
Algebraic Number Theory

MATH 512

Solutions to Assignment 5

1. We introduce some convenient notation: Let bn =
∏n

k=1(1 + an) ̸= 0, and
cn = bn+1 − bn. Note that in fact, cn = an+1bn.

Assume first that an → 0. Choose N ≥ 1 such that for k > N , |ak| < 1.
Then for k > N , |1 + ak| = 1 and so for n ≥ N we have |bn| = |bN |. Now
let ϵ > 0 and choose N ′ ≥ N such that for n ≥ N ′, |an| < ϵ|bN |−1. Then for
n ≥ N ′,

|cn| = |an+1| · |bn| = |an+1| · |bN | < ϵ.

Thus cn → 0, and so {bn}n converges by Lemma 61. Since |bn| = |bN | for
n ≥ N , the limit b of the bn also satisfies |b| = |bN | ̸= 0, and so b ̸= 0.

Conversely, suppose the sequence {bn}n converges to some b ̸= 0. Then
firstly cn → 0 (since cn = bn+1 − bn), and secondly there is N ≥ 1 such that
|bn| ≥ δ for n ≥ N , where δ = 1

2 |b| > 0. Then

|an+1| = |cn|/|bn| ≤ |cn|/δ,

and |cn|/δ → 0. Therefore |an| → 0.

2. LetK = Qp(α) and L = Qp(β). Since a, b are not square mod p, K and L are
both quadratic over Qp. Write Gal(K/Qp) = ⟨σ⟩. Then |σ(α)−α| = |−2α| = 1.
On the other hand, if M = KL, then in OM/pM ,

α2 = a

= b

= β
2
,

so α = (−1)rβ with r ∈ {0, 1}. Therefore |(−1)rβ − α| < 1 = |σ(α) − α|. By
Krasner’s Lemma, Qp(α) = Qp((−1)rβ) = Qp(β).

3. (a) Let f(x) = x3−x+1. We show that f(x) has exactly one root in Q7, and
that this root is a simple root. Firstly, any root in Q7 must necessarily lie in Z7

– this involves the same proof as question 3 in Assignment 4. Further, if α ∈ Z7

is a root and α ≡ a mod 7Z7 with a ∈ {0, 1, . . . , 6}, then f(a) ≡ 0 mod 7. One
checks that the only possibility is a = 2. Since f ′(2) = 11, a unit in Z7, Hensel’s
Lemma tells us that f(x) has root α in Z7 congruent to 2 mod 7Z7. In fact, α
must be a simple root since f ′(α) ̸= 0.

Therefore, if g(x) ∈ Z7[x] is the unique polynomial with f(x) = (x−α)g(x),
then g(x) is quadratic and irreducible over Q7. Thus L/Q7 is quadratic.

(b) One finds easily that g(x) = x2 + αx− 1/α ∈ Z7[x], and completing the

square we see that L = Q7(
√

1
4α

2 + α−1). Using α3 = α−1, one finds the more

convenient description that L = Q7(γ) where γ is a square root of β = α2 +3α.
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In Z7/7Z7, β = α2 + 3α = 3, therefore in OL/pL, γ
2 = β = 3. Now, let δ

be a square root of 3 and let M = Q7(γ, δ). Then in OM/pM , γ2 = 3 = δ
2
, so

γ = (−1)rδ for some r ∈ {0, 1}. If |·| is the absolute value on Q7 extended to M ,
the above says |(−1)rδ−γ| < 1. However, writing Gal(L/Q7) = ⟨σ⟩, we see that
|σ(γ)−γ| = |−2γ| = 1, since 2γ is a unit in L. Hence |(−1)rδ−γ| < |σ(γ)−γ|,
so Krasner’s Lemma tells us that γ ∈ Q7(δ), or in other words, L = Q7(δ) =
Q7(

√
3).

Now, adding 7 repeatedly by using question 2, and factoring out squares
whenever possible, we see that

Q7(
√
3) = Q7(

√
10) = Q7(

√
17) = Q7(

√
6) = Q7(

√
13) = Q(

√
5).

Since 3, 5 and 6 represent all three non-squares mod 7, we are done (again, by
question 2).

4. (a) The map Un
K → kK is surjective. It is a group homomorphism since

a + b + abπn ≡ a + b mod pK . Further, 1 + aπn is in the kernel if and only if
a ∈ pK , if and only if 1 + aπn ∈ Un+1

K . Therefore Un
K/Un+1

K ≃ kK . Since K is a
local field, kK is finite. Further, the additive group of the field kK is a p-group
because kK has characteristic p.

(b) We proceed by induction on n. The case n = 1 is trivial. Now assume
that U1

K/Un
K is a finite p-group for some n ≥ 1. Then the isomorphism

U1
K/Un+1

K

Un
K/Un+1

K

≃ U1
K/Un

K

together with part (a) completes the induction.
(c) Define a map U1

K → lim
←n

U1
K/Un

K by sending a principal unit u to the

element of lim
←n

U1
K/Un

K that has u mod Un
K in the nth component. This map

is a group homomorphism. If u is in the kernel of this map, then it is in Un
K

for all n, which is to say that ν(u− 1) ≥ n for all n, where ν is the normalized
valuation on K. Therefore u− 1 = 0, i.e. u = 1. Thus the map is injective.

Now suppose we are given principal units un, n = 1, 2, 3, . . ., such that
um/un ∈ Um

K whenever m ≤ n (i.e. (un mod Un
K)n ∈ lim

←n
U1
K/Un

K). Then for

such m,n we have um − un ∈ pm, i.e. ν(um − un) ≥ m, i.e. the sequence {un}
is Cauchy and so has a limit u ∈ K. The sequence {un − 1} converges to u− 1,
and if u ̸= 1 then for large enough n, ν(u− 1) = ν(un − 1) ≥ 1. Thus u ∈ U1

K .
Further, u maps to (un mod Un

K)n. Indeed, given n ≥ 1, choose m ≥ n such
that u− um ∈ pnK . Then u ≡ um ≡ un mod pnK .

5. (a) A sufficient condition is n > 2ν(m) where ν is the normalized valuation on
K. Indeed, suppose n > 2ν(m). Take a ∈ Un

K and let f(x) = xm − a ∈ OK [x].
Then |f(1)| < |f ′(1)2| if and only if |1−a| < |m2|, if and only if ν(1−a) > 2ν(m).
However, ν(1− a) ≥ n ≥ 2ν(m), so indeed, |f(1)| < |f ′(1)2|. Thus, by Hensel’s
Lemma, there is α ∈ OK such that f(α) = 0, i.e. αm = a, i.e. a ∈ (UK)m.

(b) Consider the natural map UK → UK/(UK)m. Choosing n > 2ν(m), we
see from part (a) that Un

K is in the kernel of this map, so that UK/Un
K surjects
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onto UK/(UK)m. It is therefore enough to show that UK/Un
K is finite. We know

that UK/U1
K ≃ kK is finite, so we are reduced to showing that U1

K/Un
K is finite.

However, we saw that this is the case in question 4.
(c) Let K be a characteristic 0 local field, and let m ≥ 1. Fix an algebraic

closure K̄ of K and let L = K(ζm) where ζm is a primitive mth root of unity
in K̄. Since L× = ⟨π⟩ × UL where π is a uniformizer of L, L×/(L×)m ∼=
Z/mZ× UL/(UL)

m, which is finite by part (b). Therefore, by Kummer theory,
L admits only finitely many abelian extensions of exponent m in K̄. Let M be
the maximal such extension of L. In other words, M is the compositum of the
finitely many exponent m abelian extensions of L in K̄. If F/K is abelian of
exponent m, then FL/L is also abelian of exponent m, so that FL ⊆ M . In
particular, K ⊆ F ⊆ M . Since M/K is a finite separable extension, there are
therefore only finitely many possibilities for F .
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