Algebraic Number Theory MATH 512

Assignment 4

1. By reducing mod 9, prove the first case of Fermat with p = 3.

In the next exercise, you may assume that if ζ is a primitive cubic root of unity in $\overline{\mathbb{Q}}$, then the ring $\mathbb{Z}[\zeta]$ has uniqueness of factorization.

2. Prove Fermat with p = 3 as follows:

(a) Assume that there are non-zero integers x, y and z with $x^3 + y^3 = z^3$. Deduce the existence of pairwise coprime integers x, y, z with $3 \nmid x, y, z$ and a positive integer m such that

$$x^3 + y^3 = (3^m z)^3. (1)$$

(The new x, y, z may be different from the previous x, y, z. From now on, x, y, z will refer to the integers appearing in (1).)

(b) Let $\alpha = x + y$, $\beta = x + \zeta y$ and $\gamma = x + \zeta^2 y$ where ζ is a primitive cubic root of unity in $\overline{\mathbb{Q}}$. Show that $\pi = 1 - \zeta$ divides β and γ in $\mathbb{Z}[\zeta]$. (π also divides α , but we will be more precise about this in (c).)

(c) As a consequence of (b), we may write $\beta = (1 - \zeta)\beta'$ and $\gamma = (1 - \zeta^2)\gamma'$ with $\beta', \gamma' \in \mathbb{Z}[\zeta]$. Show that π divides neither β' nor γ' , and conclude that $\alpha = 3^{3m-1}\alpha'$ with $\alpha' \in \mathbb{Z}[\zeta]$. Show further that α', β' and γ' are pairwise coprime.

(d) Because of (c) and uniqueness of factorization in $\mathbb{Z}[\zeta]$, we may write

$$egin{array}{rcl} lpha' &=& u_1 \delta_1^3 \ eta' &=& u_2 \delta_2^3 \ \gamma' &=& u_3 \delta_3^3 \end{array}$$

with $u_i \in \mathbb{Z}[\zeta]^{\times}$ and $\delta_i \in \mathbb{Z}[\zeta]$ for i = 1, 2, 3. Show that we may assume $u_1 = u_2 = u_3 = 1$. (*Hint: What are the units in* $\mathbb{Z}[\zeta]$?)

(e) Show that we may assume $\delta_1 \in \mathbb{Z}$.

(f) Write $\delta_2 = a + \zeta b$ with $a, b \in \mathbb{Z}$. Show that a and b are coprime, so that a, b and a - b are pairwise coprime.

(g) Show that x + y = 9ab(a - b), and conclude that $ab(a - b) = 3^{3m-3}\delta_1^3$.

(h) Show that there are pairwise coprime integers r, s, t such that some permutation of (a, b, a - b) is equal to $(r^3, s^3, 3^{3m-3}t^3)$.

(i) Using (h), show that there are pairwise coprime integers r_1 , s_1 and t_1 such that $r_1^3 + s_1^3 = (3^{m-1}t_1)^3$.

(j) There is a crucial step required in order to complete the induction. Explain what that step is, and prove that the step is justified.

3. Let $v = |\cdot|$ be a non-archimedean absolute value on a number field K. Let $\mathcal{O}_v = \{x \in K \mid |x| \leq 1\}$, which is a ring by the non-archimedean property of $|\cdot|$. Show that $\mathcal{O}_K \subseteq \mathcal{O}_v$. (Do not use Theorem 56, since the statement $\mathcal{O}_K \subseteq \mathcal{O}_v$ is assumed in the proof of that theorem.)