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MATH 512

Solutions to Assignment 3

1. Throughout, we let Gal(L/Q) = ⟨σ⟩. Assume (i). Let α = x+y
√
−k, so that

α1+σ = p. Then (α)1+σ
OL

= (p)OL
. Since p is unramified in L by assumption, p

splits into distinct primes (α)OL and (α)σOL
. Further, these primes are principal

and therefore split completely in M/L. Thus p splits completely in M/Q.
Conversely, assume (ii). Then p splits in L/Q, i.e. (p)OL = pq with p ̸= q,

and because p and q split completely in M/L, they are necessarily principal.
Hence p = (α)OL for some α ∈ OL, and q = (α)σOL

. Therefore (p)OL =

(α1+σ)OL
, i.e. p = α1+σu for some u ∈ O×

L . Writing α = x + y
√
−k with

x, y ∈ Z, we see that u = p/(x2 + ky2), a positive rational, and is therefore
equal to 1. Thus x2 + ky2 = p.

2. Suppose p is a prime of L that ramifies in M/L, and let p be the rational
prime below p. Then p ramifies in M/Q, and so must ramify in Q(

√
2)/Q and in

Q(
√
−3)/Q by the remark at the beginning of the question sheet. However, this

is impossible since only 2 ramifies inQ(
√
2)/Q and only 3 ramifies inQ(

√
−3)/Q.

Thus every prime ideal of L is unramified in M/L.

3. We use the fact that every ideal class can be represented by an ideal of norm
at most

n!

nn

(
4

π

)r2 √
|dL|, (1)

where n = [L : Q] = 2, 2r2 = 2 is the number of non-real complex embeddings
of L, and dL = −24 is the discriminant of L. Computing this number explicitly,
we see that the greatest integer less than or equal to it is 3. Thus every ideal
class can be represented by a product of primes above 2 and 3. Since 2 and 3
ramify in L, we have (2) = p2 and (3) = q2, with p, q prime. Further, because p
and q have norm 2 and 3 respectively, any non-trivial ideal class is represented
by either p or q. Thus Cl(L) has order at most 3.

Observe now that p cannot be principal, for if p = (α) with α = a + b
√
−6

and a, b ∈ Z, then

2 = Np

= |N(α)|
= a2 + 6b2,

which is impossible. Therefore the class of p in Cl(L) has order 2, so that
|Cl(L)| = 2.

(b) 2 = [Q(
√
2,
√
−3) : L], which, by question 2., divides [M : L] = |Cl(L)| =

2. Hence Q(
√
2,
√
−3) = M . (In fact, we see now that in 2., after showing that
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|Cl(L)| ≤ 3, we may have completed the proof that |Cl(L)| = 2 by comparing
field degrees in the above manner.)

(c) Firstly, the equation has no integral solutions when p is 2 or 3, so we
may assume that p is unramified in L and therefore apply question 1. Hence
the equation has a solution if and only if p splits completely in M/Q, and by the
remark at the beginning of the question sheet, this happens if and only if p splits

completely in both Q(
√
2)/Q and Q(

√
−3)/Q, that is to say

(
2
p

)
=

(
−3
p

)
= 1.

By quadratic reciprocity, this happens if and only if (−1)(p
2−1)/8 =

(
p
3

)
= 1,

i.e. p ≡ 1 or 7 mod 8 and p ≡ 1 mod 3, i.e. p ≡ 1 or 7 mod 24.

4. Note that we may take ζ8 = 1√
2
(1+ i): begin by observing that (1+ i)2 = 2i.

This also shows that
√
2 ∈ L, since i = ζ28 ∈ L. Now let Gp be the decomposition

group of p in G = Gal(L/Q), and recall that Gp is generated by the Frobenius

φp : ζ8 7→ ζp8 . By Dedekind’s theorem on the splitting of primes,
(

2
p

)
= 1 if and

only if p splits in Q(
√
2), if and only if

√
2 ∈ LGp , if and only if φp(

√
2) =

√
2.

Therefore we may complete our solution by showing that φp fixes
√
2 if and only

if p ≡ 1 or −1 mod 8.
We may speed up our verification if we notice that

√
2 =

1 + i

ζ8
=

1 + ζ28
ζ8

= ζ8 + ζ−1
8 .

Also, the minimal polynomial for ζ8 over Q is x4 + 1 since ζ28 is a primitive 4th
root of unity, and so the sum of the four primitive 8th roots of unity is 0, i.e.
ζ38 + ζ−3

8 = −(ζ8 + ζ−1
8 ). Hence, since φp(

√
2) = φp(ζ8 + ζ−1

8 ) = ζp8 + ζ−p
8 , we

now see immediately that φp(
√
2) =

√
2 if and only if p ≡ 1 or −1 mod 8.

5. We begin by observing that for a positive integer a, |OK : aOK | = |N(a)| =
a[K:Q] = an, i.e. there are an residue classes mod aOK . Now, take l as given in
the question and choose elements γ1, . . . , γl as in the proof of Lemma 43. Also let
f = ⌊⌊(3b)n⌋⌋. Assume that for each a = 1, . . . , f , the number of i ∈ {1, . . . , l}
such that |N(γi)| = a is no more than an. Then l ≤

∑f
a=1 a

n = l − 1, a
contradiction. Therefore there exists a ∈ {1, . . . , f} such that more than an of
the γi have |N(γi)| = a, in other words, more than |OK : aOK | of the γi have
|N(γi)| = a. Therefore, as stated at the beginning of the proof of Lemma 43,
there exist i, j distinct with γiγ

−1
j ∈ UK .
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