y. Then d? divides 22 and 2, so d? divides
22 +y? = 2% as well, and so d divides z. (Exercise: If a,b € Z, then a|b if and only if
a?|b%.) Therefore, d|z,y,2, so d = 1.

(ii) Because x and y are coprime, they cannot both be even. If they were both odd,
then 2?2 = 22 4+ y? would be congruent to 2 mod 4, which is impossible because 2 is not
square mod 4.

(iii) This follows immediately from (ii) and the equality z? = 22 + y2. O

In light of Lemma 5.1, if (x,y, 2) is a Pythagorean triple such that the only positive
common divisor of x,y, z is 1, then either x is even or y is even, but not both, and there
is nothing lost in assuming that y is the even one. We will therefore define a primitive

Pythagorean triple to be one such that the numbers are coprime and y is even.

Theorem 5.2. Let z,y,z € Z>1. Then (x,vy, z) is a primitive Pythagorean triple if and

only if there are coprime positive integers u and v such that

2

u>v, wZvmod?2, and (z,y,2)=(u®—v% 2uv,u?®+v?).

Proof. We will employ a proof that uses uniqueness of factorization in Z[i], although an
elementary proof may be given as well; see Section 7 of the Appendix.

Suppose first that (x,y, ) is a primitive Pythagorean triple. Then a@ = 22 where
a =z + yi. We claim that « and @ are coprime in Z[i]. Indeed, if not, then both would
be divisible by some Gaussian irreducible 7, and then m would divide both o + @ = 2z
and a — @ = 2yi. If £ mo, then we would have 7 |2 and 7 |y, and hence N(7)|2? and
N (7) | y?, which is impossible because z and y are coprime. Therefore, 7 ~ 72, but from
this we deduce that 2 divides N(«a) = 22 in Z, contradicting the fact that z is odd.
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Knowing now that o and @ are coprime in Z[i], we return to the equation a@ = 22

and realize, then, that it implies via Lemma 4.1 that a = 3?2 for some 8 € Z[i] and
some € € Z[i]. The fact that z is odd rules out € € {i, —i}, and if e = —1, then a = (i3)?,
so we may in fact assume that ¢ = 1, that is, @ = 32 for some 3 = u + vi € Z]i].

Hence, x 4+ yi = (u + m')2 = u? — v? + 2uvi, so

z=u?—v% y=2u.
Because y > 0, we may assume, replacing both u and v by their negatives as necessary,
that u,v > 0. Next, because x > 0, we deduce that u > v. Also, the fact that z is odd
implies that v Z v mod 2. Finally, if d is some positive common divisor of u and v, then

2

d divides u? — v? = x and 2uv =y, so d = 1. Thus, v and v are coprime.

Conversely, suppose that u and v are coprime positive integers satisfying the prop-

2 —v? y = 2uv, and z = u? + v?, all positive.

erties in the theorem, and let z = u
Then

1‘2 + y2 _ (U2 _ ’U2)2 + (2UU)2 _ (u2 + ’1)2)2 _ 252.

Note that x is odd. To complete the proof, it is sufficient to show that z and z are
coprime. To that end, let d be a positive common divisor of x and z. Then d divides
2+ x = 2u? and also divides z — 2 = 2v?, so because d is odd, it divides u? and v2. But

w and v are coprime, so u? and v? are coprime, and so d = 1. O

We use Theorem 5.2 to tabulate the first few primitive Pythagorean triples. It suffices

to run through pairs (u,v) as in the theorem.

U v‘x:uQ—WQ y=2uw z=u?+0v?
2 1 3 4 5
3 2 5 12 13
4 1 15 8 17
4 3 7 24 25
5 2 21 20 29
5 4 9 40 41
6 1 35 12 37
6 5 11 60 61

Exercise. Let (z,y,z) be a primitive Pythagorean triple, and let (u,v) be the pair
corresponding to it via Theorem 5.2. Show that u? and v? are positive coprime integers
such that u? > v? and u? # v? mod 2, and find the primitive Pythagorean triple
(2,9, 2') corresponding to (u?,v?) via the theorem, expressing each of 2/, ¢/, 2’ in terms

of z,y,z.
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(IV) Arithmetic Functions
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IV—-1 Definitions and first examples

An arithmetic function is any function f : Z>; — C. The following are all arithmetic

functions:

(i) f:m—1

0 if m =0 mod 5
1 ifm=1mod?5
fimw— ¢ ifm=2mod5
—t if m =3 mod 5

—1 ifm=4mod?H

(vi) f:m— ¢(m) (Euler’s ¢-function)
(vii) f:m—m+1
There are two important types of arithmetic function, one a special case of the other:

o A completely multiplicative arithmetic function is an arithmetic function f that is
not identically zero and that satisfies f(mn) = f(m)f(n) for all positive integers

m and n. Examples (i)—(v) above are all completely multiplicative.

o A multiplicative arithmetic function is an arithmetic function f that is not iden-
tically zero and that satisfies f(mn) = f(m)f(n) for all coprime positive integers
m and n. Example (vi) above, Euler’s ¢-function, is multiplicative, as we saw in
Proposition 2.1 in Section II.

Every completely multiplicative arithmetic function is multiplicative, but not conversely,
¢ being a multiplicative arithmetic function that is not completely multiplicative.
The Mo6bius function

Define

(=1)" if m =py---p, where py,...,p, are distinct primes,
0 otherwise.
Note that the positive integer 1 is viewed as being a product p; ---p, where r = 0,

so u(1) = (=1)° = 1. It is a short exercise—one well worth doing—to show that u

is multiplicative. However, it is not completely multiplicative, because p(4) = 0 while
p(2)u2) = (1) =1.

Paul Buckingham Elementary Number Theory (MATH 324) —v1.02 | 45



Example. p(21) = (—1)2 =1, u(105) = (—1)3 = —1, u(99) = 0 (because 32| 99).

Example. If p is a prime, then p(p¥) is 1if k =0, is —1 if K = 1, and is 0 otherwise.

Some useful properties
i) If f is multiplicative and m € Z>; has prime factorization m = pi*---p%", then
= 1 T

f(m) = f(p}*)--- f(p%) because the factors p?’ are pairwise coprime.

(ii) If f is multiplicative, then f(1) = 1. Let us prove this. Observe that f(1) =
f(1-1) = f(1)f(1) because 1 is coprime to itself, so f(1)(f(1) — 1) = 0, and so
either f(1) =0 or f(1) = 1. If the former, we would have, for all m € Z>1,

f(m) = f(1-m) = f(1)f(m) =0f(m) =0,

contradicting the assumption that f is not the zero function. Thus, f(1) = 1.

Of course, an arithmetic function f for which f(1) = 1 need not be multiplicative.
An easy example is the function f given by f(1) =1, f(2) = f(3) = f(6) = 2,
and f(m) = 0 for all other m € Z>,.

(iii) If f and g are multiplicative arithmetic functions, then the pointwise product fg
of f and g, defined by (fg)(m) = f(m)g(m), is multiplicative. The same fact
holds if one replaces multiplicative by completely multiplicative in both places in
the assertion.

Dirichlet convolution

Let f and g be arithmetic functions, not necessarily multiplicative. The Dirichlet con-
volution fx g is the arithmetic function defined by (f * g)(m) = >, ,, f(d)g(m/d), the

sum running over all positive divisors of m.
Example. If f(m) = m? and g(m) = m, then (f * g)(m) = 2d|m d*(m/d) =
mzdlm d. Here is a table of the first few values of f x g:

m 1 2 3 4 5 6
(fxg)m) |1 6 12 28 30 72

The set of arithmetic functions is a commutative unital ring where addition is the
pointwise addition of functions and the product is Dirichlet convolution. We highlight

some of the key properties, left as exercises along with the other ring properties:
o (fxg)xh=f=x(gxh) (associativity of *)
o fxg=gxf (commutativity of *)
o fx(g+h)=f*g+ f=h (distributivity)

e 1 x f = f where ¢ is the arithmetic function defined by ¢(1) = 1 and «(m) = 0 for
m>1
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IV—-2 Inverses and sums

Inverses

An arithmetic function f is called invertible if there exists an arithmetic function g such
that f*xg=1.

Proposition 2.1. An arithmetic function f is invertible if and only if f(1) # 0.

Proof. If f % g = 1, then in particular, (f *x ¢g)(1) = «(1) = 1, i.e., f(1)g(1/1) = 1, so
7(1) £0.
Conversely, assume that f(1) # 0, and define g(m) recursively for m > 1 by

g(1) =1/f(1)

g(m 1d|Zf glm/d) if m > 1.
d#1
By construction, (f *¢)(1) =1and (f*xg)(m)=0ifm>1,s0 f*xg=1. O
If f is invertible, then the arithmetic function g such that f % g = ¢ is unique

(exercise). It is called the Dirichlet inverse of f, and is denoted f~!.
Example. Let f :m ~ m?, and let g = f~!. Find g(m) for m € {1,...,6}.

Solution:

9(1) =1/f(1) =1

9(2) = 1 f(2)g(1) = 4

9(3) = 1/ ®)g(1) = -9

g(4) = ~1 (F@)g(1) + F(2)g(2)) = ~(16 + (~16) =0

9(5) = 1 f(B)a(1) = 25

9(6) = 1 (F(©)9(1) + F(3)9(2) + F(2)g(3)) = (36 — 36 — 36) = 36

Theorem 2.2.
(i) If f and g are multiplicative arithmetic functions, then so is f * g.
(ii) If f is a multiplicative arithmetic function, then so is f~1, its Dirichlet inverse.

Proof. Let us prove (i) here and leave the proof of (ii) to the Appendix (Section 8).

Let m,n € Z>1 be coprime. Then the positive divisors of mn correspond bijectively
to the pairs (d,e) € Z>1 X Z>1 such that d|m and e |n, with (d, e) corresponding to de.
Then because f and g are multiplicative,

(f * g)(mn) ZZf (de)g zzf % (%)

dlmel|n dimel|n
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Sums

If f is an arithmetic function, let fbe the arithmetic function defined by
fm) =" f(d).
d|m
Note that f: 1% f where 1 is the constant arithmetic function, i.e., 1 : m — 1. Indeed
fm)=>" f(d) =" f(d)1(m/d) = (f x1)(m) = (L* f)(m).
d|m d|m
Observe the following:

If f is a multiplicative arithmetic function, then so is j?

Indeed, 1 is multiplicative, so if f is multiplicative, then the Dirichlet convolution 1% f =

f is multiplicative.

Example. Let 7 be the arithmetic function that counts the number of positive divisors

of a given positive integer, that is,

7(m) =#{d|d>1and d|m} = > 1=1(m).
d|m
Then being equal to i, the arithmetic function 7 is multiplicative. Now, if p is prime
and a > 0, then the positive divisors of p* are 1,p,...,p%, so 7(p*) = a + 1. Therefore,
because 7 is multiplicative, if a positive integer m has prime factorization pj* - - - pgr,
then
7(m) = [[(a; + 1).
j=1
Example. Let o be the arithmetic function that adds the positive divisors of a given

positive integer. Thus, if f : m +— m, then

a(m) =Y d=J(m).
d|m

Hence, because f is multiplicative, the same is true of 0. We may therefore compute o

via prime powers, as we did for 7. Specifically, if p is prime and a > 0, then

pa+1 -1
o) =14p+-4pr =L
p—1
so if m € Z>1 has prime factorization pj* - - - p&r,
- p?j_u 1
olm) = [[%——
=1 PiT

Exercise. Use the above to show that ¢(14175) = 30 008.
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IV—-3 DMobius inversion

Proposition 3.1 (Mgbius inversion).
(i) p*1 =1y, de, 171 = pu. Equivalently, 1 = .
(i5) If f is an arithmetic function, then p * f=f.

Proof. (i) Because p and 1 are multiplicative, so is p % 1, so it is enough to show that
1+ 1 and ¢ agree on prime powers, ¢ being multiplicative as well, of course. Therefore,
it is enough to show that (p*1)(p®) = ¢(p®) for all positive integers a. (Why is the case
a = 0 automatically true?) Now, u(p*) is equal to 1 if k = 0, to —1 if £ = 1, and to 0
otherwise, so for a > 1,

(nx1)(p*)=1-1(p) =1-1=0=(p"),

as claimed.
(ii) This follows from (i):

prf=ps(Lef)=(usl)«f=1sf=f.
O]

Example. Consider the von Mangoldt function, the arithmetic function defined by

log(p) if m = p*, where p is prime and k > 1,
A:me—
0 otherwise.

(Note that A is not multiplicative, because A(1) = 0.) We will use Mobius inversion to
give an alternative description of A. Let m € Z>; have prime factorization pj* - - - p&r.

Then because A(n) = 0 when n is not a prime power,

Am) = A =SS 405 = 373 log(y) = 3y log(p;) = log(m).
d|m Jj=1k=1 j=1k=1 Jj=1

Hence, by M&bius inversion,

A(m) = (ux N)(m) = 3" (@A) = >~ uld)log (%)

d|m d|m
= Z w(d) log(m) — Z p(d) log(d)
d|m d|m
=log(m)p(m) — Z p(d) log(d)
d|m
== pu(d)log(d),
d|m

because log(m) =0 if m = 1, and fi(m) = ¢«(m) = 0 if m > 0.
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IV—-4 A strategy for computing a multiplicative function
Suppose that f is a multiplicative arithmetic function. A common strategy to find an
explicit formula for f(m) is as follows:

(i) Justify first that f really is multiplicative. Refer to any relevant facts: If f and g
are multiplicative arithmetic functions, then f x g, f~!, f, and fg, for example,
are all multiplicative.

(ii) Find f(p®) where p is prime and a € Z>1.

(iii) Put the above together to obtain an expression for f(m) via the fact that m =
Hp |m p”p(m) A

Example. Show that a(m) = m for all positive integers m, where ¢ is Euler’s ¢-

function.

Solution: We know already that ¢ is multiplicative, so $ is also multiplicative. Now, if

p is prime and a € Z>1, then
B(p") = 0" =143 o") =1+ (F —p) =p", (4.1)
k=0 k=1 k=1

the last sum being a telescoping one. Therefore,

¢?(m) = QAS H pr(m) | = H gg(pvp(m)) because gg is multiplicative
plm

plm

=TI by ()

plm

=m.

Example. Let f = p¢, the pointwise product of p and ¢, that is, f(m) = u(m)gp(m),
and consider f: 1% f. Show that for all m € Z>4,

fom) = L 2-»).

plm
the product running over all primes p that divide m.

Solution: The arithmetic functions p and ¢ are multiplicative, so their pointwise product

f = po is as well, and so ]?is multiplicative. Now, if p is prime and a € Z>1,
Fo) =D 10" => ne")e(") =1-(p-1)=2—-p.
k=0 k=0

Hence, because f is multiplicative,

fm) =T Jo™) =[] 2-p).

plm plm
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IV-5 Bell series

A formal power series (over C) is an expression of the form F(z) = > 7 ja,z™ where
the coefficients a, are in C and x is an indeterminate. We add and multiply formal

power series as follows:

oo oo o0
D ana™ + > bua = (an +by)z",
n=0 n=0 n=0

(i anx"> (i bnx"> = i < Y akbn_k> z".
n=0 n=0 n=0 \k=0

These operations make the set of formal power series a commutative unital ring.
It is useful to be able to reindex: If k41 > 0, then

oo (oo}
g apz"tl = E Q1"

n==k n=k+I

For example, > o7 s n?sin(n)z"*? = 37 ((n — 2)?sin(n — 2)2".

Formal differentiation of power series is defined term by term: If F(z) = Y7, ap,a™,
then

F'(z) = Z napz" "t = Z(n + Dapt13™.
n=1 n=0

The product rule holds for formal differentiation: (FG)' = F'G + FG'. If G(x) is a
power series with zero constant term (i.e., the coefficient of ° is zero), then for any
power series F'(x), the substitution F/(G(z)) is possible. The power series F(G(z)) is
denoted (F o G)(z). In this situation, the chain rule holds for formal differentiation:
(FoGY(2) = G'(2)F'(G(x).

One often uses the power series (1 —tz)~!, where ¢ is some fixed complex number.

As an explicit power series, it is given by

1 - n,..n
l—txznzz:ot v

To see this, we multiply Y  t"a™ by 1 — ta:

o0 oo oo

(1 —tx) Z "™ = Zt"o:” - Zt”+1x”+1
n=0 n=0 n=0
o0 o0
= Z t"a" — Z t"z"™  (reindexing)
n=0 n=1
=1.
Example. Let us find 1—121 ; L— as an explicit power series:
—3e
1 1 = n,.mn = Iy n = - k Lyn=k n
1—2x1—1x<22x Z(i)x =2 2(5) v
2 n=0 n=0 n=0 \k=0
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k=0
4n+1 1
- g
n=0
the last step using the observation that

-1 4n+1 -1

22k = "4k — = :
> Z 3

k=0
Now let f be an arithmetic function and p a prime number. The Bell series of f at

p is the formal power series
By p(x Z f™)z".

Example.

o0
Biy(r) = 316" = a" =
n=0 n=0

By p( ZU "=1-uz

Example. The computation of By ,(x) requires a little more manipulation:
o0
By y(x Z op™)a" =1+ p(p")z"

n=1
o0

=14 Z(pn _pnfl)xn
n=1
o0 o0

=14 anxn o anflxn
n=1 n=1

:ip an n+1

1—95
1_ T TL: .
z Zp —

Example. Let N be the arithmetic function m +— m, i.e., N(m) = m. Then

BN’p ZN Zp 1 —px’
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IV—-6 Bell series continued

Proposition 6.1. If f and g are arithmetic functions, and if p is prime, then

Bigp(®) = By p(w) By p().

By p() <Zf > <i9(p”)r"> Z (Zf ):c”

n=0 n=0 n=0

Example. Show that 7 = 1% 1, and use this fact to show that

1

BTJ’(‘I“) = 1 _ 2$+$2

Solution: By definition,

Hence, by Proposition 6.1,

1
(1—z)2 1-2z+a2

By p(x) = Bra p(z) = By p(x)® =

Example. Show that o = N x 1, where N : m — m, and use this fact to show that

1
1—(p+ Dz +pa?’

B, p(z) =

Solution: For all m > 1,
Zd—ZN 1) = (V< 1)(m),
d|m
soo=N=x1and

11 1
l—prl—z 1—(p+1x+pa?’

Bop(2) = Bw1,p() = By p(2) B1,p(2) =

Proposition 6.2. If f and g are multiplicative arithmetic functions (note especially the
word multiplicative here), then f = g if and only if By p(z) = By ,(x) for all primes p.
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Proof. If By p(x) = By p(x), then Y o2 o f(p™)z™ = D", g(p™)z"™, so equating coeffi-
cients, we obtain f(p™) = g(p™) for all n > 0. If this is true for all primes p, it follows
from the assumption that f and g are multiplicative that f = g. O

Example. If m € Z>1 has prime factorization pj* - - - p~, where p1,...,p, are distinct
primes and a; > 0 for all ¢, let w(m) = r (and define w(1) = 0). Then the arithmetic
function f : m — 2¢0™) is multiplicative (exercise). Use Bell series to express f as a

convolution of well-known functions.

Solution: We begin with the definition of By ,(x) and then manipulate the series:

o0 fe'e) 00 2
Bf,p(x) = Zf(pn)xn = 1—|—22z" = —1+22x” = —1_|_m
n=0 n=1 n=0

1+ 1
= =—(1 .
1—2x 1—:13( +2)

ow, we know that —— = B; ,(x), and 1t 1s easy to verily that 1 +z = B2 ,(x), where
N know that = = By, d it i to verify that 1 Bz, h

u? is the pointwise product of u with itself, i.e., (u?)(m) = u(m)?, so

By p(x) = B1p(x) B2 (1) = Biiu2)p(x).

Hence, because f and 1 * (u?) are multiplicative, it follows from Proposition 6.2 that

f=1x(?).
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IV—-7 The Modbius function and roots of unity

The Mébius function p, which we introduced in Section 1 and subsequently saw is the
Dirichlet inverse of the constant function 1, has an elegant description in terms of roots
of unity.

A complex number ( is called a root of unity if (" = 1 for some positive integer n.
In this case, ( is called an nth root of unity.

If ¢ is a root of unity, then the least positive integer n such that (" =1 is called its
order. A root of unity of order n is called a primitive nth root of unity. For example,
—1 is a root of unity of order 2, so it is a primitive 2nd root of unity. It is also a 4th

root of unity, but not a primitive one. The primitive 4th roots of unity are i and —i.

Proposition 7.1. For each positive integer n, there are n distinct nth roots of unity in

C.

The proof of this proposition is straightforward, resting on only some basic trigonom-
etry, and is given in Section 1 of the Appendix.

Lemma 7.2. If ¢ is an nth root of unity, then its order divides n.

Proof. Let m be the order of (, and write n = gm + r where ¢,7 € Z and 0 < r < m.
Then

CT’ — Cn—qm
= (" Dbecause (" =1

=1 because (" = 1.
Hence, by the minimality of m, » must be zero. O

Proposition 7.3. For each positive integer n, u(n) is the sum of all primitive nth roots

of unity in C.

Proof. Define arithmetic functions F and f by letting F(n) be the sum of all nth roots
of unity in C and letting f(n) be the sum of all primitive nth roots of unity, i.e., roots
of unity of order n. Because the order of an nth root of unity divides n by Lemma 7.2,
we see that
F(n) =) f(d),
d|n

ie, F=1xf.

We show that F' = ¢. It is clear that F/(1) = 1, because the only 1st root of unity is
1. Now we let n > 1 and show that F(n) = 0. By Proposition 7.1, there are n distinct

nth roots of unity in C, say (i, ..., (n, so the polynomial ™ — 1 factorizes as

2 1= (0= G) e (2= Ca).

Expanding the right-hand side out, we see that the coefficient of 2"~ is —(¢1 +- - +(n),
while on the left-hand side the corresponding coefficient is 0 because n > 1. Thus,
F(n) =0, as desired.
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In summary, we have 1 % f = F = 1, so Mobius inversion (Proposition 3.1) gives
f=mn [

Example. The sum of the primitive cubic (3rd) roots of unity in C is u(3), which is
—1 according to the definition of p in Section 1. More generally, if p is a prime, then

the sum of the primitive pth roots of unity in C is u(p) = —1.

Example. The sum of the primitive 15th roots of unity in C is u(15) = 1. More
generally, if p and ¢ are distinct primes, then the sum of the primitive (pg)th roots of
unity in C is p(pq) = 1.

Example. If n is divisible by the square of some prime, then the sum of the primitive
nth roots of unity in C is u(n) = 0. For example, the sum of the primitive 45th roots of
unity in C is 0.

An application to sums of cosines

As discussed in Section 1 of the Appendix, the nth roots of unity in C are

cos(22E) 4 jsin(2zk)

n n
with k£ € {0,...,n — 1}. By the same argument as in the proof of Proposition Ord-3,

the primitive nth roots of unity are obtained by restricting k to be coprime to n. For

example, the primitive 15th roots of unity are

cos(FE) + isin(ZE)  with k € {1,2,4,7,8,11,13,14}.

But by Proposition 7.3, the sum of these is (15) =1, so

14 14
2k . 3 2k
g cos(55°) +1 E sin(55°) = 1.
k=0, k=0,
ged(k,15)=1 ged(k,15)=1

In particular, equating real parts we obtain

14

E COS(21L5]€) =1. (7.1)
k=0,
ged(k,15)=1

Using the identity cos(2m — x) = cos(x), we rewrite four of the eight terms in the sum

as follows:

14 167r)
)

cos(HE) = cos(LF), cos(ZE) = cos(5F), cos(EE amy,

07 ) — COS(E 28 27r).

cos( %5 ) = cos({5

Hence, making these substitutions in (7.1), and then dividing by 2, we arrive at

1
cos(3%) + cos(7E) + cos(§E) + cos(4F) = 5.
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(V) Pell’s Equation and Continued Fractions
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V-1 Pell’s equation: introduction

Let d be a positive integer that is not a square. Pell’s equation for the integer d can

refer to either of the following equations:

2 —dy? =1,
z? —dy? = —1.

The second is often called the negative Pell equation. In either case, we seek positive
integral solutions, i.e., solutions in which both x and y are positive integers.

It is a fact (see Section 14 of the Appendix for a proof) that the equation 2% —dy? = 1,
where d is a positive integer that is not a square, always has positive integral solutions.
We will see a method to find the solutions, involving the theory of continued fractions.

Before we start on that theory, we will make some preliminary observations.

The norm map

We have already seen, in Section III, the norm map on the Gaussian integers, i.e., the
map N : Z[i] — Z>o sending z + yi to 2 + y2. More generally, if d is an integer that is

not a square, and if v/d is a fixed square root of d in C, then we have the map

Ng:ZVd — Z
x—{—y\/g = x? —dy?,

where Z[Vd] = {x + yVd | z,y € Z}. The relevance of Ny to Pell’s equation lies in the
fact that 22 — dy?> = 1 (or —1) if and only if Ny(z + yv/d) = 1 (or —1). If there is no

confusion, we will omit the subscript d and write just /N for the norm map on Z[\/&]
Example. In the case d =5, N(7+35) =7>-5-3%2 = 4.

As with the map N on the Gaussian integers, we have Ny(af) = Ny(a)Ng(3) for
all a, 3 € Z[V/d]. We leave this observation as a short exercise and use it to prove the

following.

Proposition 1.1. Let d be a positive integer that is not a square, and suppose that

z,y € Z>1 satisfy x> — dy* = 1. For each n > 1, write (z + yVd)"* = x, + ypVd with

Tn,Yn € Z>1. Then the pairs (Tn,yn) constitute infinitely many integral solutions to
2 2

r* —dy” =1.

Proof. Suppose that a = a 4+ bv/d and o = o’ + '\/d correspond to solutions to Pell’s
equation for d, i.e., N(a) = N(a') = 1 where N = Ny. Then because N respects
multiplication, N(aa’) = N(a)N(a/) =1-1=1, so aa’ also corresponds to a solution
to the equation. Therefore, if 22 — dy? = 1, i.e., N(z + y\/a) =1, then induction on n
shows that for all n > 1,

N((z+yVd)") =1,
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ie, N(z,+ yn\/;i) =1 in the notation of the proposition,

e, a2 —dy’=1.
It remains only to show that the (z,,y,) yield infinitely many pairs. But
Tnt1 + Yn1Vd = (2 + yVd) (2, + yoVd) = 22 + dyyn + (2yn + yza)Vd,

SO Tpt1 = Ty + dyyn > Tp. O]

Example. One solution to the equation 22 —3y? = 1is (x,y) = (2, 1), which corresponds
to 243 ¢€ Z[\/g] Therefore, another solution is obtained from

(24+V3)? =7+ 4V3,

i.e., (z,y) = (7,4) is another solution. (Check: 7% — 3 - 42 = 49 — 48 = 1.) Yet another
solution can be found by multiplying by 2 + v/3 again:

(24 V3)(7 + 4V3) = 26 + 15V/3,

so (x,y) = (26,15) is a solution. (Check: 262 — 3 - 152 = 676 — 675 = 1.) Of course, this
process may be iterated as many times as one wishes.

Exercise. If (z,y) is a solution to the negative Pell equation for d, i.e., 2% — dy? = —1,
and if (z + yvVd)" = x,, + ynV/d, show that 22 — dy? = (—1)". One may use the same
argument as in the proof of Proposition 1.1.

Note that Proposition 1.1 does not guarantee the existence of solutions (z,y) €
Z>1 X Z>1 to Pell’s equation, only that if at least one such solution exists, then there are
infinitely many. To tackle the existence of solutions, we turn to the theory of continued

fractions.

Historical note

The problem of solving 2 — dy? = 1 goes back well over a thousand years, with the
mathematician Brahmagupta making important progress on it in the 7th century [10,
Sect. 5.4]. Brahmagupta’s contributions include the discovery of the equality Ny(af) =
Na(a)Ng(B), in different notation. While many mathematicians subsequently found and
refined methods for obtaining solutions to the equation, it was Lagrange, around 1768,
who provided the first rigorous proof of the validity of a method, employing continued

fractions to do so [10, Sect. 3.4]. Lagrange’s proof can be found in his collected works [3].
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V -2 Definition of continued fractions and first examples

Let (ag;ai,asz,...,a,) be an (n + 1)-tuple of real numbers ag, a1, ...,a, with a; > 0
for all ¢ > 1. (There is no restriction on ag.) The continued fraction associated to
(ag;a1,...,ay,) is the real number
1
[ao; a1, az, ..., a,] = ag + )
al +
1
az +
1
as +
1
oy
Qn
Example.
[3;1,4,7] =3+
14+ —
1
4+ -
Example.
1
[1;2,3,4,5] =1+
1
2+
1
3+ ——
A 1
T3
Observe that if ag,a1,...,a, € Z and a; > 0 for ¢ > 1, then [ag;aq,...,a,] € Q.
Conversely, we have:
Proposition 2.1. Every rational number can be expressed uniquely in the form [ag;aq,. .., ay)

where a; € Z for all i, a; € Z>1 fori>1, and a,, > 2 if n > 1.

Proof. Let ¢,d € Z with d > 0, and consider the rational number ¢/d. Let ¢y = ¢ and

c¢1 = d, and perform the Euclidean algorithm on ¢y and c¢;:

co=apc1 +c2 (0<ca<eq) (2.1)
cp=ajcates (0<c3 <o) (2.2)
Co = a9C3 + C4 (O <ey < 83) (23)

Cp—1 = OGp—1Cp + Cnt1 (0 < Cn+1 < Cn)
Cn = ApCp41

Hence,

° = g+ 2 + +
-=— = aqq — =ag = ag _
d ¢ c1 c1/ea ai + z—g
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=ag + = ap+
1 1
ay + ai +
! Cg/Cg ! (L2+%§
1
=...=qy+ . = [ag;a1,...,an].
a + )
as + 1
a3+ 1
S
Qn

If n > 1, then because ¢,+1 < ¢, and ¢, = apcp41, we have a,, > 2.

The uniqueness is proven in Section 9 of the Appendix. [

If ¢ is a rational number, the representation ¢ = [ap; a1, ..., a,] provided by Propo-

sition 2.1 will be called the canonical continued-fraction representation of q.

Example. Find the canonical continued-fraction representation of 121/84.

Solution:

121 =1-84 + 37

84=2.37+10

37=3-10+7

10=1-7+3
7=2.3+1
3=3-1,

so 121/84 = [1;2,3,1,2, 3).
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V-3 Explicit computation of [ag;ay,...,a,]

If & = (ag;as,...,a,), where a; € R for all k and a; > 0 for £k > 1, then for each
ke€{0,...,n}, let
Ci(a) = lags a1, ..., ar] € R.

Define numbers pg(«) and g («) recursively by

po(a) = ag qo(a) =1
pi(a) = aiag +1 (@) =a
pr(a) = agpr—1(a) + pr—2(a) qe(a) = apqr-1(a) + qp—2(a) for k> 2

Theorem 3.1. If a = (ag;a1,...,a,), where ap € R for all k and ap, > 0 for k > 1,
then

Pr(e)
Cila) = forall k €{0,...,n}.
ar ()
Before proving the theorem, let us make some observations, which are left as short
exercises.
(i) Ifa = (ao;a1,a9,...,ar+1) and 8 = (ap; a1, a9, . . ., ak,l,ak—l—ﬁ“), then Ci41(a) =
Ci(B)-

(ii) If @ = (ap;a1,...,am) and B = (bo; b1,...,by,), and if k¥ < min(m,n) is such that
a; = b; for all ¢ < k, then

(a) Ci(a) =Cy(B) for all i <k, and
(b) pi(a) = pi(B) and ¢;(a) = ¢;(B) for all ¢ < k.

Proof. (Theorem 3.1) We prove by induction on k > 0 the statement that if n > k and
a = (ag;a1,...,an), then Cy(a) = prp(a)/qr(a). The cases k = 0,1 are obvious. Let us
treat the case k = 2 separately. Let 8 = (ap; a1 + é) Then

Ca(a) = C1(B) Dy (ii)(a) and (i)

= n(8) by the k = 1 case applied to
a1(B)
_ (a1 + ;12)% +1 _ az(arap + 1) + ag _ asp1 (@) + po(a) _ pa(a)
ai + ;12 azay + 1 azqi(@) +qo(a)  ga()’
Now let k > 2, and assume that the statement is true for this k. Let a = (ag; a1, ..., an)

where n > k + 1, and let

o = (ap;ai,as,...,aks1)

1
B = (ag;a1,az, ... ap—1,ar + )

Then

Crtr(@) = Crpa(a’) by (i)(a)
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=Ck(B) by (i)
— D (8) by the inductive hypothesis applied to £
ar(B)
 (ar o )Pe—1(B) + pr—2(8)
N ak1+1 Jar—-1(8) + qr—2(5)
(ar + 72=)pr-1(a) + pr—2(a)
_ k+1 b .. b
(ak + g5 )aw—1(a) + gr—2(e) y @)(b)
_ aky1(arpr-1(®) + pr-2(a)) + pr-1(e)
a1 (akqr—1(a) + gr—2()) + gr—1(a)
_ ap+1Pk(a) + pr—1(@)
ak+1qk(a) + gr—1(a)
Pk+1( )
Gk+1 Oé)
This completes the induction. O

The algorithm for finding the numbers C}, via the py and g will be called the (p, q)-
algorithm.

Example. Use the (p, ¢)-algorithm to find [4;2, 5, 3] as an explicit rational number.

Solution: Let o = (4;2,5,3). Then

po(a) =4 qo(a) =1
p(a)=2-441=9 q1(a) =2
pe(a) =5-9+4=149 @(a)=5-2+1=11
ps(@) = 3-49 + 9 = 156 g3() =3-11+2 =35

Thus, [4;2,5,3] = 156/35. Note that this fraction is in lowest terms. We will soon see
why.

Example. Find [2;3,5,7,11] as an explicit rational number.

Solution: Let o = (2;3,5,7,11). Then

pola) =2 qo(a) =1
pi(e) =3-2+1=7 q(a) =3
pa(a) =5-7T+2 =237 @(a)=5-3+1=16
p3(a) =737+ 7= 266 gs(a) =7-164+3 =115
paa) = 11266 + 37 = 2063 ga(a) =11-115 + 16 = 1281
Thus,
2963
2:3,5,7,11) = .
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V-4 Towards infinite continued fractions

Proposition 4.1. Let a = (ag; a1, ...,a,) where ay € Z for all k and a, > 0 for k > 1.
Then

Pr(@)gr—1() — pr—1(@)gr(a) = (=1)*1 for all k> 1.

Proof. This is done by induction on k. We abbreviate pg(a), gx(«) to pg,qr. The case
k =1 is immediate: p1qg — poq1 = a1ag9 + 1 — apga; = 1. Now let £ > 1 and assume the
equality for this k. Then

Ph1@k — PkGkt1 = (ak+1Pk + Ph—1)qk — Pe(Qkt1qk + Qr—1) = Pk—1qk — Prdr—1
= (_l)ka
the last equality by the inductive hypothesis. O

Corollary 4.2 (C-cor 1). In the notation of the proposition, pr(a) and qx(c) are co-
prime for all k > 0.

Proof. The case k = 0 is obvious because go = 1. If kK > 1, then any positive common

divisor of px and ¢ divides prqx—1 — Pk—1qK = (—1)’“_1 and so must be 1. O

Corollary 4.3 (C-cor 2). In the notation of the proposition,

k=1

Ci(a) — C_1(a) = qk((a);l_l@ forallk > 1,
_ (=DFay

Ci(a) — Cr_z2(a) = (@ ara (@) for all k > 2.

Proof. Again omitting the a’s, we have, for k > 1,

k—1
Dk Pk—1 Pr4r—1 Pk—14k 1
C}C—Ck 1= — — = —( )

qdk qk—1 qrkqrk—1 qrqr—1

by the proposition. If k > 2, then again forming a common denominator, we have

 PrQk—2 — Pr—2qk  (akPr—1 + Pr—2)qk—2 — Pr—2(akqr—1 + qr—2)
Cr — Cg—2 = =
qkqk—2 qkqk—2
_ ak(Pr—1Gk—2 — Pk—2Gk—1) _ (=1)*ay

B Qe Gh—2 Qe Qr—2

by the proposition again. O
Corollary 4.4 (C-cor 3). In the notation of the proposition,

(i) Co(a) < Ca(a) < Cy(a) < ---,

(i1) Cy(a) > Cs(a) > Cs(a) > -+,

(111) Cop(a) < Cojt1() for all k,j >0 (every odd is greater than every even).
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Proof. For the first two assertions, observe that, by C-cor 2,

(—1)*ay

Crp —Cra = ;
qkdr—2

which is positive when k£ is even and negative when k is odd. For the last assertion, note

that
(71)2m 7 1

d2m+192m q2m+192m

Comy1 — Copp = >0,

ie.,
C2m+1 > Cop- (41)
Hence, if k,5 > 0,
(ii) (4.1) (i)

Cojy1 = Cojrontr > Cojpor > Coy.

O

Theorem 4.5. Let (ayn)n>0 be a sequence of integers with a, > 0 for all m > 1. For
each k > 0, let C, = [ag;a1,...,ax] € Q. Then the sequence (Ck)r>o converges in R.

We denote its limit by [ao; a1, az, .. .].

Proof. By C-cor 3, the sequence Cy, Cy, Cy, . .. is monotone increasing and has an upper
bound (e.g., C1), so it has a limit z_ in R. Similarly, the sequence Cy,Cs,Cs, ...,
monotone decreasing and bounded below, has a limit x . Further, the proof of C-cor 3

shows that Co11 — Cam = 1/(g2m+1¢2m) — 0 as m — 0o, so

0= lim (02m+1 - Cgm) = lim 02m+1 — lim Cgm =Ty —T—.
m—oo m—00 m—00

Therefore, (Ck)i>0 converges to x4 = z_. O

Here is a visual illustration of the convergence of the Cj(«):
Cy

(o]
C
O3 CS Cr Co Ci1

Paul Buckingham Elementary Number Theory (MATH 324) — v1.02 | 65



V -5 Infinite continued fractions

Recall that if (ag;a1,as,...) is a sequence of integers with a; > 0 for all k& > 1, then
lim,, oo [ag; @1, ag, . . ., ay) exists and is denoted [ag; a1, az, ...]. The following facts are
proven in Section 10 of the Appendix:

(i) [ao;aq,as,...] is irrational.

(ii) Every irrational real number can be expressed as x = [ag; a1, ag,...] for some

sequence as above.

(iii) The integers ag,a,as,... are uniquely determined by the irrational number x.
That is, if [ag; a1, az,...] = [bo; b1, b2, .. .], then a, = b, for all n > 0.

There is therefore a bijection between R\ Q and the set of integer sequences of the
above kind. The rational numbers [ag;aq,az,...,ax] are called the convergents to the
irrational number [ag; a1, ag, .. .].

The existence part of Section 10 of the Appendix shows that the continued-fraction

representation of an irrational number z is [ag; a1, as, .. .| where
L) L (k>0)
To=x, arp=|x x = — .
0 ) k k> k+1 Th — ar =
Example. The continued-fraction representation [ag;ay,as,...] of 72 begins 72 =
[9;1,6,1,...]. Indeed, the first few iterations of the above algorithm are
xo = 12 ~ 9.870, ap =9
1
T = ~ 1.150, a; =1
o — 9
1
To = ~ 6.669, as = 6
xr1 — 1
1
T3 = ~ 1.495, az =1
Tro — 6

Quadratic irrationals and periodic continued fractions

Let x € RNQ. We will say that = has a periodic continued-fraction representation
[ap; a1, aq, .. ] if it takes the form [ag; a1, ..., ax—1,b0,---,b1—1,b0,...,bi_1,...] for some
repeating sequence by, ...,b_1, where £k > 0 and [ > 1. A common notation in this

situation is to indicate the repeating sequence by a bar:

[aO;ala"'7a'k:—1ab0a"'7bl—13b0a"'abl—17~"] = [ao;ala"'aak—17b07"'abl—1]~
Example.
1] =1[1;1,1,1,...]

=1

2] =[1;2,1,2,.. ]
] =
=
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The periodic continued fractions have a number-theoretic description. A real number
is called a quadratic irrational if it is a root of a polynomial 22 4 bz + ¢ where b,c € Q
and b? — 4c is not the square of a rational number. The quadratic irrationals are the
real numbers of the form (u =+ v/d)/v where u,v,d € Z, v,d > 0, and d is not square.

Theorem 5.1. A real number is a quadratic irrational if and only if it has a periodic

continued-fraction representation.

The proof that a quadratic irrational has a periodic continued-fraction representation
is given in Section 12 of the Appendix. The other direction, that [ag;a1,as,...] is a

quadratic irrational if the sequence of integers is periodic, is easier. For this, suppose

that = = [ag;ai,...,ax_1,bo,.--,b;_1), and observe that
x=lap;ar,...,ax—1,Y] (5.1)
where
y = [bo;b1,...,bi—1] = [bo; b1, ..., bi—1,bo, ..., bi—1] = [bo; b1, ..., bi—1,y]. (5.2)

We can now use the (p, ¢)-algorithm (Section 3) to express y in terms of itself. Specifi-
cally, if 8 = (bo; b1,...,b1-1,y), then

puB) _ ypia(B) + pi2(B)
a(B)  ya-1(8) + a-2(B)’

y= [bo;bla .. '7bl—13y] =
and rearranging gives

a-1(B)y* + (q—2(8) — pi—1(B))y — p—2(B) = 0,

showing that y is a rational or a quadratic irrational. We now use the (p, g)-algorithm

again, but this time on « = (ap; a1, ...,ak-1,9):

_ pr(a) _ ypr—1() + pr—2(a)
ae()  yqe—1(a) + qp—2(a)’

Tr = [ao;ala .. '7a‘k—1ay]

This quotient is either a rational or a quadratic irrational because the same is true of the
numerator and denominator. However, x cannot be rational, because it has an infinite

continued-fraction representation. Thus, x is a quadratic irrational.

Remark. Our proof tacitly assumed that k,l > 2. We leave it as an exercise to make

the necessary modifications in the remaining cases.

Remark. The justification for the equality at (5.1) and the final equality in (5.2) is
given by Proposition 11.2 in the Appendix.

The period length of the continued-fraction representation of a quadratic irrational
is the minimum period of the repeating part of the sequence. For example, the pe-
riod length of the quadratic irrational [5;2,6,10,9,8,7] is 4. The period length of
[5;2,6,3,7,3,7] may also appear to be 4 at first sight, but it is in fact 2, as the pe-
riodic sequence (3,7,3,7,...) has minimum period 2. In fact, we would usually prefer to

write this second quadratic irrational as [5;2, 6, 3, 7].
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V-6 Examples of quadratic irrationals as continued fractions

Let us give an example of the fact that a quadratic irrational has a periodic continued-

fraction representation.

Example. Find the continued-fraction representation of (23 — 1/37)/12.

Solution: We construct the x; and ay as in the usual algorithm for finding the continued-
fraction representation of an irrational number. If z = (23 — +/37)/12, then

23 — /37

x():x:Tzl.éllo, ag =1

1 12
23%2%37_1 11 — /37

Tr1 =

712(11+\/3*7)711+\/37N2440 a =2
= 84 -7 T b
1 34 V37
mf@,...,TNmn, ag =2
1 54 /37
x3_ﬁ7_2_..._7~3.694, az =3
4
1 4+ /37
m4—5+\/§_3 ._f~1.440, ag =1
3
1 3487

Since x5 = w9, it follows that we have the repeating pattern
(Clg, as, aq4, as, ag, - - ) = (27 3a 1a 2) 37 17 2a 3a 1) .. ')a
so (23 —v/37)/12 = [1;2,2,3,1]. The period length, incidentally, is 3.

Remark. Note that we do not carry forward the approximations from each step to
the next, instead using each approximation only to obtain the current integer aj. This
approach eliminates the possibility of rounding errors accumulating. Once we have found

ay, we compute x1 using aj and the exact value of x, not any approximation of xy.

Next, we illustrate how to obtain a quadratic irrational explicitly from a periodic

continued fraction.

Example. Find [2;1] as an explicit quadratic irrational.

Solution: Let x = [2;1], and note that x = [2; 1, z]. The (p, ¢)-algorithm gives

Po =2 g =1
p1=3 q =1
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Hence,

_3r+2

R

ie., x’4+x=3x+2,
ie, 2?—-2r—-2=0,

1
e, z= 5(21\/@
=1+3.

But x = [2;1] > 2, so we must have x = 1 + /3.

Example. Find [—2;3,5,2,2] as an explicit quadratic irrational.

Solution: First, let y = [5;2,2]. Then y = [5;2,2,y], so the (p, ¢)-algorithm gives

Po =5 =1
p=11 G =2
p2 =27 @ =5
p3 =27y + 11 q3 =9y +2
Therefore,
27y + 11
= 572727 = T 5
y= y] 5y 10
ie., by? — 25y — 11 =0, i.e., y = $5(25 + v/845). But y = [5;2,2] > 5, so we must have

y = 15(25 4+ v/845). For = = [—2;3,y], we use the (p, ¢)-algorithm again:

po = —2 go=1
p1 = —5 q =3
p2 = —5y —2 g2 =3y+1
Then
S5y + 2 10(5y + 2)
= —2' 3 = — = —
=B =5 5T T Ty
1254 5v/845 420
75 + 3v/845 + 10
_ 145+5/845
85 + 3v/845
_ (145 4 5v/845)(85 — 3v/845)
o 852 — 845 - 32
35+ /845
- 38 '
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V -7 Quadratic irrationals defined by regular expressions

Consider the following problem: For an integer d > 2, show that

Vd2—1=[d—1;1,2d-2).

We may prove this by beginning with [d — 1;1,2d — 2] and using the (p, ¢)-algorithm

to obtain the desired equality. To that end, let y = [1;2d — 2|, and note that y =
[1;2d — 2,y]. The (p, q)-algorithm applied to the sequence (1;2d — 2,y) gives

po=1 g =1
pr=2d-1 g =2d—2
pr=(2d—1y+1 = (2d - 2)y+1
Therefore,
_@d-ly+1
YT 2d—2y+1

and rearranging this equation yields y% — y — Tlﬁ =0, so that

y:;(lidl+di>. (7.1)

But y = [1;2d — 2] > 1, so the sign in (7.1) is a plus. Hence,

[d—1;1,2d — 2] = [d — 1;]

1
—d—1+-
y

2

T+ 1+ 7%
2@/147<%7—1)

—d-1+ -

2/(d—1)

—d-1+(@d-1)(/1+ 2 - 1)
~ VTP
— V&1,

—d—1+

(rationalizing the denominator)

An alternative method

Suppose that, in the above problem, we had not been given an equality to prove, but
instead had been given only the expression v/d? — 1 and been asked to find its continued-
fraction representation in terms of d. Let us illustrate how one might tackle such a

problem. We will use a different expression for our example.
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Example. Let d be a positive integer. Find the continued-fraction representation of

Vd? + 2 in terms of d.

Solution: We use the usual algorithm for finding the continued-fraction representation
of a real number, beginning with zo = z = Vd? + 2. It is clear that zg > d, but also

xo < d—+ 1, as we may see as follows:

V&2 +2<d+1 <= d*+2<(d+1)?=d*+2d+1,
—= 1<2d.

Because the last assertion is true and we have <= the whole way, the original claim
is true as well. Therefore, ag = |z¢]| = d.
Next, let

1 1 Vd2+2+d
I = = = >

To—ap d2+2-d 2

We claim that x1 < d+ 1:

V& +2+d
2

d.

<d+1 <= Vd2+2<d+2,
= d®>+2<d®+4d+ 4,
— 0<4d+2.

Hence, because d < z1 < d+ 1, we have a1 = |z1| = d.

Continuing, we let

1 1 2
T 4 /P 227+d7d_\/ﬁ—d
AV +2 +d)

2
=vd?>+2+d,

whose floor is d + d = 2d, so as = 2d.

Finally, we let
1 1

= = 1.
Tog—az  Nd®+2-—d !
Thus, V/d? + 2 = [d; d, 2d]. Observe that the period length is 2.

Tr3 =

Paul Buckingham Elementary Number Theory (MATH 324) —v1.02 | 71



V -8 The solutions to Pell’s equation

We may now solve Pell’s equation. Let d be a positive integer that is not a square.

Theorem 8.1. Let ¢ € {1,—1}, let n be the period length of the continued-fraction
representation of v/d, and let py, g be the numbers appearing in the (p, q)-algorithm for
the continued-fraction representation of \/d. Then the solutions (x,y) € Z>1 X Z>1 to
the equation x*> — dy* = € are the pairs (Prn—1,Grn—1) for which the positive integer r
satisfies (—1)™ = e.

A proof is given in Section 14 of the Appendix.

Example. Find the first three positive solutions to 2% — 6y? = 1, and decide whether

the equation 22 — 6y? = —1 has a solution.

Solution: We begin by finding the periodic continued-fraction representation of v/6. In
fact, since 6 = d? + 2 with d = 2, we may use the fact that v/d2 + 2 = [d; d, 2d], as we

saw in Section 7. Thus,

Observe that the period length is 2, so the solutions to 22 — 6y? = 1 are (P2r—1,q2r—1)
where (—1)?" =1, i.e., 1” = 1. There is consequently no restriction on r, so the solutions

are simply (p2r—1,¢2r-—1) with r running through all positive integers, i.e.,

(p17q1), (p37Q3)a (p5,q5)7 e

The (p, g)-algorithm yields

Po =2 g =1
p1 =25 Q=2
p2 = 22 @2="9
p3 = 49 q3 =20
p4:218 Q4:89
ps = 485 qs = 198

Therefore, the first three solutions are (5,2), (49,20), and (485, 198).
Finally, since the period length n = 2 is even, there are no integers r satisfying

(—1)™ = —1, so the equation x? — 63> = —1 has no integral solutions.

Example. Use the (p, ¢)-algorithm on the periodic continued-fraction representation
V41 = [6;2,2,12] to find the first positive solution to 22 — 41y? = —1 and the first
positive solution to 2% — 41y? = 1.

Solution: We can see right away from the fact that the period length n = 3 is odd that
the negative Pell equation does indeed have solutions, and they are (ps,—_1, ¢s-—1) where
(=1)%" = —1,ie., (—1)" = —1, i.e., r is odd. The first is therefore (ps, g2). Further, the
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solutions to 2% — 41y? = 1 are (p3,_1,q3r—1) where (=1)3" = 1, ie., (=1)" =1, ie., r
is even. The first solution to the positive Pell equation therefore corresponds to r = 2,
i.e., is (ps,qs5). We now perform the (p, ¢)-algorithm:

po =06 qo =1
p1 =13 =2
p2 = 32 @2 =>5
p3 = 397 g3 = 62
Py = 826 g1 = 129
ps = 2049 qs = 320

Thus, the first solution to the negative equation is (32,5), and the first solution to the
positive equation is (2049, 320).

The following example illustrates a slight modification of the above strategy, one

that is a little more efficient.

Example. By calculating the ¢’s, but not the p’s; in the (p, ¢)-algorithm for v/31 =
[5;1,1,3,5,3,1,1,10], find the first positive solution to the equation z? — 31y% = 1.

Solution: The period length is 8, so the solutions to the positive equation are (pg,y—1, gsr—1)
where (—1)%" = 1, i.e.,, 17 = 1. There is no restriction on r, so the first solution cor-
responds to r = 1 and is therefore (p7,qr). Note that the equality p? — 31¢2 = 1 gives
pr = \/W, so it suffices to find g7 and from there obtain p;. The (p, ¢)-algorithm
can be applied to the ¢’s alone, without reference to the p’s, and one finds that qq, ..., g7
are 1,1,2,7,37,118,155,273. Hence, p; = v/31-2732 +1 = 1520, so the first positive
solution to x? — 31y? = 1 is (1520,273).

Determining whether the negative Pell equation has a solution

From Theorem 8.1, we see that the equation x? — dy? = —1, i.e., the negative equation,
has a solution if and only if the period length of v/d is odd. However, sometimes, one can
see that there is no solution to the negative Pell equation simply by reducing modulo

some appropriate modulus.

Example. By choosing an appropriate modulus, show that there are no integral solu-
tions to 22 — 15y? = —1.

Solution: If a solution existed, then reducing mod 3, we would have z?> = —1 mod 3.

But we know that —1 is not square mod 3, so no solution exists.

Exercise. One may show directly that —1 is square mod 146. Does it follow that the
equation 22 — 146y = —1 does have integral solutions? Are there, in fact, any integral

solutions to this equation? How can you find out one way or the other?
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Appendix
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Appendix: 1 Roots of unity in C

We prove that for each positive integer n, there are n distinct nth roots of unity in C.

The well-known formulas from trigonometry for cos(z + y) and sin(z + y) show that
(cos(x) + isin(z)) (cos(y) + isin(y)) = cos(z + y) + isin(z + y)
for all z,y € R, and then induction on n yields
(cos(z) +i Sin(x))n = cos(nz) + isin(nzx) (L.1)

for all n € Z>¢. It then follows that (1.1) holds for all integers n, simply by the fact that
(cos(z) + isin(m))fl = cos(z) — isin(z) = cos(—z) + isin(—z). The formula in (1.1) is
known as de Moivre’s formula.

Now consider the complex numbers
G = cos(2%E) + isin(22k)

with k € {0,...,n — 1}. They are distinct by basic properties of cos and sin, and it

follows immediately from de Moivre’s formula that
Cr = cos(2mk) + isin(27k) =1

for all k. Thus, (o, ..., (,—1 constitute n distinct nth roots of unity in C.

Appendix: 2 Proof of quadratic reciprocity

Many proofs of quadratic reciprocity exist. We follow the one given in Lang’s Alge-
braic Number Theory [4, Chapter IV, Sect. 2|. Its value may be found not only in its
demonstrating the truth of quadratic reciprocity, but also in its providing, in addition,
a method for constructing square roots of integers explicitly in terms of roots of unity.
We hope that this additional benefit will justify the choice of a proof of quadratic reci-
procity that is longer than some others. (See Section 1 above for a construction of roots
of unity in C.)

Recall that for an odd prime p and an integer a, the Legendre symbol (%) depends

only on the residue class of @ mod p. Therefore, we may define (%) for a residue class
o € Z/pZ by (%) = (%) for any a with [a] = a.

Lemma 2.1. Letn > 2. If w € C is an nth root of unity other than 1, then Zk 0 wk
0.

Proof. Because w™ = 1, we have

O=w"—1=(w-1) (Zw)

Therefore, since w # 1, the sum is zero. O
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Fix a primitive pth root of unity ¢ € C, i.e., a root of unity of order p. If « € Z/pZ,
define ¢* = (* where a is any integer satisfying [a] = «. This is well defined, since
¢® = ¢ whenever a = b mod p. Hence, we may define

- ()

a€(Z/pZ)*
This is called a Gauss sum.

Proposition 2.2. With notation as above,

-1
$=(5)»

Proof. For brevity, let G = (Z/pZ)*. Then

s- ()] (2 ()¢
SE()e

acG BeG
= Z Z (aﬁ2> ¢P*P (replace a with of3)
a€cG BeEG p
-y Y (0‘> clatD)s
a€G BEG p
1
-y (p) _ (;‘) > ceth?
BeG aeG{[-1]} BeG
B
p aeG{[-1]} p BEG

Now, if & € G~\{[~1]}, then (** is a pth root of unity different from 1, so by Lemma 2.1,
Y sec(¢*T1)P = —1. Therefore, continuing from (2.1), we have

s-(5)e-0- > (5)

aeG{[-1]}

5)

= — D

p

the last equality holding because (%) takes the value 1 as many times as it does —1 as

« runs through the prime residue classes mod p; see Proposition 6.1 in Section II. O
If A is a commutative ring and ¢ a prime number, we will write ¢ = b mod gA for

elements a,b € A if a — b is in the ideal gA of A.
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Lemma 2.3. If A is a commutative ring and q a prime number, then (a + b)? =
a? + b7 mod ¢qA for all a,b € A.

Proof. Because ¢ is prime, (Z) = 0 mod ¢ for every k € {1,...,q— 1}, so expanding out

(a + b)? using the binomial theorem, we obtain the result. O
Lemma 2.4. If w is a root of unity, then Q N Zw] = Z.

Proof. Let a € QN Z|w]. Then a is an algebraic integer (because w is) and a rational
number. Being an algebraic integer, a is a root of a monic polynomial in Z[z]. But a

rational root of such a polynomial must lie in Z. O

Theorem 2.5. Let p and q be distinct odd primes. Then
-1 p—1
(5)-cv=
p
p—1qg—1
and (p> —(-1)z = (q>
q p

Proof. The first equality follows from Proposition 6.2 in Section II: Take a = —1 and
p—1
note that, because p divides (%) —(=1) 27 €{-2,0,2} and p is odd, we must have

p—1
(3)-co
For the second equality, we compute S mod gA in two different ways, where A =
Z[¢], with ¢ being a primitive pth root of unity. On the one hand,

q—1
=S5,(—1) 2 "2 p 2 by the first equality of the theorem

=5,(-1) 2 2 (p) mod gA by Proposition 6.2 in Section II again.
q

On the other hand, treating S another way, we have

(56)9)

q
< ) ¢9* mod gA by Lemma 2.3

( ) 9% because ¢ is odd

Oz )
>

> ¢* (replace qo with «)
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(@)

Combining this with the above, we have

p=lg—1 (p q)
Sy(=1) 2 2 (=)=5,|- mod ¢A,
o) <Q> p(p K
—1g-1
SO Sﬁ(fl)%% (p>S§ <q) mod g4,
q p
_ —1g-1 _
o (G (0= (1) i
p q p p
—1g-1
ie., p(—l)qu? (p>zp(q> mod gA
q p

Because p is invertible mod ¢, we deduce that

()= ) ma

p—1lg—1
ie,a/q€ Awherea=(—1) 2 2 (%) - (%). Hence, a/q € QNA = Z by Lemma 2.4,

s0 a € qZ. Therefore, since a € {—2,0,2}, and since ¢ > 3, a = 0. O
Complementing Theorem 2.5, we have the following.

Proposition 2.6. If p is an odd prime, then

(2) _ (—1)#*-Drs,

Proof. We give a proof that follows similar lines to that of Theorem 2.5. Let G =
(Z/8Z)*, and define
x:G — {1,-1}
1 ifa=[1]or[7],
-1 if a=[3] or [5].

o =

By a slight abuse of notation, if a is an odd integer then x(a) will mean x([a]). Note
that x(a8) = x(a)x(8). Now fix a primitive 8th root of unity ¢, and let

Sy =Y x(a)c™.
acG
A short calculation shows that S5 = 8. Therefore,
p—1
Sy = 52(83) 2

p—1

—S,-8

2
8 .. . .

=S () mod pA by Proposition 6.2 in Section II, where A = Z[(]
p
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5 (2)

But we also have

Z x(a)P¢P* mod pA by Lemma 2.3

aeG
= Z x(a)¢P*  because p is odd
acCG
=x(p) Y _ x(pa)cr™
acG
= x(p) Z x(a)¢* (replace pa with «)
aceG
= x(p)S2.

Hence, Sy (%) = Sox(p) mod pA, so S32 (%) = S2x(p) mod pA,ie.,8 (%) = 8x(p) mod pA,
and so (%) = x(p) mod pA because 8 is invertible mod p. By the same argument as

appears at the end of the proof of Theorem 2.5, this congruence implies that (%)
Xx(p). It is an easy matter to check, by referring to the definition of x, that x(p) =

(—1)@*-1/8, O

Appendix: 3 Determination of the moduli admitting primitive
roots

We determine which moduli admit primitive roots, adopting the approach taken in
Rosen’s book [6, Chap. 9|. The proofs of Lemma 3.1 and Theorem 3.3 below, while
based on proofs in Rosen’s book, are also the same in essence as arguments given in
Serre’s book [8, Chap. I, Sect. 1.2].

Lemma 3.1. Let p be a prime, and for each positive divisor d of p — 1, let
f(d) = #{a € (Z/pZ)* | ord(a) = d}.
Then f(d) < 9(d).

Proof. We show more, namely, that f(d) is either 0 or ¢(d). Assume, then, that f(d) > 0,

so that there is at least one o € (Z/pZ)* such that ord(or) = d. Then the powers
a®al, ... a?! are d distinct roots of the polynomial 2¢ — 1 € F,[z], where F,, is the
field Z/pZ. But a polynomial of degree d over a field cannot have more than d roots
in that field, so a®,a',...,a? ! must be all of the roots of 2% — 1. Therefore, every

B € (Z/pZ)* of order d, being necessarily a root of x% — 1, is a power of a. Hence,

f(d)=#{kec{0,...,d—1} | ord(a*) = d}
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d .
=# {k: €{0,...,d—1} ccd(d k) d} by Proposition Ord-3
—#{ke{0,....d—1} | ged(d,k) = 1}

= ¢(d).

O

Lemma 3.2. Ifm is a positive integer, then ), \m o(d) = m, the sum running through

the positive divisors of m.

Proof. Later in the course, we will develop tools to prove this via the theory of multi-
plicative arithmetic functions, but for now we will adopt the approach given in [6]. A
bridge between m and ), |m ¢(d), the two sides of the equation, is provided by the sets

Ag={a€{0,...,m—1} | ged(a,m
Bi={be{0,...,% —1} | ged(b, %) =1},

where d is a positive divisor of m. On the one hand, the set {0,...,m —1} is partitioned

by the sets Ay as d runs through the positive divisors of m, so that
d|m
On the other hand, as d runs through the positive divisors of m, so does m/d, and we

Do) =) d(m/d) =) #Bu,

d|m d|m d|m

consequently have

the last equality by definition of ¢. Therefore, the proof may be completed by showing
that #A4 = # By for all divisors of m. We leave it as a short exercise to verify that the
sets Aq and By are in fact in bijection via the map

f : Ad — By

a +— a/d.
O

Theorem 3.3. Let p be a prime, and recall from Lemma 3.1 the number f(d) defined
for each positive divisor d of p— 1. Then in fact f(d) = ¢(d) for every d. In particular,

there are ¢(p) = p — 1 primitive roots mod p.

Proof. By Proposition Ord-2, ord(a) |p — 1 for every a € (Z/pZ)*, so the number of
elements in (Z/pZ)* equals the sum of the numbers f(d), i.e.,

p—1= > fd)

d|p—1

< > ¢(d) by Lemma 3.1
d|p—1
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=p—1 by Lemma 3.2.

If there were any divisor d of p — 1 with f(d) < ¢(d), then the inequality above would
be a strict inequality, giving p — 1 < p — 1, a contradiction. O

Proposition 3.4. Let p be an odd prime, and let a be a primitive root mod p. Then

either a or a + p is a primitive root mod p>.

Proof. By Proposition Ord-4, ord,(a) | ord,2(a),i.e., p—1| ord,2(a). On the other hand,
Proposition Ord-2 tells us that ord,z(a) | ¢(p*) = p(p — 1). Therefore,

ord,2(a) € {p—1,p(p — 1)},

and similarly, because the integer b = a + p is also a primitive root mod p, we have
ord,2(b) € {p — 1,p(p — 1)} as well.
Suppose, then, that a is not a primitive root mod p?, so that a?~! = 1 mod p?. Then

W= (a+p)t
=aP ' 4 p(p—1)aP~? 4+ ¢p? for some ¢ € Z by the binomial theorem
=a’ ' —a?"? mod p?
=1—-—a""2 mod p?

#1 mod p?> because a is coprime to p.

Hence, ord,(b) is not equal to p — 1 and therefore is equal to p(p — 1), that is, b is a
primitive root mod p2. O

Proposition 3.5. Let p be an odd prime. If a is a primitive root mod p?, then it is a

primitive root mod p* for all k > 1.

Proof. Note first that if a is a primitive root mod p2, then for any b not divisible by
p, there exists by definition some integer n > 0 such that a” = b mod p?, and then of
course this congruence holds mod p as well, so a is a primitive root mod p.

To treat the case k > 2, we first show, by induction on k, that aP’ 1) # 1 mod p*
for all k£ > 2. The case k = 2 holds because a is assumed to be a primitive root mod p,

so a?~! # 1 mod p?. Assume that the statement is true for some k > 2. Now,

1=a*®™) mod p*~1 by Proposition Ord-2

=a?" 1)
so a? 7P~ = 1 4 bp*~! for some b € Z. If p divided b, then a?" =1 would be

congruent to 1 mod p*, contradicting the inductive hypothesis, so p { b. But then

gt -1 (1+ bpF—1yP
=1+ bp® mod p**! by the binomial theorem (but see the remark below)
# 1 mod p*ti,
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completing the induction.
Now, Proposition Ord-4 shows that ord,:(a) | ord,(a), i.e., p(p — 1) | ord,x(a). On
the other hand, ord,x(a) | p*~1(p — 1) by Proposition Ord-2. Therefore,

ordx(a) =p"(p—1)

for some n € {1,...,k—1}. But if n <k —2, then a? (=1 = 1 mod p", contradicting

what we proved above, so n = k — 1. Thus, a is a primitive root mod p*. O

Remark. There is one step in the proof of Proposition 3.5 that would fail if p were
2, and that is the step where we used the binomial theorem. Specifically, the step is
incorrect if p = 2 and k = 2. Of course, something in the proof has to go wrong in the
case p = 2, because there is no primitive root mod 2* when k > 3, but it is satisfying to
pinpoint precisely the moment where we use the assumption that the prime p is greater
than 2.

It remains to show that if an integer m > 2 admits a primitive root, and m is neither

2 nor 4, then m must be either a power of an odd prime or twice such a power.

Lemma 3.6. If k € Z>3 and a is an odd integer, then a®®")/2 =1 mod 2*. In partic-

ular, 2% does not admit a primitive root.

Proof. Fix an odd integer a. We prove by induction on k& > 3 the assertion that
a®®")/2 = 1 mod 2*. For the case k = 3, write a = 1 + 2b with b € Z, and observe
that

a®@)/2 = g2 = (14 20)> = 1+ 4b+ 46% = 1 + 4b(1 + b)

=1 mod 23,

because b(1 + b) is even.
Now let k > 3, and assume that a®")/2 = 1 mod 2k ie., a2 * =1+ 2*¢ for some
c € Z. Then

a¢(2k+l)/2 _ a2k—1 _ (azk—2)2 _ (1 + 2kc)2 — 14+ 2k+lc+ 2214:02

=1 mod 2F+1.
The induction is complete. O
Lemma 3.7. Let ty1,...,t. be positive integers and N their least common multiple. If
the product ty - --t, divides N, then ty,...,t, are pairwise coprime.

Proof. Let p be a prime, and observe that v,(N) = max(v,(t1),...,v,(t-)). Let my, be

this maximum, and choose ¢ such that v,(¢;) = mp. If t1 - - - ¢, divides N, then

vp(ty -+ ty) < vp(N),
fe, wp(t1) + - +up(ty) <max(vp(ty),...,vp(tr)),
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fe,  vpti) + Y vp(ty) < my,

J#i
ie, mp+ va(tj) < myp,
J#i
ie, Y wv,(t;) <0,
J#i
so each vy, (t;) with j # 4 is zero. Therefore, p can divide at most one of ¢i,...,¢,. This
being true for an arbitrary prime p, the claim of the lemma follows. O

Proposition 3.8. Let m € Z>9, and assume that m has a primitive root. If m is neither

2 nor 4, then m is a power of an odd prime or twice such a power.

Proof. Let a be a primitive root mod m, and write m = plfl ---pr where the p; are
pairwise distinct primes and k; > 1 for all i. Let N be the least common multiple
of gb(p’fl),...,gb(pfr). For each 1, a®®) = 1 mod pfi by Proposition Ord-2, so also
a¥ = 1 mod pf’ because gzﬁ(pi“) | N. Thus, p;“ |a¥ — 1 for all i. But the integers pf’
are pairwise coprime, so their product, m, divides ¥ — 1, i.e., a® = 1 mod m. Hence,
ord,,(a) | N by Proposition Ord-1, i.e., ¢(m) | N because a is primitive mod m. Conse-
quently, qﬁ(p’fl) - ¢(pkr) | N, because ¢ is multiplicative. But N is the least common
multiple of the d)(pfi), so these numbers are pairwise coprime by Lemma 3.7.

Now, if m had two distinct odd prime divisors, say p; and pj, then both qﬁ(pf) and
(b(pfj ) would be even, contradicting what we found above. Therefore, m = 2¥p!, where
p is an odd prime and k,1 > 0. If I = 0, then m = 2*, so Lemma 3.6 shows that £ < 2.
Otherwise, if I > 1, so that ¢(p') is even, then ¢(2%) must be odd, i.e., k < 1. O

Appendix: 4 Proof of Proposition 12.2 in Section II
We recall the statement to be proven:

If f(z) € Z[z], p is prime, and a € Z satisfies vy,(f(a)) > 2v,(f'(a)), then there are
integers ag, a1, as, ..., with a9 = a, such that

f(ay,) =0 mod p"t1 and Gpt1 = a, mod p"tt for all n > 0.

We in fact prove the following, from which the above can be deduced immediately

by induction.

Proposition 4.1. Assume that f(x) € Z[z], p is prime, and ag € Z satisfies v,(f(ao)) >

20, (f"(ap)). Suppose that for some n > 0, an integer a, satisfies

vp(f(an)) = vp(f(ao)) +n (4.1)
up(f'(an)) = vp(f'(a0)) (4.2)
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Then if f(ay) # 0, there are \p, pn € Z, not divisible by p, and t, > n + 1 such that

[an) _ A
f'(an)

e tn
fin
Further, if b, € Z satisfies A\, + pnbn, = 0 mod p and we let apy1 = apn + bpp™ € Z
then (4.1) and (4.2) hold with n replaced by n + 1

Proof. Observe that

p(f(an)/f(an)) = n+vp(f(ao)) = vp(f'(a0)) > 1+ vp(f'(a0)) > n.
This tells us immediately that, as long as f(a,) # 0
f(an) _ )\J
f'(an) Hn P

for some \,,, uy, € Z coprime to p and some t,, > n+ 1. Let b,, € Z be chosen such that
An + tinby, =0 mod p, and let a1 = a, + byp'™ € Z

(2%

Write
(@) = f(an) + f'(an)(@ = an) + gn(2)(z — an)?
for some g, (x) € Z[z]. Then
f(an-H) =

f(an) + f/(an)bnpt" + gn(an+1)b721p2tn
/
a
- f,l(Ln)(/\n + .Unbn)pt" + gn(an-&-l)bipzt"
Now, the p-adic valuation of the first main term here is at least

Up(f/(an

)+ 1+t =vp(f(an)) + 1
by definition of ¢,,.

Further, the p-adic valuation of the second main term is at least

2t, = 2v,(f(an)) — 2vp(f'(an)) by definition of ¢,
= ”p(f(an)) +vp(flan)) = 20p(f'(an))
vp(f(an)) + vp(f(ao)) — 20p(f'(a0))  because vy(f(an)) = vy(f(a0))
> vp(f(an)) +1
Hence,
vp(flant1)) 2 vp(fan)) +1 2 vp(f(ao)) +n+ 1.
Next, we write
f'@) =

fan) + f"(an)(x — an) + hn(z)(z - an)2
for some hy,(x) € Z[z]. Then

f/(an-‘,-l) = f/(an) + f”(an)bnptn + hy (an+1)b2 i
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but

s0 tn, > vp(f'(ay)), and so

vp(f(ant1)) = vp(f(an)) = vp(f'(a0))-

Appendix: 5 Proof of Proposition 2.2 in Section III

We recall the statement to be proven:

(i) Every element of II is irreducible in Z][d].

(ii) Every irreducible element of Z[i] is associate to exactly one element of II.

First, we prove that every element of II is irreducible in Z[:]. If 72 = a3, then
2= N(m) = N(af) = N(a)N(5),

so N(a) =1or N(B) =1.
If p=1 mod 4 and 7, = af, then

p= N(mp) = N(aB) = N()N(B),

so N(a) =1 or N(8) = 1. The argument is the same for 7,.
If g =3 mod 4 and 7y = af, i.e., ¢ = af, then

¢* = N(q) = N(ap) = N(a)N(B).

The Gaussian splitting lemma, i.e., Lemma 2.1 in Section III, shows that we cannot
have N(a) = N(f3) = p, so either N(o) =1 or N(8) = 1.

Next, we prove that every irreducible element of Z[i] is associate to exactly one
element of II. Let m € Z[i] be any irreducible element. Then N(n) € Z>2, so n7 =
p1 -+ - py for some prime numbers pyq, ..., p,. Thus, 7| p1 - - - pr, S0 because 7 is irreducible
and therefore prime in the unique factorization domain Z[i], 7 divides some p = p; in
Z[i], say p = ma with « € Z[i]. If o € Z[i]*, then p is irreducible in Z[i] and is therefore
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congruent to 3 mod 4 by the Gaussian splitting lemma again, so 7, = p ~ 7. Otherwise,
ie., if o € Z[i]*, then because

p* = N(p) = N(ra) = N(m)N(a)

and 7 is not a unit either, we must have N(7) = N(«a) = p, and then p = 2 or

p =1 mod 4 by the Gaussian splitting lemma once more. Hence,

Ty =p = N(m) = 7T,

so uniqueness of factorization in Z[i| implies that 7 ~ 7, or ™ ~ 7).

Finally, to show that no two elements of II are associate, suppose that m,, is associate
to mp, or Tp,. Then N(m,, ) = N(mp,), so because N(m,,) € {p1,p?} and N(mp,) €
{p2,p3}, it follows that p; = ps. It therefore remains to show that m, # 7, when
p=1mod 4. But m, = z + yi with 0 < z < y, and T, = = — yi, so because |z| # |y|,
there is no u € {1,4,—1, —i} such that um, = 7).

Appendix: 6 Products of coprime elements in a UFD

We prove a lemma that we used in Sections II1-4 and III-5, regarding products of

coprime elements in a unique factorization domain. We recall the statement to be proven:

Suppose that
e R is a unique factorization domain,
e a,b e R~{0},
e 1 is a positive integer.

If a,b are coprime and ab = ¢™ for some ¢ € R, then there are units u,v in R and
elements a’,b’ € R such that a = u(a’)™ and b = v(d')".

Proof. Write

a:up{l...pzk

b:vqfl...q;l

where p1,...,Dk,q1,.-.,q are pairwise non-associate irreducible elements of R, and
u,v € R*. Then uvp® ---p;hqi" -+~ ¢" is an nth power, say

71 TE S1 s n_nty nt
uvpl pk ql ...ql =w 7'('1 ...ﬂ-an’
where 71, ..., T, are pairwise coprime irreducible elements, and w € R*. By uniqueness
of factorization, p; is associate to one of my,...,m,,, say to m;, and then r1 = nt;.

Similarly, each of the other 7; is a multiple of n, and then a is the product of v and an

nth power. In the same way, we see that b is the product of v and an nth power. O
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Appendix: 7 An elementary derivation of the formula for prim-
itive Pythagorean triples

Let (x,y, z) be a primitive Pythagorean triple. We show by elementary means that

(z,y,2) = (u? —v?, 2uv, u? + v?)

for coprime positive integers u and v satisfying v > v and v #Z v mod 2. We begin by
rearranging the Pythagorean equation to read
. —

e, (z+2)(z—2)=1y%

_ 2
hez-r <Q> (remember that = and z are odd).

ie.
’ 2 2 2
Since Z'Q"’” + 5% = z and Z;” — %5% =z, any common divisor of Z"‘Tx and *5* divides

z4+x zZ—x
2 2

positive integers whose product is square, then each of a and b is square. Therefore,

z and z, which are coprime, so and are coprime. But if ¢ and b are coprime

there are positive integers u and v such that

P _
+:U:u2 and S L =42
2 2

2 2,2

Note that these equations give = u? —v? and z = u%+v?, and of course (y/2)? = u?v?,
SO Yy = 2uv.

Now, u > v because z is positive, and u? and v? are coprime, so u and v are coprime.
Also, u? = v? + , and z is odd, so u? # v2 mod 2, and so u #Z v mod 2. Thus, v and v

satisfy all the desired properties.

Appendix: 8 Proof that the Dirichlet inverse of a multiplicative
arithmetic function is multiplicative

If f is a multiplicative arithmetic function, then the fact that its Dirichlet inverse, f~!,

is multiplicative follows immediately from the proposition below upon taking g = f 1.

Proposition 8.1. If f and g are arithmetic functions such that f and f * g are multi-

plicative, then g is multiplicative.

Proof. We prove by induction on N > 1 the assertion that, if m and n are coprime
positive integers such that mn = N, then g(mn) = g(m)g(n). For the case N = 1, we
observe that

1= (f*g)(1) = f(1)g(1) = g(1),

so g(1%2) = g(1) = 1 = g(1)%. Now let N > 1, and assume the statement for all smaller
values of N. Let m and n be coprime positive integers such that mn = N, let

S=A{(d,e) € Z>1 xZ>1 | d|m and e|n},
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and let S" = S\ {(m,n)}. Then

(f*g)tmn)= Y f(%52)g(de)

I
~
—
a3
~—
=N
&

N———
L
~
—
o3
~—
Q
O

|
=N
32
=N
<
_|_
=N

3
<

= (f*g)(m)(f *g)(n) — g(m)g(n) + g(mn)
= (f xg)(mn) — g(m)g(n) + g(mn),

so g(mn) = g(m)g(n), and the induction is complete. O

Appendix: 9 The uniqueness part of Proposition 2.1 in Sec. V

We show the uniqueness of the representation of a rational number in the form [ag; a1, . . ., an],
where the a; are integers, a; > 1if ¢ > 1, and a,, > 2 if n > 1.

It will help to introduce some ad hoc terminology, namely, if n > 0, a well-formed

n-tuple will mean an n-tuple (ag;as,...,a,) such that a;, € Z for all ¢, a; > 1 for i > 1,
and, if n > 1, then a, > 2.

Given n > 0, let P(n) be the following assertion: For all n’ > n, if (ag;a1,...,an
is a well-formed n-tuple, (bo; b1, ..., b, ) is a well-formed n’-tuple, and [ag; a1, ..., a,] =

[bo; b1, .-, bn], then n =n' and a; = b; for all i. We prove P(n) by induction.
Let us first prove P(0). Suppose that n’ > 0, ag € Z, and (bo; by, ..., by ) is a well-

formed n'-tuple such that ag = [bo; b1, ..., bys]. Assume, for a contradiction, that n’ > 1.
Then )
= [bosb1, - b = bo+
ag = [bo; b1, .-, bn] 0+[b1;b2,...,bn/]
SO )
— byl = .
0 = bol = G =37

If n = 1, then b; > 2, so the left-hand side is less than 1, and if n’ > 2, then
[b1;D2,...,bn] > by > 1, so the left-hand side is again less than 1. Either way, the non-
negative integer |ag—bp| is less than 1 and is therefore zero, showing that 1/[b1;ba, ..., by/] =
0, a contradiction. Thus, n’ = 0, and then ag = by.

Now let n > 0, and assume P(n). Let n’ > n + 1, let (ap;a1,...,an+1) be a

well-formed (n + 1)-tuple and (bg; b1, ...,b, ) a well-formed n'-tuple, and assume that
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ap; Ay, - - .,an+1} = [bo;bl,. . .,bn/]. Then

1 1

[b1;D2, ..., by] - [a1; a2, ..., an41]

lap — bo| =

b

so since the right-hand side is less than 1 and the left-hand side is a non-negative integer,
both sides are zero and we obtain ag = by and [a1; az, . .., anr1] = [b1;b2, .. ., by]. Hence,
by the inductive hypothesis, n’ = n + 1 and a; = b; for all ¢ > 1. The induction is

complete.

Appendix: 10 On infinite continued fractions

We prove the facts (i)—(iii) concerning infinite continued fractions stated at the beginning
of Section V5.

Irrationality

First, we show that if ag, a1, as, ... are integers with ag > 0 for all £ > 1, then the real
number x = [ap; a1, as, . ..] is irrational. The proof of Theorem 4.5 in Section V shows
that

Con <x < Coyqq foralln >0,
ie., 0<a—Cq, < CQn+] — an,
Dan 1

If = were rational, say = a/b with a,b € Z and b > 0, then multiplying the last line
by b, we would have

0< q2na _anb < .
q2n+1

But the sequence (gi)k>0 is a monotone-increasing sequence of integers and is therefore
unbounded above, so we may choose n such that b/g2,4+1 < 1, contradicting the fact
that gona — panb € Z.

Existence
Next, we show that if z € R is irrational, then there are integers ag,ai,as, ..., with
ar > 0 for all k > 1, such that x = [ag; a1, as, . ..]. Recall that for a real number y, |y]

denotes its floor, i.e., the greatest integer less than or equal to y. If y is irrational, then
certainly y & Z, so y — |y| > 0 and 1/(y — |y]) is still irrational. Therefore, we may

define irrational numbers z; and integers aj recursively by

1
o=, ar=|2k], Trs1 P (k=0)
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Note that 0 < x —ag < 1 for all £ > 0, so xx41 > 1, and so a1 > 1.

Now, since
. — T 1
[ag; a1, a9, ..., Gk Tpi1] = [ao; 01,02, ..., Q% Gkt1 + $k+2]
= [ao; a1, az,. .., ak, api1, Tptal,

it is clear by induction on k that
x = [ag;a1,as, ... a5, k1] for all k> 0.

Hence, if Cy = [ag;a1,as,...], and if py and g; are defined in terms of ag,a,as,... as
usual, i.e., via the (p, ¢)-algorithm, then for all k£ > 1,

|z — Ck| = |[ao; a1, a2, ..., ax, x+1] — Ckl

Tk+1Pk + Pk—1 Pk
T+19k +qr—1 Gk
Tk4+1Pkqk + Pk—19k — Th+1Pkqk — Pkdk—1
(Thy 19k + qr—1)qk
(-1)*F
(Thr1qr + qr—1)ak

1
= because zy4y1, gk, qr—1 > 0.
(Thy1qr + qr—1)qk

by Theorem 3.1 in Section V

by Proposition 4.1 in Section V

But ag+1 = |Zg+1] < Tgt1, SO

1 1 1

< = .
(Trr1qk + Qe—1)ak (Qk+1Gk + Q—1)qk  Qet+1G

Finally, using again the fact that the sequence (gx)r>0 is @ monotone-increasing sequence
of integers, we observe that 1/(gx+1qx) — 0 as k — oo, so Cj, — x.

Uniqueness
We show that if ag, a1, as,... and by, by, bo, ... are integers such that ag, by > 0 for all
k > 1 and such that [ag; a1, ag,...] = [bo; b1, ba, .. .], then a = by, for all k > 0. The core

idea is contained in the following lemma.

Lemma 10.1. If ag,a},as,... and by, by, b,, ... are integers such that aj,b), > 0 for
all k > 1 and such that [ay; a}, ab,...] = [bG; by, bh, .. ], then af = b)) and [a);d),...] =
[b1; b5, - . ]

Proof. For brevity, we omit the primes, i.e., write simply a, and b instead of aj
and by,. Let & = [ag;a1,a2,...] = [bo;b1,b2,...], and let o = (ap;a1,a2,...) and 8 =
(bo; b1, ba, . ..). By the proof of Theorem 4.5,

Co(a) < z < C1(a),

. 1
ie, a<zx<ar+—<ag+1,
a

Paul Buckingham Elementary Number Theory (MATH 324) — v1.02 | 90



so |x] = ag. Similarly, |z ] = by, so ag = by. Further,

x = lim [ag;a1,as,...,an]
n—oo
o (04 )
=lim (gg+ ———m—
n—oo [al;a27"'aan]
1
=ag+ %
hmn—)oo[al; az, ..., an]
1
=00+ 7,
[al; as, .. ]
and similarly
bo + !
rT=by+ ——.
[bl; bg, .. ]
Therefore, because ag = by, it follows that [a1;as,...] = [b1;b2,. . .]. O
Now let ag, a1, as, ... and by, by, bo, ... be as above. We show by induction on n > 0
that a, = b, and [ap41;an42,ane3,-..] = [bnt1;bnt2,bnts,...]. The case n = 0 is

simply the lemma with aj, = aj and b}, = by, for all £ > 0. Next, let n > 0 and assume
the statement for this n. Then the lemma applied with az, = Gp414k and b;€ = bpt1+k
for all k£ > 0 yields apt1 = byy1 and [an42;ant3, .- .] = [bnt2;bnts, .. .], completing the
induction.

Appendix: 11 Substitution of infinite continued fractions

Lemma 11.1. Let k,l > 0, let ag,a1,...,ax4; be real numbers with a; > 0 fori > 1,
and let

r = [ag; a1, a2, ..., agyi],

Yy = [ag; akt1, Ao, - Akl
Then x = [ap; a1, ag, .. .,ak—1,Y].

Proof. Fix | > 0. We proceed by induction on k. For k > 0, let P(k) be the assertion

that, for all real numbers ay, ..., ary; with a; > 0 for ¢ > 1, the claimed equality holds.
The case k = 0 is vacuous. Now let £ > 0 and assume P(k). Let ag, ..., axt+141 be real
numbers with a; > 0 for ¢ > 1. Then by the inductive hypothesis, 2’ = [a;; az, ..., a, Y]
where

a' = lay;ag, ..., apt141l,

Y = [akt1; ar2, - - Qg4
Then

1
l[ag; a1, az, ... axp141] = a0 + — = ag + ——————— = [ao; a1, a2, ..., ax, Y|,
xr [a1;a25--'7ak7y]

and the induction is complete. O
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Proposition 11.2. Let ag,a1,as9,... be integers with a; > 0 for i > 1, and let x =

[ag; a1, asg, . ..]. Suppose that k > 0, and let y = [ak; Grt1, Akt2,-..]. Then
x = [ag; a1, a2, ...,ak-1,9Y].
Proof. For each | > 0, let y; = [ax; ag+1,- - -, agpyi]- Then
x = lim [ag;aq,as,...,a,]
n—oo
= lim [a(); a1,02,...,0k—1,0k, Q41,5 ,akH]
l—o00
= lim [ag;a1,a2,...,a5—1,y;] by Lemma 11.1
l—o0
= [ag;a1,az,...,a5_1, llim yi] by standard properties of limits
—00
= [aO; a1,0a2,y...,0k—1, y]

Appendix: 12 The continued-fraction representation of a quadratic
irrational

We prove that the continued-fraction representation of a quadratic irrational is periodic,

following the method of proof given in [6].

Lemma 12.1. Every quadratic irrational can be expressed in the form (S + v/d)/T
where S, T, d are integers such that T # 0, d is positive and not a square, and T | S* —d.

Proof. The formula for the roots of a quadratic polynomial shows that a quadratic
irrational may be expressed in the form (u+ /v)/w where u, v, w are integers such that
v is positive and not a square, and w # 0. Multiplying the numerator and denominator
by |w| then shows that our quadratic irrational is equal to (S ++/d)/T, where S = |w|u,
T = |w|w, and d = w?v. That d is positive and not a square is an immediate consequence
of the fact that v is, and we may easily verify that 7| S? — d:

S% —d = w?u — wv = w(u —v) = £T(u — v).
O

Lemma 12.2. Fiz a positive integer d that is not a square. Suppose that, for some
k>0, S and Ty are integers such that T, # 0 and Ty, | S]% —d. If b, = | (Sk + \/(j)/TkJ,
Sk+1 = bgTp — Sk, and Ty = (d — S;§+1)/Tk, then Sky1 and Tii1 are integers such
that Ti+1 # 0 and T4 | S,%_H —d.

Proof. Tt is obvious that Siy1 € Z. As for Ty, 1, we have

d—S%, d—(Te—S.)° d— 82
Typr = = =

20, Sk — b2 T.
T T T + 2050k ek
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Since T}, | d — S,f by assumption, it follows that Tj1 € Z. Further, the fact that d is not
a square shows that Tj1, by its definition, is non-zero. Finally, it is obvious from the
fact that TpThq1 = d — S7, that Ty [ Sp,, — d. O

Fix a quadratic irrational x. By Lemma 12.1, there are integers Sy, Ty, d such that
d is positive and not a square, Ty # 0, To | S — d, and & = (S + V/d)/Tp. Hence, by
Lemma 12.2, we may construct numbers yy, by, Sk, T (k > 0) recursively by

. Sk + Vd
Yk = Tk )
br = Yk,
Sk+1 = Ty — Sk,
d— S
T — 7'*‘1’
k1 T

the numbers S and T} being, by the same lemma, integers such that Tj # 0 and
T | S,% — d. We will call the algorithm for constructing the integers Sy and T} as above
the (S, T)-algorithm.

Also, define the numbers aj and xy, as in Section V-5, by o = z, ar = |2x], and

Th+1 = 1/(3% — ak).

Proposition 12.3. With notation as above, ar = by and xp = yi for all k > 0. In
particular, x = [bo; by, ba, .. .].

Proof. Observe first that yr+1 = 1/(yr — bi):

S+ vd
Tk

Sk +Vd - by,

D

~ Vd— Sk

-

_ d=St T 1
Ti(Sk+1 + \/&) Sk41 + Vd o Yk

Y — by = br

Now, x = [ag;aq,as,...] by the existence part of Section 10. Since zyp = & = gy and
ap = |xo] = |yo] = bo, and since also zp11 = 1/(xr — ar) and yr+1 = 1/(yx — bi),
induction shows that the pair (ag,zy) is equal to the pair (bg,y) for all & > 0. In

particular, = [ag; a1, a2, ...] = [bo;b1,be,...]. O

Before completing the proof that a quadratic irrational has a periodic continued-
fraction representation, we introduce the notion of conjugation. If b and c are rational
numbers such that b2 — 4c is not the square of any rational number, then the polynomial
f(x) = 22 +bx+c has two distinct roots in C, both non-rational. These roots, say 1, T2,
are said to be conjugate to each other, and we define T; = x5 and Ty = x1. It is easy

to see that if u,v,w are rational numbers, and if v is not the square of any rational
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number, then u + w+/v and u — w+/v are the two roots of a polynomial f(z) as above
and are therefore conjugate to each other. We also define the conjugate of a rational
number to be that rational number itself.

We will need the following fact about conjugation, which we leave as an exercise:
If w,v,w,z € Q, y is a quadratic irrational, and w and z are not both zero, then
(uy + v)/(wy + z) is either a rational or a quadratic irrational, and its conjugate is
(uy +v)/(wy + 2).

Now let 2 be a quadratic irrational, write it as x = (Sp +/d)/Tp as in Lemma 12.1,
and construct the numbers yy, by, Sk, T (k > 0) as above, via the (S, T)-algorithm. As
we saw in Proposition 12.3, each pair (by,yx) is equal to (ay,x) where the latter is as

in the existence part of Section 10, so then by that same section,
xr = [bo; bl,bg, vy bk‘—ly yk]

for all k£ > 1. Hence, by the (p, ¢)-algorithm,

oy — Ph=1Yk + Pk—2
Qk—1Yk + qr—2
for all k > 2, where the py, and ¢y, are the integers associated to the sequence (bg; by, ba, . . .)

via the (p, ¢)-algorithm. Taking conjugates of both sides gives

Pk—1Yg + Pr—2

T = - R
Q—1Yy T Qk—2

ie, Qu-1TY, + @r—2T = Pr—1Y}, + Pr—2,

ie, (qu-1T — Pr=1)Y = Pk—2 — Qk—27,

_ T — Pr—2

. — _ DPk—2—Qk—2% g2 qk—2
1.e., k= — = — - Dh_1 *
qk—1T — Pk—1 Qk—1 T = o=

Both 7 — 2:’—*; and T — z:—’i tend to the same non-zero real number T — x as k — 00, so

since —qi—2/qr—1 < 0, there is N > 2 such that g, < 0 for all k¥ > N. Hence, because
yr > 0 for all £ > 1, it follows that for all £ > N,
_ S +Vd _ Sp—Vd 2Vd

O<yr—7, = = ,
Yk — Yk T T T

so Ty > 0 for such k. Therefore, again for k > N,
0< Ty <TpThp1=d— Sty <d,

so we deduce simultaneously that 0 < Ty < d and that S,% 41 < d, the latter, of course,
being equivalent to —v/d < Sy41 < V/d. We take from all this simply the following:

0<Tpy<d and —Vd<S,<+vd foralk>N.

There are thus only finitely many possibilities for each of the pairs (S, T}) when k > N,

so there are integers j > i such that S; = S; and T; = T;. Therefore, because each pair
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(Sk,Tk) is determined purely in terms of the previous pair, we must have S;; = S;1y
and Tj4; = T4 for all [ > 0, and the periodicity of the S and T}, follows, as does,
consequently, the periodicity of the b. Now use Proposition 12.3.

Appendix: 13 Purely periodic continued fractions

Lemma 13.1. Letk € Z>1. Ifao, ..., ax are positive real numbers, and if &« = (ag; as, . .., ax),
then
Prlc
# = [a‘k;ak—17 s 70'170'0]
Pr—1(c)
g (&
# = [ak; Ap—1,--- 7a27a1]
qe—1(a)

Proof. We prove the assertions by induction on k > 1. For k = 1, observe that

« ajap +1 1
P ): 10 = a1 + — = [a1; o),
po(a) ao ao
a1(2) =4 ai.
qo(c) 1
Now let k& > 1, and assume the assertions for all & = (ag; a1, .. .,ax). Let « = (ap;a1,...,ax+1).
Then
Pry1(a) _ arpipr(@) +pe-1(a)
pi(a) pr(@)
1
=0kt1+ —F
- pr(@)/pr—1()
1
=apy1 + ————————— where o’ = (ag;ai,...,ax
@ (@) (ooiatson)
1
= apt1 + by the inductive hypothesis
lak; ax—1, ..., a0
= [ak+1; Ay o ey ao].
The inductive step for the ¢’s proceeds in identical fashion. O

If z is a quadratic irrational, it is said to be reduced if x > 1 and —1 < Z < 0, where,

as in Appendix Section 12, the bar denotes the conjugate of x.

Proposition 13.2. A real number x is a reduced quadratic irrational if and only if it has

a purely periodic continued-fraction representation, that is, there are positive integers

N

ag,a1,0a2,...,a,—1 Such that x = [ag; a1, az, .-, Gn_1)-

Proof. Assume that x is a reduced quadratic irrational, and let the numbers a, xx be
defined in the usual way, according to the algorithm for the continued-fraction repre-

sentation of z. Then for all k > 0, xx+1 = 1/(xx — ag), so taking conjugates gives

_ 1
Tkl = — -
* Tk — Qg
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We prove by induction on k that —1 < T < 0 for all £ > 0. The case k = 0 is
given by assumption, x being reduced. Now assume the inequalities for some k£ > 0.
Note that ag = |z] > 1 because « is reduced, and of course ax > 1 if k > 1. Therefore,
T —ar < —1, so since Typy1 = 1/(T, — ag), it follows immediately that —1 < ZTp41 <0,
completing the induction.

Hence, for all £ > 0,

1
— < 0 because T, = ap + — ,
Tk+1 Tk+1

—-1<ar+

e, —1—a< < —ag,

Tr+1

ie., ap<——
Th+1

<ap+1,

s0 |—1/Tpy1]| = ay.

Now, the proof in Section 12 of the periodicity of the continued-fraction representa-
tion of a quadratic irrational shows that there are integers k,l > 0 with k£ < [ such that
xp = x;. We claim that, for alli € {0,...,k}, both ap_; = a;_; and x_; = x;_;. We pro-
ceed by induction on i. The case i = 0 is given: xy = xy, so also a,, = |z ] = |z1] = a;.
Now let ¢ € {0,...,k — 1}, and assume the equalities for this ¢. Then

ap—(i+1) = [—1/Tre—i)] = [=1/T1—i] = ai—(i41),

and
Th—(i+1) = Qk—(i+1) T PR G + o, ey
-1 -1

The induction is complete.

In particular, in the case i = k, we have xg = x;_j, and then the algorithm for
generating the a; and x; shows that the sequence ag, a1, as, ... is purely periodic.

Conversely, assume that a real number x has a purely periodic continued-fraction
representation, say x = [ag; ar, - - -, ax). Doubling the period if necessary, we may assume
that k > 1. Also, let ' = [ax;ar_1, .-, Go]- We show that x and —1/z’ are conjugate.
Since they are distinct, one being positive and the other negative, it is enough to show
that they are both roots of the same quadratic polynomial with rational coefficients.

Let the integers py and gj, be those arising from the (p, ¢)-algorithm for the continued-

fraction representation of x, and let p}, and g}, be the corresponding integers for z’. Then

TPk + Pr—1
x€r = [ao;al,...,ak,x] =2 -0
Tqr + qr—1
SO
qk:x2 + (qk,1 — pk)fE T 0.
Also,
1! /
z' = lar; ag—1, ... ,aO,IE/] — w’
T+ Gk
SO

/

@ (2')? + (qh_y — D)7 — Py =0,
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/

Le, pp_1-— (Q;cfl _P?c)x/ - q;(x/)z =0,
2
Le., Py (—%) + (@1 —pz)(—ﬁ) ~q;, =0. (13.1)

Now, by Lemma 13.1,

Pk ’ Py
= lag; ap—1,-.-,a0] = Cx(z') = ==,
Pr—1 | ! o (@) @
7
L = lag; ak—1,...,a1] = Cx_1(2') = fc L
qk—1 1

so because all four fractions involved are in lowest terms and the ¢’s are all positive, we

have
Pl = Dk
Q= Pr—1,
Phe1 = ks

(J;g_1 = qk—-1-

Using these equations to replace the primed numbers in (13.1) with the unprimed ones,
we see that

2
qk (—%) + (qr—1 —pk)(—%) —pr-1=0,

as desired.
We have thus succeeded in showing that T = —1/2’. Since &’ > 1, it follows that
—1 <% <0, and of course x > 1, so x is reduced. O

Appendix: 14 Proofs concerning Pell’s equation
The proof that the solutions to Pell’s equation are as claimed in Theorem 8.1 in Section V
comprises naturally two parts:

e Part I: Show that if (2, %) is a solution, then there is a convergent p/q to v/d such
that (z,y) = (p, q).

e Part IT: Among all convergents to v/d, determine precisely which ones yield so-
lutions.

The books of Barbeau [1], Rosen [6], and Schmidt [7] were all invaluable for the following

proofs.

Part 1
Lemma 14.1. Let n € Zx>9, let ag,...,an, € R with a; > 0 for i > 1, let ¢ =
[ap; a1, ag, ..., ay], and let pg,qr for k € {0,...,n} be the numbers appearing in the
(p, q)-algorithm for the sequence (ag;ay,as,...,a,). Then

(_1)1171

Gn1T —Pp_1 = —————.
" " AnQdn—1 +Qn—2
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Proof.

p
4n—1T — Pn = (dn—1 qi — Pn

n
_ Pndn-1 — Pn—-14n
- In
(="t

dn

(="t
UnGn-1+ Gn-2

O

Theorem 14.2 (Legendre). Let x € R\Q, and suppose that p and q are integers such

that ¢ # 0 and

p 1
— =< =—.
! q‘ 2q?

Then p/q is equal to a convergent to x.

Proof. First, we reduce to the case where p and ¢ are coprime and ¢ > 0, as follows.
Assume the statement to hold in this case, and let p,q be any integers satisfying the
assumptions of the theorem. Write p/q = p’/q’ where p’ and ¢’ are coprime and ¢’ > 0.
Observe that |¢'| < |q|. Hence,

so p'/q is a convergent to z, i.e., p/q is a convergent to z.
We now assume that p and q are coprime with ¢ > 0 and follow the proof in Schmidt’s

Diophantine Approzimation; see [7, Chap. I, Theorem 5C]. By hypothesis, we may write

where € € {1,—1} and 0 < y < 1/2. Also, we may write
p
& = [ao;al,ag,...,an_l]

for some n > 1, where a; € Z for all 4, a; > 0 for i > 1, and (—1)"~! = e. (Express p/q
in terms of its continued-fraction representation as in Proposition 2.1 in Section V, and
if n has the wrong parity, replace a,—1 by (a,—1 — 1) + %)

Right away, we dispense with the case where n = 1. In this case, € = (—1)° = 1, and
p/lg=ay €Z,s0¢q=1and x —p=y. Thus, 0 <z —p < 1/2, 80 p=|z] = ag, and so
p = p/q is indeed a convergent to x.

For the remainder of the proof, we assume that n > 2. Let py, qx, with k € {0,...,n—
1}, be the numbers appearing in the (p, ¢)-algorithm for (ag;a1,...,a,—1). Then p/q =

Prn—1/Gn-1, SO because p and ¢ are coprime and ¢ > 0, we have p = p,_; and ¢ = ¢,—1.
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Now, if z € R, then

[ao;al,am .- -7%—1,4 =T
ZPn—1 +pn—2 — (141)
Z4n—1 + gn—2

<~ (pnfl - anfl)z = Tn—-2 — Pn—2-

Since zx is irrational, ensuring that p,_1 — xq,—1 # 0, this last equation has a unique
solution z, and z is also necessarily irrational by (14.1).
Our immediate task is to show that z > 1. To that end, observe that

ed =z P
q? q
1
= — (-1 — Prn—1)
dn—1
1 -1 n—1
= (=1) by Lemma 14.1
gn—1 ZQ4n—1 + gn—2
1 €

B Gn—1 Zqn—1 + qn—2 '
Therefore, because ¢ = ¢,,_1, we have

y= qn—1
2qn—1 + qn—2 ’

and rearranging this gives
1 _ qn—2
Y dn—1 -
Hence, because 0 < y < 1/2, so that 1/y > 2, and because ¢,,—2 < @1, it follows that
z>2—1=1, as desired.

If the continued-fraction representation of z is

2 = [an; Gnt1, Gnta, - -,

where of course a,41,0n42,... are positive, then because z > 1, a,, is positive as well.
Therefore,

x = [ag;a1,az2,...,an-1, 2] = [ag;a1,az2,...] by Proposition 11.2.
As p/q = [ap; a1, az, ..., a,—1], this shows that p/q is a convergent to x. O

Corollary 14.3. Let d be a positive integer that is not a square, and n an integer such
that |n| < Vd. If x and y are positive integers such that x*> — dy®> = n, then x/y is a
convergent to \Vd.

Proof. Observe that because x,y > 0 and d is not a square, n must be non-zero. Assume
first that n > 0. Then 0 < n = (z + yVd)(z — yVd), so x — yv/d > 0, i.e., z > yv/d and
5 > v/d. Hence,

2 2
- - 1
NG x—yVd x® —dy n n Vd

X
0 < = — < < = R
y Y y+yvd) yle+yvd) y-2yVd  2y2Vd 297
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so by the theorem, x/y is a convergent to V.
Now assume that n < 0. Then

0< -2 = 2—1:152—( +x1>( —ml)
a- Y 7y Y vd Y i)’

soy >x ﬁ, ie, > %, and in a similar way to the above, we find that

1 —n/d —n/d 1/vd 1
o<y = n/ P UL Ne _ L

LorL 2 1 27
T Vd x<y+xﬁ) T2 a0 2z

so y/x is a convergent to 1/v/d. This implies that z/y is a convergent to v/d, for if

Vd = [ag; a1, az, .. ],
then )
ﬁ = [07 ag, a1, A2, . . '}7
so y/x = [0;a9,a1,...,a;] for some k > 0, and then
x
— =[ap;a1,...,ax,
Y
a convergent to v/d. O
Taking n = 1 and n = —1 in the corollary shows that any solution to 2 — dy? =1

or z2 — dy* = —1 with 2,y € Z>1 must be such that z/y is a convergent to Vd, say
x/y = pi/qk for some k > 0. Further, because the equation z2 — dy? = +1 forces x and
y to be coprime, we must in fact have x = p;, and y = gx.

Part 11

Lemma 14.4. Let x € R\Q, and for k > 0 let ay, xy, be the usual numbers appearing in
the construction of the continued-fraction representation of x, so that x = [ag; a1, as, .. .].

Also, let | and n be integers with | > 0 and n > 1. Then the following are equivalent:
(i) Tiqn = x for all k > 1.
(i1) apsn = ag for all k > 1.

Proof. That (i) implies (ii) is obvious: Just take the floor of both sides of the equation
and use the fact that ar, = |z ].
Conversely, assume (ii). We saw in the existence part of Section 10 that

r = [ag; a1, a2, ..., Gk—1, Tk]
for all k£ > 0, so by Proposition 11.2,

T = [ak; Qhg1, gy, -]
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Hence, if £ > [, then

Thtn = [ak+n; Ak+n+1, Ak4+n+2; - - ]
= [ag; ag+1, agt2,...] by the periodicity assumption on the a;

= Tk-
O

If 2 € R\Q and the numbers ay,z) are as usual, then define 7 (z) = xj, for each
k > 0. We saw in the proof of Lemma 14.4 that

k() = [ak; Qhs1, Qlg2s - - - (14.2)
for all £ > 0.
Lemma 14.5. If z € R\Q and ¢ € Z, then m(x + ¢) = () for all k > 1.

Proof. The case k = 1 holds because

1 1 1
n@+e) = (x+c)—|z+c] z4+c—|z]—c z-— |z =nia).

Hence, the desired equality holds for all k¥ > 1 by induction:

1 1
) S g Al w@ - @]

O

Lemma 14.6. If x € R\ Q and the integers py,qr are those appearing in the (p,q)-
algorithm applied to x, then for all k > 1,

_ Thr1(2)pr + pr-1

Tht1 (@) gk + Q-1

Proof. Write & = [ag;a1,az,...]. Then using once again the observation that
x = [ag;a1,as,...,ak, Trr1] where 21 = Tpy1(x), we deduce the claimed expression
from Theorem 3.1 in Section V. O]

In the remainder, d is a positive integer that is not a square, and & = L\/&J ++/d. We
let yg, bk, Sk, Tk, be the numbers appearing in the (S, T')-algorithm of Section 12 applied
tox = & with Sy = |V/d] and Ty = 1. Note, in particular, that 71,(¢) = yx = (Sk+vd) /T
for all £ > 0.

Proposition 14.7. Let notation be as above, and let py, qr be the integers appearing in
the (p, q)-algorithm applied to v/d. Then p? —dg? = (—1)* Ty 41 for all k > 0.

Proof. Apply the (S,T)-algorithm to v/d with the initial S and 7' equal to 0 and 1
respectively, and let the S’s and 7”s in this case be denoted S}, and T},. Then m(Vd) =
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(S, +/d)/T}, but by Lemma 14.5, 74(v/d) = 74(£) for all k > 1, so in particular,
S, = Sy and T}, = Ty, for all k > 1. Hence, for all k > 1,

N o1 (Vd)pr + Pt
The1 (V)@ + qr—1
(Sks1+ Vd)pr + Ti1pr—1
(Skt1 + Vd)ar + Tes1qe—1

by Lemma 14.6

Rearranging this and using the linear independence of 1 and v/d over @, we obtain

Sk+1qk + Try1Gr—1 = Pr,
Skr1Pk + Thr1pp—1 = dqy.

Multiply the first of these two equations by px and the second by g, and then perform
the obvious subtraction of equations:

P — dqi = T (Prar—1 — Pr—1qx)-
Recall from Proposition 4.1 in Section V that
Prer—1 — Pe—1qr = (—1)F 71 = (1)1

Thus, p? — dg? = (—1)FT1Ty 11 for all k& > 1. In fact, this equality holds for k = 0 as
well. Indeed, by the formulas for S; and T} (for the real number & = [Vd] + V/d), we
have

=d — (boTp — So)?
=d—(2|Vd] - |Vd])®
— a1V,

while p2 — dg3 = |Vd|? — d. In summary, then, we have
pr—dgi = (=1)" " Tyyy  for all k > 0.
O

We recall that our only assumption on d is that it be a positive integer that is not

a square.

Theorem 14.8. Let € € {1,—1}, let n be the period length of the continued-fraction
representation of \/d, and let py,q. be the numbers appearing in the (p,q)-algorithm
for the continued-fraction representation of \/d. Then the solutions (z,y) to the equa-
tion x® — dy® = € are the pairs (prn—1,Grm—1) for which the positive integer r satisfies
(=)™ =e.
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Proof. By the discussion following Corollary 14.3, any solution to 2% — dy? = € has to
be (pk, gx) for some k > 0. Therefore, in light of Proposition 14.7, we will be done if we

can show all of the following concerning the numbers T}:
(i) For all k£ >0, T}, # —1.
(ii) If Txy1 = 1, then n divides k + 1.
(iii) Ty, = 1 for all » > 1.

Let us note, before continuing, that since £ > 1 and —1 < £ < 0, i.e., £ is reduced,
Proposition 13.2 tells us that the continued-fraction representation of £ is purely peri-
odic. But ¢ and Vd differ only by an integer, so their minimum periods are equal, and
so in fact £ is purely periodic with minimum period n. Now let us continue to the proofs
of (i)—(iii).

(i) Assume that T, = —1. Then y, = —Sx — V/d. But by (14.2), yx = 7%(£) has a
purely periodic continued-fraction representation because £ does, so by Proposition 13.2,
-8}, — V/d is reduced. In particular, —S, — v/d > 1 and —Si, + Vd < 0, so

Vd < Sy < —1—+4d,

giving 2v/d < —1, a contradiction.

(ii) Suppose that Tyy1 = 1. Then ygy1 = Sk+1 + Vd, but ypi1 = Tre+1(§) has a
purely periodic continued-fraction representation, so Ski1 + V/d is reduced, and so in
particular,

—1 < Spp1 —Vd <0,

or, to put it another way,
0<Vd—Sks1 <1.

Thus, |Vd| = Ski1, 50

Yk+1 :Sk}liw: |Vd] +Vd = y,.
k+1

The sequence yo, Y1, Y2, .. is determined by the first-order recurrence relation y;; =
1/(y; — ly;]), so the equality yx+1 = yo implies that k + 1 is a period of the sequence
(Y0, Y1, Y2, - - -), and so the period length, i.e., minimum period, of this sequence divides
k+ 1. (See the exercise on periodic functions in Section I-1.) But by Lemma 14.4, this
period length is equal to the period length n of the continued-fraction representation of
&, so n divides k + 1, as desired.

(iii) Recall that 73,(¢) = yr = (Sg + V/d)/T}, for all k& > 0. Now, by Lemma 14.4,
Tietn(§) = 7(§) for all k > 0, so in particular, Ty, = Tk. Because Ty = 1, we therefore
have T,,, = 1 for all r > 1. O
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