
1 The Heat Equation and Separation of Variables

The heat equation on a wire of length L is given by the DE

(1)ut = βuxx

with boundary conditions u(0, t) = u0, u(L, t) = uL. Note that the boundary condi-
tions can depend on time, just as the initial conditions, u(x, 0) = f(x) can depend
on space.

We solve the homogeneous case where u0 = uL = 0 using separation of variables.
That is, we set

(2)u(x, t) =
∑

Tα(t)Xα(x).

We note that the eigenfunctions of the differential operator ∂t+β∂xx, by the Hilbert-
Schmidt theorem, form an orthogonal basis. Thus, u(x, t) has a unique representation
of the form (2). Let T and X to be eigenfunctions of ∂t and ∂xx, respectively. Then,
putting (2) into (1), we can look at individual terms:

∂

∂t
Tα(t)Xα(x) = β

∂2

∂x2
Tα(t)Xα(x) ⇒ T

′

α(t)Xα(x) = βT
′

α(t)X
′′

α(x)

⇒ T
′

α(t)

βTα(t)
=

X
′′

α(x)

Xα(x)
= α.

Since T
′

α(t)/βTα(t) does not depend on x, X
′′

α(x)/Xα(x) does not depend on x either.
Thus, α is constant. Thus, we have two differential equations for each α:

(3)X
′′

α(x) = αXα(x)

and
(4)T

′

α(t) = αβTα(t).

We have three cases to deal with in solving equations (3) and (4):

1. α < 0.
The DE for X is X

′′

α = αXα. Since α < 0, so we get sinusoidal behaviour:

Xα = C1(α) cos
(√

−αx
)

+ C2(α) sin
(√

−αx
)

Similarly, T ′
α = βαTα has solution

Tα = A(α)e−βαt.

For α < 0, define

cα(x) = cos
(√

−αx
)

, sα(x) = sin
(√

−αx
)

.
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2. α = 0.
In this case, X

′′

0 = 0, so X0 = C1(0) + C2(0)x. Since T
′

0 = 0, so T0 = A(0). For
α = 0, we define

c0(x) = 1, s0(x) = x.

3. α > 0.
X

′′

α = αXα, but α > 0, so we get exponential behaviour:

Xα = C1(α) cosh
(√

−αx
)

+ C2(α) sinh
(√

−αx
)

.

and, again, Tα = A(α)e−βαt. If α > 0, then denote

cα(x) = cosh
(√

αx
)

, sα(x) = sinh
(√

αx
)

.

We now have

u(x, t) =

∫

α∈R
Tα(t)Xα(x). =

∫ ∞

α=−∞
e−βαt[C1(α)cα(x) + C2(α)sα(x)], (5)

where we have rolled the A(α) into the Cs, and

cα(x) =







cos(
√
−αx) α < 0

1 α = 0
cosh(

√
αx) α > 0

, sα(x) =







sin(
√
−αx) α < 0

x α = 0
sinh(

√
αx) α > 0

.

We now apply the homogeneous boundary condition u(0, t) = 0:

Lemma 1: If u(0, t) = 0, then C1(α) = 0 for all α,

The basic idea of this proof is that, since each cos(
√
−αx) or cosh(

√
αx) has an

e−βαt in front of it, the only way to get u(0, t) = 0 is for all the coefficients C1(α) to
be zero.

Proof. From equation (5),

0 = u(0, t) =

∫

α∈R
Tα(t)Xα(0).

=

∫ ∞

α=−∞
e−βαt[C1(α)cα(0) + C2(α)sα(0)] dα

=

∫ ∞

α=−∞
e−βαtC1(α) dα
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Let a = βα. Then we get

∫ ∞

α =−∞
e−βαtC1(α) dα =

∫ ∞

a=−∞
e−atC1(a/β)

β
da

=

∫ ∞

a=−∞
e−atD(a) da

where D(a) = C1(a/β)/b. This is the two-sided Laplace transform of D(a), denoted
B[D(a)]. Since B[D(a)] = u(0, t) = 0, the two-sided Laplace transform of D(a) is
zero, so D(a) = 0. This implies that C1(α) = 0.

Since C1(α) ≡ 0, we can write equation (5) as

(6)u(x, t) =

∫ ∞

α=−∞
e−βαtC2(α)sα(x) dα.

We can now apply the boundary condition at x = L to equation (6):

Lemma 2: If u(L, t) = 0, then C2(α) = 0 if α 6= −n2π2/L2, with n = 1, 2, 3, . . . .

The idea here is that we have a bunch of exponentials e−βαt, the only way to get
u(L, t) = 0 is for all of the terms to be zero, just like before. In this case, however,
the sin terms can be zero as well, so C2(α) can be non-zero for certain values of α.

Proof. Set x = L in equation (6). We then have

0 = u(x, L) =

∫ ∞

α=−∞
e−βαtC2(α)sα(L) dα

The approach is similar to lemma 1, except, since

sα(L) =







sin(
√
−αL) α < 0

L α = 0
sinh(

√
αL) α > 0

we must have

D(a) =



















C2(−
√

a/β)

−2
√
aβ

sin(
√
−αL) α < 0

C2(0)

−2
√
aβ
L a = 0

C2(
√

a/β)

2
√
aβ

sinh(
√
−αL) α > 0

Again, we find that D(a) = 0 since B[D] = 0. Since sinh(
√
αL) 6= 0 and L 6= 0,

this implies that C(α) ≡ 0 for α ≥ 0. However, sin(
√
−αL) = 0 if

√
−αL = nπ, so

C(α) = 0 if α 6= −n2π2/L2.
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Denote bn = δ−n2π2/L2(α)C2(−n2π2/L2). The solution to the heat equation then
has form

u(x, t) =
∞
∑

n=1

bne
−β n

2
π
2

L2
t sin

(nπx

L

)

.

To get this form, we have used:

1. the differential equation ut = βuxx, and

2. the homogeneous boundary conditions u(0, t) = 0, u(L, t) = 0.

We have not used

1. the initial conditions, u(x, 0) = f(x), for some given function f(x).

In order to completely determine the solution to the IVP, we will use the initial
conditions to determine the unknowns bn, n = 1, 2, 3, . . . .
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