Algebraic Number Theory MATH 512

Solutions to Assignment 3

1. Throughout, we let $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma \rangle$. Assume (i). Let $\alpha = x + y\sqrt{-k}$, so that $\alpha^{1+\sigma} = p$. Then $(\alpha)_{\mathcal{O}_L}^{1+\sigma} = (p)_{\mathcal{O}_L}$. Since p is unramified in L by assumption, p splits into distinct primes $(\alpha)_{\mathcal{O}_L}$ and $(\alpha)_{\mathcal{O}_L}^{\sigma}$. Further, these primes are principal and therefore split completely in M/L. Thus p splits completely in M/\mathbb{Q} .

Conversely, assume (ii). Then p splits in L/\mathbb{Q} , i.e. $(p)_{\mathcal{O}_L} = \mathfrak{p}\mathfrak{q}$ with $\mathfrak{p} \neq \mathfrak{q}$, and because \mathfrak{p} and \mathfrak{q} split completely in M/L, they are necessarily principal. Hence $\mathfrak{p} = (\alpha)_{\mathcal{O}_L}$ for some $\alpha \in \mathcal{O}_L$, and $\mathfrak{q} = (\alpha)_{\mathcal{O}_L}^{\sigma}$. Therefore $(p)_{\mathcal{O}_L} = (\alpha^{1+\sigma})_{\mathcal{O}_L}$, i.e. $p = \alpha^{1+\sigma}u$ for some $u \in \mathcal{O}_L^{\times}$. Writing $\alpha = x + y\sqrt{-k}$ with $x, y \in \mathbb{Z}$, we see that $u = p/(x^2 + ky^2)$, a positive rational, and is therefore equal to 1. Thus $x^2 + ky^2 = p$.

2. Suppose \mathfrak{p} is a prime of L that ramifies in M/L, and let p be the rational prime below \mathfrak{p} . Then p ramifies in M/\mathbb{Q} , and so must ramify in $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ and in $\mathbb{Q}(\sqrt{-3})/\mathbb{Q}$ by the remark at the beginning of the question sheet. However, this is impossible since only 2 ramifies in $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ and only 3 ramifies in $\mathbb{Q}(\sqrt{-3})/\mathbb{Q}$. Thus every prime ideal of L is unramified in M/L.

3. We use the fact that every ideal class can be represented by an ideal of norm at most

$$\frac{n!}{n^n} \left(\frac{4}{\pi}\right)^{r_2} \sqrt{|d_L|},\tag{1}$$

where $n = [L:\mathbb{Q}] = 2$, $2r_2 = 2$ is the number of non-real complex embeddings of L, and $d_L = -24$ is the discriminant of L. Computing this number explicitly, we see that the greatest integer less than or equal to it is 3. Thus every ideal class can be represented by a product of primes above 2 and 3. Since 2 and 3 ramify in L, we have $(2) = \mathfrak{p}^2$ and $(3) = \mathfrak{q}^2$, with $\mathfrak{p}, \mathfrak{q}$ prime. Further, because \mathfrak{p} and \mathfrak{q} have norm 2 and 3 respectively, any non-trivial ideal class is represented by either \mathfrak{p} or \mathfrak{q} . Thus $\operatorname{Cl}(L)$ has order at most 3.

Observe now that \mathfrak{p} cannot be principal, for if $\mathfrak{p} = (\alpha)$ with $\alpha = a + b\sqrt{-6}$ and $a, b \in \mathbb{Z}$, then

$$\begin{array}{rcl} 2 & = & \mathbf{N}\mathfrak{p} \\ & = & |N(\alpha)| \\ & = & a^2 + 6b^2 \end{array}$$

which is impossible. Therefore the class of \mathfrak{p} in $\operatorname{Cl}(L)$ has order 2, so that $|\operatorname{Cl}(L)| = 2$.

(b) $2 = [\mathbb{Q}(\sqrt{2}, \sqrt{-3}) : L]$, which, by question **2.**, divides $[M : L] = |\operatorname{Cl}(L)| = 2$. Hence $\mathbb{Q}(\sqrt{2}, \sqrt{-3}) = M$. (In fact, we see now that in **2.**, after showing that

 $|Cl(L)| \leq 3$, we may have completed the proof that |Cl(L)| = 2 by comparing field degrees in the above manner.)

(c) Firstly, the equation has no integral solutions when p is 2 or 3, so we may assume that p is unramified in L and therefore apply question 1. Hence the equation has a solution if and only if p splits completely in M/\mathbb{Q} , and by the remark at the beginning of the question sheet, this happens if and only if p splits completely in both $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt{-3})/\mathbb{Q}$, that is to say $\left(\frac{2}{p}\right) = \left(\frac{-3}{p}\right) = 1$. By quadratic reciprocity, this happens if and only if $(-1)^{(p^2-1)/8} = \binom{p}{3} = 1$, i.e. $p \equiv 1$ or 7 mod 8 and $p \equiv 1 \mod 3$, i.e. $p \equiv 1$ or 7 mod 24.

4. Note that we may take $\zeta_8 = \frac{1}{\sqrt{2}}(1+i)$: begin by observing that $(1+i)^2 = 2i$. This also shows that $\sqrt{2} \in L$, since $i = \zeta_8^2 \in L$. Now let G_p be the decomposition group of p in $G = \operatorname{Gal}(L/\mathbb{Q})$, and recall that G_p is generated by the Frobenius $\varphi_p : \zeta_8 \mapsto \zeta_8^p$. By Dedekind's theorem on the splitting of primes, $\left(\frac{2}{p}\right) = 1$ if and only if p splits in $\mathbb{Q}(\sqrt{2})$, if and only if $\sqrt{2} \in L^{G_p}$, if and only if $\varphi_p(\sqrt{2}) = \sqrt{2}$. Therefore we may complete our solution by showing that φ_p fixes $\sqrt{2}$ if and only if $p \equiv 1$ or $-1 \mod 8$.

We may speed up our verification if we notice that

$$\sqrt{2} = \frac{1+i}{\zeta_8} = \frac{1+\zeta_8^2}{\zeta_8} = \zeta_8 + \zeta_8^{-1}.$$

Also, the minimal polynomial for ζ_8 over \mathbb{Q} is $x^4 + 1$ since ζ_8^2 is a primitive 4th root of unity, and so the sum of the four primitive 8th roots of unity is 0, i.e. $\zeta_8^3 + \zeta_8^{-3} = -(\zeta_8 + \zeta_8^{-1})$. Hence, since $\varphi_p(\sqrt{2}) = \varphi_p(\zeta_8 + \zeta_8^{-1}) = \zeta_8^p + \zeta_8^{-p}$, we now see immediately that $\varphi_p(\sqrt{2}) = \sqrt{2}$ if and only if $p \equiv 1$ or $-1 \mod 8$.

5. We begin by observing that for a positive integer a, $|\mathcal{O}_K : a\mathcal{O}_K| = |N(a)| = a^{[K:\mathbb{Q}]} = a^n$, i.e. there are a^n residue classes mod $a\mathcal{O}_K$. Now, take l as given in the question and choose elements $\gamma_1, \ldots, \gamma_l$ as in the proof of Lemma 43. Also let $f = \lfloor (3b)^n \rfloor$. Assume that for each $a = 1, \ldots, f$, the number of $i \in \{1, \ldots, l\}$ such that $|N(\gamma_i)| = a$ is no more than a^n . Then $l \leq \sum_{a=1}^f a^n = l - 1$, a contradiction. Therefore there exists $a \in \{1, \ldots, f\}$ such that more than a^n of the γ_i have $|N(\gamma_i)| = a$, in other words, more than $|\mathcal{O}_K : a\mathcal{O}_K|$ of the γ_i have $|N(\gamma_i)| = a$. Therefore, as stated at the beginning of the proof of Lemma 43, there exist i, j distinct with $\gamma_i \gamma_j^{-1} \in U_K$.