Algebraic Number Theory
 MATH 512

Assignment 3

Throughout this assignment, you may use the following: Suppose L / K and F / K are extensions of number fields. If \mathfrak{p} is a prime of K that is unramified (resp. split completely) in L / K, then \mathfrak{P} is unramified (resp. split completely) in $F L / F$ for any prime \mathfrak{P} of F above \mathfrak{p}.

1. Let k be a positive, square-free integer that is not congruent to $3 \bmod 4$, and let p be a prime not dividing $2 k$. Let $L=\mathbb{Q}(\sqrt{-k})$ and let M / L be an abelian extension such that the primes of L that split completely in M are exactly the primes of L that are principal. (Such an M exists and is unique - it is called the Hilbert class field of L.) Show that the following are equivalent:
(i) There exist $x, y \in \mathbb{Z}$ such that $x^{2}+k y^{2}=p$.
(ii) p splits completely in M.
2. Let $L=\mathbb{Q}(\sqrt{-6})$. Show that every prime of L is unramified in $\mathbb{Q}(\sqrt{2}, \sqrt{-3})$.
3. Let L be as in question 2 .
(a) Compute the order of the class-group of L.
(b) Using the fact that the field M of question 1 satisfies $\operatorname{Gal}(M / L) \simeq \mathrm{Cl}(L)$, and also that M is the maximal abelian extension of L in which all primes of L are unramified, deduce that $M=\mathbb{Q}(\sqrt{2}, \sqrt{-3})$.
(c) Show that if p is any rational prime, then the equation $x^{2}+6 y^{2}=p$ has an integral solution $(x, y) \in \mathbb{Z}^{2}$ if and only if $p \equiv 1 \bmod 24$ or $p \equiv 7 \bmod 24$.
4. Let p be an odd prime. By considering the decomposition of p in the field $L=\mathbb{Q}\left(\zeta_{8}\right)$ (and using no other method), prove that

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

5. In the proof of Lemma 43, we claimed the existence of a positive integer l admitting integers i, j with $1 \leq i<j \leq l$ for which $\gamma_{i} \gamma_{j}^{-1}$ is a unit. Show that one may take

$$
l=1+\sum_{k=1}^{\llbracket(3 b)^{n} \Perp} k^{n},
$$

where b and n are as in the proof of the lemma, and for a real number $x,\lfloor x \rrbracket$ is the greatest integer strictly less then x.

Remark on 3(b): In general, the Hilbert class field of a number field L is actually the maximal abelian extension of L in which all prime ideals are unramified and all so-called "infinite primes" (which we have not discussed) split completely. This second condition is automatically satisfied for extensions of the field L of question 3.

