Algebraic Number Theory
 MATH 512

Solutions to Assignment 6

1. (a) $L=\mathbb{Q}(\sqrt{-1})$, and $\sqrt{-1}$ is a root of unity of order prime to 7 . Therefore L / \mathbb{Q}_{7} is unramified. For example, if ζ is a primitive 48th root of unity, then $\sqrt{-1}$ is a power of ζ, but $\mathbb{Q}_{7}(\zeta) / \mathbb{Q}_{7}$ is unramified (of degree 2). In fact, $L=$ $\mathbb{Q}(\zeta)$. Since L / \mathbb{Q}_{7} is an unramified quadratic extension, the residue extension is quadratic.
(b) Since a is not square $\bmod 7$, the class of $\gamma \bmod \mathfrak{p}_{L}$ lies in $\mathfrak{k}_{L} \backslash \mathbb{F}_{7}$ and therefore generates \mathfrak{k}_{L} over \mathbb{F}_{7}. Hence we may take $f(x)=x^{2}-a$ in the proof of Lemma 75. Now, $f(\gamma)=0 \in \mathfrak{p}_{L}^{2}$, therefore $f(\gamma+7) \in \mathfrak{p}_{L} \backslash \mathfrak{p}_{L}^{2}$ since 7 is a uniformizer of L. The aforementioned proof then shows that $\mathcal{O}_{L}=\mathbb{Z}_{7}[\gamma+7]=$ $\mathbb{Z}_{7}[\gamma]$.
2. (a) L / \mathbb{Q}_{p} is totally ramified, so $G_{0}=G$ by the remark following the proof of Proposition 74.
(b)

$$
\begin{aligned}
v\left(\sigma_{a}(\zeta)-\zeta\right) & =v\left(\zeta^{a}-\zeta\right) \\
& =v\left(\zeta^{a-1}-1\right)
\end{aligned}
$$

However, $\zeta^{a-1}-1$ is a primitive $p^{r-m_{a}}$ th root of unity by definition of m_{a}, and is therefore a uniformizer of $\mathbb{Q}_{p}\left(\zeta_{p^{r-m_{a}}}\right)$. Since $L / \mathbb{Q}_{p}\left(\zeta_{p^{r-m_{a}}}\right)$ is totally ramified of degree $p^{m_{a}}$, we thus have $v\left(\zeta^{a-1}-1\right)=p^{m_{a}}$.
(c) By Lemma 75, $\mathcal{O}_{L}=\mathbb{Z}_{p}[\zeta]$, and so

$$
\begin{aligned}
\sigma_{a} \in G_{n} & \Leftrightarrow v\left(\sigma_{a}(\zeta)-\zeta\right) \geq n+1 \\
& \Leftrightarrow p^{m_{a}} \geq n+1 \\
& \Leftrightarrow m_{a} \geq k .
\end{aligned}
$$

(d) $m_{a} \geq k$ if and only if $a \equiv 1 \bmod p^{k}$. Now use part (c).
3. (a) If $a \cdot g \beta=0$, then

$$
\begin{aligned}
0 & =\mathbf{1}_{f, g}(a \cdot g) \\
& =\mathbf{1}_{f, g} \circ[a]_{g}(\beta) \\
& =[a]_{f} \circ \mathbf{1}_{f, g}(\beta) \\
& =a \cdot_{f} \mathbf{1}_{f, g}(\beta) .
\end{aligned}
$$

(b) Define maps

$$
\begin{aligned}
\varphi: \mathfrak{p}_{K_{\mathrm{s}}} & \rightarrow \mathfrak{p}_{K_{\mathrm{s}}} \\
\beta & \mapsto \mathbf{1}_{f, g}(\beta)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi: \mathfrak{p}_{K_{\mathrm{s}}} & \rightarrow \mathfrak{p}_{K_{\mathrm{s}}} \\
\beta & \mapsto \mathbf{1}_{g, f}(\beta)
\end{aligned}
$$

We first claim that $\mathbf{1}_{g, f} \circ \mathbf{1}_{f, g}(x)=x$. Indeed, certainly $\mathbf{1}_{g, f} \circ \mathbf{1}_{f, g}(x) \equiv$ $x \bmod \operatorname{deg} 2$, and further for any $a \in \mathcal{O}_{K}$,

$$
\begin{aligned}
\mathbf{1}_{g, f} \circ \mathbf{1}_{f, g} \circ[a]_{g} & =\mathbf{1}_{g, f} \circ[a]_{f} \circ \mathbf{1}_{f, g} \\
& =[a]_{g} \circ \mathbf{1}_{g, f} \circ \mathbf{1}_{f, g} .
\end{aligned}
$$

Hence, by the uniqueness statement given at the beginning of the exercise, $\mathbf{1}_{g, f} \circ \mathbf{1}_{f, g}(x)=x$. Similarly, $\mathbf{1}_{f, g} \circ \mathbf{1}_{g, f}(x)=x$. Thus φ and ψ are mutually inverse bijections.

Now, by part (a), if $\alpha \in \mathfrak{p}_{K_{\mathrm{s}}}$ has $a \cdot{ }_{g} \alpha=0$, then $a \cdot{ }_{f} \varphi(\alpha)=a \cdot{ }_{f} \mathbf{1}_{f, g}(\alpha)=0$, so φ maps $\left\{\alpha \in \mathfrak{p}_{K_{\mathrm{s}}} \mid a \cdot g \alpha=0\right\}$ into $\left\{\alpha \in \mathfrak{p}_{K_{\mathrm{s}}} \mid a \cdot f \alpha=0\right\}$. Reversing the roles of f and g in part (a), we see that ψ maps $\left\{\alpha \in \mathfrak{p}_{K_{\mathrm{s}}} \mid a \cdot f \alpha=0\right\}$ into $\left\{\alpha \in \mathfrak{p}_{K_{\mathrm{s}}} \mid a \cdot_{g} \alpha=0\right\}$, and we are done.
4. (a) $f(x) \equiv \pi x \bmod \operatorname{deg} 2$ and f commutes with itself, therefore by the uniqueness statement in Theorem 78, $[\pi]_{f}=f$.
(b) Let $g_{\beta}(x)=f(x)-\beta$. Suppose $\alpha \in \bar{K}$ is a root of $g_{\beta}(x)$, i.e. $g_{\beta}(\alpha)=0$. Since $g_{\beta}(x)$ has coefficients with absolute value at most 1 (extending the absolute value on K to \bar{K}), α also has absolute value at most 1 by the argument used for question 3 of Assignment 4. As $g_{\beta}(x)-x^{q}$ has coefficients of absolute value less than $1, \alpha$ must then also have absolute value less than 1 . If we suppose that α is in fact a double root of $g_{\beta}(x)$, i.e. $g_{\beta}^{\prime}(\alpha)=0$, then $\pi=-q \alpha^{q-1}$. This forces $q \neq 0$ in K, but in that case

$$
\begin{aligned}
|\pi| & =\left|q \alpha^{q-1}\right| \\
& =|q| \cdot|\alpha|^{q-1} \\
& <|q| \\
& \leq|\pi|,
\end{aligned}
$$

a contradiction. Therefore $g_{\beta}(x)$ is separable, so that all of its roots, which are necessarily distinct, lie in K_{s}, or in fact $\mathfrak{p}_{K_{\mathrm{s}}}$ by the above argument. Since $g_{\beta}(x)$ has degree q, there are therefore q distinct solutions $\alpha \in \mathfrak{p}_{K_{\mathrm{s}}}$ to the equation $g_{\beta}(\alpha)=0$, or in other words, to $\pi \cdot{ }_{f} \alpha=\beta$ since $[\pi]_{f}=f$ by part (a).
(c) By question 3, we may assume that $g=f$ with f as in parts (a) and (b). We prove the statement by induction on n. For $n=1$, this is part (b) with $\beta=0$. Now assume that the statement holds for some $n \geq 1$. For $\alpha \in \mathfrak{p}_{K_{\mathrm{s}}}$, $\pi^{n+1} \cdot{ }_{f} \alpha=0$ if and only if $\pi^{n} \cdot{ }_{f}(\pi \cdot f \alpha)=0$, if and only if $\pi \cdot{ }_{f} \alpha$ is one of the q^{n} elements $\beta \in \mathfrak{p}_{K_{\mathrm{s}}}$ with $\pi^{n}{ }_{\cdot f} \beta=0$. For each of these q^{n} elements β, there are q elements $\alpha \in \mathfrak{p}_{K_{\mathrm{s}}}$ with $\pi \cdot{ }_{f} \alpha=\beta$, by part (b). Thus there are q^{n+1} elements $\alpha \in \mathfrak{p}_{K_{\mathrm{s}}}$ with $\pi \cdot f \alpha=0$.

