Algebraic Number Theory
 MATH 512

Solutions to Assignment 4

1. We observe that the cubes mod 9 are $-1,0$ and 1 . Therefore if $3 \nmid x, y$, then $z^{3}=x^{3}+y^{3} \equiv-2,0,2 \bmod 9$, so we must have $z \equiv 0 \bmod 9$, i.e. $3 \mid z$.
2. (a) A prime that divides any two of x, y, z must necessarily divide the third, and therefore may be factored out. Thus we may assume that x, y, z are pairwise coprime. In particular, 3 can divide no more than one of x, y, z. Therefore, by exercise 1., 3 must divide exactly one of x, y, z. By relabelling x, y, z if necessary, and introducing signs as appropriate, we may assume that $3 \mid z$. Write $z=3^{m} \tilde{z}$ with \tilde{z} a non-zero integer not divisible by 3 . Then $x^{3}+y^{3}=3^{m} \tilde{z}^{3}$, and we are done.
(b) 3 divides $\alpha \beta \gamma$ in $\mathbb{Z}[\zeta]$, so π also divides $\alpha \beta \gamma$ since $(1-\zeta)\left(1-\zeta^{2}\right)=3$. Since π is prime, it divides at least one of α, β, γ. However, π is associate to $1-\zeta^{2}$, and so

$$
x+y \equiv x+y \zeta \equiv x+y \zeta^{2} \bmod \pi
$$

Thus π divides all three of α, β, γ.
(c) If π divides β^{\prime}, then $\pi^{2} \mid \beta$, but $\pi^{2}=-3 \zeta$ and so 3 divides β in that case. But then 3 divides both x and y, a contradiction. Similarly, π does not divide γ^{\prime} in $\mathbb{Z}[\zeta]$.

$$
\begin{aligned}
3^{3 m} z^{3} & =\alpha \beta \gamma \\
& =(1-\zeta)\left(1-\zeta^{2}\right) \alpha \beta^{\prime} \gamma^{\prime} \\
& =3 \alpha \beta^{\prime} \gamma^{\prime},
\end{aligned}
$$

so $3^{3 m-1} z^{3}=\alpha \beta^{\prime} \gamma^{\prime}$. By the above, $3^{3 m-1}$ is coprime to each of $\beta^{\prime}, \gamma^{\prime}$, and so $3^{3 m-1}$ divides α in $\mathbb{Z}[\zeta]$, i.e. there is $\alpha^{\prime} \in \mathbb{Z}[\zeta]$ such that $\alpha=3^{3 m-1} \alpha^{\prime}$.

Now, any prime dividing at least two of $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ must divide at least two of α, β, γ. The proof of Lemma 46 shows in that case that the prime in question must be associate to π, and so π divides β^{\prime} or γ^{\prime}. However, we have just seen that this cannot happen. Thus $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ are pairwise coprime.
(d) The units in $\mathbb{Z}[\zeta]$ are $\pm \zeta^{k}, k=0,1,2$. By replacing δ_{i} by $-\delta_{i}$ if necessary, we may assume that u_{i} is a power of ζ. Write $u_{i}=\zeta^{k_{i}}$ with $k_{i} \in\{0,1,2\}$.

We first deal with k_{1}. Let σ be the non-trivial element of $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$, i.e. $\sigma(\zeta)=\zeta^{-1}$. Then

$$
\begin{aligned}
\zeta^{2 k_{1}} & =u_{1} / \sigma\left(u_{1}\right) \\
& =\frac{\alpha^{\prime} \sigma\left(\delta_{1}\right)^{3}}{\alpha^{\prime} \delta_{1}^{3}} \\
& =\left(\frac{\sigma\left(\delta_{1}\right)}{\delta_{1}}\right)^{3}
\end{aligned}
$$

Therefore $\zeta^{2 k_{1}}$ is both a square and a cube in the cyclic group $\langle-\zeta\rangle$ of order 6 , and is therefore trivial. Thus $\zeta^{k_{1}}$ is trivial also, so $k_{1}=0$.

Now to deal with k_{2}. Write $\delta_{2}=d_{1}+d_{2} \zeta$ with $d_{1}, d_{2} \in \mathbb{Z}$. Since $\beta^{\prime}=\zeta^{k_{2}} \delta_{2}^{3}$, we have

$$
\beta^{\prime}= \begin{cases}3 d_{1} d_{2}^{2}-3 d_{1}^{2} d_{2}+\left(d_{1}^{3}+d_{2}^{3}-3 d_{1}^{2} d_{2}\right) \zeta & \text { if } k_{2}=1 \tag{1}\\ 3 d_{1}^{2} d_{2}-d_{1}^{3}-d_{2}^{3}+\left(3 d_{1} d_{2}^{2}-d_{1}^{3}-d_{2}^{3}\right) \zeta & \text { if } k_{2}=2 .\end{cases}
$$

However, $\beta^{\prime}=\beta / \pi=\frac{1}{3}(2 x-y)+\frac{1}{3}(x+y) \zeta$. Also, $9 \mid \alpha=x+y$, i.e. $y \equiv$ $-x \bmod 9$, so $3 \left\lvert\, \frac{1}{3}(x+y)\right.$ and $2 x-y \equiv 3 x \bmod 9$. This last congruence says $\frac{1}{3}(2 x-y) \equiv x \not \equiv 0 \bmod 3$. In summary,

$$
\begin{aligned}
\frac{1}{3}(2 x-y) & \not \equiv 0 \bmod 3 \\
\frac{1}{3}(x+y) & \equiv 0 \bmod 3
\end{aligned}
$$

This contradicts the descriptions of β^{\prime}, in the cases $k_{2}=1,2$, given in (1). Hence $k_{2}=0$. That $\gamma^{\prime}=\delta_{3}^{3}$ for some $\delta_{3} \in \mathbb{Z}[\zeta]$ now follows just by applying σ to the equation $\beta^{\prime}=\delta_{2}^{3}$.
(e) Write $\delta_{1}=s+t \zeta$ with $s, t \in \mathbb{Z}$. Then

$$
\begin{aligned}
\alpha^{\prime} & =(s+t \zeta)^{3} \\
& =s^{3}+t^{3}-3 s t^{2}+3 s t(s-t) \zeta
\end{aligned}
$$

so one of $s, t, s-t$ is zero. Since $\zeta^{3}=1$ and $(1+\zeta)^{3}=-1$, we may assume $\delta_{1} \in \mathbb{Z}$.
(f) Any rational prime dividing both a and b would divide both $\tilde{\beta}$ and $\tilde{\gamma}$, which is impossible.
(g)

$$
\begin{aligned}
x+y \zeta & =\beta^{\prime} \pi \\
& =(a+b \zeta)^{3}(1-\zeta) \\
& =\left(a^{3}+b^{3}+3 a^{2} b-6 a b^{2}\right)+\left(6 a^{2} b-3 a b^{2}-a^{3}-b^{3}\right) \zeta
\end{aligned}
$$

so

$$
\begin{aligned}
x+y & =9 a^{2} b-9 a b^{2} \\
& =9 a b(a-b) .
\end{aligned}
$$

Then

$$
\begin{aligned}
9 a b(a-b) & =x+y \\
& =\alpha \\
& =3^{3 m-1} \alpha^{\prime} \\
& =3^{3 m-1} \delta_{1}^{3}
\end{aligned}
$$

i.e. $a b(a-b)=3^{3 m-3} \delta_{1}^{3}$.
(h) Since $3^{3 m-3}$ divides $a b(a-b)$ and $a, b, a-b$ are pairwise coprime, $3^{3 m-3}$ divides exactly one of them. Dividing that integer by $3^{3 m-3}$, the product is then equal to δ_{1}^{3}, and so each of the integers is a cube in \mathbb{Z}, say r^{3}, s^{3}, t^{3}.
(i) If, for example, $a=r^{3}, b=s^{3}$ and $a-b=3^{3 m-3} t^{3}$, then

$$
r^{3}+(-s)^{3}=3^{3 m-3} t^{3},
$$

so we take $r_{1}=r, s_{1}=-s$ and $t_{1}=t$. All the other possibilities involve simply reordering terms and changing signs as necessary.
(j) It remains to show that 3 divides none of r_{1}, s_{1}, t_{1}. For this, suppose that $3 \mid \alpha^{\prime}$ in \mathbb{Z}, say $\alpha^{\prime}=3 \alpha^{\prime \prime}$ with $\alpha^{\prime \prime} \in \mathbb{Z}$. Then

$$
\begin{aligned}
3^{3 m} z^{3} & =3 \alpha \beta^{\prime} \gamma^{\prime} \\
& =3^{3 m} \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \\
& =3^{3 m+1} \alpha^{\prime \prime} \beta^{\prime} \gamma^{\prime},
\end{aligned}
$$

so $z^{3}=3 \alpha^{\prime \prime} \beta^{\prime} \gamma^{\prime}$, implying that $3 \mid z$, a contradiction. Therefore $3 \nmid \alpha^{\prime}$ and so $3 \nmid \delta_{1}$. This means that 3 divides none of r, s, t, and so also 3 divides none of r_{1}, s_{1}, t_{1} as required. By induction on $m \geq 0$, we are done (the case $m=0$ being exercise 1., the first case of Fermat with $p=3$).
3. Suppose $\alpha \in \mathcal{O}_{K}$, so that $f(\alpha)=0$ for some $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+$ $a_{1} x+a_{0} \in \mathbb{Z}[x]$ with $n \geq 1$. If $|\alpha|>1$, then for $0 \leq k<n$ we have

$$
\begin{aligned}
\left|\alpha^{n}\right| & =|\alpha|^{n} \\
& >|\alpha|^{k} \\
& =\left|\alpha^{k}\right| \\
& \geq\left|a_{k}\right|\left|\alpha^{k}\right| \\
& =\left|a_{k} \alpha^{k}\right| .
\end{aligned}
$$

This means that the first term in $f(\alpha)$ has absolute value strictly greater than that of every other term, and so $|f(\alpha)|=\left|\alpha^{n}\right|>1$. However, $f(\alpha)=0$, so that we have a contradiction. Thus $|\alpha| \leq 1$, as required.

