Algebraic Number Theory
MATH 512

Solutions to Assignment 6

1. (a) L = Q(v/—1), and /—1 is a root of unity of order prime to 7. Therefore
L/Q7 is unramified. For example, if ¢ is a primitive 48th root of unity, then
v/—1 is a power of ¢, but Q7(¢)/Q7 is unramified (of degree 2). In fact, L =
Q(¢). Since L/Q7 is an unramified quadratic extension, the residue extension
is quadratic.

(b) Since a is not square mod 7, the class of v mod py, lies in €7, \F7 and
therefore generates £7, over F7. Hence we may take f(r) = 22 — a in the proof
of Lemma 75. Now, f(y) = 0 € p2, therefore f(y+ 7) € pr\p2 since 7 is a
uniformizer of L. The aforementioned proof then shows that O = Z7[y + 7] =
Zr[y].

2. (a) L/Q, is totally ramified, so Gy = G by the remark following the proof
of Proposition 74.

(b)

v(0a(C) =¢) = w(¢" ()
= (1)
However, (*~! —1 is a primitive p"~™=th root of unity by definition of m,, and
is therefore a uniformizer of Q,((yr-ma ). Since L/Qp((pr-ma ) is totally ramified
of degree p™«, we thus have v(¢(?~1 — 1) = p™a.
(c) By Lemma 75, O, = Z,[¢], and so
0, €EGy & v(o(()—¢)>n+1
&S pMe>n+1
& mg > k.

(d) mg > k if and only if a = 1 mod p*. Now use part (c).
3. (a)Ifa-4 8 =0, then
0 = 1pg4(a-yp)
Lsg0[alg(B)

lalf o 1f,4(B)
= a-r1lp4(B).

(b) Define maps

YiPr, — Pk,

/8 — 1f,g(/6)



and

Yipr, — Pk,
/8 = 1g,f(ﬁ)~

We first claim that 1,7 0 1f,(z) = 2. Indeed, certainly 14 0 1¢,(z) =
x mod deg 2, and further for any a € O,

lg50lpg0faly = 1ggofalfoly,
= lajgolgoly,.

Hence, by the uniqueness statement given at the beginning of the exercise,
1,701f4(x) = x. Similarly, 15401, f(x) = . Thus ¢ and 1 are mutually
inverse bijections.

Now, by part (a), if « € px, hasa-ga =0, thena-fp(a) =a-51y4(a) =0,
so ¢ maps {a € pk. | a-g o = 0} into {& € pg, | a-f o = 0}. Reversing the
roles of f and g in part (a), we see that ¢ maps {& € pg, | a -y o = 0} into
{a € pK, | a -4y a =0}, and we are done.

4. (a) f(z) = mz mod deg 2 and f commutes with itself, therefore by the
uniqueness statement in Theorem 78, [7]; = f.

(b) Let gs(x) = f(x) — B. Suppose a € K is a root of gg(x), i.e. gg(a)=0.
Since gg(z) has coefficients with absolute value at most 1 (extending the absolute
value on K to K), a also has absolute value at most 1 by the argument used for
question 3 of Assignment 4. As gg(z) — 27 has coeflicients of absolute value less
than 1, a must then also have absolute value less than 1. If we suppose that «
is in fact a double root of gg(x), i.e. gh(a) =0, then 7 = —ga?~". This forces
q # 0 in K, but in that case

m| = Jga® |
= gl |al7?
< |q|
< nls

a contradiction. Therefore gg(x) is separable, so that all of its roots, which are
necessarily distinct, lie in K, or in fact px, by the above argument. Since gg(z)
has degree ¢, there are therefore ¢ distinct solutions o € pg, to the equation
gs(a) =0, or in other words, to 7 -y o = f3 since [n]; = f by part (a).

(c) By question 3, we may assume that g = f with f as in parts (a) and
(b). We prove the statement by induction on n. For n = 1, this is part (b) with
8 = 0. Now assume that the statement holds for some n > 1. For o € pg_,
7"t ra =0if and only if 7" ¢ (7 -y @) = 0, if and only if 7 - ; v is one of the ¢"
elements 3 € pg, with 7™ -y 8 = 0. For each of these ¢" elements 3, there are
g elements « € pg, with 7 -5 a = 3, by part (b). Thus there are g™t elements
o € pg, with m-p o= 0.



