Algebraic Number Theory MATH 512

Assignment 4

1. By reducing mod 9 , prove the first case of Fermat with $p=3$.

In the next exercise, you may assume that if ζ is a primitive cubic root of unity in $\overline{\mathbb{Q}}$, then the ring $\mathbb{Z}[\zeta]$ has uniqueness of factorization.
2. Prove Fermat with $p=3$ as follows:
(a) Assume that there are non-zero integers x, y and z with $x^{3}+y^{3}=z^{3}$. Deduce the existence of pairwise coprime integers x, y, z with $3 \nmid x, y, z$ and a positive integer m such that

$$
\begin{equation*}
x^{3}+y^{3}=\left(3^{m} z\right)^{3} . \tag{1}
\end{equation*}
$$

(The new x, y, z may be different from the previous x, y, z. From now on, x, y, z will refer to the integers appearing in (1).)
(b) Let $\alpha=x+y, \beta=x+\zeta y$ and $\gamma=x+\zeta^{2} y$ where ζ is a primitive cubic root of unity in $\overline{\mathbb{Q}}$. Show that $\pi=1-\zeta$ divides β and γ in $\mathbb{Z}[\zeta]$. $(\pi$ also divides α, but we will be more precise about this in (c).)
(c) As a consequence of (b), we may write $\beta=(1-\zeta) \beta^{\prime}$ and $\gamma=\left(1-\zeta^{2}\right) \gamma^{\prime}$ with $\beta^{\prime}, \gamma^{\prime} \in \mathbb{Z}[\zeta]$. Show that π divides neither β^{\prime} nor γ^{\prime}, and conclude that $\alpha=3^{3 m-1} \alpha^{\prime}$ with $\alpha^{\prime} \in \mathbb{Z}[\zeta]$. Show further that $\alpha^{\prime}, \beta^{\prime}$ and γ^{\prime} are pairwise coprime.
(d) Because of (c) and uniqueness of factorization in $\mathbb{Z}[\zeta]$, we may write

$$
\begin{aligned}
\alpha^{\prime} & =u_{1} \delta_{1}^{3} \\
\beta^{\prime} & =u_{2} \delta_{2}^{3} \\
\gamma^{\prime} & =u_{3} \delta_{3}^{3}
\end{aligned}
$$

with $u_{i} \in \mathbb{Z}[\zeta]^{\times}$and $\delta_{i} \in \mathbb{Z}[\zeta]$ for $i=1,2,3$. Show that we may assume $u_{1}=u_{2}=u_{3}=1$. (Hint: What are the units in $\mathbb{Z}[\zeta]$?)
(e) Show that we may assume $\delta_{1} \in \mathbb{Z}$.
(f) Write $\delta_{2}=a+\zeta b$ with $a, b \in \mathbb{Z}$. Show that a and b are coprime, so that a, b and $a-b$ are pairwise coprime.
(g) Show that $x+y=9 a b(a-b)$, and conclude that $a b(a-b)=3^{3 m-3} \delta_{1}^{3}$.
(h) Show that there are pairwise coprime integers r, s, t such that some permutation of $(a, b, a-b)$ is equal to ($r^{3}, s^{3}, 3^{3 m-3} t^{3}$).
(i) Using (h), show that there are pairwise coprime integers r_{1}, s_{1} and t_{1} such that $r_{1}^{3}+s_{1}^{3}=\left(3^{m-1} t_{1}\right)^{3}$.
(j) There is a crucial step required in order to complete the induction. Explain what that step is, and prove that the step is justified.
3. Let $v=|\cdot|$ be a non-archimedean absolute value on a number field K. Let $\mathcal{O}_{v}=\{x \in K| | x \mid \leq 1\}$, which is a ring by the non-archimedean property of $|\cdot|$. Show that $\mathcal{O}_{K} \subseteq \mathcal{O}_{v}$. (Do not use Theorem 56, since the statement $\mathcal{O}_{K} \subseteq \mathcal{O}_{v}$ is assumed in the proof of that theorem.)

