Algebraic Number Theory MATH 512

Solutions to Assignment 4

1. We observe that the cubes mod 9 are -1, 0 and 1. Therefore if $3 \nmid x, y$, then $z^3 = x^3 + y^3 \equiv -2, 0, 2 \mod 9$, so we must have $z \equiv 0 \mod 9$, i.e. $3 \mid z$.

2. (a) A prime that divides any two of x, y, z must necessarily divide the third, and therefore may be factored out. Thus we may assume that x, y, z are pairwise coprime. In particular, 3 can divide no more than one of x, y, z. Therefore, by exercise **1.**, 3 must divide *exactly* one of x, y, z. By relabelling x, y, z if necessary, and introducing signs as appropriate, we may assume that 3|z. Write $z = 3^m \tilde{z}$ with \tilde{z} a non-zero integer not divisible by 3. Then $x^3 + y^3 = 3^m \tilde{z}^3$, and we are done.

(b) 3 divides $\alpha\beta\gamma$ in $\mathbb{Z}[\zeta]$, so π also divides $\alpha\beta\gamma$ since $(1-\zeta)(1-\zeta^2) = 3$. Since π is prime, it divides at least one of α, β, γ . However, π is associate to $1-\zeta^2$, and so

$$x + y \equiv x + y\zeta \equiv x + y\zeta^2 \mod \pi.$$

Thus π divides all three of α, β, γ .

(c) If π divides β' , then $\pi^2 | \beta$, but $\pi^2 = -3\zeta$ and so 3 divides β in that case. But then 3 divides both x and y, a contradiction. Similarly, π does not divide γ' in $\mathbb{Z}[\zeta]$.

$$3^{3m}z^3 = \alpha\beta\gamma$$

= $(1-\zeta)(1-\zeta^2)\alpha\beta'\gamma'$
= $3\alpha\beta'\gamma',$

so $3^{3m-1}z^3 = \alpha \beta' \gamma'$. By the above, 3^{3m-1} is coprime to each of β', γ' , and so 3^{3m-1} divides α in $\mathbb{Z}[\zeta]$, i.e. there is $\alpha' \in \mathbb{Z}[\zeta]$ such that $\alpha = 3^{3m-1}\alpha'$.

Now, any prime dividing at least two of α', β', γ' must divide at least two of α, β, γ . The proof of Lemma 46 shows in that case that the prime in question must be associate to π , and so π divides β' or γ' . However, we have just seen that this cannot happen. Thus α', β', γ' are pairwise coprime.

(d) The units in $\mathbb{Z}[\zeta]$ are $\pm \zeta^k$, k = 0, 1, 2. By replacing δ_i by $-\delta_i$ if necessary, we may assume that u_i is a power of ζ . Write $u_i = \zeta^{k_i}$ with $k_i \in \{0, 1, 2\}$.

We first deal with k_1 . Let σ be the non-trivial element of $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$, i.e. $\sigma(\zeta) = \zeta^{-1}$. Then

$$\zeta^{2k_1} = u_1/\sigma(u_1)$$
$$= \frac{\alpha'\sigma(\delta_1)^3}{\alpha'\delta_1^3}$$
$$= \left(\frac{\sigma(\delta_1)}{\delta_1}\right)^3.$$

Therefore ζ^{2k_1} is both a square and a cube in the cyclic group $\langle -\zeta \rangle$ of order 6, and is therefore trivial. Thus ζ^{k_1} is trivial also, so $k_1 = 0$.

Now to deal with k_2 . Write $\delta_2 = d_1 + d_2\zeta$ with $d_1, d_2 \in \mathbb{Z}$. Since $\beta' = \zeta^{k_2} \delta_2^3$, we have

$$\beta' = \begin{cases} 3d_1d_2^2 - 3d_1^2d_2 + (d_1^3 + d_2^3 - 3d_1^2d_2)\zeta & \text{if } k_2 = 1\\ 3d_1^2d_2 - d_1^3 - d_2^3 + (3d_1d_2^2 - d_1^3 - d_2^3)\zeta & \text{if } k_2 = 2. \end{cases}$$
(1)

However, $\beta' = \beta/\pi = \frac{1}{3}(2x - y) + \frac{1}{3}(x + y)\zeta$. Also, $9|\alpha = x + y$, i.e. $y \equiv -x \mod 9$, so $3|\frac{1}{3}(x + y)$ and $2x - y \equiv 3x \mod 9$. This last congruence says $\frac{1}{3}(2x - y) \equiv x \not\equiv 0 \mod 3$. In summary,

$$\frac{1}{3}(2x-y) \not\equiv 0 \mod 3$$
$$\frac{1}{3}(x+y) \equiv 0 \mod 3.$$

This contradicts the descriptions of β' , in the cases $k_2 = 1, 2$, given in (1). Hence $k_2 = 0$. That $\gamma' = \delta_3^3$ for some $\delta_3 \in \mathbb{Z}[\zeta]$ now follows just by applying σ to the equation $\beta' = \delta_2^3$.

(e) Write $\delta_1 = s + t\zeta$ with $s, t \in \mathbb{Z}$. Then

$$\begin{array}{rcl} \alpha' & = & (s+t\zeta)^3 \\ & = & s^3 + t^3 - 3st^2 + 3st(s-t)\zeta, \end{array}$$

so one of s, t, s - t is zero. Since $\zeta^3 = 1$ and $(1 + \zeta)^3 = -1$, we may assume $\delta_1 \in \mathbb{Z}$.

(f) Any rational prime dividing both a and b would divide both $\tilde{\beta}$ and $\tilde{\gamma}$, which is impossible.

(g)

$$\begin{aligned} x + y\zeta &= \beta'\pi \\ &= (a + b\zeta)^3 (1 - \zeta) \\ &= (a^3 + b^3 + 3a^2b - 6ab^2) + (6a^2b - 3ab^2 - a^3 - b^3)\zeta, \end{aligned}$$

 \mathbf{SO}

$$\begin{aligned} x+y &= 9a^2b - 9ab^2 \\ &= 9ab(a-b). \end{aligned}$$

Then

$$9ab(a-b) = x+y$$
$$= \alpha$$
$$= 3^{3m-1}\alpha'$$
$$= 3^{3m-1}\delta_1^3,$$

i.e. $ab(a-b) = 3^{3m-3}\delta_1^3$.

(h) Since 3^{3m-3} divides ab(a-b) and a, b, a-b are pairwise coprime, 3^{3m-3} divides exactly one of them. Dividing that integer by 3^{3m-3} , the product is then equal to δ_1^3 , and so each of the integers is a cube in \mathbb{Z} , say r^3, s^3, t^3 .

(i) If, for example, $a = r^3$, $b = s^3$ and $a - b = 3^{3m-3}t^3$, then

$$r^3 + (-s)^3 = 3^{3m-3}t^3,$$

so we take $r_1 = r$, $s_1 = -s$ and $t_1 = t$. All the other possibilities involve simply reordering terms and changing signs as necessary.

(j) It remains to show that 3 divides none of r_1, s_1, t_1 . For this, suppose that $3|\alpha' \text{ in } \mathbb{Z}$, say $\alpha' = 3\alpha''$ with $\alpha'' \in \mathbb{Z}$. Then

$$\begin{array}{rcl} 3^{3m}z^3 &=& 3\alpha\beta'\gamma'\\ &=& 3^{3m}\alpha'\beta'\gamma'\\ &=& 3^{3m+1}\alpha''\beta'\gamma', \end{array}$$

so $z^3 = 3\alpha''\beta'\gamma'$, implying that 3|z, a contradiction. Therefore $3 \nmid \alpha'$ and so $3 \nmid \delta_1$. This means that 3 divides none of r, s, t, and so also 3 divides none of r_1, s_1, t_1 as required. By induction on $m \geq 0$, we are done (the case m = 0 being exercise **1**., the first case of Fermat with p = 3).

3. Suppose $\alpha \in \mathcal{O}_K$, so that $f(\alpha) = 0$ for some $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Z}[x]$ with $n \ge 1$. If $|\alpha| > 1$, then for $0 \le k < n$ we have

$$|\alpha^{n}| = |\alpha|^{n}$$

$$> |\alpha|^{k}$$

$$= |\alpha^{k}|$$

$$\geq |a_{k}||\alpha^{k}|$$

$$= |a_{k}\alpha^{k}|.$$

This means that the first term in $f(\alpha)$ has absolute value strictly greater than that of every other term, and so $|f(\alpha)| = |\alpha^n| > 1$. However, $f(\alpha) = 0$, so that we have a contradiction. Thus $|\alpha| \leq 1$, as required.