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Lying on my sleeping pad, I warily eye the mosquito
perched above my head. I could reach up and squash it, but
that would require extracting my arm from the warmth of my
sleeping bag. So for now, it clings to the yellow nylon of my
tent, unaware of its reprieve. Although I may triumph over
this particular mosquito, I am all too aware of being vastly
outnumbered outside my tent.

Until recently, my interest in mosquitoes was largely prag-
matic: avoid, repel, or swat. Lately, though, I have developed
a grudging curiosity about how they make a living. Fact: a
female mosquito overwinters with fertilized eggs so the first
thing she does in spring, before even feeding, is lay eggs. Fact:
Even if she doesn’t find a blood meal, she can survive by
sucking plant juices. Fact: the combined meals of a mosquito
horde can (and do) bleed a newborn calf to death. Fact: at
best a mosquito bite simply itches; at worst, it means disease
transmission—malaria, yellow fever, dengue fever, and West
Nile virus are all mosquito-borne.

It is West Nile virus that has piqued my interest of late.
First identified in Uganda in 1937, the virus is well estab-
lished in its native Africa where it lives primarily in birds
and is transmitted among them by mosquitoes. Only occa-
sionally does a mosquito transmit the infection to a mammal.
From time to time a West Nile virus outbreak occurs in Eu-
rope and Africa—in Israel in the 1950s and South Africa in
1974, and more recently in Romania, Morocco, Tunisia, Italy,
France, and Russia. Just recently, West Nile virus made its
first known, and headline grabbing, North American appear-
ance.

In the summer of 1999, the birds of New York City began
mysteriously to die, their bodies appearing conspicuously in
the city zoo, parks, and backyards. At first the cause was
unknown, but by December of the same year it had been
identified, in two reports published in the same issue of Sci-
ence magazine, as West Nile virus, a disease never before seen
on this continent. In subsequent summers, West Nile virus
spread west across the continent reaching Ontario in 2001,
California and Washington in 2002, and Alberta in 2003.

Corvids—crows and jays—were the hardest hit among the
birds; other passerines such as sparrows also carried the virus
but were dying in smaller numbers. Among mammals, horses
appeared especially vulnerable, with a mortality rate of ap-
proximately 40%. Human cases were less common and less
likely to be fatal, but were a growing health concern nonethe-
less. By the end of 2003, the virus had been identified
in 7 Canadian provinces and 46 U.S. states, in at least 10
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mosquito, 150 bird, and 17 other vertebrate species, and in
a total—for that year alone—of over 11,000 human cases in
Canada and the U.S.

In Alberta, West Nile virus was first reported in 2003. The
year before, I had moved to Edmonton to join a group of
mathematical biologists at the University of Alberta. There,
I was immersed in a world of mathematical modelling used to
tackle biological questions. Two years later, here in my tent
on a canoe trip in the Northwest Territories, I have a chance to
reflect on the unpredicted collaboration that developed with
my mathematical colleagues on the dynamics and control of
West Nile virus.

At first glance, we made an unlikely trio for this project.
Tomás was a graduate student and programming whiz who
studied chamomile invasions on farmland. Mark was a math-
ematical biologist who had modelled the movement of birds
and wolves. And I was a marine ecologist with a mathemat-
ical background largely limited to reading tide tables. But
together we were galvanized by a question from a colleague
in Ontario: “How come no one is modelling West Nile virus?”
Hugh asked. And with that casual question began our Year
of the Mosquito.

How could mathematical modelling help us understand
West Nile virus dynamics? The virus was spreading, and
control proposals were beginning to include spraying adult
and larval mosquitoes, removing larval mosquito habitat, and
even removing birds. Since all of these strategies would cause
additional impacts on the environment, perhaps modelling
could help maximize control effectiveness while minimizing
unwanted effects? I had no idea where to begin, but luckily,
I was in good mathematical hands.

Mark and Tomás introduced me to a class of disease models
known by their acronym as SIR models (see accompanying
articles by Fred Brauer and David Earn). These models were
first extended to vector-borne diseases by R. Ross in the early
1900s and G. Macdonald in the 1950s, to combat malaria.
Since then, a large associated body of mathematical theory,
and an impressive history of contributing to disease control,
have both evolved.

In an SIR model, the host population is divided into three
groups: Susceptible (healthy uninfected individuals), Infec-
tious (infected and capable of transmitting the disease), and
Removed (immune, dead, or otherwise removed individuals).
The rates at which an average individual moves from Sus-
ceptible to Infectious and from Infectious to Removed are
determined, and the relevant birth and death rates are incor-
porated.

Once constructed, a key piece of information can be ex-
tracted from an SIR model, called the disease reproduction
number, or R0 (“R-zero” or “R-naught”). R0 tells us the
number of new infections that would result from the intro-
duction of a single infectious individual into an entirely sus-
ceptible population. For example, if a student with chicken
pox walked into a classroom of individuals with no previous
exposure to the disease, how many new cases would be caused
by direct contact with the initial infectious student? The an-
swer is given by R0. Or for West Nile virus, if an infectious
bird arrived in a new city, how many other birds would be
infected (via mosquito bites) by that original bird? Again,
R0 tells us the answer.

The expression for R0 is constructed, according to a par-
ticular formula, from variables and parameters in the model.
Reasonably enough, it takes into account factors such as how
long the first individual remains infectious, the likelihood of
contact between the infectious and susceptible individuals (ei-
ther directly or via another species), and how often contact
leads to disease transmission. Details of the mathematics un-
derlying the calculation of R0 are given in the article by Fred
Brauer.
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For disease control, the value of R0 is key. R0 < 1 means
that an infectious individual will, on average, generate fewer
than one new infection, so the disease will die out even with-
out control efforts. On the other hand, R0 > 1 means that an
infectious individual will generate more than one new infec-
tion, so a disease outbreak will occur. In this case, the disease
can be controlled by methods that alter one or more of the
model components—such as mortality, contact, or transmis-
sion rates—to reduce R0 below one.

Armed with this mathematical background, we were ready
to develop an SIR model for West Nile virus in North Amer-
ica, calculate R0, and identify how and how much to control
the disease to prevent an outbreak. First, we had to define
the biological and geographic scope of our efforts. We had
already learned that the virus persisted in transmission cy-
cles between mosquitoes (vectors) and birds (reservoir hosts).
Although it occasionally spread to other vertebrates (includ-
ing humans), it seemed not to return to mosquitoes. In other
words, although an infection might be deeply significant to
the human in question, it would not influence the overall dis-
ease dynamics.

This biological fact helped us simplify the mathematical de-
scription: by viewing the virus outbreak level in mosquitoes
and birds as a proxy for the human infection risk, we could
limit our model to only the vector and the reservoir host. For
mosquitoes, we focused on the species group that was emerg-
ing as the dominant North American vector (Culex pipiens
spp.). For birds, we focused on the species with the best
available infection and mortality data, the American crow
(Corvus brachyrhyncos). And since the best virus prevalence
data were available where West Nile had first appeared, we
confined ourselves to modelling the New York City outbreak.
Finally, since the disease outbreak at this latitude showed a
marked seasonality, appearing in summer and disappearing in
winter, we confined the model to a single season from spring
through fall.

Soon we had the skeleton of a model. We defined three
groups (S, I, and R) for both mosquitoes and birds. From the
literature, we obtained estimates of the mosquito biting rate
and the transmission probabilities that allowed a mosquito to

infect a bird (which was around 88%) and a bird to infect
a mosquito (which was only around 16%). We had recovery
and mortality rates for birds, but not for mosquitoes since
they didn’t seem to be affected by the disease. Since we had
birth and death rates for mosquitoes but not for birds, we
assumed the birds reproduced once in spring before the model
began, and their background (natural) mortality rate would
be negligible in the one summer.

To refine the model and assign numerical values to the pa-
rameters, we divided up the work according to our expertise.
Tomás investigated how to solve and simulate these models
on a computer, and Mark explored the mathematical theory
underlying this approach. I searched the biological literature
for parameter values for mosquitoes, birds, and virus trans-
mission. I didn’t envy Tomás and Mark, as my task seemed
much the easiest; I was surprised to learn later that they felt
the same way about their roles.

Nonetheless, tracking down the biological data took some
sleuthing. Today, from the safety of my tent, I can make a
guess as to the local mosquito abundance outside: it’s very,
very high. If I were to stick out a bare arm, it would be
covered almost instantly; if I left it out, I could watch an in-
dividual probe repeatedly, biting several times before finding
her blood meal. (I don’t do this often.) As I canoe down the
river, I sometimes see a cloud of mosquito larvae rising to the
surface and hatching.

For our model, though, we needed observations like this to
be quantified. Just how many mosquitoes were out there?
How many eggs did one female lay, and how many larvae
hatched? How many crows were there? How many mosquito
bites per crow in a day? And how contagious was the virus?
My quest was something of a scavenger hunt travelling back
through biological history, with each paper leading me to an
older one. At the same time, new reports about the virus were
appearing almost daily in print and online. I divided my time
between dusty library shelves and internet listserves.

New biological information, new equations, new parameter
estimates, new model analyses, and new simulations surfaced.
For several months, we worked to tailor the model as best
we could to the biological information. In the interests of
tractability, the model had to remain as simple as possible.
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But the biological complexity seemed almost infinite. At
times, I wondered if we were simplifying too much for the
model to be informative, while Tomás and Mark wondered
if the biology was making the model too complicated to be
useful.

In the end, the biology dictated two substantial additions
to the model. We learned that mosquitoes could spend quite
a long time, up to 14 days, as aquatic larvae that don’t bite
birds and therefore don’t transmit the disease. It can also
take quite a long time, perhaps 10–12 days, for an infected
mosquito to develop a viral load high enough to transmit
the disease back to a bird. These two time periods could
add up to almost half a mosquito’s lifespan, so they could
substantially alter the disease dynamics. We therefore added
two new groups to the population: one for larval L and one
for exposed E mosquitoes.

With these additions, it seemed we finally had a model we
all felt was realistic and tractable. This is the model illus-
trated in Figure 1. Now that we had the model, it was time
for a test: would it behave realistically? We had to know this
before we could use R0 to make any predictions.

As a test, we chose the records of West Nile virus incidence
in both mosquitoes and birds from New York City in 2000.
We plugged our literature-based parameter estimates into
the model, crossed our fingers, and ran the simulations. Sure
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Figure 1: Cartoon illustration of SIR model for West Nile
virus cross-infection between birds and mosquitoes. The
boxes represent variables: the number (or proportion) of birds
that are susceptible, infectious, and removed, and mosquitoes
that are larval, susceptible, exposed, and infectious. The ar-
rows represent parameters: the daily rates at which the value
of each variable changes. Solid black lines show the rates
(and reasons) for individual birds and mosquitoes moving
from one category to another. The two dashed lines represent
the rates at which mosquitoes infect birds and birds infect
mosquitoes. The red and blue arrows respectively show the
birth and death rates for mosquitoes (which can reproduce
multiple times during a single season).
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Figure 2: Numerical simulations of crow proportions and
mosquito numbers predicted by the West Nile virus model
for a steady-state mosquito population (SM0

/NB0
= 30) over

a season lasting 14τ days, where τ is a time unit representing
9.4 days (this time unit may seem funny, but it is a result of
manipulating the equations to a nondimensional form—a de-
tail that is not shown here). a) the proportion of susceptible
(solid line) and removed birds (dashed line) on the left axis
and infectious birds (red line) on the right. b) the number of
susceptible (solid line) and larval mosquitoes per bird (dashed
line) on the left axis and exposed (dashed red line) and infec-
tious mosquitoes per bird (solid red line) on the right.

enough, for a reasonable range of starting values the model
predicted a range of mosquito and bird infection levels that
matched the observed data (Figure 2). We were now in a
position to use the model to investigate control strategies.

Following methods developed by other mathematicians, we
calculated R0 for our model, which turned out to be made
up of three elements:

R0 =
ab

µA

·
ac

µV + g
·
SM0

NB0

(

k

k + µA

)

.

The parts work together like this. The first factor repre-
sents the number of new crow infections caused by an in-
fectious mosquito. This is the number of bites per day per
mosquito a multiplied by the probability of the virus being
transmitted from an infectious mosquito to a crow b multi-
plied by the average number of days 1/µA a mosquito would
live.
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The second factor is the mirror image: the number of
new mosquito infections caused by an infectious crow. The
mosquito biting rate a is multiplied by the transmission prob-
ability from crows to mosquitoes c and by the average number
of days until the infectious crow either recovered (1/g) or died
(1/µV ).

The third factor represents, generally speaking, the num-
ber of infectious mosquitoes per crow. Specifically, it is the
number of initially susceptible mosquitoes SM0

that survive
the virus exposure period k/(k +µA) for every bird NB0

. To-
gether, these three elements give us the expression for the
total disease R0 from birds to birds (via mosquitoes) or from
mosquitoes to mosquitoes (via birds). Taking the square root
of the right hand side of the expression for R0 is a common
convention that gives the geometric mean R0 from bird to
mosquito and vice versa.

(If you’re looking at Figure 1 and wondering why the
mosquito birth rate and larval death rate don’t seem to show
up in R0, rest assured. They are accounted for by the equal-
ity LM0

= βMSM0
/(m+µL), a simplifying assumption in the

model that ensures a constant mosquito population.)
Our parameter values gave R0 greater than one, predicting

a disease outbreak. We were now able to return to our original
questions, namely, how could West Nile virus be controlled,
and how much control was needed?

One possible answer was obvious: if every mosquito and
bird were removed, the virus could not persist. But we were
hoping to find a more palatable answer. Examining the ex-
pression for R0, we found the ratio SM0

/NB0
in the numer-

ator, telling us that reducing the number of mosquitoes SM0

would reduce R0, but reducing the number of birds NB0

would not. In fact, reducing bird abundance would only make
things worse by increasing the value of R0. This was our first
lesson: reducing mosquitoes could help control the virus, but
removing birds would only increase the chances of an outbreak.

Would every mosquito have to be removed to prevent an
outbreak? This was our second lesson. Plotting a graph of R0

vs. SM0
/NB0

showed us that the virus could be controlled sim-
ply by reducing mosquito abundance, without requiring that
every last individual be eliminated (Figure 3).
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Figure 3: Plot of R0 vs. the initial number of mosquitoes
per bird SM0

/NB0
, showing that the mosquito population can

simply be reduced, and not completely eliminated, to bring
R0 below one and therefore prevent a West Nile outbreak.
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Figure 4: Plot of susceptible bird survival at the end of the
season SB vs. the initial number of mosquitoes per bird at
the beginning of the season SM0

/NB0
, showing how future

mosquito control efforts can be estimated from previous bird
mortality data.

This begged the final question of exactly how much
mosquito reduction was enough. It took us a while to work
this out, but eventually we came up with an indirect route
to the answer. It requires the following four steps, which are
illustrated in Figure 4.

1. Obtain from public health authorities an estimate of the
proportion of crows that survived the virus in the last
season. (These data are becoming increasingly avail-
able.)

2. Determine how many mosquitoes per crow M1 there
must have been at the start of the last season to cause
the observed bird mortality.

3. Determine the maximum allowable bird mortality for the
following season, and the corresponding maximum allow-
able initial number of mosquitoes per crow M2.

4. The ratio of these two mosquito-per-crow estimates,
M2/M1, gives the proportional reduction in mosquitoes
needed to control the virus in the next year.

This was our third lesson from the model, that we could
calculate the required amount of mosquito reduction. In fact,
we found that a 40–70% reduction in the New York City
mosquito population would have prevented the 2000 out-
break. There is, of course, a catch with this approach: the
virus has to have already caused the initial mortalities that
are used for subsequent control estimates. However, as the
virus continues to spread, bird mortality data are increas-
ingly available. Perhaps the experience of cities and regions
with the virus (and therefore with the data) can inform the
control programs in areas where a virus outbreak has not yet
occurred.

Like many research projects, this one raised more questions
than it answered. How fast could West Nile virus spread
across the continent and where would it go? How important
was climate in determining the survival of birds, mosquitoes,
and the virus? How would controlling the mosquitoes in an
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urban area influence the surrounding rural area? How was our
model similar or different compared to other models of similar
diseases? Was there anything more general that could be
learned about the epidemiology of vector-borne viruses? By
working with some additional collaborators, we have begun
to address these questions too.

In the meantime, I have an active interest in some very
local mosquito control. Earlier this evening, I noticed that
the spiders in the rocks behind my tent were making a killing,
literally. Mosquitoes were landing in their webs so fast the
spiders could hardly keep up. So now I’m starting to wonder
how many spiders I would need to keep in my tent to control
the mosquitoes. Or if not spiders, perhaps a bat would be
more efficient? Clearly, I need another model. I’ll have to
consult with my collaborators.

Appendix

Bird equations:

Susceptible
dSB

dt
= −abIM

SB

NB

Infectious
dIB

dt
= abIM

SB

NB

− µV IB − gIB

Removed
dRB

dt
= (g + µV )IB

Mosquito equations:

Larval
dLM

dt
= βM (SM + EM + IM ) − mLM − µLLM

Susceptible
dSM

dt
= −acSM

IB

NB

+ mLM − µASM

Exposed
dEM

dt
= acSM

IB

NB

− kEM − µAEM

Infectious
dIM

dt
= kEM − µAIM

Table 1: Ordinary differential equations (ODEs) represent-
ing the transmission of West Nile virus between birds and
mosquitoes. Each equation keeps track of the change in a
variable: the number of susceptible SB, infected IB, and re-
moved RB birds, and the number of larval LM , susceptible
SM , exposed EM , and infected IM female mosquitoes per
bird. Change in these variables is represented by parameters,
which are probabilities and rates. (Note that all variables are
indicated by capital letters, and all parameters by lower-case
letters.) These equations match up with the boxes and ar-
rows in Figure 1. To create your own numerical simulation of
this model, you will need to choose the initial conditions, or
values, for each variable. For a West Nile virus invasion, you
might start with all variables equal to zero, except for IB or
IM , which could be a very small positive number. Then you
can set up the ODEs to change the values of the variables in
each time step. What initial value of IB or IM do you need
in order for the infection to increase? How do your results
change if you allow birds to recover (i.e., set g > 0)?

Parameter Mean (range) Biological meaning

a 0.09 Mosquito daily per capita
(0.03–0.16) biting rate on birds

b 0.88 Probability per bite of West
(0.80–1.00) Nile virus being transmitted

by an infectious mosquito
biting a bird

c 0.16 Probability per bite of West
(0.02–0.24) West Nile virus being

transmitted by a mosquito
biting an infectious bird

βM 0.537 Mosquito daily per capita
(0.036–42.5) birth rate

m 0.068 Mosquito larva daily per
(0.051–0.093) capita maturation rate to

susceptible adults
µA 0.029 Adult mosquito daily per

(0.016–0.070) capita mortality rate
µL 1.191 Larval mosquito daily per

(0.213–16.9) capita mortality rate
k 0.106 Mosquito daily per capita

(0.087–0.125) transition rate from exposed
to infectious

µV 0.143 Bird daily per capita
(0.125–0.200) mortality rate from West

Nile virus
g 0 Bird daily per capita recovery

rate from West Nile virus

Table 2: Sample parameter values (and ranges) estimated
from the literature for the West Nile virus model shown in
Figure 1 and Table 1. The phrase per capita is a common
biological term meaning per individual.

Further Information

[1] This article is based on the paper: Wonham, M., T. de-
Camino-Beck and M. Lewis, 2004: An epidemiological
model for West Nile virus: Invasion analysis and control
applications. Proceedings of the Royal Society of London
B, 271, 501–507.

[2] Read more about this and other research at the Uni-
versity of Alberta’s Centre for Mathematical Biology:
http://www.math.ualberta.ca/∼mathbio/.

Q: How does a mathematician induce good behaviour in
his/her children?

A: “If I’ve told you n times, I’ve told you n + 1 times. . . .”

Q: What keeps a square from moving?
A: Square roots.
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