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SPATIAL DYNAMICS OF THE DIFFUSIVE
LOGISTIC EQUATION WITH A
SEDENTARY COMPARTMENT

K. P. HADELER AND M. A. LEWIS

ABSTRACT. We study an extension of the diffusive logis-
tic equation or Fisher’s equation for a situation where one part
of the population is sedentary and reproducing, and the other
part migrating and subject to mortality. We show that this

system is essentially equivalent to a semi-linear wave equation
with viscous damping. With respect to persistence in bounded
domains with absorbing boundary conditions and with respect
to the rate of spread of a locally introduced population, there
are two distinct scenarios, depending on the choice of param-
eters. In the first scenario the population can survive in suffi-
ciently large domains and the linearization at the leading edge
of the front yields a unique candidate for the spread rate. In the
second scenario the population can survive in arbitrarily small
domains and there are two possible candidates for the spread
rate. Analysis shows it is the larger candidate which gives the
correct spread rate. The phenomenon of spread is also investi-
gated using travelling wave theory. Here the minimal speed of
possible travelling front solutions equals the previously calcu-
lated spread rate. The results are explained in biological terms.

1 Introduction The diffusive logistic or Verhulst equation or
Fisher’s equation is a scalar reaction diffusion equation with a simple
hump nonlinearity (quadratic nonlinearity in the classical case). This
equation describes the immigration of a species into a territory or the
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advance of an advantageous gene into a population. The equation pro-
vides the classical example for travelling fronts in parabolic equations,
[2, 8, 25], and it forms the nucleus of more complex multi-species mod-
els in ecology, pattern formation and, most notably, epidemiology [3].
The equation is also the basis for more elaborate models of the spatial
process as in reaction-telegraph equations, Cattaneo systems or reac-
tion transport equations, [9, 10, 11, 29], Volterra integral equations
and delay equations [6, 28, 31, 32].

In recent years several authors have investigated single species reac-
tion diffusion models where only part of the population is migrating and
another part is sedentary. Cook [5] has studied a Verhulst type popula-
tion model with a sedentary and a migrating subpopulation. His results
appear in [23]. His assumption is that there is a joint carrying capac-
ity for both subpopulations and that the offspring of both groups forms
one pool which is then distributed to both subpopulations at constant
proportions. The resulting equations are

vt = rv(u + v)(1 − (u + v)/K) + Dvxx

wt = rw(u + v)(1 − (u + v)/K).

In the Verhulst model studied by Lewis and Schmitz [21] individuals
switch between mobile and stationary states during their lifetime. In
their system the migrants have a positive mortality while the sedentary
subpopulation reproduces and is subject to a finite carrying capacity.
The equations are

(1)
vt = D∆v − µv − γ2v + γ1w

wt = f(w) − γ1w + γ2v

with f(w) = rw(1 −w/K). The authors determined the minimal speed
for travelling waves, under the assumption that the emigration rate is
less than the intrinsic growth rate for the sedentary class (γ1 < f ′(0)).
This minimal wave speed was obtained from the linearization at the
zero equilibrium from the condition that two real eigenvalues coalesce
and become complex conjugate. Speeds slower than this minimal speed
yield a wave with negative components, thus violating the property that
(1) leaves the cone of non-negative functions invariant.

Of course the system (1) could be seen as a highly degenerate two-
species model. But it is so close to the scalar case that it should be
studied in its own right, even more so, as it shows rather interesting
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features which can be best understood by referring to the scalar case
and to the underlying biological phenomena.

The biological interpretation suggests the following three scenarios:
(i) If the transition rates γi are large and the mortality µ is small then the
system should behave like the diffusive Verhulst equation with rates suit-
ably adapted. The carrying capacity changes due to the additional com-
partment of migrating individuals, and the reproduction rate changes
because of additional mortality of migrating individuals. (ii) If the tran-
sition rates are large and the mortality is also large then the population
can be driven to extinction because most individuals start migrating and
then die. (iii) For small transition rates there are other types of behavior
which require a thorough mathematical investigation.

The paper is organized as follows. In Section 2 we recall properties of
reaction-diffusion equations and explain the motivation for studying the
present problem. In Section 3 we establish connections to damped wave
equations and present the limiting case of large switching rates (diffusion
approximation), with some proofs deferred to an Appendix. In Section
4 we study in detail the system without diffusion which, as usual, gives
some insight into the uncoupled dynamics and also provides analytical
tools. In Section 5 we study the system with diffusion in a bounded
domain with zero Dirichlet boundary conditions. For this case we extend
the classical stability conditions which can also be phrased as conditions
on a domain of minimal size that can sustain the population. We find
an interesting situation where arbitrarily small domains can sustain the
population. Then, in Section 6, we study the travelling front problem
using results on the linear determinacy principle from [20, 33, 19],
and we investigate in detail the two possible cases together with the
appropriate biological interpretation. We close with a discussion of the
results.

2 Reaction and diffusion Consider the classical diffusive logistic
equation or Fisher’s equation

(2) ut = D∆u + f(u).

The function u = u(t, x) is the density of some population (or the relative
proportion of some type within a population). D > 0 is the positive dif-
fusion coefficient. Here and throughout the paper we assume a function
f ∈ C1(R) with f(0) = f(1) = 0 and f(u) > 0 for 0 < u < 1. We also
assume f(u) < 0 for u �∈ [0, 1], and f ′(0) > 0, f ′(1) < 0. This equation
has been studied with several boundary conditions. For a bounded do-
main and zero Neumann (no flux) boundary condition the typical limit
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solution is constant in space and time. For a bounded domain with zero
Dirichlet condition there is a threshold phenomenon. For large diffusion
rates D the individuals move quickly towards the boundary and become
absorbed, hence u = 0 is a stable stationary solution. For small diffusion
rates a stable non-zero solution is established. For the problem on the
whole space the typical limit solution is a travelling front, for which the
minimal speed depends on the diffusion coefficient and the qualitative
features of the source function f . In the standard case where f is a con-
cave function, the minimal speed is given by the formula c = 2

√
Df ′(0),

see, e.g., [26].
Now we supply this model system with a compartment of sedentary

individuals. Let v denote the migrating part of the population, and let w
be the sedentary part, such that u = v+w is the total population density.
The diffusion coefficient D has the same meaning as before. The function
f describes only the interaction within the sedentary population, i.e.,
f = f(w) is a function only of the variable w. The rate γ1 governs the
transition from the sedentary to the migrant compartment, whereas γ2

governs the reverse transition. In order to include the case studied by
Lewis and Schmitz [21] we incorporate a death term into the equation
for the migrants. Then the system assumes the form (1).

Thus, we think of a population where individuals switch between
a sedentary reproduction phase and a migratory phase. For moderate
switching rates γi an observer will see a sedentary group and a migrating
group and, in any given time interval, some migrating individuals which
settle down and some sedentary individuals which enter the migrating
group. For large switching rates the observer will see essentially one
population of indistinguishable individuals and, at any given instant, he
will see some sedentary and some moving individuals. Hence the situa-
tion where individuals move and interact at the same time is the limiting
case. We expect that this case of large switching rates is described by a
scalar reaction diffusion equation.

This general concept has been used in [13] to derive epidemic contact
distributions from random walk models. Hillen [17] uses the idea to
model a migrating population with home ranges: by assuming a space-
depending stopping rate he obtains, in the parabolic limit, a taxis term
towards preferential habitats or home ranges. Pachepsky et al. [24]
study the so-called drift paradox related to populations living in streams
in terms of a system (1) with a convection term.

One can imagine the possible effect of the death term −µv. If the
transition rate into the migrant compartment is large and death of mi-
grants occurs frequently, then the whole population can be driven to
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extinction.

3 Sedentary states, damped wave equations, and diffusion
approximations The system (1) is closely related to nonlinear
damped wave equations. In general the connection between certain
systems and wave equations can be exploited to gain information on
travelling wave solutions, [7, 11]. To the system (1) we apply what
sometimes is called Kac’s trick (cf. [10]). This transformation is other-
wise used to carry correlated random walk systems or Cattaneo systems
into reaction telegraph equations or nonlinear damped wave equations.
We differentiate the second equation with respect to time, replace the
resulting term vt from the first equation, then the resulting terms con-
taining v again from the second equation. In this way we end up with
an equation containing only the variable w, see the Appendix. With the
parameters

τ =
1

γ1 + γ2
(3)

and

ρi =
γi

γ1 + γ2
, i = 1, 2,(4)

this equation assumes the form

τwtt + (1 − τ (f ′(w) − µ))wt − τD∆wt(5)

= ρ1D∆w + (ρ2 + τµ)f(w) − ρ1µw − τD∆f(w).

Equation (5) is a damped wave equation of some kind. The first term on
the left hand side is the inertia term, the second is a nonlinear damping
term, the third a viscous damping term (notice that −∆ is a positive
operator). The first term on the right hand side is the diffusion term
with the effective diffusion coefficient ρ1D measuring the proportion of
time in which diffusion takes place. The second and the third term on
the right hand side represent the effective reaction function

(6) fτ (w) = (ρ2 + τµ)
(
f(w) − ρ1µ

ρ2 + τµ
w
)

which determines the stationary points. As τ → 0 it becomes

(7) f0(w) = ρ2f(w) − ρ1µw.
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The coefficients ρ2 and ρ1 measure the proportions of time the reactions
f(w) and −µw take actually place. The last term on the right hand side
is a nonlinear diffusion term which may strongly effect the character of
the problem, as we shall show below.

Now we assume that individuals switch rapidly between the two states
v and w, i.e., that the γi are large. In the limit of very large rates we
expect a single population of individuals which cannot be distinguished
as migrating or sedentary. Hence we use the scaling

(8) γ1 → γ1/ε, γ2 → γ2/ε

and let ε → 0. Notice that this scaling is not equivalent to a simultaneous
scaling of space and time. Then also τ → 0 and we formally arrive at
the reaction diffusion equation

(9) wt = ρ1D∆w + f0(w).

This diffusion limit equation shows clearly that diffusion and mortality
µ act with effective rate ρ1 and the nonlinearity f acts with effective rate
ρ2. The same idea can be applied to the variable v, see the Appendix.

The special case which is closest to the scalar diffusive logistic equa-
tion is that where just a resting state or quiescent state is added, i.e.,
the case where µ = 0. From equation (9) we observe that the limiting
reaction diffusion equation is

(10) wt = ρ1D∆w + ρ2f(w).

The linear case (with f(w) ≡ 0, µ = 0), as has been suggested by [4],
describes Brownian motion with Poisson stops. In a stochastic interpre-
tation the graphs of the paths are the same as in standard Brownian
motion. Following (5) the density is governed by a wave equation with
viscous damping

(11) τwtt + wt − τD∆wt = ρ1D∆w

with effective diffusion coefficient ρ1D.

As announced earlier, we discuss the effect of the nonlinear diffusion
term ∆f(w) in equation (5). We linearize at the zero solution and keep
only differential operators of order 2 and 3. Hence we find the leading
part

τwtt − τD∆wt = D(ρ1 − τr)∆w
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where

(12) r = f ′(0)

is the intrinsic growth rate of sedentary individuals. Hence, were it not
for the viscosity term ∆wt, the “wave equation” alone would become
elliptic rather than hyperbolic for r > γ1. It turns out, that the sign of
the quantity r − γ1 plays an important role in the present problem.

In order to better understand this phenomenon, we compare the sys-
tem (1) to the Fitzhugh-Nagumo system and to a Fisher equation with a
quiescent state. The Fitzhugh-Nagumo system (see [14, 23]) describes
the interaction of voltage v and membrane activation w in the membrane
of a nerve cell (here q(v) = v(1 − v)(v − α), with 0 < α < 1),

(13)
vt = D∆v + q(v) − δw

wt = v − νw

which leads to

(14) vtt + (ν − q′(v))vt − D∆vt = νD∆v + νq(v) − δv.

Since ν > 0, the leading part of this equation is always hyperbolic.

3.1 Fisher’s equation with a quiescent state We can associate a
quiescent state with Fisher’s equation,

(15)
vt = D∆v + f(v) − γ2v + γ1w

wt = γ2v − γ1w.

Individuals in state v move and interact as in the standard Fisher equa-
tion while individuals in state w are quiescent. The system (15) could
represent a model for a population where individuals migrate and re-
produce and are subject to randomly occurring inactive phases. Such
behavior is typical for invertebrates living in small ponds in arid climates
which dry up and reappear subject to rainfall.

One can eliminate the variable w and derive the damped wave equa-
tion

(16) τvtt + (1 − τf ′(v))vt − τD∆vt = ρ1D∆v + ρ1f(v).

Studying the three examples (1), (15) and (13) together gives some
insight on the transition from formally hyperbolic to formally elliptic in
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the case of (1). In the two examples (13) and (15) the second equation
describes a negative feedback loop for any biologically meaningful choice
of the parameters and this feedback loop leads eventually to the hyper-
bolicity of the wave equation independent of the viscosity term. On the
contrary, the second equation in (1) becomes a positive feedback loop for
r > γ1 and the wave equation becomes formally elliptic. Hence in the
case of the system (1) we have formally a hyperbolic/elliptic transition
like in supersonic flow.

4 The system without diffusion In the absence of diffusion the
system (1) reduces to a system of two ordinary differential equations
with reproduction in one compartment and mortality in the other,

(17)
v̇ = −µv − γ2v + γ1w

ẇ = f(w) − γ1w + γ2v.

In view of (5) the system is equivalent with the Liénard equation

τẅ + (1 − τ (f ′(w) − µ))ẇ = (ρ2 + τµ)f(w) − ρ1µw

with the limiting case

(18) ẇ = f0(w)

for large γi, with f0 defined by (7).
The Jacobian of (17) at any point (v, w) is

(19) J =
(−µ − γ2 γ1

γ2 f ′(w) − γ1

)
.

Hence (17) is a cooperative system (off-diagonal elements of the Jacobian
are positive, see [30]). There are no periodic orbits. Every bounded
trajectory converges to a stationary point.

With the assumptions on the function f the rectangle

Q = {(v, w) : 0 ≤ w ≤ 1, 0 ≤ v ≤ γ1/γ2}
is positively invariant with respect to the flow and it attracts all trajec-
tories from R

2
+.

If w is a zero of the function fτ (w) as given by (6) and

(20) v =
γ1

µ + γ2
w
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then (v, w) is a stationary point of (17). The determinant and the trace
of the Jacobian satisfy

(µ + γ2)trJ = − detJ − (µ + γ2)2 − γ1γ2.

The trace is negative whenever the determinant is nonnegative. Hence
the stability of the stationary point is governed by the determinant alone.
Since

det J = −(µ + γ2)f ′
τ (w),

the sign of f ′
τ (w) determines the stability of the stationary point (v, w).

In realistic examples the function f has some monotonicity properties.
We assume that the effective growth rate f(w)/w is decreasing,

(21)
d

dw

(
f(w)

w

)
< 0 for w > 0.

In other words, we assume that the function f is concave in the sense of
Krasnoselskij. This assumption is realistic in biological terms but also
a very natural hypothesis for elliptic boundary value problems. The
hypothesis is equivalent with the following

(22) f ′(w) < f(w)/w for w > 0.

Of course, if f is concave in the standard sense and f(0) ≥ 0 then it
satisfies (21), too. Hence the Verhulst case is always included.

Let (21) be satisfied. Then 1 > w > v > 0 implies f(w)/w <
f(v)/v = (f(v) − f(0))/(v − 0). Hence the function f satisfies also
the “subtangential condition”

(23) f(w) ≤ f ′(0)w for 0 ≤ w ≤ 1,

which plays a role in the travelling front problem, see Section 6. If
µ = 0, i.e., when we consider the system (12), then in all arguments we
can replace the assumption (21) by (23).

The point (0, 0) is stationary. If µ > 0 is large then there may be no
other stationary points, and (0, 0) is globally attracting. For moderate
µ > 0 there may be many stationary points. If (21) is satisfied then
there is at most one non-trivial stationary point, and this point exists
and is stable whenever (0, 0) is unstable.
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The trace and the determinant at the stationary point (0, 0) are (recall
r = f ′(0))

θ = trJ = r − µ − γ1 − γ2,(24)

d = detJ = −µr − γ2r + µγ1.(25)

Later we shall see that the net production in the sedentary compartment

(26) δ = r − γ1

plays an important role. The condition d < 0 can also be expressed as

(27) r >
µγ1

µ + γ2

saying that the growth rate in the sedentary compartment exceeds the
mortality in the migrant compartment. We rephrase the stability con-
ditions in terms of these quantities.

Lemma 1. Assume (21) holds. If d < 0 then the stationary point (0, 0)
is unstable and there is a unique non-trivial stationary point. If d ≥ 0
then (0, 0) is stable and there is no other stationary point.

Hence we have two cases depending on the relative sizes of the production
rate r, the mortality µ, and the transition rates γi.

Case A: d < 0 (high production, low mortality). The stationary point
(0, 0) is unstable. There are non-trivial stationary points. If (21) is
satisfied, then the non-trivial stationary point is unique, otherwise there
may be generically an uneven number of stationary points.

Case B: d > 0 (low production, high mortality). The point (0, 0) is
stable. If (21) is satisfied, then there are no further stationary points.
In a general generic situation, there is an even number of non-trivial
stationary points.

Now we consider the case of large switching rates, i.e., the scaling (8)
with ε → 0. In the limit the condition (27) for a non-trivial stationary
point assumes the form f ′

0(0) = ρ2r − ρ1µ > 0. If there is no non-trivial
stationary point then the population dies out. If there is a non-trivial
stationary point then the limiting reaction diffusion equation (9) can be
seen as a population equation with adapted growth rate and capacity.
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These effects can be clearly seen in the Verhulst case f(u) = ru(1−u).
Then (18) can be written as (see also (7))

(28) wt = reffw
(
1 − w

Keff

)
with

reff = ρ2r − ρ1µ, Keff =
ρ2r − ρ1µ

ρ2r

which says that we have another diffusive Verhulst equation with a re-
duced reproduction factor (because of ρ2 < 1 and the additional mor-
tality µ in the migrating compartment) and reduced capacity, unless
µ = 0.

5 Diffusion in a bounded domain The sign of the quantity δ,
introduced in (26), plays an important role if one studies the system (1)
on a bounded domain Ω. The case of no flux (zero Neumann) conditions
can be handled in a straightforward manner. We consider absorption
(zero Dirichlet) boundary conditions

(29) v(x) = 0 for x ∈ ∂Ω.

We assume that the condition (21) is satisfied. Let λ1(Ω) be the lowest
eigenvalue of −∆ for the domain Ω with the boundary condition (29). If
d > 0 then the system without diffusion has only the trivial stationary
point (0, 0) and also for (1) the solution (v, w) ≡ (0, 0) is the only non-
negative stationary solution. Therefore we restrict to Case A, i.e., to
d < 0.

We linearize the system (1) at the trivial solution. Since the lineariza-
tion of the right hand side of the system (1) and the Laplacian with zero
Dirichlet boundary conditions both generate flows preserving positivity,
we can obtain the spectral bound λ for the linearization of the system
(1) (29) from the lowest eigenvalue of the (negative) Laplacian, i.e., from
the condition

(30) (λ + Dλ1(Ω) + µ + γ2)(λ + γ1 − r) − γ1γ2 = 0.

This argument works for any standard space, e.g., L2(Ω). The equation
(30) shows that there are two very different cases.

Proposition 2. Let the function f have the properties stated in Sec-
tion 2. Then the stability properties of the zero solution can be described
as follows.
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Case 1: δ = r− γ1 < 0. Then the zero solution is unstable if and only if

(31) Dλ1(Ω) <
d

δ

where the right hand side is positive. Hence the trivial solution is unsta-
ble for sufficiently large domains.

Case 2: δ = r − γ1 > 0. Then the trivial solution is always unstable.
The population can persist in arbitrarily small domains.

Next we look at the stationary problem

(32)
−D∆v = −(γ2 + µ)v + γ1w

γ1w − f(w)
γ2

= v

with boundary condition (29). We reduce this problem to a scalar elliptic
boundary value problem.

Lemma 3. Let the function f have the property (21). Then the bound-
ary value problem (32), (29) for the functions (v, w) can be reduced to a
boundary value problem for the function v alone,

(33) −D∆v = g(v)

with boundary condition (29). The function g : R+ → R has the fol-
lowing properties: g ∈ C1[0,∞), g(0) ≥ 0, g(v) < 0 for large v. The
function g is concave in the sense of Krasnoselskij, cf. (21),

(34) g′(v) < g(v)/v for v > 0.

There are two cases.

Case 1: δ < 0. Then g(0) = 0, g′(0) > 0.
Case 2: δ > 0. Then g(0) > 0.

Proof. Define the function h : R → R by h(w) = (γ1w − f(w))/γ2.
Then h(0) = 0, h(w) → +∞ for w → +∞, and h′(0) = −δ/γ2. Further-
more h is “convex in the sense of Krasnoselskij”, i.e., h′(w) > h(w)/w
for w > 0.
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Case 1: The function h is strictly monotone for w > 0 and defines a
bijection of R+. The inverse function k : R+ → R+ satisfies k(0) = 0,
k′(0) = −γ2/δ > 0 and k′(v) < k(v)/v for v > 0. Define

(35) g(v) = −(γ2 + µ)v + γ1k(v).

Then g′(v) < g(v)/v for v > 0, g(0) = 0, g′(0) = d/δ > 0. In view of
h(1) = γ1/γ2 we have g(γ1/γ2) = −µγ1/γ2 ≤ 0. On the other hand, let
v be a non-negative solution of (33), (29). Then define w = k(v), the
pair (v, w) is a solution to (32), (29).

Case 2: The function h is negative for small positive v and then becomes
positive. There is a unique zero which we denote by K̄. From h(1) =
γ1/γ2 it follows that K̄ < 1. Then h is strictly increasing for v ≥ K̄ and
h : [K̄,∞) → [0,∞) is a bijection. The inverse function k : R+ → [K̄,∞)
satisfies k(0) = K̄ and k′(v) < k(v)/v for v > 0. Again, define the
function g by (35). Then g(0) = γ1K̄ > 0, and g(γ1/γ2) < 0 as in Case
1. Finally g′(v) < g(v)/v for v > 0.

On the other hand, let v be a non-negative solution of (33), (29).
Then the pair (v, w) with w = k(v) is a solution to (32), (29).

Theorem 4. Let f satisfy the hypothesis (21). Then the boundary
value problem (32), (29) has the following properties.

Case 1: δ < 0. If the domain is sufficiently large, i.e., if condition
(31) is satisfied, then there is a non-trivial non-negative solution. This
solution is unique.

Case 2: δ > 0. For a given domain of any size there is a unique non-
trivial non-negative solution.

Proof. The proof follows from the theory of subsolutions and super-
solutions, see, e.g., Theorem 2.1 of [27] based earlier work [1]. As a
supersolution we can take v(x) ≡ γ1/γ2. As a subsolution we choose
εu, where u is the non-negative eigenfunction −∆u = λ1u (see (31))
with ‖u‖2 = 1, and ε > 0 small. In Case 1 we have D∆(εu) + g(εu) =
ε(g′(0) − Dλ1)u + o(εu) > 0 in Ω for small ε > 0. In Case 2 we have
D∆(εu) + g(εu) = g(0) + O(εu) > 0 in Ω for ε > 0 small.

Uniqueness follows from the argument of [16] which covers exactly the
present situation (the author does not mention Krasnoselskij monotonic-
ity, but his condition is equivalent to it, with the sign of the condition
and that of the Laplacian inverted).
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In the case of the Verhulst nonlinearity f(w) = rw(1 − w) we can
make things more explicit. Then h(w) = (γ1w − rw(1 − w))/γ2 and

k(v) =
1
2r

√
(γ1 − r)2 + 4γ2rv − 1

2r
(γ1 − r),(36)

g(v) =
γ1

2r

(√
(γ1 − r)2 + 4γ2rv − (γ1 − r)

)
− (γ2 + µ)v.(37)

The function g(v) has a unique positive zero (the adjusted carrying
capacity for the migrants v)

(38) Kv =
−γ1d

r(γ2 + µ)2

which is positive by assumption. One can compute also the carrying
capacity for the sedentary population which is

(39) Kw =
−d

r(γ2 + µ)
.

One can ask whether any of the inequalities Kv ≤ 1, Kw ≤ 1 or Kv +
Kw ≤ 1 hold, in other words, whether the carrying capacity of the total
population or its components depends in a simple way on the parameters.
In fact a simple relation seems not to exist, except in the case µ = 0
where always Kv + Kw > 1.

We interpret Proposition 2 and Theorem 4 in biological terms. Case 1
exhibits a critical domain size and is similar to traditional estimates of
patch sizes, whereas Case 2 is unusual as there is no critical domain
size. After the calculations have been done, the biological interpretation
is obvious. The mortality µ has been restricted by the assumption that
(v, w) = (0, 0) is unstable in the system without diffusion. If r is large
and γ1 is small then many individuals are produced in the sedentary com-
partment and few enter the migrating compartment where they either
die or are absorbed at the boundary. Hence in this case the migrating
compartment has little influence.

We shall see that the distinction between these two cases is also es-
sential in the travelling front problem.

Now we perform a similar analysis for the system (15). With the
hypothesis (21) and the boundary condition (29) we find by direct com-
putation that there is a non-trivial equilibrium if and only if the zero
solution is unstable. The zero solution is unstable for any choice of the
γi. Hence in the case of the system (15) introducing a sedentary com-
partment does not change the conditions for the population to survive
but just changes the total population size at the non-trivial equilibrium.
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6 Travelling fronts For the classical reaction diffusion equation
(2) where the function f has the properties stated in Section 2 the fol-
lowing is known: There is a minimal speed of travelling fronts c0 =
c0(f, D) > 0. For each c ≥ c0 there is a travelling front, i.e., a wave pro-
file, unique up to translation. The profiles are exponentially decaying.
Slower fronts have a steeper profile, i.e., decay faster. The front with
minimal speed c0 describes the propagation of initial data with compact
support.

The minimal speed can be characterized by variational principles. In
general it depends on D and the global shape of the function f . Thus,
in general, it is not true that the speed of the front can be obtained
from looking at its leading edge; it cannot be determined from a linear
analysis.

On the other hand, a linear analysis at the leading edge gives a lower
bound c̃0 = c̃0(f, D) for possible speeds of travelling fronts since for
c < c̃0 all candidates for front profiles are oscillating and hence not
uniformly positive. Hence c̃0 = 2

√
Df ′(0) ≤ c0.

There are certain classes of functions f for which the minimal speed
c0 can be found from a linear analysis, i.e., for which equality c̃0 =
c0 holds. When this is true it has become customary to say that the
equation satisfies the linear conjecture or it is linearly determined. A
sufficient, but not necessary, condition is the subtangential inequality
f(u) ≤ f ′(0)u for 0 ≤ u ≤ 1, see [26]. There are good reasons to assume
that there is no simple necessary and sufficient condition for the linear
conjecture to hold [12].

For systems in general, even for those which are close to the scalar
case in the sense that the travelling front problem can be reduced to the
scalar case (e.g., reaction telegraph equations [12]), there is no analogue
of the subtangential condition, although concavity will do. For general
systems the problem is wide open except in cases where the nonlinearity
has a cooperative structure [19].

The system (1) has the reaction diffusion equation (10) as its limiting
case. All results stated above apply to the limiting case. We want
to know whether (1) has travelling front solutions and when the linear
conjecture holds, away from the limiting case, i.e., for moderate γi.

There are several approaches to the travelling front problem. One
approach is to transform (1) into travelling wave coordinates and to
show the existence of heteroclinic orbits connecting the non-trivial to the
trivial stationary state. This approach usually works in scalar problems
but becomes extremely cumbersome for systems. But even for systems
one can find bounds on the minimal wave speed such as c̃0 above from
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a linear analysis at the leading eadge of the front. We shall use this
approach in Subsection 6.3.

Quite another approach, originating from [2], is based on the “spread
rate” and uses comparison principles for the time-dependent problem.
The spread rate is a number c∗ = c∗(f, D) such that, for initial data
with compact support, an observer travelling with speed c > c∗ will
eventually see the trivial state, and an observer travelling with speed
c < c∗ will see the non-trivial state. Also for the spread rate some
information can be gained from linearizing at the leading edge of the
front, see [3, 22, 19].

For a large class of scalar equations the travelling wave problem can be
carried into an integral equation and then it can be shown that travelling
fronts exist and also that the spread rate equals the minimal speed of
travelling fronts (again using a subtangential condition), see [32]. Some
systems can be carried into a scalar integral equation by solving for one
variable in the first equation and replacing it in the second equation.
Here we follow a direct approach.

In this section we will give the formula for the spread rate c∗ of
the system (1) and will show that this spread rate equals the minimal
wave speed c̃0 for the travelling wave problem with condition (21). The
equivalence of c∗ and c̃0 is known for the limiting equation (cf. (9)), [2],
but has not been previously established for the two-component system
(1). Detailed calculations of the minimal wave speed have been made
by [21] for δ > 0 (Case 2 above), but have not been previously made
for δ < 0 (Case 1 above). Our analysis calculates the spread rate c∗

for the two component system using new results from [19], and extends
the analysis of [21] to the case δ < 0 (Case 1 above). This allows us
to get a complete picture of travelling fronts with mobile and stationary
classes. With the subtangential properties required we get c∗ = c̃0 for
the nonlinear system (1).

We assume d < 0 since otherwise the non-trivial equilibrium (v̄, w̄)
would not exist.

6.1 Spread rate analysis We follow the approach in [19] and consider
a system of reaction diffusion equations

(40) Ut = D̂∆U + F (U)

where the nonlinearity F has cooperative structure and D̂ is the non-
negative diagonal matrix of diffusion rates. Let F (0) = 0 and let F (Ū) =
0 with Ū > 0 componentwise.
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We look for a travelling front connecting the non-trivial equilibrium
Ū to the trivial equilibrium such that U = 0 at the leading edge of the
front. Together with (40) we consider the linearization at U = 0

(41) ut = D̂uxx + Au

where A = F ′(0) is the Jacobian at U = 0. There are several quantities
related to the minimal speed of travelling fronts. The spread rate for
the nonlinear system (40) is a number c∗ such that for small ε > 0

(42) lim
t→∞

{
sup

|x|≥(c∗+ε)t

‖U(t, x)‖} = 0,

(43) lim
t→∞

{
sup

|x|≤(c∗−ε)t

‖U(t, x) − Ū‖} = 0.

There is the spread rate c̄ of the linear system (41) defined in a similar
manner but with (43) replaced by

(44) lim
t→∞

{
sup

|x|≤(c̄−ε)t

‖u(t, x)‖} > 0.

In [19] it was shown that, under certain conditions on F (U), c∗ = c̄. In
turn, c̄ can be related to the spectral bound of the matrix A+λ2D̂. Intu-
itively, this spectral bound can be interpreted as a measure of the local
growth rate associated with the leading edge of the spreading population
which has the shape exp{−λ(x − ct)}.

Applying the results from [19] requires some further hypotheses about
irreducibility of the Jacobian and the absence of other equilibria, see also
[20]. These hypotheses are satisfied in our case. In the present context
we shall use the following two results.

(i) If the function F satisfies a subtangential condition then c∗ and c̄
both exist and c∗ = c̄.

(ii) The spread rate of the linear system is given by

(45) c̄ = inf
λ>0

σ1(λ)

where σ1(λ) is the largest eigenvalue, i.e., the spectral bound, of the
matrix

(46) Bλ =
A + λ2D̂

λ
.

Note that, in view of the assumptions (cooperativeness and instability
of the zero solution), the number σ1(λ) is positive. It is evident that
c̃0 ≤ c∗ and, if c0 exists, also c̃0 ≤ c0.
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6.2 Spread rate analysis for the system (1) In the present case of
the system (1) we have, with U = (v, w),

D̂ =
(

D 0
0 0

)
, F (U) =

(
−µv − γ2v + γ1w

f(w) + γ2v − γ1w

)
,(47)

A =
(−µ − γ2 γ1

γ2 δ

)
.(48)

It is easy to see that the system satisfies the subtangential condition
for the vector function F (see [19]) if and only if the scalar function f
satisfies a subtangential condition (23).

The characteristic polynomial of the matrix Bλ is, with θ, d, δ from
(24)–(26)

(49) p(σ, λ) = σ2 − σ
(θ + Dλ2)

λ
+

d

λ2
+ Dδ = 0.

The larger root is σ1(λ). We can multiply by λ2 and look at the poly-
nomial P (σ, λ) = λ2p(σ, λ),

(50) P (σ, λ) = λ2σ2 − λσ(θ + Dλ2) + d + Dδλ2

as the characteristic polynomial of the two-parameter eigenvalue prob-
lem

(51) (A + λ2D̂ − λσI)u = 0.

We can expand into powers of λ and get

(52) P (σ, λ) = eλ3 + aλ2 + bλ + d,

where the coefficients e, a, and b are given in terms of the original
parameters as

(53) e = −Dσ, a = Dδ + σ2, b = −σθ

and d is given by (25).

Lemma 5. σ1(λ) is positive for all values of λ and achieves its mini-
mum on the interval 0 < λ < ∞ for finite values of λ.

Case 1: If δ = r − γ1 < 0 then σ2(λ) is negative for all λ.
Case 2: If δ = r − γ1 > 0 then σ2(λ) is negative for λ2 < −d/(Dδ) and
is positive for λ2 > −d/(Dδ). The function σ2(λ) achieves a positive
maximum for a finite value of λ on the interval −d/(Dδ) < λ < ∞.
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Proof. Since the matrix Bλ is cooperative, the roots of p( · , λ) are real.
If δ < 0 then p(0, λ) < 0 and hence there is one positive root σ1(λ) and
one negative real root σ2(λ) for all values of λ > 0. Now let δ > 0. The
determinant d/λ2 + Dδ increases from large negative values for small λ
to Dδ > 0 for λ → ∞. From the definitions (24)–(26) it follows by direct
calculation that θδ > d. Then it follows that the inequality d+Dλ2δ > 0
implies θ + Dλ2 > 0. Hence the polynomial has always one root σ1 > 0
and another σ2 which switches from negative to positive as λ2 increases
through λ2 = −d/(Dδ).

As λ → 0, σ1(λ)λ → (θ +
√

θ2 − 4d)/2 > 0 and thus σ1(λ) → ∞. As
λ → ∞, σ1(λ) ≈ Dλ and hence σ1(λ) → ∞. As λ → ∞, σ2(λ) ≈ δ/λ
and hence σ2(λ) → 0. As λ → 0, σ2(λ)λ → (θ − √

θ2 − 4d)/2 < 0 and
thus σ2(λ) → −∞.

The functions σ1(λ), σ2(λ) are finite for finite values of λ and smooth
functions of λ. Thus, σ1(λ) has a minimum for a finite value of λ, and,
when δ > 0, σ2(λ) has a maximum for a finite value of λ greater than√−d/(Dδ).

Lemma 6. If σ̄i is an extremum of σi(λ) assumed at some position
λ̄i > 0 then P (σ̄i, λ) has a double root at λ̄i.

Proof. We have P (σi(λ), λ) = 0 and hence

∂P

∂σ
(σi(λ), λ)

dσi(λ)
dλ

+
∂P

∂λ
(σi(λ), λ) = 0.

At an extremum of σi, we have dσi(λ)/dλ = 0 and P (σi(λ), λ) = 0 and
∂P
∂λ (σi(λ), λ) = 0.

The next lemma shows that the extrema of the functions σi are
unique. This fact is of interest for characterizing the spread number
but also in relating the spread number approach to the travelling wave
analysis.

Lemma 7. The function σ1(λ) has a unique minimum

σ̄1 = min
λ>0

σ1(λ) = σ1(λ̄1) > 0.

In Case 1 the function σ2(λ) is negative. In Case 2 the function σ2(λ)
has a unique maximum

σ̄2 = max
λ>0

σ2(λ) = σ2(λ̄2) > 0,

and σ1(λ̄1) > σ2(λ̄2).
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Proof. By the proof of Lemma 5, the functions σ1(λ) and σ2(λ) have an
odd number of extrema, multiplicities counted. If one of these functions
would have three extrema, then for some value of σ, the polynomial
p(σ, λ) would assume that value four times, and the polynomial P (σ, λ)
would have four zeros for that value of σ. Hence σ1(λ) has a unique
minimum and σ2 has a unique maximum.

If σ1(λ̄1) ≤ σ2(λ̄2) then again the polynomial P (σ, λ) would vanish
four times for some value of σ, multiplicities counted.

With these Lemmas we have shown the following result.

Theorem 8. Let the function f have the properties states in Section 2.
The spread rate c̄ (44) of the linear system (41) can be obtained as the
largest value σ such that the polynomial P (σ, λ) (50) has a real positive
double root. If the function f in equation (1) satisfies the subtangential
condition (23) then the spread rate c∗ of the nonlinear system (42), (43)
is given by c∗ = c̄.

6.3 Travelling wave analysis We now consider travelling front solu-
tions v(x + ct), w(x + ct) of (1) with speed c. The wave profile (v, w)
satisfies the system of ordinary differential equations of order three

(54)
cv̇ = Dv̈ − µv − γ2v + γ1w

cẇ = f(w) − γ1w + γ2v

and corresponds to a heteroclinic orbit in R
3 connecting the equilibrium

(recall that d < 0) (v, w, v̇) = (v̄, w̄, 0) to (0, 0, 0).
We linearize about the leading edge of the wave v = 0, w = 0 (recall

r = f ′(0))

(55)
cv̇ = Dv̈ − µv − γ2v + γ1w

cẇ = rw − γ1w + γ2v.

We look for the eigenvalues of the linearization

(56)
cλv = λ2Dv − µv − γ2v + γ1w

cλw = rw − γ1w + γ2v.

The determinant of this homogeneous system yields the characteristic
polynomial which is exactly the same as the polynomial defined in the
previous subsection in equation (50):
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P (c, λ) = (Dλ2 − µ − γ2 + cλ)(cλ + r − γ1) − γ1γ2

= Dcλ3 + (Dδ + c2)λ2 + cθλ + d

= eλ3 + aλ2 + bλ + d

with coefficients defined in (53), with σ replaced by c.
The heteroclinic orbit leaves the trivial equilibrium on the unstable

manifold defined by the two roots of P (λ, c) with positive real part. If
these roots are conjugate complex then it spirals in phase space and the
v and w components of the orbit become negative. Note that when c
is large the pair of roots with positive real part are real and the orbit
does not spiral. The minimal allowable wave speed c̃0 occurs when the
pair of positive real roots coalesce and become complex. A necessary
condition for this to occur is P = ∂P/∂λ = 0. Note that this necessary
condition for c̃0 is the same as the necessary condition for c∗ given in
the last subsection.

6.4 Evaluating the spread rate and the minimal travelling front
speed We now evaluate the double root condition P = ∂P/∂λ = 0
which is necessary for c∗ and c̃0. As in [21] we use the resultant of the
cubic P , i.e., the resultant of P and ∂P/∂λ which is the homogeneous
polynomial of degree 4

(57) R(e, a, b, d) = 18abed − 4a3d + a2b2 − 27e2d2 − 4b3e.

The equation R(e, a, b, d) = 0 characterizes that manifold in the four-
dimensional parameter space for which the cubic P has multiple roots.
In the present case we find easily that, given the other parameters, R is
a cubic in the variable c2,i.e., R(e, a, b, d) ≡ ϕ(c2) with

(58)
ϕ(c2) = 18Dc2(Dδ + c2)θd − 4(Dδ + c2)3d

+ c2(Dδ + c2)2θ2 − 27D2c2d2 − 4Dc4θ3.

Sorting out terms, we get

ϕ(c2) = c6(θ2 − 4d) − 4D3δ3d(59)

+ c4D(18θd − 12δd + 2δθ2 − 4θ3)

+ c2D2(18δθd − 12δ2d + δ2θ2 − 27d2).
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As d < 0 by assumption, the leading coefficient is positive. Hence the
behavior of the problem depends essentially on the sign of δ. Recall the
discussion in Section 5.

Lemma 9. Let δ < 0. Then the function ϕ(x) is convex for x ≥ 0.

Proof. If we write ϕ(x) = a3x
3 +a2x

2 +a1x+a0 then ϕ′′(x) = 6a3x+
2a2. For the coefficient a2 we find

(60) a2 = 2[(9θ − 6δ)d + θ2(δ − 2θ)].

We have d < 0 and θ < δ < 0. Hence both terms in (60) are positive.
Therefore a2 is positive as well as a3.

Now we use the information on the functions σi(λ) which we have
obtained in Lemmas 5, 6, 7 to show the following theorem.

Theorem 10. Let the function f satisfy the general hypothesis of Sec-
tion 2 and and the subtangential condition (23). Let d < 0. Then the
positive square root of the largest zero of the cubic ϕ(x) is the nonlinear
spread rate c∗. The nonlinear spread rate is equal to the bound c̃0, i.e.,
c∗ = c̃0.

Proof. If σ̄ is an extremal value of either σ1 or σ2 then the correspond-
ing value of λ is a double root of P (σ̄, λ) and hence ϕ(σ̄2) = 0, i.e., σ̄2

is a positive root of ϕ(x).

Case 1: δ = r − γ1 < 0. Then the constant term of the cubic ϕ(x)
is negative, hence ϕ(0) < 0 and the cubic has at least one positive
root. In view of Lemma 9 this root is unique. Hence there is only one
extremum of σ1 or σ2. Since we know from Lemma 7 that σ1 has a
unique minimum, which is c̄ it follows that c̄2 is the only positive root of
ϕ(x). It also follows that the function σ2, which is negative in this case,
has no extrema at all. (It is difficult to show this fact directly). Since
in the case of a double eigenvalue the transition from node to focus is
generic, solutions for c < c̄ are oscillatory. Therefore c∗ = c̃0 = c̄.

Case 2: δ = r − γ1 > 0. Then the constant term in ϕ(x) is positive
and hence ϕ(0) > 0. There can be two real positive roots (one in the
coalescent case) or none at all. In view of Theorem 8 there is a positive
root, and hence there are two of them. By Lemma 6 these correspond
to the minimum of σ1 and to the maximum of σ2. Then Lemma 7 yields
that the minimum of σ1 corresponds to the larger root. The larger root of
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ϕ(x) is c̄2. Because f satisfies the subtangential condition, Theorem 8
shows that the nonlinear spread rate is c∗ = c̄. The proof that the
larger of the two roots is also the one that characterizes c̃0 was given
in [21], where it was shown that, as c moves through the smaller root,
travelling front solutions switch from non-oscillatory negative solutions
to oscillatory solutions.

Hence in the typical situation of a positive net recruitment rate and
large γi we are in Case 1 and the polynomial ϕ has exactly one real
positive root which is a candidate for both the spread rate and the
minimal speed of travelling fronts. This finding completes the discussion
in [21] where Case 2 has been studied which leads to either two or no
real positive roots. In Case 2 the larger positive root of the polynomial
ϕ is the one that characterizes both the spread rate and the minimal
speed of travelling fronts. This connection between the spread rate and
the minimal speed of travelling fronts, which is well-known for scalar
equations [2], can also be shown for cooperative systems in general [18].

Of course the case µ = 0 is of particular interest. Then d = −rγ2 < 0
which says that in absence of migration there is always a non-trivial
equilibrium. This finding is obvious in biological terms since there is
no mortality in the migrating group. Furthermore θ = r − γ1 − γ2 and
δ = r − γ1. Even for µ = 0 both cases 1 and 2 are possible.

6.5 The system with a quiescent stage When individuals repro-
duce and disperse in a single stage which switches with a quiescent stage,
equation (15) pertains. Most results can be carried over to the system
(15). The matrix A becomes

(
r − γ2 γ1

γ2 −γ1

)
,

hence θ = r − γ1 − γ2, d = −rγ1 < 0, and

P (σ, λ) = λ2σ2 − λσ(θ + λ2) + d − Dγ1.

Hence we always have the situation of Case A (d < 0) and of Case 1
(σ2 < 0, the cubic ϕ(x) has one or three positive roots).

7 Discussion We have studied a system of ordinary differential
equations (17) with two compartments or subpopulations. In one com-
partment the population is governed by a law of Verhulst type ẇ = f(w)
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while the other compartment is subject only to mortality v̇ = −µv. The
compartments are coupled by linear exchange laws. The population
can persist if the zero state is unstable, d < 0. In that case there is
a unique positive stationary state (v̄, w̄). In the diffusion model (1)
the subpopulation v diffuses with rate D while the w subpopulation
remains sedentary. This system is studied on a bounded domain with
zero Dirichlet (absorption) boundary conditions. It turns out that the
difference δ = r− γ1 = f ′(0)− γ1 determines the fate of the population.
If δ < 0 then the population can persist on large domains but not on
small domains. If δ > 0 then the system can persist on arbitrarily small
domains.

We analyzed the travelling wave problem from two perspectives, that
of the spread rate c∗ and that of the lower bound c̃0 for the travelling
wave speed, and showed that these were identical. When δ < 0 then the
system behaves essentially like the Fisher equation: There is a unique
candidate for the speed. When δ > 0 then there are two candidates for
the speed, but the larger is the relevant speed.

Explicit calculation of the speed requires finding the largest root of
the polynomial ϕ(c2) in (59). However, simple formulae for the speed
can be given for two limiting cases: switching rates very large or very
small.

1. For very large switching rates equation (9) applies, and c̃0 can be
calculated from the standard theory for the scalar equation (as outlined
in Section 2) to be c = c̃0 = 2

√
ρ1D(ρ2r − ρ1µ), provided ρ2r > ρ1µ.

2. For very small and equal switching rates γ1 = γ2 = γ, and µ = 0, the
speed was computed in [21] as c̃0 =

√
rD.

In the first of these cases δ < 0. This case is a variant of the classical
Fisher formula c = 2

√
rD where diffusion, reproduction and mortality

are weighted by the proportion of time spent in each class. In the second
case δ > 0, and the classical formula would not even give a correct lower
bound.

Hence, splitting the diffusion and reaction part in Fisher’s equation
leads to quite unexpected behavior, in particular far from the limiting
case of large switching rates, even if there is no mortality in the migrant
compartment. This observation may be of importance for modelling
actual biological populations since quite often a migrant state can be
clearly separated from a sedentary state. Even introducing a quiescent
state into a system may change the behavior drastically [15].
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Appendix Here we present the steps in the transition from (1)
to (5),

wtt = f ′(w)wt − γ1wt + γ2vt

= f ′(w)wt − γ1wt + γ2[D∆v − µv − γ2v + γ1w]

= f ′(w)wt − γ1wt + γ1γ2w + [D∆ − µ − γ2][wt − f(w) + γ1w]

= f ′(w)wt − (γ1 + γ2 + µ)wt + D∆wt + (γ2 + µ)f(w)

− D∆f(w) − γ1µw + γ1D∆w.

Using the parameters (3), (4), one arrives at (5).
The same idea can be applied to the variable v, the resulting equation

looks more complicated. From (1) we get

vtt = D∆vt − µvt − γ2vt + γ1wt(61)

= D∆vt − µvt − γ2vt + γ1(f(w) − γ1w + γ2v)

= D∆vt − (γ1 + γ2 + µ)vt + γ1D∆v

+ γ1f(
1
γ1

(vt − D∆v + µv + γ2v)) − γ1µv.

Hence the new variable

(62) ṽ =
γ2

γ1
v

satisfies the damped wave equation
(63)

τ ṽtt+(1+τµ)ṽt−τD∆ṽt = ρ1D∆ṽ+ρ2f(ṽ+
µ

γ2
ṽ+

1
γ2

ṽt− 1
γ2

D∆ṽ)−ρ1µṽ

where the Laplacian occurs inside the nonlinearity. In the formal limit
(8) of large γi we get ṽt = ρ1D∆ṽ + f0(ṽ), i.e., again equation (9). In
[15] the transition between system diffusion systems and wave equations
with viscous damping is studied in general setting.
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