Algebraic Number Theory
 MATH 512

Assignment 1

1. (a) Show that the quadratic extensions of \mathbb{Q} lying in some fixed algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} take the form $\mathbb{Q}(\sqrt{D})$, with $D \neq 1$ a square-free integer (i.e. not divisible by a square greater than 1). Here, square root means any square root taken in $\overline{\mathbb{Q}}$.
(b) Show further that if $D_{1}, D_{2} \neq 1$ are square-free integers such that $\mathbb{Q}\left(\sqrt{D_{1}}\right)$ is isomorphic to $\mathbb{Q}\left(\sqrt{D_{2}}\right)$, then $D_{1}=D_{2}$. (You may do this directly, or use any result from class.)
2. Let L be a number field and \mathcal{O}_{L} its ring of integers. Show that the fraction field of \mathcal{O}_{L} is indeed L.
3. Let L be a number field and a a non-zero element of L. State and prove a necessary and sufficient condition for a to be a unit of L (that is, a unit of the ring of integers \mathcal{O}_{L}) in terms of the minimal polynomial for a over \mathbb{Q}.
4. (a) Let α be a root of the polynomial $x^{3}-2$ in some algebraic closure of \mathbb{Q}, and let $L=\mathbb{Q}(\alpha)$. Show that $\left\{1, \alpha, \alpha^{2}\right\}$ is an integral basis for L, i.e. a \mathbb{Z}-basis for the ring of integers \mathcal{O}_{L}.
(b) Find the discriminant d_{L} of L.
5. Prove that there are infinitely many prime numbers ($2,3,5,7,11, \ldots$) using only results from the class so far (which you should refer to by number), i.e. without appealing to Euclid's argument or using the Riemann ζ-function (or any other L-function).
