Algebraic Number Theory
 MATH 512

Solutions to Assignment 3

1. Throughout, we let $\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma\rangle$. Assume (i). Let $\alpha=x+y \sqrt{-k}$, so that $\alpha^{1+\sigma}=p$. Then $(\alpha)_{\mathcal{O}_{L}}^{1+\sigma}=(p)_{\mathcal{O}_{L}}$. Since p is unramified in L by assumption, p splits into distinct primes $(\alpha)_{\mathcal{O}_{L}}$ and $(\alpha)_{\mathcal{O}_{L}}^{\sigma}$. Further, these primes are principal and therefore split completely in M / L. Thus p splits completely in M / \mathbb{Q}.

Conversely, assume (ii). Then p splits in L / \mathbb{Q}, i.e. $(p)_{\mathcal{O}_{L}}=\mathfrak{p q}$ with $\mathfrak{p} \neq \mathfrak{q}$, and because \mathfrak{p} and \mathfrak{q} split completely in M / L, they are necessarily principal. Hence $\mathfrak{p}=(\alpha)_{\mathcal{O}_{L}}$ for some $\alpha \in \mathcal{O}_{L}$, and $\mathfrak{q}=(\alpha)_{\mathcal{O}_{L}}^{\sigma}$. Therefore $(p)_{\mathcal{O}_{L}}=$ $\left(\alpha^{1+\sigma}\right)_{\mathcal{O}_{L}}$, i.e. $p=\alpha^{1+\sigma} u$ for some $u \in \mathcal{O}_{L}^{\times}$. Writing $\alpha=x+y \sqrt{-k}$ with $x, y \in \mathbb{Z}$, we see that $u=p /\left(x^{2}+k y^{2}\right)$, a positive rational, and is therefore equal to 1 . Thus $x^{2}+k y^{2}=p$.
2. Suppose \mathfrak{p} is a prime of L that ramifies in M / L, and let p be the rational prime below \mathfrak{p}. Then p ramifies in M / \mathbb{Q}, and so must ramify in $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ and in $\mathbb{Q}(\sqrt{-3}) / \mathbb{Q}$ by the remark at the beginning of the question sheet. However, this is impossible since only 2 ramifies in $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ and only 3 ramifies in $\mathbb{Q}(\sqrt{-3}) / \mathbb{Q}$. Thus every prime ideal of L is unramified in M / L.
3. We use the fact that every ideal class can be represented by an ideal of norm at most

$$
\begin{equation*}
\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|d_{L}\right|} \tag{1}
\end{equation*}
$$

where $n=[L: \mathbb{Q}]=2,2 r_{2}=2$ is the number of non-real complex embeddings of L, and $d_{L}=-24$ is the discriminant of L. Computing this number explicitly, we see that the greatest integer less than or equal to it is 3 . Thus every ideal class can be represented by a product of primes above 2 and 3 . Since 2 and 3 ramify in L, we have $(2)=\mathfrak{p}^{2}$ and $(3)=\mathfrak{q}^{2}$, with $\mathfrak{p}, \mathfrak{q}$ prime. Further, because \mathfrak{p} and \mathfrak{q} have norm 2 and 3 respectively, any non-trivial ideal class is represented by either \mathfrak{p} or \mathfrak{q}. Thus $\mathrm{Cl}(L)$ has order at most 3 .

Observe now that \mathfrak{p} cannot be principal, for if $\mathfrak{p}=(\alpha)$ with $\alpha=a+b \sqrt{-6}$ and $a, b \in \mathbb{Z}$, then

$$
\begin{aligned}
2 & =\mathbf{N p} \\
& =|N(\alpha)| \\
& =a^{2}+6 b^{2},
\end{aligned}
$$

which is impossible. Therefore the class of \mathfrak{p} in $\mathrm{Cl}(L)$ has order 2, so that $|\mathrm{Cl}(L)|=2$.
(b) $2=[\mathbb{Q}(\sqrt{2}, \sqrt{-3}): L]$, which, by question 2., divides $[M: L]=|\mathrm{Cl}(L)|=$ 2. Hence $\mathbb{Q}(\sqrt{2}, \sqrt{-3})=M$. (In fact, we see now that in 2., after showing that
$|\mathrm{Cl}(L)| \leq 3$, we may have completed the proof that $|\mathrm{Cl}(L)|=2$ by comparing field degrees in the above manner.)
(c) Firstly, the equation has no integral solutions when p is 2 or 3 , so we may assume that p is unramified in L and therefore apply question 1. Hence the equation has a solution if and only if p splits completely in M / \mathbb{Q}, and by the remark at the beginning of the question sheet, this happens if and only if p splits completely in both $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ and $\mathbb{Q}(\sqrt{-3}) / \mathbb{Q}$, that is to say $\left(\frac{2}{p}\right)=\left(\frac{-3}{p}\right)=1$. By quadratic reciprocity, this happens if and only if $(-1)^{\left(p^{2}-1\right) / 8}=\left(\frac{p}{3}\right)=1$, i.e. $p \equiv 1$ or $7 \bmod 8$ and $p \equiv 1 \bmod 3$, i.e. $p \equiv 1 \operatorname{or} 7 \bmod 24$.
4. Note that we may take $\zeta_{8}=\frac{1}{\sqrt{2}}(1+i)$: begin by observing that $(1+i)^{2}=2 i$. This also shows that $\sqrt{2} \in L$, since $i=\zeta_{8}^{2} \in L$. Now let G_{p} be the decomposition group of p in $G=\operatorname{Gal}(L / \mathbb{Q})$, and recall that G_{p} is generated by the Frobenius $\varphi_{p}: \zeta_{8} \mapsto \zeta_{8}^{p}$. By Dedekind's theorem on the splitting of primes, $\left(\frac{2}{p}\right)=1$ if and only if p splits in $\mathbb{Q}(\sqrt{2})$, if and only if $\sqrt{2} \in L^{G_{\mathfrak{p}}}$, if and only if $\varphi_{p}(\sqrt{2})=\sqrt{2}$. Therefore we may complete our solution by showing that φ_{p} fixes $\sqrt{2}$ if and only if $p \equiv 1$ or $-1 \bmod 8$.

We may speed up our verification if we notice that

$$
\sqrt{2}=\frac{1+i}{\zeta_{8}}=\frac{1+\zeta_{8}^{2}}{\zeta_{8}}=\zeta_{8}+\zeta_{8}^{-1}
$$

Also, the minimal polynomial for ζ_{8} over \mathbb{Q} is $x^{4}+1$ since ζ_{8}^{2} is a primitive 4th root of unity, and so the sum of the four primitive 8 th roots of unity is 0 , i.e. $\zeta_{8}^{3}+\zeta_{8}^{-3}=-\left(\zeta_{8}+\zeta_{8}^{-1}\right)$. Hence, since $\varphi_{p}(\sqrt{2})=\varphi_{p}\left(\zeta_{8}+\zeta_{8}^{-1}\right)=\zeta_{8}^{p}+\zeta_{8}^{-p}$, we now see immediately that $\varphi_{p}(\sqrt{2})=\sqrt{2}$ if and only if $p \equiv 1$ or $-1 \bmod 8$.
5. We begin by observing that for a positive integer $a,\left|\mathcal{O}_{K}: a \mathcal{O}_{K}\right|=|N(a)|=$ $a^{[K: \mathbb{Q}]}=a^{n}$, i.e. there are a^{n} residue classes $\bmod a \mathcal{O}_{K}$. Now, take l as given in the question and choose elements $\gamma_{1}, \ldots, \gamma_{l}$ as in the proof of Lemma 43. Also let $f=\llbracket(3 b)^{n} \rrbracket$. Assume that for each $a=1, \ldots, f$, the number of $i \in\{1, \ldots, l\}$ such that $\left|N\left(\gamma_{i}\right)\right|=a$ is no more than a^{n}. Then $l \leq \sum_{a=1}^{f} a^{n}=l-1$, a contradiction. Therefore there exists $a \in\{1, \ldots, f\}$ such that more than a^{n} of the γ_{i} have $\left|N\left(\gamma_{i}\right)\right|=a$, in other words, more than $\left|\mathcal{O}_{K}: a \mathcal{O}_{K}\right|$ of the γ_{i} have $\left|N\left(\gamma_{i}\right)\right|=a$. Therefore, as stated at the beginning of the proof of Lemma 43, there exist i, j distinct with $\gamma_{i} \gamma_{j}^{-1} \in U_{K}$.

