1 The Heat Equation and Separation of Variables

The heat equation on a wire of length L is given by the DE

g

with boundary conditions u(0,t) = ug, u(L,t) = uy. Note that the boundary condi-
tions can depend on time, just as the initial conditions, u(z,0) = f(x) can depend
on space.

We solve the homogeneous case where ug = uy = 0 using separation of variables.
That is, we set

u(a,t) =Y To(t)Xa(x). (2)

We note that the eigenfunctions of the differential operator 0, + 50,., by the Hilbert-
Schmidt theorem, form an orthogonal basis. Thus, u(x,?) has a unique representation
of the form (2). Let 7" and X to be eigenfunctions of 9; and 0,,, respectively. Then,
putting (2) into (1), we can look at individual terms:
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To(t) Xa(z) = T,(t) Xo(x) = BT, (1) X, (2)
T Xl

BTa(t) Xa(x)

Since T, (t)/BT.(t) does not depend on x, X, (2)/Xq(x) does not depend on z either.
Thus, « is constant. Thus, we have two differential equations for each a:
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X, (z) = aX,(x) (3)

and

/

T,(t) = aBTL(1). (4)

We have three cases to deal with in solving equations (3) and (4):

1. a <0.
The DE for X is X, = aX,. Since a < 0, so we get sinusoidal behaviour:

Xo = Ci(a) cos (V—az) 4+ Co(a)sin (vV—ax)
Similarly, 77, = SaT,, has solution
T, = A(a)e P,
For o < 0, define

Cox) = cos (V—az), sa(z)=sin(vV—-az).



2. a=0.
In this case, X, =0, so X = C1(0) + Cy(0)x. Since T, = 0, so Ty = A(0). For
a =0, we deﬁne

3. a>0.

1"

X, =aX,, but a > 0, so we get exponential behaviour:
Xo = Ci(a) cosh (vV—az) + Cy() sinh (vV—ax).
and, again, T,, = A(a)e . If a > 0, then denote

colx) = cosh (Vax), su(z) =sinh (Vaz).

We now have

(1) = / T (). = / T e (@)en() + Cola)sa(@)], ()

=—o00

where we have rolled the A(«) into the C's, and

cos(v—ax) a<0 sin(v/—az) a<0
() =<1 a=0, SsJ(r)=< = a=0 .
cosh(v/ax) a>0 sinh(v/azx) a>0

We now apply the homogeneous boundary condition u(0,t) = 0:
Lemma 1: Ifu(0,t) =0, then Ci(«a) =0 for all «,

The basic idea of this proof is that, since each cos(y/—ax) or cosh(y/azx) has an
e~P2t in front of it, the only way to get u(0,t) = 0 is for all the coefficients C' () to
be zero.

Proof. From equation (5),

0= [ T
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Let a = fa. Then we get

/ T e () da — / N e—at%d
:/OO e " D(a) da

where D(a) = Cy(a/f)/b. This is the two-sided Laplace transform of D(a), denoted
B[D(a)]. Since B[D(a)] = u(0,t) = 0, the two-sided Laplace transform of D(a) is
zero, so D(a) = 0. This implies that C}(a) = 0. O

Since C4 () = 0, we can write equation (5) as
u(z,t) = / e POy (a)sq(x) da. (6)
We can now apply the boundary condition at x = L to equation (6):
Lemma 2: If u(L,t) =0, then Cy(a) =0 if a # —n’x?/L*, withn =1,2,3,....

The idea here is that we have a bunch of exponentials e #°*, the only way to get
u(L,t) = 0 is for all of the terms to be zero, just like before. In this case, however,
the sin terms can be zero as well, so Cy(a) can be non-zero for certain values of a.

Proof. Set x = L in equation (6). We then have
0=wu(z,L) = / e PCy(a)sq(L) da
The approach is similar to lemma 1, except, since
sin(v/—al) a<0

Sa(L) =<4 L a=0
sinh(y/aL) a >0

we must have

\/7) sin(y/—alL) a <0

D(a) = _%%L a=0
02(% sinh(v/—aL) a >0

Again, we find that D(a) = 0 since B[D] = 0. Since sinh(y/aL) # 0 and L # 0,
this implies that C'(«) = 0 for « > 0. However, sin(y/—al) = 0 if \/—aL = nx, so
Cla)=0if a # —n?*r? /L2 O



Denote b, = d_,2,2/12(a)Co(—n?n?/L?). The solution to the heat equation then
has form
s n?n? nmT
u(z,t) 321 e " P sin ( ——

To get this form, we have used:

1. the differential equation u; = Su,,, and
2. the homogeneous boundary conditions u(0,¢) = 0, u(L,t) = 0.
We have not used
1. the initial conditions, u(z,0) = f(x), for some given function f(x).

In order to completely determine the solution to the IVP, we will use the initial
conditions to determine the unknowns b,,n =1,2,3,....
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