
Algebraic Number Theory

MATH 512

Solutions to Assignment 4

1. We observe that the cubes mod 9 are −1, 0 and 1. Therefore if 3 ̸ |x, y, then
z3 = x3 + y3 ≡ −2, 0, 2 mod 9, so we must have z ≡ 0 mod 9, i.e. 3|z.

2. (a) A prime that divides any two of x, y, z must necessarily divide the third,
and therefore may be factored out. Thus we may assume that x, y, z are pairwise
coprime. In particular, 3 can divide no more than one of x, y, z. Therefore, by
exercise 1., 3 must divide exactly one of x, y, z. By relabelling x, y, z if necessary,
and introducing signs as appropriate, we may assume that 3|z. Write z = 3mz̃
with z̃ a non-zero integer not divisible by 3. Then x3 + y3 = 3mz̃3, and we are
done.

(b) 3 divides αβγ in Z[ζ], so π also divides αβγ since (1 − ζ)(1 − ζ2) = 3.
Since π is prime, it divides at least one of α, β, γ. However, π is associate to
1− ζ2, and so

x+ y ≡ x+ yζ ≡ x+ yζ2 mod π.

Thus π divides all three of α, β, γ.
(c) If π divides β′, then π2|β, but π2 = −3ζ and so 3 divides β in that case.

But then 3 divides both x and y, a contradiction. Similarly, π does not divide
γ′ in Z[ζ].

33mz3 = αβγ

= (1− ζ)(1− ζ2)αβ′γ′

= 3αβ′γ′,

so 33m−1z3 = αβ′γ′. By the above, 33m−1 is coprime to each of β′, γ′, and so
33m−1 divides α in Z[ζ], i.e. there is α′ ∈ Z[ζ] such that α = 33m−1α′.

Now, any prime dividing at least two of α′, β′, γ′ must divide at least two of
α, β, γ. The proof of Lemma 46 shows in that case that the prime in question
must be associate to π, and so π divides β′ or γ′. However, we have just seen
that this cannot happen. Thus α′, β′, γ′ are pairwise coprime.

(d) The units in Z[ζ] are ±ζk, k = 0, 1, 2. By replacing δi by −δi if necessary,
we may assume that ui is a power of ζ. Write ui = ζki with ki ∈ {0, 1, 2}.

We first deal with k1. Let σ be the non-trivial element of Gal(Q(ζ)/Q), i.e.
σ(ζ) = ζ−1. Then

ζ2k1 = u1/σ(u1)

=
α′σ(δ1)

3

α′δ31

=

(
σ(δ1)

δ1

)3

.
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Therefore ζ2k1 is both a square and a cube in the cyclic group ⟨−ζ⟩ of order 6,
and is therefore trivial. Thus ζk1 is trivial also, so k1 = 0.

Now to deal with k2. Write δ2 = d1 + d2ζ with d1, d2 ∈ Z. Since β′ = ζk2δ32 ,
we have

β′ =

{
3d1d

2
2 − 3d21d2 + (d31 + d32 − 3d21d2)ζ if k2 = 1

3d21d2 − d31 − d32 + (3d1d
2
2 − d31 − d32)ζ if k2 = 2.

(1)

However, β′ = β/π = 1
3 (2x − y) + 1

3 (x + y)ζ. Also, 9|α = x + y, i.e. y ≡
−x mod 9, so 3| 13 (x + y) and 2x − y ≡ 3x mod 9. This last congruence says
1
3 (2x− y) ≡ x ̸≡ 0 mod 3. In summary,

1

3
(2x− y) ̸≡ 0 mod 3

1

3
(x+ y) ≡ 0 mod 3.

This contradicts the descriptions of β′, in the cases k2 = 1, 2, given in (1). Hence
k2 = 0. That γ′ = δ33 for some δ3 ∈ Z[ζ] now follows just by applying σ to the
equation β′ = δ32 .

(e) Write δ1 = s+ tζ with s, t ∈ Z. Then

α′ = (s+ tζ)3

= s3 + t3 − 3st2 + 3st(s− t)ζ,

so one of s, t, s − t is zero. Since ζ3 = 1 and (1 + ζ)3 = −1, we may assume
δ1 ∈ Z.

(f) Any rational prime dividing both a and b would divide both β̃ and γ̃,
which is impossible.

(g)

x+ yζ = β′π

= (a+ bζ)3(1− ζ)

= (a3 + b3 + 3a2b− 6ab2) + (6a2b− 3ab2 − a3 − b3)ζ,

so

x+ y = 9a2b− 9ab2

= 9ab(a− b).

Then

9ab(a− b) = x+ y

= α

= 33m−1α′

= 33m−1δ31 ,
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i.e. ab(a− b) = 33m−3δ31 .
(h) Since 33m−3 divides ab(a− b) and a, b, a− b are pairwise coprime, 33m−3

divides exactly one of them. Dividing that integer by 33m−3, the product is
then equal to δ31 , and so each of the integers is a cube in Z, say r3, s3, t3.

(i) If, for example, a = r3, b = s3 and a− b = 33m−3t3, then

r3 + (−s)3 = 33m−3t3,

so we take r1 = r, s1 = −s and t1 = t. All the other possibilities involve simply
reordering terms and changing signs as necessary.

(j) It remains to show that 3 divides none of r1, s1, t1. For this, suppose that
3|α′ in Z, say α′ = 3α′′ with α′′ ∈ Z. Then

33mz3 = 3αβ′γ′

= 33mα′β′γ′

= 33m+1α′′β′γ′,

so z3 = 3α′′β′γ′, implying that 3|z, a contradiction. Therefore 3 ̸ |α′ and so
3 ̸ | δ1. This means that 3 divides none of r, s, t, and so also 3 divides none of
r1, s1, t1 as required. By induction on m ≥ 0, we are done (the case m = 0
being exercise 1., the first case of Fermat with p = 3).

3. Suppose α ∈ OK , so that f(α) = 0 for some f(x) = xn + an−1x
n−1 + · · ·+

a1x+ a0 ∈ Z[x] with n ≥ 1. If |α| > 1, then for 0 ≤ k < n we have

|αn| = |α|n

> |α|k

= |αk|
≥ |ak||αk|
= |akαk|.

This means that the first term in f(α) has absolute value strictly greater than
that of every other term, and so |f(α)| = |αn| > 1. However, f(α) = 0, so that
we have a contradiction. Thus |α| ≤ 1, as required.
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