Algebraic Number Theory
 MATH 512

Solutions to Assignment 5

1. We introduce some convenient notation: Let $b_{n}=\prod_{k=1}^{n}\left(1+a_{n}\right) \neq 0$, and $c_{n}=b_{n+1}-b_{n}$. Note that in fact, $c_{n}=a_{n+1} b_{n}$.

Assume first that $a_{n} \rightarrow 0$. Choose $N \geq 1$ such that for $k>N,\left|a_{k}\right|<1$. Then for $k>N,\left|1+a_{k}\right|=1$ and so for $n \geq N$ we have $\left|b_{n}\right|=\left|b_{N}\right|$. Now let $\epsilon>0$ and choose $N^{\prime} \geq N$ such that for $n \geq N^{\prime},\left|a_{n}\right|<\epsilon\left|b_{N}\right|^{-1}$. Then for $n \geq N^{\prime}$,

$$
\left|c_{n}\right|=\left|a_{n+1}\right| \cdot\left|b_{n}\right|=\left|a_{n+1}\right| \cdot\left|b_{N}\right|<\epsilon .
$$

Thus $c_{n} \rightarrow 0$, and so $\left\{b_{n}\right\}_{n}$ converges by Lemma 61. Since $\left|b_{n}\right|=\left|b_{N}\right|$ for $n \geq N$, the limit b of the b_{n} also satisfies $|b|=\left|b_{N}\right| \neq 0$, and so $b \neq 0$.

Conversely, suppose the sequence $\left\{b_{n}\right\}_{n}$ converges to some $b \neq 0$. Then firstly $c_{n} \rightarrow 0$ (since $c_{n}=b_{n+1}-b_{n}$), and secondly there is $N \geq 1$ such that $\left|b_{n}\right| \geq \delta$ for $n \geq N$, where $\delta=\frac{1}{2}|b|>0$. Then

$$
\left|a_{n+1}\right|=\left|c_{n}\right| /\left|b_{n}\right| \leq\left|c_{n}\right| / \delta
$$

and $\left|c_{n}\right| / \delta \rightarrow 0$. Therefore $\left|a_{n}\right| \rightarrow 0$.
2. Let $K=\mathbb{Q}_{p}(\alpha)$ and $L=\mathbb{Q}_{p}(\beta)$. Since a, b are not square $\bmod p, K$ and L are both quadratic over \mathbb{Q}_{p}. Write $\operatorname{Gal}\left(K / \mathbb{Q}_{p}\right)=\langle\sigma\rangle$. Then $|\sigma(\alpha)-\alpha|=|-2 \alpha|=1$. On the other hand, if $M=K L$, then in $\mathcal{O}_{M} / \mathfrak{p}_{M}$,

$$
\begin{aligned}
\bar{\alpha}^{2} & =\bar{a} \\
& =\bar{b} \\
& =\bar{\beta}^{2}
\end{aligned}
$$

so $\bar{\alpha}=(-1)^{r} \bar{\beta}$ with $r \in\{0,1\}$. Therefore $\left|(-1)^{r} \beta-\alpha\right|<1=|\sigma(\alpha)-\alpha|$. By Krasner's Lemma, $\mathbb{Q}_{p}(\alpha)=\mathbb{Q}_{p}\left((-1)^{r} \beta\right)=\mathbb{Q}_{p}(\beta)$.
3. (a) Let $f(x)=x^{3}-x+1$. We show that $f(x)$ has exactly one root in \mathbb{Q}_{7}, and that this root is a simple root. Firstly, any root in \mathbb{Q}_{7} must necessarily lie in \mathbb{Z}_{7} - this involves the same proof as question $\mathbf{3}$ in Assignment 4. Further, if $\alpha \in \mathbb{Z}_{7}$ is a root and $\alpha \equiv a \bmod 7 \mathbb{Z}_{7}$ with $a \in\{0,1, \ldots, 6\}$, then $f(a) \equiv 0 \bmod 7$. One checks that the only possibility is $a=2$. Since $f^{\prime}(2)=11$, a unit in \mathbb{Z}_{7}, Hensel's Lemma tells us that $f(x)$ has root α in \mathbb{Z}_{7} congruent to $2 \bmod 7 \mathbb{Z}_{7}$. In fact, α must be a simple root since $f^{\prime}(\alpha) \neq 0$.

Therefore, if $g(x) \in \mathbb{Z}_{7}[x]$ is the unique polynomial with $f(x)=(x-\alpha) g(x)$, then $g(x)$ is quadratic and irreducible over \mathbb{Q}_{7}. Thus L / \mathbb{Q}_{7} is quadratic.
(b) One finds easily that $g(x)=x^{2}+\alpha x-1 / \alpha \in \mathbb{Z}_{7}[x]$, and completing the square we see that $L=\mathbb{Q}_{7}\left(\sqrt{\frac{1}{4} \alpha^{2}+\alpha^{-1}}\right)$. Using $\alpha^{3}=\alpha-1$, one finds the more convenient description that $L=\mathbb{Q}_{7}(\gamma)$ where γ is a square root of $\beta=\alpha^{2}+3 \alpha$.

In $\mathbb{Z}_{7} / 7 \mathbb{Z}_{7}, \bar{\beta}=\bar{\alpha}^{2}+3 \bar{\alpha}=\overline{3}$, therefore in $\mathcal{O}_{L} / \mathfrak{p}_{L}, \bar{\gamma}^{2}=\bar{\beta}=\overline{3}$. Now, let δ be a square root of 3 and let $M=\mathbb{Q}_{7}(\gamma, \delta)$. Then in $\mathcal{O}_{M} / \mathfrak{p}_{M}, \bar{\gamma}^{2}=\overline{3}=\bar{\delta}^{2}$, so $\bar{\gamma}=(-1)^{r} \bar{\delta}$ for some $r \in\{0,1\}$. If $|\cdot|$ is the absolute value on \mathbb{Q}_{7} extended to M, the above says $\left|(-1)^{r} \delta-\gamma\right|<1$. However, writing $\operatorname{Gal}\left(L / \mathbb{Q}_{7}\right)=\langle\sigma\rangle$, we see that $|\sigma(\gamma)-\gamma|=|-2 \gamma|=1$, since 2γ is a unit in L. Hence $\left|(-1)^{r} \delta-\gamma\right|<|\sigma(\gamma)-\gamma|$, so Krasner's Lemma tells us that $\gamma \in \mathbb{Q}_{7}(\delta)$, or in other words, $L=\mathbb{Q}_{7}(\delta)=$ $\mathbb{Q}_{7}(\sqrt{3})$.

Now, adding 7 repeatedly by using question 2, and factoring out squares whenever possible, we see that

$$
\mathbb{Q}_{7}(\sqrt{3})=\mathbb{Q}_{7}(\sqrt{10})=\mathbb{Q}_{7}(\sqrt{17})=\mathbb{Q}_{7}(\sqrt{6})=\mathbb{Q}_{7}(\sqrt{13})=\mathbb{Q}(\sqrt{5}) .
$$

Since 3,5 and 6 represent all three non-squares mod 7, we are done (again, by question 2).
4. (a) The map $U_{K}^{n} \rightarrow \mathfrak{k}_{K}$ is surjective. It is a group homomorphism since $a+b+a b \pi^{n} \equiv a+b \bmod \mathfrak{p}_{K}$. Further, $1+a \pi^{n}$ is in the kernel if and only if $a \in \mathfrak{p}_{K}$, if and only if $1+a \pi^{n} \in U_{K}^{n+1}$. Therefore $U_{K}^{n} / U_{K}^{n+1} \simeq \mathfrak{k}_{K}$. Since K is a local field, \mathfrak{k}_{K} is finite. Further, the additive group of the field \mathfrak{k}_{K} is a p-group because \mathfrak{k}_{K} has characteristic p.
(b) We proceed by induction on n. The case $n=1$ is trivial. Now assume that U_{K}^{1} / U_{K}^{n} is a finite p-group for some $n \geq 1$. Then the isomorphism

$$
\frac{U_{K}^{1} / U_{K}^{n+1}}{U_{K}^{n} / U_{K}^{n+1}} \simeq U_{K}^{1} / U_{K}^{n}
$$

together with part (a) completes the induction.
(c) Define a map $U_{K}^{1} \rightarrow \lim _{\leftarrow n} U_{K}^{1} / U_{K}^{n}$ by sending a principal unit u to the element of $\lim _{\leftarrow n} U_{K}^{1} / U_{K}^{n}$ that has $u \bmod U_{K}^{n}$ in the nth component. This map is a group homomorphism. If u is in the kernel of this map, then it is in U_{K}^{n} for all n, which is to say that $\nu(u-1) \geq n$ for all n, where ν is the normalized valuation on K. Therefore $u-1=0$, i.e. $u=1$. Thus the map is injective.

Now suppose we are given principal units $u_{n}, n=1,2,3, \ldots$, such that $u_{m} / u_{n} \in U_{K}^{m}$ whenever $m \leq n$ (i.e. $\left.\left(u_{n} \bmod U_{K}^{n}\right)_{n} \in \lim _{\leftarrow n} U_{K}^{1} / U_{K}^{n}\right)$. Then for such m, n we have $u_{m}-u_{n} \in \mathfrak{p}^{m}$, i.e. $\nu\left(u_{m}-u_{n}\right) \geq m$, i.e. the sequence $\left\{u_{n}\right\}$ is Cauchy and so has a limit $u \in K$. The sequence $\left\{u_{n}-1\right\}$ converges to $u-1$, and if $u \neq 1$ then for large enough $n, \nu(u-1)=\nu\left(u_{n}-1\right) \geq 1$. Thus $u \in U_{K}^{1}$. Further, u maps to $\left(u_{n} \bmod U_{K}^{n}\right)_{n}$. Indeed, given $n \geq 1$, choose $m \geq n$ such that $u-u_{m} \in \mathfrak{p}_{K}^{n}$. Then $u \equiv u_{m} \equiv u_{n} \bmod \mathfrak{p}_{K}^{n}$.
5. (a) A sufficient condition is $n>2 \nu(m)$ where ν is the normalized valuation on K. Indeed, suppose $n>2 \nu(m)$. Take $a \in U_{K}^{n}$ and let $f(x)=x^{m}-a \in \mathcal{O}_{K}[x]$. Then $|f(1)|<\left|f^{\prime}(1)^{2}\right|$ if and only if $|1-a|<\left|m^{2}\right|$, if and only if $\nu(1-a)>2 \nu(m)$. However, $\nu(1-a) \geq n \geq 2 \nu(m)$, so indeed, $|f(1)|<\left|f^{\prime}(1)^{2}\right|$. Thus, by Hensel's Lemma, there is $\alpha \in \mathcal{O}_{K}$ such that $f(\alpha)=0$, i.e. $\alpha^{m}=a$, i.e. $a \in\left(U_{K}\right)^{m}$.
(b) Consider the natural map $U_{K} \rightarrow U_{K} /\left(U_{K}\right)^{m}$. Choosing $n>2 \nu(m)$, we see from part (a) that U_{K}^{n} is in the kernel of this map, so that U_{K} / U_{K}^{n} surjects
onto $U_{K} /\left(U_{K}\right)^{m}$. It is therefore enough to show that U_{K} / U_{K}^{n} is finite. We know that $U_{K} / U_{K}^{1} \simeq \mathfrak{k}_{K}$ is finite, so we are reduced to showing that U_{K}^{1} / U_{K}^{n} is finite. However, we saw that this is the case in question 4.
(c) Let K be a characteristic 0 local field, and let $m \geq 1$. Fix an algebraic closure \bar{K} of K and let $L=K\left(\zeta_{m}\right)$ where ζ_{m} is a primitive m th root of unity in \bar{K}. Since $L^{\times}=\langle\pi\rangle \times U_{L}$ where π is a uniformizer of $L, L^{\times} /\left(L^{\times}\right)^{m} \cong$ $\mathbb{Z} / m \mathbb{Z} \times U_{L} /\left(U_{L}\right)^{m}$, which is finite by part (b). Therefore, by Kummer theory, L admits only finitely many abelian extensions of exponent m in \bar{K}. Let M be the maximal such extension of L. In other words, M is the compositum of the finitely many exponent m abelian extensions of L in \bar{K}. If F / K is abelian of exponent m, then $F L / L$ is also abelian of exponent m, so that $F L \subseteq M$. In particular, $K \subseteq F \subseteq M$. Since M / K is a finite separable extension, there are therefore only finitely many possibilities for F.

