Algebraic Number Theory
 MATH 512

Assignment 6

1. Let L be the field in question $\mathbf{3}$ of Assignment 5 .
(a) Find the degree of the extension $\mathfrak{k}_{L} / \mathbb{F}_{7}$.
(b) Show that for any $a \in \mathbb{Z}$ that is not square $\bmod 7$, and any $\gamma \in L$ with $\gamma^{2}=a$, we have $\mathcal{O}_{L}=\mathbb{Z}_{7}[\gamma]$.
2. Let p be a prime number, r a positive integer, and $\zeta=\zeta_{p^{r}}$ a primitive p^{r} th root of unity in a fixed algebraic closure of \mathbb{Q}_{p}. The aim of this exercise is to compute the ramification groups of the extension L / \mathbb{Q}_{p} where $L=\mathbb{Q}_{p}\left(\zeta_{p^{r}}\right)$. You may assume that L / \mathbb{Q}_{p} is totally ramified of degree $\phi\left(p^{r}\right)$ where ϕ is Euler's ϕ-function, and that $\zeta-1$ is a uniformizer of L.

For an integer a not divisible by p, let $\sigma_{a} \in G=\operatorname{Gal}\left(L / \mathbb{Q}_{p}\right)$ be given by $\sigma_{a}: \zeta \mapsto \zeta^{a}$.
(a) Explain why $G_{0}=G$.
(b) Take $a \in \mathbb{Z}$ not divisible by p and not congruent to $1 \bmod p^{r}$, let v be the normalized valuation on L, and let v_{p} be the p-adic valuation of \mathbb{Q} (i.e. $\left.v_{p}(p)=1\right)$. Show that $v\left(\sigma_{a}(\zeta)-\zeta\right)=p^{m_{a}}$ where $m_{a}=v_{p}(a-1)$.
(c) Let k be an integer with $1 \leq k \leq r$, and take $n \in \mathbb{Z}$ with $p^{k-1} \leq n<p^{k}$. With a as in part (b), show that $\sigma_{a} \in G_{n}$ if and only if $m_{a} \geq k$.
(d) Conclude that $G_{n}=\left\{\sigma_{a} \mid a \equiv 1 \bmod p^{k}\right\}$.
3. Let K be a local field, π a uniformizer of K, and $f, g \in \mathcal{F}_{\pi}$. You may assume that there is a unique power series $\mathbf{1}_{f, g}(x) \in \mathcal{O}_{K} \llbracket x \rrbracket$ congruent to x mod deg 2 such that $\mathbf{1}_{f, g} \circ[a]_{g}=[a]_{f} \circ \mathbf{1}_{f, g}$ for all $a \in \mathcal{O}_{K}$.
(a) Show that if $a \in \mathcal{O}_{K}$ and $\alpha \in \mathfrak{p}_{K_{\mathrm{s}}}$, then $a \cdot{ }_{g} \alpha=0$ implies $a \cdot{ }_{f} \mathbf{1}_{f, g}(\alpha)=0$.
(b) Deduce that for $a \in \mathcal{O}_{K}$, the sets $\left\{\alpha \in \mathfrak{p}_{K_{\mathrm{s}}} \mid a \cdot_{f} \alpha=0\right\}$ and $\{\alpha \in$ $\left.\mathfrak{p}_{K_{\mathrm{s}}} \mid a \cdot g \alpha=0\right\}$ are in canonical bijection.
4. Let K be a local field, let π be a uniformizer of K, and let $f(x)=\pi x+x^{q} \in$ \mathcal{F}_{π}, where $q=\# \mathfrak{k}_{K}$.
(a) Show that for any $\alpha \in \mathfrak{p}_{K_{\mathrm{s}}}, \pi \cdot{ }_{f} \alpha=f(\alpha)$.
(b) Show that for any $\beta \in \mathfrak{p}_{K_{\mathrm{s}}}$, the equation $\pi \cdot_{f} \alpha=\beta$ has q distinct solutions α in K_{s}, and that they in fact all lie in $\mathfrak{p}_{K_{\mathrm{s}}}$.
(c) Let $n \geq 1$. Using the above in conjunction with question 3, deduce that $\left\{\alpha \in \mathfrak{p}_{K_{\mathrm{s}}} \mid \pi^{n} \cdot{ }_{g} \alpha=0\right\}$ has cardinality q^{n} for any $g \in \mathcal{F}_{\pi}$.

