Algebraic Number Theory
 MATH 512

Assignment 2

1. Prove Corollary 5 of the course notes. You may assume Proposition 4.
2. Suppose A is a Dedekind domain with fraction field K, L is a finite Galois extension of K, and B is the integral closure of A in L. Assume that $B=A[\alpha]$ for some $\alpha \in B$, and let $f(x)$ be the minimal polynomial for α over K. Let \mathfrak{p} be a prime of A that is unramified in B. Show that \mathfrak{p} splits completely in B (i.e. there are $[L: K]$ primes of L above \mathfrak{p}) if and only if $f(x)$ has a root $\bmod \mathfrak{p}$.
3. Let $L=\mathbb{Q}\left(\zeta_{12}\right)$. Throughout this question, you may use the equality of polynomials

$$
\begin{equation*}
x^{12}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}+1\right)\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right) \tag{1}
\end{equation*}
$$

and the fact that if $h(x)$ is one of the first five factors in the right-hand side of (1), then there is a divisor $m<12$ of 12 such that $h(x) \mid x^{m}-1$. You may also assume that $x^{4}-x^{2}+1$ is the minimal polynomial for ζ_{12} over \mathbb{Q}.
(a) We know from class that the primes that ramify in L are 2 and 3 . Use Dedekind's Theorem to find the ramification indices and residue degrees.
(b) For p not equal to 2 or 3 , show that p splits completely in L if and only if $x^{4}-x^{2}+1$ has a root $\bmod p$.
(c) Suppose $p \equiv 1 \bmod 12$. Show that there exists $a \in \mathbb{Z}$ such that $p \mid a^{4}-$ $a^{2}+1$.
(d) (i) Conversely, assume $p \mid a^{4}-a^{2}+1$. Show first that the order of \bar{a} in \mathbb{F}_{p}^{\times}divides 12 .
(ii) Suppose that the order is less than 12 . Deduce that $a^{12}-1 \equiv 0 \bmod p^{2}$, and show similarly that $(a+p)^{12}-1 \equiv 0 \bmod p^{2}$.
(iii) Given that p divides neither a nor 12 , derive a contradiction from (ii), so that you may conclude that the order of \bar{a} in \mathbb{F}_{p}^{\times}is 12 .
(iv) Deduce that $p \equiv 1 \bmod 12$.
(The above exercise shows that the primes that split completely in L are exactly those congruent to $1 \bmod 12$.)
4. Let M / K be a Galois extension of number fields, and L / K an intermediate Galois extension. Fix a prime \mathfrak{P} of M and let \mathfrak{q} and \mathfrak{p} be the primes of L and K respectively below \mathfrak{P}. Let D be the decomposition group of $\mathfrak{q} \mid \mathfrak{p}$ and E that of $\mathfrak{P} \mid \mathfrak{p}$. Show that if $e(\mathfrak{P} \mid \mathfrak{q})=f(\mathfrak{P} \mid \mathfrak{q})=1$, then restriction gives an isomorphism $E \rightarrow D$.
5. In an extension L / K of number fields, we say that a prime \mathfrak{p} is non-split if there is only one prime of L above \mathfrak{p}. Prove that if L / K is a non-cyclic Galois extension, then only finitely many primes of K are non-split in L.

