Algebraic Number Theory MATH 512

Solutions to Assignment 2

1. Let $H_{\alpha}=\operatorname{Gal}(M / \mathbb{Q}(\alpha))$, which contains H. Let B be a set of representatives for $\left(G / H_{\alpha}\right)_{\text {left }}$ and C a set of representatives for $\left(H_{\alpha} / H\right)_{\text {left }}$. Then $\{\tau \rho \mid \tau \in B$ and $\rho \in C\}$ is a set of representatives for $(G / H)_{\text {left }}$. Since $g_{\alpha}(x)$ is independent of the choice of set of representatives for $(G / H)_{\text {left }}$, we see that

$$
\begin{aligned}
g_{\alpha}(x) & =\prod_{\substack{\tau \in B \\
\rho \in C}}(x-\tau \rho(\alpha)) \\
& =\prod_{\tau \in B}(x-\tau(\alpha))^{[L: \mathbb{Q}(\alpha)]} .
\end{aligned}
$$

We claim that G acts on $\{\tau(\alpha) \mid \tau \in B\}$. Indeed, if $\sigma \in G$ then $\sigma \tau=\tau^{\prime} \sigma^{\prime}$ for some $\tau^{\prime} \in B$ and some $\sigma^{\prime} \in H_{\alpha}$, so $\sigma \tau(\alpha)=\tau^{\prime} \sigma^{\prime}(\alpha)=\tau^{\prime}(\alpha)$. Therefore, letting $f_{\alpha}(x)=\prod_{\tau \in B}(x-\tau(\alpha))$, we see that G fixes $f_{\alpha}(x)$. Hence $f_{\alpha}(x) \in \mathbb{Q}[x]$. Since α is a root of $f_{\alpha}(x)$, and since $f_{\alpha}(x)$ has degree $\left|G: H_{\alpha}\right|=[\mathbb{Q}(\alpha): \mathbb{Q}], f_{\alpha}(x)$ is the minimal polynomial for α over \mathbb{Q}.

Now, if $\alpha \in \mathcal{O}_{L}$ then by Proposition $4, f_{\alpha}(x) \in \mathbb{Z}[x]$ and therefore $g_{\alpha}(x)=$ $f_{\alpha}(x)^{[L: \mathbb{Q}(\alpha)]} \in \mathbb{Z}[x]$. Conversely, if $g_{\alpha}(x) \in \mathbb{Z}[x]$, then α is a root of a monic polynomial with integer coefficients and therefore lies in \mathcal{O}_{L}.
2. Let $\bar{f}(x)$ be the reduction $\bmod \mathfrak{p}$ of the minimal polynomial of α over K. Firstly, if \mathfrak{p} splits completely then there are $n=[L: K]$ primes above \mathfrak{p}, each of ramification index and residue degree 1 over \mathfrak{p}. Therefore $\bar{f}(x)$ splits into n linear factors over $k(\mathfrak{p})$, and so in particular has a root in $k(\mathfrak{p})$, i.e. $f(x)$ has a root $\bmod \mathfrak{p}$.

Conversely, suppose that $\bar{f}(x)$ has a root, so that $\bar{f}(x)$ has a monic linear factor $\bar{P}(x)$. Let \mathfrak{P} be the prime of B corresponding to this linear factor. Observe that $f(\mathfrak{P} \mid \mathfrak{p})=\operatorname{deg}(\bar{P}(x))=1$. Also, by assumption \mathfrak{p} is unramified in B and so $e(\mathfrak{P} \mid \mathfrak{p})=1$. Finally, since L / K is Galois, $e\left(\mathfrak{P}^{\prime} \mid \mathfrak{p}\right)=e(\mathfrak{P} \mid \mathfrak{p})=1$ and $f\left(\mathfrak{P}^{\prime} \mid \mathfrak{p}\right)=f(\mathfrak{P} \mid \mathfrak{p})=1$ for all $\mathfrak{P}^{\prime} \mid \mathfrak{p}$, and so \mathfrak{p} splits completely in B.
3. (a) Since $a \mapsto a^{2}$ defines a ring homomorphism in characteristic 2, the reduction of $x^{4}-x^{2}+1 \bmod 2$ is equal to $\left(x^{2}-x+1\right)^{2}$. We can see that $x^{2}-x+1$ is irreducible over \mathbb{F}_{2} by checking for roots, but we know it has to be anyway since 2 is ramified in L. Reducing $x^{4}-x^{2}+1 \bmod 3$, we see that it factorizes as $\left(x^{2}+1\right)^{2}$. The polynomial $x^{2}+1$ is irreducible over \mathbb{F}_{3}, but again, we knew it had to be because 3 ramifies in L.
(b) This is just question 2 applied to the extension L / \mathbb{Q}.
(c) By assumption, $12 \mid p-1$, and so there is $\bar{a} \in \mathbb{F}_{p}^{\times}$whose order is exactly
12. Therefore in \mathbb{F}_{p},

$$
\begin{align*}
0 & =\bar{a}^{12}-1 \\
& =(\bar{a}-1)(\bar{a}+1)\left(\bar{a}^{2}+\bar{a}+1\right)\left(\bar{a}^{2}+1\right)\left(\bar{a}^{2}-\bar{a}+1\right)\left(\bar{a}^{4}-\bar{a}^{2}+1\right) \tag{1}
\end{align*}
$$

None of the first five factors in (1) can be zero since, in each case, there is a divisor $m<12$ of 12 such that the factor divides $\bar{a}^{m}-1$. That leaves $\bar{a}^{4}-\bar{a}^{2}+1=$ 0 , i.e. $p \mid a^{4}-a^{2}+1$.
(d) (i) Since $x^{4}-x^{2}+1$ divides $x^{12}-1$, the assumption on a implies that $a^{12}-1 \equiv 0 \bmod p$, so a has order dividing 12 .
(ii) Observe that for each divisor $m<12$ of 12 , the element $\bar{a}^{m}-1$ is a product of a subset of the first five factors in (1). Therefore, by assuming a has order strictly less than 12 , we must have $h(a) \equiv 0 \bmod p$ where $h(x)$ is one of the first five polynomials in the right-hand side of equation (1) of the question sheet. Let $f(x)=x^{4}-x^{2}+1$, and write $x^{12}-1=f(x) h(x) g(x)$. Since p divides both $f(a)$ and $h(a), a^{12}-1 \equiv 0 \bmod p^{2}$. Further, $f(a+p) \equiv f(a) \equiv 0 \bmod p$, and similarly for $h(a+p)$, so

$$
\begin{aligned}
(a+p)^{12}-1 & =f(a+p) h(a+p) g(a+p) \\
& \equiv 0 \bmod p^{2}
\end{aligned}
$$

(iii) We have

$$
\begin{aligned}
0 & \equiv(a+p)^{12}-1 \bmod p^{2} \\
& \equiv a^{12}+12 a^{11} p-1 \bmod p^{2} \\
& \equiv 12 a^{11} p \bmod p^{2},
\end{aligned}
$$

showing that $p^{2} \mid 12 a^{11} p$, i.e. $p \mid 12 a^{11}$, a contradiction.
(iv) The order of $a \bmod p$ necessarily divides $p-1$. In this case, we therefore have $12 \mid p-1$, i.e. $p \equiv 1 \bmod 12$.
4. Any element of $\operatorname{Gal}(M / K)$ which fixes \mathfrak{P} must, when restricted to L, fix q. Thus $\left.E\right|_{L} \subseteq D$, showing $L^{D} \subseteq M^{E}$ and hence $L^{D} \subseteq L \cap M^{E}$. In fact, $L^{D}=L \cap M^{E}$: If \mathfrak{p}^{\prime} is the prime of L^{D} below \mathfrak{P} and $\mathfrak{p}^{\prime \prime}$ is the prime of $L \cap M^{E}$ below \mathfrak{P}, then $e\left(\mathfrak{p}^{\prime \prime} \mid \mathfrak{p}^{\prime}\right)=f\left(\mathfrak{p}^{\prime \prime} \mid \mathfrak{p}^{\prime}\right)=1$ because both these fields lie in the extension M^{E} / K. On the other, since $L \cap M^{E}$ is an intermediate field in the extenion $L / L^{D}, \mathfrak{p}^{\prime \prime}$ is the unique prime of $L \cap M^{E}$ above \mathfrak{p}^{\prime}, so $L \cap M^{E}=L^{D}$.

Now let \mathfrak{P}^{\prime} be the prime of $L M^{E}$ below \mathfrak{P}. Since $L M^{E}$ is an intermediate field in the extension $M / M^{E}, \mathfrak{P}$ is the unique prime of M above \mathfrak{P}^{\prime}. On the other hand, by our assumption on $e(\mathfrak{P} \mid \mathfrak{q})$ and $f(\mathfrak{P} \mid \mathfrak{q})$, we have $e\left(\mathfrak{P} \mid \mathfrak{P}^{\prime}\right)=$ $f\left(\mathfrak{P} \mid \mathfrak{P}^{\prime}\right)=1$, showing that $M=L M^{E}$. Galois theory completes the proof.
5. Let \mathfrak{p} be a prime of K and \mathfrak{P} a prime of L above \mathfrak{p}. If \mathfrak{p} is non-split, then $G_{\mathfrak{P}}=G$, and so $I_{\mathfrak{P}}$ is normal in G with $G / I_{\mathfrak{P}} \simeq \operatorname{Gal}(k(\mathfrak{P}) / k(\mathfrak{p}))$, which is cyclic. However, if \mathfrak{p} is further unramified, then $I_{\mathfrak{P}}$ is trivial and so G is cyclic. Thus if G is not cyclic, then any non-split prime must be ramified. Since there are only ever finitely many ramified primes, there can only be finitely many non-split primes in this case.

