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Solutions to Assignment 2

1. Let Hα = Gal(M/Q(α)), which contains H. Let B be a set of represen-
tatives for (G/Hα)left and C a set of representatives for (Hα/H)left. Then
{τρ | τ ∈ B and ρ ∈ C} is a set of representatives for (G/H)left. Since gα(x) is
independent of the choice of set of representatives for (G/H)left, we see that

gα(x) =
∏
τ∈B
ρ∈C

(x− τρ(α))

=
∏
τ∈B

(x− τ(α))[L:Q(α)].

We claim that G acts on {τ(α) | τ ∈ B}. Indeed, if σ ∈ G then στ = τ ′σ′ for
some τ ′ ∈ B and some σ′ ∈ Hα, so στ(α) = τ ′σ′(α) = τ ′(α). Therefore, letting
fα(x) =

∏
τ∈B(x− τ(α)), we see that G fixes fα(x). Hence fα(x) ∈ Q[x]. Since

α is a root of fα(x), and since fα(x) has degree |G : Hα| = [Q(α) : Q], fα(x) is
the minimal polynomial for α over Q.

Now, if α ∈ OL then by Proposition 4, fα(x) ∈ Z[x] and therefore gα(x) =
fα(x)

[L:Q(α)] ∈ Z[x]. Conversely, if gα(x) ∈ Z[x], then α is a root of a monic
polynomial with integer coefficients and therefore lies in OL.

2. Let f(x) be the reduction mod p of the minimal polynomial of α over K.
Firstly, if p splits completely then there are n = [L : K] primes above p, each
of ramification index and residue degree 1 over p. Therefore f(x) splits into n
linear factors over k(p), and so in particular has a root in k(p), i.e. f(x) has a
root mod p.

Conversely, suppose that f(x) has a root, so that f(x) has a monic linear
factor P (x). Let P be the prime of B corresponding to this linear factor.
Observe that f(P|p) = deg(P (x)) = 1. Also, by assumption p is unramified in
B and so e(P|p) = 1. Finally, since L/K is Galois, e(P′|p) = e(P|p) = 1 and
f(P′|p) = f(P|p) = 1 for all P′|p, and so p splits completely in B.

3. (a) Since a 7→ a2 defines a ring homomorphism in characteristic 2, the
reduction of x4 − x2 + 1 mod 2 is equal to (x2 − x + 1)2. We can see that
x2 − x + 1 is irreducible over F2 by checking for roots, but we know it has to
be anyway since 2 is ramified in L. Reducing x4 − x2 + 1 mod 3, we see that it
factorizes as (x2 +1)2. The polynomial x2 +1 is irreducible over F3, but again,
we knew it had to be because 3 ramifies in L.

(b) This is just question 2 applied to the extension L/Q.
(c) By assumption, 12|p − 1, and so there is a ∈ F×

p whose order is exactly
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12. Therefore in Fp,

0 = a12 − 1

= (a− 1)(a+ 1)(a2 + a+ 1)(a2 + 1)(a2 − a+ 1)(a4 − a2 + 1). (1)

None of the first five factors in (1) can be zero since, in each case, there is a
divisorm < 12 of 12 such that the factor divides am−1. That leaves a4−a2+1 =
0, i.e. p|a4 − a2 + 1.

(d) (i) Since x4 − x2 + 1 divides x12 − 1, the assumption on a implies that
a12 − 1 ≡ 0 mod p, so a has order dividing 12.

(ii) Observe that for each divisor m < 12 of 12, the element am − 1 is a
product of a subset of the first five factors in (1). Therefore, by assuming a has
order strictly less than 12, we must have h(a) ≡ 0 mod p where h(x) is one of
the first five polynomials in the right-hand side of equation (1) of the question
sheet. Let f(x) = x4−x2+1, and write x12−1 = f(x)h(x)g(x). Since p divides
both f(a) and h(a), a12 − 1 ≡ 0 mod p2. Further, f(a+ p) ≡ f(a) ≡ 0 mod p,
and similarly for h(a+ p), so

(a+ p)12 − 1 = f(a+ p)h(a+ p)g(a+ p)

≡ 0 mod p2.

(iii) We have

0 ≡ (a+ p)12 − 1 mod p2

≡ a12 + 12a11p− 1 mod p2

≡ 12a11p mod p2,

showing that p2|12a11p, i.e. p|12a11, a contradiction.
(iv) The order of a mod p necessarily divides p−1. In this case, we therefore

have 12|p− 1, i.e. p ≡ 1 mod 12.

4. Any element of Gal(M/K) which fixes P must, when restricted to L, fix
q. Thus E|L ⊆ D, showing LD ⊆ ME and hence LD ⊆ L ∩ ME . In fact,
LD = L∩ME : If p′ is the prime of LD below P and p′′ is the prime of L∩ME

below P, then e(p′′|p′) = f(p′′|p′) = 1 because both these fields lie in the
extension ME/K. On the other, since L ∩ME is an intermediate field in the
extenion L/LD, p′′ is the unique prime of L ∩ME above p′, so L ∩ME = LD.

Now let P′ be the prime of LME below P. Since LME is an intermediate
field in the extension M/ME , P is the unique prime of M above P′. On
the other hand, by our assumption on e(P|q) and f(P|q), we have e(P|P′) =
f(P|P′) = 1, showing that M = LME . Galois theory completes the proof.

5. Let p be a prime of K and P a prime of L above p. If p is non-split, then
GP = G, and so IP is normal in G with G/IP ≃ Gal(k(P)/k(p)), which is
cyclic. However, if p is further unramified, then IP is trivial and so G is cyclic.
Thus if G is not cyclic, then any non-split prime must be ramified. Since there
are only ever finitely many ramified primes, there can only be finitely many
non-split primes in this case.
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