Algebraic Number Theory MATH 512

Assignment 2

1. Prove Corollary 5 of the course notes. You may assume Proposition 4.

2. Suppose A is a Dedekind domain with fraction field K, L is a finite Galois extension of K, and B is the integral closure of A in L. Assume that $B = A[\alpha]$ for some $\alpha \in B$, and let f(x) be the minimal polynomial for α over K. Let \mathfrak{p} be a prime of A that is unramified in B. Show that \mathfrak{p} splits completely in B (i.e. there are [L:K] primes of L above \mathfrak{p}) if and only if f(x) has a root mod \mathfrak{p} .

3. Let $L = \mathbb{Q}(\zeta_{12})$. Throughout this question, you may use the equality of polynomials

$$x^{12} - 1 = (x - 1)(x + 1)(x^2 + x + 1)(x^2 + 1)(x^2 - x + 1)(x^4 - x^2 + 1)$$
(1)

and the fact that if h(x) is one of the first five factors in the right-hand side of (1), then there is a divisor m < 12 of 12 such that $h(x)|x^m - 1$. You may also assume that $x^4 - x^2 + 1$ is the minimal polynomial for ζ_{12} over \mathbb{Q} .

(a) We know from class that the primes that ramify in L are 2 and 3. Use Dedekind's Theorem to find the ramification indices and residue degrees.

(b) For p not equal to 2 or 3, show that p splits completely in L if and only if $x^4 - x^2 + 1$ has a root mod p.

(c) Suppose $p \equiv 1 \mod 12$. Show that there exists $a \in \mathbb{Z}$ such that $p|a^4 - a^2 + 1$.

(d) (i) Conversely, assume $p|a^4 - a^2 + 1$. Show first that the order of \overline{a} in \mathbb{F}_p^{\times} divides 12.

^r (ii) Suppose that the order is less than 12. Deduce that $a^{12} - 1 \equiv 0 \mod p^2$, and show similarly that $(a + p)^{12} - 1 \equiv 0 \mod p^2$.

(iii) Given that p divides neither a nor 12, derive a contradiction from (ii), so that you may conclude that the order of \overline{a} in \mathbb{F}_p^{\times} is 12.

(iv) Deduce that $p \equiv 1 \mod 12$.

(The above exercise shows that the primes that split completely in L are exactly those congruent to 1 mod 12.)

4. Let M/K be a Galois extension of number fields, and L/K an intermediate Galois extension. Fix a prime \mathfrak{P} of M and let \mathfrak{q} and \mathfrak{p} be the primes of L and K respectively below \mathfrak{P} . Let D be the decomposition group of $\mathfrak{q}|\mathfrak{p}$ and E that of $\mathfrak{P}|\mathfrak{p}$. Show that if $e(\mathfrak{P}|\mathfrak{q}) = f(\mathfrak{P}|\mathfrak{q}) = 1$, then restriction gives an isomorphism $E \to D$.

5. In an extension L/K of number fields, we say that a prime \mathfrak{p} is non-split if there is only one prime of L above \mathfrak{p} . Prove that if L/K is a non-cyclic Galois extension, then only finitely many primes of K are non-split in L.