Algebraic Number Theory MATH 512

Solutions to Assignment 2

1. Let $H_{\alpha} = \operatorname{Gal}(M/\mathbb{Q}(\alpha))$, which contains H. Let B be a set of representatives for $(G/H_{\alpha})_{\text{left}}$ and C a set of representatives for $(H_{\alpha}/H)_{\text{left}}$. Then $\{\tau \rho \mid \tau \in B \text{ and } \rho \in C\}$ is a set of representatives for $(G/H)_{\text{left}}$. Since $g_{\alpha}(x)$ is independent of the choice of set of representatives for $(G/H)_{\text{left}}$, we see that

$$g_{\alpha}(x) = \prod_{\substack{\tau \in B\\\rho \in C}} (x - \tau \rho(\alpha))$$
$$= \prod_{\tau \in B} (x - \tau(\alpha))^{[L:\mathbb{Q}(\alpha)]}$$

We claim that G acts on $\{\tau(\alpha) \mid \tau \in B\}$. Indeed, if $\sigma \in G$ then $\sigma\tau = \tau'\sigma'$ for some $\tau' \in B$ and some $\sigma' \in H_{\alpha}$, so $\sigma\tau(\alpha) = \tau'\sigma'(\alpha) = \tau'(\alpha)$. Therefore, letting $f_{\alpha}(x) = \prod_{\tau \in B} (x - \tau(\alpha))$, we see that G fixes $f_{\alpha}(x)$. Hence $f_{\alpha}(x) \in \mathbb{Q}[x]$. Since α is a root of $f_{\alpha}(x)$, and since $f_{\alpha}(x)$ has degree $|G: H_{\alpha}| = [\mathbb{Q}(\alpha):\mathbb{Q}]$, $f_{\alpha}(x)$ is the minimal polynomial for α over \mathbb{Q} .

Now, if $\alpha \in \mathcal{O}_L$ then by Proposition 4, $f_\alpha(x) \in \mathbb{Z}[x]$ and therefore $g_\alpha(x) = f_\alpha(x)^{[L:\mathbb{Q}(\alpha)]} \in \mathbb{Z}[x]$. Conversely, if $g_\alpha(x) \in \mathbb{Z}[x]$, then α is a root of a monic polynomial with integer coefficients and therefore lies in \mathcal{O}_L .

2. Let $\overline{f}(x)$ be the reduction mod \mathfrak{p} of the minimal polynomial of α over K. Firstly, if \mathfrak{p} splits completely then there are n = [L:K] primes above \mathfrak{p} , each of ramification index and residue degree 1 over \mathfrak{p} . Therefore $\overline{f}(x)$ splits into n linear factors over $k(\mathfrak{p})$, and so in particular has a root in $k(\mathfrak{p})$, i.e. f(x) has a root mod \mathfrak{p} .

Conversely, suppose that $\overline{f}(x)$ has a root, so that $\overline{f}(x)$ has a monic linear factor $\overline{P}(x)$. Let \mathfrak{P} be the prime of B corresponding to this linear factor. Observe that $f(\mathfrak{P}|\mathfrak{p}) = \deg(\overline{P}(x)) = 1$. Also, by assumption \mathfrak{p} is unramified in B and so $e(\mathfrak{P}|\mathfrak{p}) = 1$. Finally, since L/K is Galois, $e(\mathfrak{P}'|\mathfrak{p}) = e(\mathfrak{P}|\mathfrak{p}) = 1$ and $f(\mathfrak{P}'|\mathfrak{p}) = f(\mathfrak{P}|\mathfrak{p}) = 1$ for all $\mathfrak{P}'|\mathfrak{p}$, and so \mathfrak{p} splits completely in B.

3. (a) Since $a \mapsto a^2$ defines a ring homomorphism in characteristic 2, the reduction of $x^4 - x^2 + 1 \mod 2$ is equal to $(x^2 - x + 1)^2$. We can see that $x^2 - x + 1$ is irreducible over \mathbb{F}_2 by checking for roots, but we know it has to be anyway since 2 is ramified in *L*. Reducing $x^4 - x^2 + 1 \mod 3$, we see that it factorizes as $(x^2 + 1)^2$. The polynomial $x^2 + 1$ is irreducible over \mathbb{F}_3 , but again, we knew it had to be because 3 ramifies in *L*.

(b) This is just question 2 applied to the extension L/\mathbb{Q} .

(c) By assumption, 12|p-1, and so there is $\overline{a} \in \mathbb{F}_p^{\times}$ whose order is exactly

12. Therefore in \mathbb{F}_p ,

$$0 = \overline{a}^{12} - 1 = (\overline{a} - 1)(\overline{a} + 1)(\overline{a}^2 + \overline{a} + 1)(\overline{a}^2 + 1)(\overline{a}^2 - \overline{a} + 1)(\overline{a}^4 - \overline{a}^2 + 1).$$
(1)

None of the first five factors in (1) can be zero since, in each case, there is a divisor m < 12 of 12 such that the factor divides $\overline{a}^m - 1$. That leaves $\overline{a}^4 - \overline{a}^2 + 1 = 0$, i.e. $p|a^4 - a^2 + 1$.

(d) (i) Since $x^4 - x^2 + 1$ divides $x^{12} - 1$, the assumption on *a* implies that $a^{12} - 1 \equiv 0 \mod p$, so *a* has order dividing 12.

(ii) Observe that for each divisor m < 12 of 12, the element $\overline{a}^m - 1$ is a product of a subset of the first five factors in (1). Therefore, by assuming a has order strictly less than 12, we must have $h(a) \equiv 0 \mod p$ where h(x) is one of the first five polynomials in the right-hand side of equation (1) of the question sheet. Let $f(x) = x^4 - x^2 + 1$, and write $x^{12} - 1 = f(x)h(x)g(x)$. Since p divides both f(a) and h(a), $a^{12} - 1 \equiv 0 \mod p^2$. Further, $f(a + p) \equiv f(a) \equiv 0 \mod p$, and similarly for h(a + p), so

$$(a+p)^{12} - 1 = f(a+p)h(a+p)g(a+p)$$

 $\equiv 0 \mod p^2.$

(iii) We have

$$0 \equiv (a+p)^{12} - 1 \mod p^2 \equiv a^{12} + 12a^{11}p - 1 \mod p^2 \equiv 12a^{11}p \mod p^2,$$

showing that $p^2|12a^{11}p$, i.e. $p|12a^{11}$, a contradiction.

(iv) The order of a mod p necessarily divides p-1. In this case, we therefore have 12|p-1, i.e. $p \equiv 1 \mod 12$.

4. Any element of $\operatorname{Gal}(M/K)$ which fixes \mathfrak{P} must, when restricted to L, fix \mathfrak{q} . Thus $E|_L \subseteq D$, showing $L^D \subseteq M^E$ and hence $L^D \subseteq L \cap M^E$. In fact, $L^D = L \cap M^E$: If \mathfrak{p}' is the prime of L^D below \mathfrak{P} and \mathfrak{p}'' is the prime of $L \cap M^E$ below \mathfrak{P} , then $e(\mathfrak{p}''|\mathfrak{p}') = f(\mathfrak{p}''|\mathfrak{p}') = 1$ because both these fields lie in the extension M^E/K . On the other, since $L \cap M^E$ is an intermediate field in the extension L/L^D , \mathfrak{p}'' is the unique prime of $L \cap M^E$ above \mathfrak{p}' , so $L \cap M^E = L^D$. Now let \mathfrak{P}' be the prime of LM^E below \mathfrak{P} . Since LM^E is an intermediate

Now let \mathfrak{P}' be the prime of LM^E below \mathfrak{P} . Since LM^E is an intermediate field in the extension M/M^E , \mathfrak{P} is the unique prime of M above \mathfrak{P}' . On the other hand, by our assumption on $e(\mathfrak{P}|\mathfrak{q})$ and $f(\mathfrak{P}|\mathfrak{q})$, we have $e(\mathfrak{P}|\mathfrak{P}') = f(\mathfrak{P}|\mathfrak{P}') = 1$, showing that $M = LM^E$. Galois theory completes the proof.

5. Let \mathfrak{p} be a prime of K and \mathfrak{P} a prime of L above \mathfrak{p} . If \mathfrak{p} is non-split, then $G_{\mathfrak{P}} = G$, and so $I_{\mathfrak{P}}$ is normal in G with $G/I_{\mathfrak{P}} \simeq \operatorname{Gal}(k(\mathfrak{P})/k(\mathfrak{p}))$, which is cyclic. However, if \mathfrak{p} is further unramified, then $I_{\mathfrak{P}}$ is trivial and so G is cyclic. Thus if G is not cyclic, then any non-split prime must be ramified. Since there are only ever finitely many ramified primes, there can only be finitely many non-split primes in this case.