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Abstract

Recent investigations have shown how chance, long-range dispersal events can allow tree populations to migrate rapidly in response to

changes in climate. However, this apparent solution to Reid’s paradox applies solely within the context of single species models, while the

rapid migration rates seen in pollen records occurred within multispecies communities. Ecologists are therefore presented with a new

challenge: reconciling the macroscopic dynamics of spread seen in the pollen record with the rules and interactions governing plant

community assembly. A case that highlights this issue is the rapid spread of Beech during the Holocene into a landscape already

dominated by a close competitor, Hemlock. In this study, we analyse a simple model of plant community assembly incorporating

competition for space and dispersal dynamics, showing how, even when a species is capable of rapid migration into an empty landscape,

the presence of an ecologically similar competitor causes Reid’s paradox to re-emerge because of the dramatic slowing effect of

competitive interactions on a species’ rate of spread. We then show how the answer to the question of how tree species dispersed rapidly

into occupied landscapes may lie in secondary interactions with host-specific pathogens and parasites. Inclusion of host-specific

pathogens into the simple community assembly model illustrates how tree species undergoing range expansions can temporarily outstrip

specialist predators, giving rise to a transient Jansen–Connell effect, in which the invader acts as temporary ‘super-species’ that spreads

rapidly into communities already occupied by competitors at rates consistent with those observed in the paleo-record.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

An important measure of our ability to predict the
response of tree species future to changes in climate is our
ability to understand their dynamics in response to past
climate change (Delacourt and Delacourt, 1987; Huntley
et al., 1991; Overpeck et al., 1991; Webb et al., 1998).
Palynological studies indicate that the retreat of the
Laurentide ice-sheet during the Holocene was accompanied
by a large-scale reorganization in the geographic distribu-
tion of tree species across the North American continent
e front matter r 2006 Elsevier Ltd. All rights reserved.
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(Davis, 1976; Delacourt and Delacourt, 1987; Webb, 1987;
Huntley et al., 1988). The rates at which tree species spread
during this period appear to have been surprisingly rapid,
in some cases in excess of a hundred meters per year
(Delacourt and Delacourt, 1987; Clark, 1993).
The discrepancy between the rapid rates of spread seen

in the palynological record and the measured dispersal
distances of trees in ecological studies has been a long-
standing issue in plant biogeography. Recently, this has
become known as Reid’s paradox, in honor of the pioneering
observations by Reid (1899) who found that the spread of
Oaks into Great Britain at the end of the Pleistocene were
seemingly impossibly fast (Clark et al., 1998).
In seeking to reconcile the rapid spread of trees in

response to changes in past climate with the measured
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dispersal distances of tree species, researchers have devel-
oped a variety of models of plant dispersal dynamics. Early
models (e.g. Skellam, 1951) used diffusion-terms within
deterministic equations to describe the spatial spread of
tree populations, reflecting an underlying assumption of a
Gaussian spatial distribution of seedlings around parent
trees. However, these models were later shown to have
difficulty in accounting for the rapid rates of spread seen in
tree pollen data (Clark et al., 1998). Subsequent researchers
considered more realistic models of dispersal that included
stochasticity in plant demographic rates, and, most
importantly, the possibility of chance, long-range dispersal,
giving rise to leptokurtic, ‘fat-tailed’ rather than Gaussian
dispersal kernels (Kot et al., 1996; Clark, 1998; Higgins and
Richardson, 1999; Lewis and Pacala, 2000). These analyses
showed that, when incorporated into single-species models
of plant dispersal, ‘fat-tailed’ distributions can result in
rates of spread consistent with those observed in the
palynological record (Clark, 1998, 2003).

This apparent reconciliation of the macroscopic rates of
spread seen in the paleo-record with the dispersal and
Fig. 1. Spatial spread of (a) Hemlock (Tusga canadensis) and (b) Beech (Fagu

Holocene inferred from the 2005 North American Pollen Database (North

position of the ice-sheet while the grey to green colors indicate relative frequen

(Brown University Quaternary Environment Group and Bartlein, 2005). No

occurred at 4000BP. Decline rate of spread in (b) is similar to Hemlock’s ra

Hemlock.
demographic properties of trees has, however, been solely
within the context of models for the dynamics of single
species, while the rates of spread inferred from pollen data
occurred in multi-species communities. For example, Fig. 1
shows the changes in the spatial distribution of Hemlock
(Tsuga canadensis) and Beech (Fagus grandifolia) during
the Holocene inferred from analyses of fossil pollen data
(North American Pollen Database Contributors, 2005).
The figure indicates a northward expansion of Hemlock
followed by a subsequent migration of Beech into the areas
occupied by Hemlock.
Hemlock’s advance ahead of Beech is most likely

explained by its ability to tolerate lower precipitation
(Kessel, 1979; Caspersen et al., 1999; Caspersen and Kobe,
2001), but in most all other aspects, these two species are
very similar ecologically, occupying the same shade-
tolerant, late-successional niche within north–eastern
forests of the United States. Field measurements of growth,
mortality and recruitment rates (Canham, 1985; Pacala
et al., 1996) confirm the remarkable closeness in their
life-history strategies (Fig. 2), and simulations using
s grandifolia) following the retreat of the Laurentide Ice sheet during the

American Pollen Database Contributors, 2005). Light-blue indicates the

cy of pollen in different areas. Images generated using Pollen Viewer v.3.2

te the rapid expansion of Beech following the decline in Hemlock that

te of spread in (a), despite the prior colonization by its close competitor,
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Fig. 2. Ecological similarity in the niches of Hemlock and Beech. Plots shows the position of Hemlock and Beech and other major New-England tree

species in a three-dimensional space consisting of the following key measures of plant performance: survivorship of a 1 cm diameter sapling in 1% full sun,

the number of years it takes a seedling to reach 3m in full sun, and the amount of shade cast by a 30 cm adult tree. Two-letter codes reflect the common

names of the tree species (Be ¼ Beech, He ¼ Hemlock, SM ¼ Sugar Maple, RM ¼ Red Maple, WP ¼White Pine, YB ¼ Yellow Birch, RO ¼ Red Oak,

BC ¼ Black Cherry, WA ¼White Ash). From Pacala et al. (1996).
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empirically-calibrated individual-based models of forest
dynamics have shown that this translates into almost
identical competitive abilities under most conditions
(Pacala et al., 1996). A characteristic signature of their
niche similarity that emerges in simulations is the forma-
tion and long-term persistence of endogenously-generated
patchiness in the spatial distributions of the two species—
a phenomenon that is borne out empirically (Davis et al.,
1992; Frelich et al., 1993; Davis et al., 1994).

As shown previously using a spatial version of the
Lotka–Volterra phenomenological model of competition
(Okubo et al., 1989; Shigesada and Kawasaki, 1997), and
here using a mechanistic model of plant community
assembly, whenever a colonizing species disperses into a
landscape in which an ecologically similar species is
present, we expect a marked slowing in the colonizer’s
rate of spread. In light of this, what is remarkable in Fig. 1
is that the presence of Hemlock (Fig. 1a) does not appear
to have significantly slowed the subsequent northward
expansion of Beech (Fig. 1b). Given the presence of its
close ecological competitor, Hemlock, Beech’s rate of
spread is surprisingly rapid—in excess of a hundred meters
per year (Woods and Davis, 1989).

We then use our plant community assembly model to
explore an idea first proposed by Davis (1981) that
interactions with pathogens and parasites may have played
a role in facilitating the rapid rates of tree spread in
response to climate change. The essence of the idea is
as follows: trees are susceptible to a variety of pathogens
that are host-specific either at the level of species, genus
or family. During periods of colonization, species may
be able to outstrip their host-specific pathogens, and
this escape from parasitism will facilitate their rate of
spread by giving them a competitive advantage over
ecologically similar resident species. More recently, a
similar explanation has been proposed for the spread of
invasive species (Keane and Crawley, 2002; Mitchell and
Power, 2003).
While numerous models have been developed to explore

the spatial spread of predators and pathogens (see
Shigesada and Kawasaki, 1997 for a review, and also
Owen and Lewis, 2001), these models have focused
exclusively on the dynamics of the predator–prey or
pathogen–host interaction. Here, we develop a model to
analyse how interactions with host-specific pathogens
affect the dynamics of competition between a colonizing
tree species and an ecologically similar resident. Our
analysis reveals how the interactions of the colonizer and
resident with their respective pathogens can have a
profound impact on the dynamics of competition, the rate
of colonizer spread, and the resulting dynamics of
community re-assembly (cf. Hilker et al., 2005).
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Fig. 3. Schematic illustrating the community assembly model formulation

(Eqs. (4)–(5)). The model formulation describes the mortality and

recruitment dynamics of two tree species occupying a one-dimensional

landscape, which compete for unoccupied sites (gap-sized areas approxi-

mately the size of a single adult tree). As the figure illustrates, the model is

used to explore the colonization dynamics that occur when one of species

(dark grey ovals) arrives at a edge of the landscape that is occupied by the

other species at its single species equilibrium (light grey ovals).

Table 1

Initial parameter values used in the community assembly model Eqs.

(1)–(2)

Parameter Quantity Value

m2 Mortality rate of species 2 relative to

species 1

1

f 1 Fecundity of species 1 100

f 2 Fecundity of species 2 150

1=bl Average long dispersal distance relative

short dispersal distance

10

p Fraction of fecundity going to long

dispersal

0.1

All quantities are dimensionless (see Eq. 3).

P.R. Moorcroft et al. / Journal of Theoretical Biology 241 (2006) 601–616604
2. Analysis

2.1. Colonization dynamics of competitively similar species

Suppose a plant community consists of two ecologically
similar plant species that compete for space, and the rate at
which they colonize empty sites1 is governed by the rate at
which their offspring disperse in from other areas (Fig. 3).
This model can be written mathematically as

qS1

qt
ðx; tÞ ¼ Uðx; tÞf 1

Z
O

D1ðy� xÞS1ðy; tÞdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
recruitment

� m1S1ðx; tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mortality

, ð1Þ

qS2

qt
ðx; tÞ ¼ Uðx; tÞf 2

Z
O

D2ðy� xÞS2ðy; tÞdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
recruitment

� m2S2ðx; tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mortality

, ð2Þ

where S1ðx; tÞ and S2ðx; tÞ are densities of species 1 and 2 at
location x, and Uðx; tÞ ¼ K � S1ðx; tÞ � S2ðx; tÞ, is the
density of unoccupied sites at position x within the region
O. D1ðxÞ and D2ðxÞ are the dispersal kernels of the two
species; f 1 and f 2 are their fecundities; and m1 and m2 are
their mortality rates.

The above equations can be simplified by introducing the
following non-dimensionalized variables:

S�1 ¼
S1

K
; S�2 ¼

S2

K
,

t� ¼ tm1; m�2 ¼
m2
m1
; x� ¼

x

L
,

f �1 ¼
f 1K

m1
; f �2 ¼

f 2K

m1
, ð3Þ

where L is characteristic length-scale from either D1 or D2.
Inserting the above definitions into Eqs. (2)–(13), and then
dropping the asterisks yields:

qS1

qt
ðx; tÞ ¼ ð1� S1ðx; tÞ � S2ðx; tÞÞf 1

Z
O

D1ðy� xÞ

�S1ðy; tÞdy� S1ðx; tÞ, ð4Þ

qS2

qt
ðx; tÞ ¼ ð1� S2ðx; tÞ � S2ðx; tÞÞf 2

Z
O

D2ðy� xÞ

�S2ðy; tÞdy� m2S2ðx; tÞ, ð5Þ

S1ðx; tÞ and S2ðx; tÞ are now the proportion of sites
occupied by species 1 and 2.

2.1.1. Colonization dynamics

We begin by examining the colonization dynamics
predicted by Eqs. (4)–(5), considering the arrival of the
second species at the edge of a one-dimensional mono-
1Defined as canopy gap-sized areas approximately the size of adult

canopy tree.
culture of the first species at equilibrium. The model’s
parameter values are set to reflect the general characteristics
of forest communities: reflecting the closed-canopy nature
of forest landscapes, we set fecundity high relative to
mortality rates (i.e. f 1; f 2b1), resulting in high levels of site
occupancy; and following the extensive work by Neubert et
al. (1995), Kot et al. (1996), Lewis and Pacala (2000) and
Clark (1998), the dispersal kernels D1ðxÞ and D2ðxÞ are
assumed to be comprised of a joint Laplace kernel with a
short-range and a long-range dispersal component (DðxÞ ¼
ð1� pÞ expð�jxjÞ=2þ p expð�bljxjÞ=2, where 1=bl is the
average long-range dispersal distance relative to the average
short-range dispersal distance component, and p determines
the fraction of reproduction that goes into long dispersal).
For simplicity, we also assume that the mortality rates and
dispersal kernels of the two species are identical (m1;m2 ¼ 1
and D1 ¼ D2). See Table 1 for details of the parameter
values used in this analysis.
Figs. 4 and 5 show the effect of the presence of a resident

species on the rate of spread of a colonizer that has a 50%
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higher rate of seed production, but in all other respects is
identical to the resident. In the absence of the resident, the
colonizing species moves rapidly into the community (Fig. 4).
Assuming canopy trees have �50-year lifespan and that the
mean dispersal distance of the tree’s short dispersal kernel
�10m (i.e. m1 ¼ 0:02yr�1, and 1=bs ¼ 10m), the colonizer’s
rate of spread is �200m=yr, a speed that is consistent with
the findings of earlier studies using single-species models.

However, in the presence of the ecologically similar
resident, the colonizer’s rate of spread is reduced to under
2m/yr (Fig. 5). Thus, despite a significant fecundity
advantage over the resident, the low availability of vacant
sites within the community means that the colonizer’s rate
of spread is two-orders of magnitude lower due to presence
of the other species (Fig. 5).

By linearizing the equation describing the dynamics of
the colonizing species (Eq. (5)) about its leading edge (see
Appendix A), we can obtain the following analytic
expression for how the colonist’s asymptotic rate of spread
c�, varies as a function of the fecundity, mortality and
dispersal characteristics of the colonizer and resident:

c� ¼ min
a40

1

a
ðf 2ð1� S̄1ÞD̂ðaÞ � m2Þ, (6)
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Fig. 4. Dynamics of a colonizing species dispersing onto an empty landscape. P

times t (years) following its arrival at the edge of a one-dimensional domain. T

the solution of Eqs. (4)–(5) has been converted into dimensional units of meters

(d) t ¼ 500 yr. Spatial position is indicated by the distance ðmÞ from the left e
where S̄1 ¼ 1� ð1=f 1Þ is the equilibrium density of species
1 in the absence of species 2, and D̂ðaÞ is the moment
generating function of the dispersal kernel.
Fig. 6 shows how c� changes as a function of the

relative fecundity of the colonizer. For the simulation
shown in Fig. 5, Eq. (A7) is positive, indicating that
colonizer spreads into the community. However, the rate
of spread is only 1.8m/yr, well below the rate at which
it colonizes empty habitat (dotted line), and well below
the typical values seen in the paleo-record (shaded
area). As the fecundity advantage of the colonizer
over the resident increases its rate of spread increases,
but not substantially; even when the fecundity of the
colonizer is twice that of the resident, the rate of
colonization is still only 3.4m/yr. Conversely, as the
colonizer’s advantage declines and it becomes more
similar to the resident, its rate of colonization slows
until, when the species are identical, its rate of coloni-
zation is zero (Fig. 6). Analysis shows that in this situation,
a ‘neutral invasion’ occurs in which the colonizing
species never increases in abundance and the initial
pulse of colonists simply mixes into the community
(Appendix A.1).
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Fig. 5. Colonization dynamics of a competitively similar species in the absence of pathogens. Panels (a)–(d) show the spatial distribution of the resident

(� � �) and colonizer (�) at different times t (years) following the arrival of the colonizing species at the edge of a one-dimensional community of the resident

species at equilibrium. (a) t ¼ 0 yr, (b) t ¼ 100 yr, (c) t ¼ 250 yr and (d) t ¼ 500 yr. Spatial position is indicated by the distance ðmÞ from the left edge of the

domain.
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2.2. Effect of host-specific pathogens on colonization

dynamics

We now extend Eqs. (4)–(5) to consider the effect of
host-specific pathogens on the above colonization dy-
namics (Fig. 7). Suppose that individuals of both species
are susceptible to infection by dispersing host-specific
pathogens that reduce the fecundity of infected individuals
but do not infect their offspring. Including a simple
representation of this process into Eqs. (4)–(5) yields the
following non-dimensionalized equations for the dynamics
of the trees and their pathogens:

qSk

qt
ðx; tÞ

¼ Uðx; tÞf k

Z
O

Dðy� xÞ½Skðy; tÞ þ dIkðy; tÞ�dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
recruitment

� R
ðkÞ
0 Skðx; tÞ

Z
O

Bkðy� xÞIkðy; tÞdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection

� mkSkðx; tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mortality

, ð7Þ
qIk

qt
ðx; tÞ ¼ R

ðkÞ
0 Skðx; tÞ

Z
O

Bkðy� xÞIkðy; tÞdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection

� mkIkðx; tÞ|fflfflfflfflffl{zfflfflfflfflffl}
mortality

ðk ¼ 1; 2Þ, ð8Þ

where Skðx; tÞ and Ikðx; tÞ are the proportion of sites
occupied by uninfected and infected individuals of species
k, Uðx; tÞ is the density of unoccupied sites, dk is the fecundity
of infected individuals relative to uninfected individuals,
R
ðkÞ
0 is non-dimensionalized intrinsic reproductive rate of

species k’s host-specific pathogen (RðkÞ� ¼ RðkÞK=m1). BkðxÞ

is the non-dimensionalized dispersal kernel of species k’s
host-specific pathogen, and m1 ¼ 1. The remaining para-
meters are the same as in Eqs. (4)–(5), except that the
fraction of unoccupied sites UðxÞ is now given by
1� S1ðx; tÞ � I1ðx; tÞ � S2ðx; tÞ � I2ðx; tÞ.
We begin by considering the case where the in-

trinsic reproductive rates of both species’ pathogens R
ð1Þ
0

and R
ð2Þ
0 are identical, and that the spatial distribution

of pathogen infection BkðxÞ matches that of their hosts
(Table 2).
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Fig. 6. Colonization rate in the absence of host-specific pathogens (solid

line) as function of the relative fecundity of the colonizing species. Plot

shows the asymptotic rate of colonization c� in m/yr as a function of

f 2=f 1, the fecundity of the colonizer relative to that of the resident. Shaded

area indicates the typical rates of spread observed in the paleo-record

(Delacourt and Delacourt, 1987; Clark, 1998). Solid line shows c� for the

dynamics in the absence of pathogens (Eq. (A7)). When colonizers have a

fecundity advantage over the resident (f 2=f 141), the colonizer moves into

the community with a positive characteristic asymptotic speed c�40, but

the rate of movement remains far below the typical rates observed in the

paleo-record. When the species are identical (f 2=f 1 ¼ 1), c� ¼ 0 and a

neutral invasion occurs (see Appendix A.1). Dotted line shows colonizer’s

rate of movement into empty habitat (Eq. (A8)).

Fig. 7. Schematic illustrating the community assembly model incorporat-

ing host-specific pathogen dynamics (Eqs. (7)–(8)). In addition to the

growth, mortality, and recruitment dynamics of the two tree species shown

in Fig. 3, healthy individuals of each species j ðj ¼ 1; 2Þ, are susceptible to
infection by a host-specific pathogen with intrinsic reproductive rate of R

ðjÞ
0

and dispersal kernel BjðxÞ. Infection reduces fertility of infected

individuals to a function d of uninfected individuals. The model is used

to explore the colonization dynamics that occurring the presence of host-

specific pathogens when the second species (dark grey ovals) arrives at a

edge of the landscape that is occupied by the first species at its single

species equilibrium (light grey ovals). Hatching indicates infected

individuals of each species.

Table 2

Table of pathogen parameters used in the initial simulation of community

assembly model incorporating interactions with host-specific pathogens

(Eqs. (7)–(8)) shown in Fig. 8

Parameter Quantity Value

R0 Intrinsic reproductive rate of pathogen 0.5

d Fecundity of infected plants relative to disease-

free plants

0

q Proportion of R0 going to long dispersal 0.1

gs Pathogen’s average short dispersal distance 1

Relative to tree species 1’s short range dispersal

distance

gl Pathogen’s average long dispersal distance 10

Relative to tree species 1’s short range dispersal

distance

All quantities are dimensionless (see Eq. 15).
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2.2.1. Colonization dynamics in the presence of host-specific

pathogens

As in Section 2.1, we consider the introduction of the
second species to the edge of a resident equilibrium
community of the other species, but this time in conjunc-
tion with its host-specific pathogen. The colonization
dynamics that now occur are markedly different. Fig. 8
shows the dynamics of spread when the plants have the
same properties as in Fig. 5, with host-specific pathogens
whose dispersal abilities match that of their hosts, and that
reduce the fecundity of infected individuals to zero (see
Table 2).
Following their introduction, individuals of the coloniz-

ing species escape from their pathogens at the edge of their
distribution (Figs. 8a,b). This then begins to facilitate the
colonizer’s spread into the resident community, and the
colonizing population quickly organizes into a pair of
lagged waves: a wave of uninfected plants, followed by a
wave of infected individuals some distance behind (Fig. 8c).
Ahead of their pathogens, uninfected individuals of the
colonizing species are able to out-compete the resident
population whose density is depressed due its host-specific
pathogen, enabling the colonizer to spread rapidly and
reach high levels of abundance (Figs. 8d–e). The plant
community eventually arrives at a new equilibrium that is
comprised of a mixture of the two species (Fig. 8f). The net
effect of the interaction with pathogens is to sweep the
second species rapidly into the community at a rate far
faster than when interactions with host-specific pathogens
are absent (compare Figs. 5 and 8).
Using similar approaches to the one employed in Section

2.1, we can gain analytic insight into these colonization
dynamics. Analysis (Appendix B) indicates that the
colonization rate c� is determined by the rate at which
uninfected colonizers are able to spread into the infected
resident community of the other species. The speed of this
process is given by

c� ¼ min
a40

1

a
f2ð1� S̄1 � Ī1ÞD̂ðaÞ � m2
� �

, (9)
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Fig. 8. Colonization dynamics in the presence of species-specific pathogens. As in Fig. 5, panels (a)–(f) show the spatial distribution of the resident (� � �)

and colonizer (�) at different times t (years) following the arrival of the colonizing species at the edge of a one-dimensional community of the resident

species at equilibrium. (a) t ¼ 0 yr, (b) t ¼ 25 yr, (c) t ¼ 40 yr, (d) t ¼ 80 yr, (e) t ¼ 140 yr, (f) t ¼ 250 yr. Spatial position is indicated by the distance ðmÞ

from the left edge of the domain. Also shown is the spatial distribution of the uninfected (� � � � �) and infected (���) proportions of the colonizing

population, showing the emergence of a rapidly-moving wave of uninfected colonizers and the subsequent, slower-moving wave of the colonizer’s

pathogen.
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where S̄1 ¼ m1=R0 and Ī1 is given as the larger root of
Eq. (B5). This is plotted in Fig. 9 (solid line).

As the figure shows, the interaction between the plants
and their host-specific pathogens enables the colonizing
species to enter the plant community at rates compatible
with those observed in the paleo-record. While in the
absence of pathogens, rates of spread were less than 5m/yr
(dashed line in Fig. 9), the colonizer now moves quickly
into the community at rates in excess of 100m/yr (solid line
in Fig. 9). Note that, unlike the situation in the absence of
pathogens where, when the fecundities are equal, a neutral
invasion occurs and the colonizer does not increase and
simply mixes into the community, rapid colonization now
occurs even when the colonizer has no competitive
advantage over the resident. As the competitive edge of
the colonizer over the resident increases, its colonization
rate in the presence of pathogens is faster still (solid line in
Fig. 9).

2.3. Lag between the colonizing species and its pathogen

Another noticeable feature of the dynamics shown in
Fig. 8 is the accelerating lag between the front of uninfected
colonizers and the subsequent wave of infection that
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colonizing species. Plot shows the asymptotic rate of colonization c� in m/

yr as a function of f 2=f 1, the fecundity of the colonizer relative to that of

the resident. Shaded area indicates the typical rates of spread observed in

the paleo-record (Delacourt and Delacourt, 1987; Clark, 1998). Dashed

line shows c� for the dynamics in the absence of pathogens (Eq. (A7)).

When colonizers have a fecundity advantage over the resident (f 2=f 141),

the colonizer moves into the community with a positive characteristic

asymptotic speed c�40, but the rate of movement remains far below the

typical rates observed in the paleo-record. When the species have identical

fecundities (f 2=f 1 ¼ 1), c� ¼ 0 and a neutral invasion occurs (see

Appendix A.1). Solid line shows the rate of colonization c� for the

dynamics in the presence of pathogens (Eq. (B8)), yielding rates

compatible with the rates in the paleo-record, including when the species

are competitively equivalent (f 2=f 1 ¼ 1). Dotted line shows colonizer’s

rate of movement into empty habitat (Eq. (A8)).
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follows some distance behind (see Fig. 10a). This accel-
erating lag is perhaps surprising, since in this simulation
the plants and pathogens had equal dispersal abilities (see
Tables 1 and 2). This raises the question: to what extent are
the rapid colonization dynamics and disruption seen in the
figure dependent on the relative dispersal abilities of the
plants and pathogens?

We evaluate this question further by comparing the
asymptotic rate of spread of the colonizer’s pathogens
relative to that of the colonizing host plant population.
Obtaining a full expression for the wave speed is difficult
since the density of the pathogen’s hosts varies spatially
and temporally during colonization Fig. 8. However, as we
show in Appendix B, we can derive the following equation
for the rate of spread of the colonizer’s pathogen c�i , for a
given constant density, S̄2, of uninfected colonizing plants
ahead of the infection wave:

c�i ¼ min
a40

1

a
ðR0S̄2B̂ðaÞ � m2Þ. (10)

When c�i is less than c�, we expect an accelerating lag
between the wave of susceptibles and infecteds. For the
case of the dynamics in Fig. 8, the density of colonizing
plants ahead of its pathogen S2, is between 0.4 and 0.6
yielding a value for c�i of 42–85m/yr, well below the value
of c� ¼ 116m=yr, which accounts for the observed accel-
erating lag (Fig. 10a).
If c�i 4c�, we might expect that the pathogens of the

colonizer may enter the community at the same time as the
colonizing plants. However, a more detailed analysis
(Appendix B.2) suggests that this will never occur. The
analysis indicates that even when the pathogen is capable
of dispersing further than its host, it will enter at the rate
predicted by Eq. (B8), the rate at which uninfected
individuals move into a resident infected community.
Moreover, the rate of increase of the pathogen at the
leading edge of the wave (indicated by the eigenvalue for
the infection wave) is zero, implying that even when it does
colonize at the same rate as the host, it will do so at some
distance behind the front of uninfected colonizers (see
Appendix B.2).
Simulations of the colonization dynamics for cases where

the dispersal ability of the pathogens exceed that of the
plants confirm these conclusions. For example, Fig. 10b
shows the dynamics of spread that arise when the plants
and pathogens have the same fecundity, mortality, and
infection rates as in Fig. 8, but all of the pathogen’s
offspring are dispersed according to the plant’s long-
distance dispersal kernel. In this case, the pathogens move
into the community at a similar rate to the uninfected
colonizers but at a fixed distance behind. Similarly, Fig. 10c
shows the rates of colonization that arise when long-range
dispersal capabilities of the pathogen are 10 times that of
the plants. In this case, the front of pathogens accelerates
toward the front of uninfected individuals but then quickly
slows to the rate of spread of the uninfected colonizers. The
higher dispersal ability in this case however, reduces the
distance between the two fronts compared to that seen in
Fig. 10b. Details of the parameter values for each of these
cases can be found in Tables 1 and 2.

2.4. Effects of Niche partitioning

The model formulation explored in Sections 2.1–2.3
assumed that the two tree species contested all unoccupied
sites. In this section, we generalize the community assembly
model to cases where the species exhibit niche differentia-
tion. Suppose that at each location x a fraction g of sites
are colonizable by both species, a faction g1 are colonizable
by only species 1, and a faction g2 are colonizable only by
species 2. S1ðx; tÞ, S2ðx; tÞ, I1ðx; tÞ, and I2ðx; tÞ are then
given by

qSk

qt
ðx; tÞ ¼ Ukðx; tÞf k

Z
O

Dðy� xÞ½Skðy; tÞ þ dIkðy; tÞ�dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
recruitment

� R
ðkÞ
0 Skðx; tÞ

Z
O

Bðy� xÞIkðy; tÞdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection

� mkSkðx; tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mortality

, ð11Þ
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Fig. 10. (a)–(c) Distance–time plots, showing how the lag between uninfected and infected colonists varies as function of the dispersal characteristics of the

pathogens. Lines show the location of the fronts of uninfected (upper) and infected (lower) individuals of the colonizing species, as a function of the time

since its introduction at the left edge of the domain. Patterns of lag when (a), as in Fig. 8, the dispersal ability of the pathogens matches that of the plants,

showing accelerating lag between the fronts, (b) the pathogens disperse according to the long-distance dispersal kernel of the plants, showing a constant lag

between the colonizer and its pathogen, and (c), when the pathogen’s dispersal ability is 10 times greater than the plant’s dispersal ability. In (c), the

infection front initially accelerates toward the front of uninfected individuals then slows, asymptotically matching the uninfected individuals’ rate of

spread. For details of the parameter values associated with each of these cases see Tables 1 and 2.
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qIk

qt
ðx; tÞ ¼ R

ðkÞ
0 Skðx; tÞ

Z
O

Bðy� xÞIkðy; tÞdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection

� mkIkðx; tÞ|fflfflfflfflffl{zfflfflfflfflffl}
mortality

ðk ¼ 1; 2Þ, ð12Þ

where U1ðx; tÞ and U2ðx; tÞ are given by

U1ðxÞ ¼ Kðgþ g1Þ � S1ðx; tÞ �
g

gþ g2
S2ðx; tÞ, ð13Þ

U2ðxÞ ¼ Kðgþ g2Þ � S2ðx; tÞ �
g

gþ g1
S1ðx; tÞ. ð14Þ

The above equations can be simplified by introducing the
following non-dimensionalized variables:

S�1 ¼
S1

gþ g1
; S�2 ¼

S2

gþ g2
; I�1 ¼

I1

gþ g1
; I�2 ¼

I2

gþ g2
,

t� ¼ tm1; m�2 ¼
m2
m1
; x� ¼

x

L
,

f �1 ¼
f 1ðgþ g1Þ

m1
; f �2 ¼

f 2ðgþ g2Þ
m1

,

R
ð1Þ�
0 ¼

R
ð1Þ
0 Kðgþ g1Þ

m1
; R

ð2Þ�
0 ¼

R
ð2Þ
0 Kðgþ g2Þ

m1
,

a12 ¼
g

gþ g1
; a21 ¼

g
gþ g2

, ð15Þ

where L is a characteristic length-scale from either D1 or
D2. Inserting the above definitions into Eqs. (2)–(13), and
then dropping the asterisks yields

qS1

qt
ðx; tÞ ¼ ð1� S1ðx; tÞ � a12S2ðx; tÞÞf 1

�

Z
O

D1ðy� xÞS1ðy; tÞdy
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� R
ð1Þ
0 S1ðx; tÞ

Z
O

Bðy� xÞI1ðy; tÞdy

� S1ðx; tÞ, ð16Þ

qS2

qt
ðx; tÞ ¼ ð1� S2ðx; tÞ � a21S1ðx; tÞÞf 2

�

Z
O

D2ðy� xÞS2ðy; tÞdy

� R
ð2Þ
0 S2ðx; tÞ

Z
O

Bðy� xÞI2ðy; tÞdy

� m2S2ðx; tÞ, ð17Þ

and

qI1

qt
ðx; tÞ ¼ R

ð1Þ
0 S1ðx; tÞ

Z
O

Bðy� xÞI1ðy; tÞdy� I1ðx; tÞ, ð18Þ

qI2

qt
ðx; tÞ ¼ R

ð2Þ
0 S2ðx; tÞ

Z
O

Bðy� xÞI2ðy; tÞdy

� m2I2ðx; tÞ, ð19Þ

where the parameters a12 and a21 express the degree of
niche overlap between the two species. Eqs. (7)–(8) used in
our earlier analysis correspond to the case where
a12 ¼ a21 ¼ 1.

Following procedures similar to those used to derive
Eqs. (6) and (9), we can obtain the following linearized
equations for the colonizer’s asymptotic rate of spread c�,
in the absence and presence of host-specific pathogens:

In the absence of pathogens:

c� ¼ min
a40

1

a
ðf 2ð1� a21S̄1ÞD̂ðaÞ � m2Þ. (20)

In the presence of host-specific pathogens:

c� ¼ min
a40

1

a
ðf 2ð1� a21ðS̄1 þ Ī1ÞÞD̂ðaÞ � m2Þ, (21)

where, as before, Ī1 is given by the larger root of Eq. (B5).
For simplicity, we consider the case where the species have
similar fecundities and mortality rates (i.e. f 1 ¼ f 2, m2 ¼ 1),
the dispersal kernels of the two species are identical
B1ðxÞ ¼ B2ðxÞ, and niche overlap between the species is
symmetric (a12 ¼ a21 ¼ a).

Fig. 11 shows how the asymptotic invasion speed in the
presence and absence of host-specific pathogens varies as a
function of the degree of niche overlap between the two
species. We first consider the invasion rate in the absence of
host-specific pathogens (dashed line in the figure). When
the two species occupy identical niches (a ¼ 1), since
species 2 (the colonizer) has identical fecundity and
mortality rates to those of the species 1 (the resident),
species 2’s colonization rate is zero, corresponding to the
neutral invasion case identified earlier in Section 2.1. As the
degree of niche similarity between the colonizer and
resident, a, declines, the colonizer’s asymptotic invasion
rate increases linearly until, when niche similarity becomes
zero (a ¼ 0), the colonizer’s invasion rate is the same as its
invasion rate in the absence of the resident. Thus, in the
absence of pathogens, the impact of resident species on a
colonizer’s rate of spread is directly proportional to the
degree of niche similarity between the two species (dashed
line in Fig. 11).
In the presence of host-specific pathogens (solid line in

Fig. 11), whenever the species exhibit some degree of niche
similarity (a40Þ, the colonizer’s rate of spread is faster
than its rate of spread in the absence of the pathogens. As
the figure shows, the relative difference between the
colonizer’s rate of spread in the presence of pathogens
and its rate of spread in the absence of pathogens increases
monotonically as the niche similarity between the colonizer
and resident increases (solid line in Fig. 11).

3. Discussion

Recent work using single species models has shown that
chance, long-range dispersal events can give rise to rates of
tree migration consistent with those observed in the fossil
pollen record (Clark, 1998; Higgins and Richardson, 1999).
The challenge now facing ecologists and biogeographers is
reconciling the rapid dynamics of spread observed in pollen
studies with our knowledge of the rules and interactions
that govern plant community assembly. The dynamics of
multi-species communities can be complex, involving
interactions that can both hinder and facilitate the spread
of a particular species. However, one general principle of
community theory, exemplified by detailed ecological
studies of Beech and Hemlock in north-eastern forest
communities (Canham, 1985; Pacala et al., 1996), is that
competitively similar species will exhibit long time scales
for competitive displacement.
As our analysis of a simple plant community assembly

(Eqs. (1)–(2)) illustrates, when placed in the context of
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patterns of tree range expansions in response to climate
change, these observations of the dynamics of competitively
similar species imply that Beech’s rate of spread during the
Holocene shown in Fig. 1 is remarkably fast given the
presence of its close ecological competitor Hemlock. Thus,
at least for some species, even when they have a fat-tailed
dispersal kernel that enables rapid migration onto a
landscape devoid of its competitors, we see a re-emergence
of Reid’s paradox because of the presence of ecologically
similar resident species (Figs. 5 and 6).

The slowing effect of resident competitors on a
colonizer’s rates of spread, shown here using a model in
which tree species compete mechanistically for available
space and disperse according to realistic leptokurtic
dispersal kernels, is consistent with the findings of Okubo
et al.’s (1989) and Shigesada and Kawasaki’s (1997)
analyses of the phenomenological Lotka–Volterra compe-
tition equations combined with simple diffusion terms
(implying Gaussian dispersal) for spatial spread. As well as
confirming the robustness of their result that the reduction
in the wave speed of the colonizer declines with increasing
niche overlap, the analysis in Section 2.4 illustrates how
colonizer’s rate of spread also depends on the relative
fecundities and mortality rates of the colonizer and the
resident.

Our analysis suggests shows that the answer to the
question of how rapid colonization can occur on land-
scapes occupied by ecologically-similar competitors may lie
in secondary interactions with host-specific pathogens.
Incorporating host-specific pathogen interactions into the
simple model of plant community assembly (Sections 2.2
and 2.4), allows colonizers to rapidly migrate into land-
scape in which a ecologically similar species is already
resident (Figs. 9 and 8). This inability of host-specific
pathogens to limit the rate of spread of the colonizing host
population accords with an earlier result of Owen and
Lewis (2001), who found similar dynamics in a single-
species, single-pathogen model.

As we have shown here, when placed into a model of
plant community assembly, the ability of a colonizing
species to escape its host-specific pathogens means that the
colonizer temporarily behaves as a ‘super-species’ that out-
competes the resident species for vacant sites until its
pathogens catch up. In essence, these dynamics correspond
to a transient, Janzen–Connell effect (Janzen, 1970;
Connell, 1971), in which a wave of uninfected colonizers
reproduce and disperse ahead of their host-specific patho-
gen, allowing the species to migrate rapidly into the
pathogen-depressed resident community.

Evidence for pathogen-induced depression of resident
species comes from several studies. In particular, Davis
(1981) and Allison et al. (1986) documented a rapid and
widespread decline in Eastern Hemlock populations during
the mid-to-late Holocene (�5400 years BP)—the signature
of which is seen in the Hemlock pollen abundance maps
plotted in Fig. 1a. Studies in Quebec have provided direct
evidence that the mid-to-late Holocene Hemlock decline
was linked to an outbreak of forest pathogens (Filion and
Quinty, 1993; Bhiry and Filion, 1996).
There is also evidence that the depressing effects of

resident pathogens influences subsequent rates of coloniza-
tion. As seen in Fig. 1b, a rapid expansion of Beech
3000–2500 years BP occurred following the mid-to-late
Holocene Hemlock decline (Davis, 1986, 1987; Woods and
Davis, 1989). In addition, studies in Ontario indicate that
the degree of composition change in Hemlock stands was
positively associated with the extent of the Hemlock decline
in the stands during the period (Fuller, 1998).
An important conclusion from the analysis in Section 2.3

is that the temporary escape from parasitism that facilitates
colonizer spread is not dependent on the colonizer’s
pathogen having more restricted dispersal than its host.
Under some circumstances, there may be an accelerating
lag between the spread of a host tree species and its
pathogen even when the pathogen has a greater intrinsic
dispersal ability. However, the more important general
result is that regardless of a pathogen’s dispersal ability,
its spread will lag some distance behind that of its host
(Fig. 10), due to the threshold host tree density that must
be exceeded in order for the pathogen population to
persist. As a result, individuals at the leading edge of the
colonizing population will always have a competitive edge
over individuals of the resident tree species. Thus, unlike
other potential mechanisms, all colonizing species will
experience a period of transient competitive advantage,
and hence we would not expect to see a slowing in the rates
of spread of later species if they are driven by transient
Janzen–Connell effects.
The effects of host-specific pathogens on tree coloniza-

tion dynamics were explored here using a simple, analyti-
cally-tractable model of a plant community assembly
consisting of just two ecologically-similar tree species living
on a spatially and climatologically-uniform landscape. On
natural landscapes, spatial heterogeneity, temporal varia-
bility and multi-species interactions will give rise to more
complex patterns of spread. With regard to spatial
heterogeneity, the effects of underlying abiotic heterogene-
ities on the performance of different species, in conjunction
with the spatially-localized nature of disturbance events
and tree dispersal, produces patchy spatial distributions of
resident species. This, in turn, generates spatial variability
in the dynamics of re-community assembly, such as that
seen by Davis et al. (1994, 1998), Rejmanek (1999) and
Parshall (2002) described earlier. At larger scales, gradients
in climatological conditions may differentially affect the
spread of colonizers and their host-specific pathogens. For
example, recent evidence suggests that cold winter tem-
perature are slowing the northward advance of the
Hemlock Wooly Adelgid, a host-specific pathogen of
Hemlock in the eastern United States (D. Orwig pers.
comm).
With regard to temporal variability, there are two

important sources of temporal fluctuations in natural
communities likely to significantly affect patterns and rates
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of tree colonization. First, while in the model background
tree mortality rates were assumed to be constant, on actual
landscapes tree mortality rates fluctuate as a result of
episodic, spatially-localized disturbances. As shown here,
the background rate of tree mortality is an important
factor affecting the rate of colonizer spread, and thus we
would expect disturbance-related fluctuations in observed
rates of colonizer spread. Consistent with this prediction,
several studies have found pulses in colonization rates that
correlate with the occurrence of disturbance events,
including fire (Eckstein, 1980; Parshall, 2002) and wind-
throw (Walker, 1982; Stearns, 1990; Parshall, 1995; Davis
et al., 1998).

Second, many pathogens undergo episodic outbreaks.
The results from this analysis suggest that fluctuations in
pathogen-abundance will give rise to temporal fluctuations
in the susceptibility of resident tree species to colonization,
and consequently in the magnitude of the transient
Janzen–Connell effect experienced by coloning species.
On short time-scales, these fluctuations may arise from the
nonlinear dynamics of many pathogen populations, and
their sensitivity to climate variability (Moran effects). On
long time-scales, co-evolutionary responses of trees to
damage and mortality may give rise to long-term fluctua-
tions in pathogen abundance and their impact on host-tree
population densities. For example, the recovery of Hem-
lock in the late Holocene following its widespread decline
5000–4000 years BP (Fig. 1), may been the result of the
evolution host resistance (Allison et al., 1986; Fuller, 1998).

While clearly idealized, the processes that give rise to the
rapid rates of spread in our simple model of plant
community assembly are likely to operate in similar ways
in more complex models of multi-species communities
living on spatially heterogeneous and climatologically
variable landscapes. As we showed in Section 2.4, while
niche differentiation between the colonizer and resident
tends to reduce the impact of host-specific pathogens on
the colonizer’s rate of spread, the qualitative result that
interactions with host-specific pathogens result in faster
rates of migration is a general result that will hold
whenever the niches of species overlap. Due to their similar
resource requirements, niche overlap among tree species is
generally high, particularly between species of similar
successional status such as Beech and Hemlock (Fig. 2).
As a result, the transient Jansen–Connell effects described
here are likely to be particularly important for the post-
Pleistocene range expansions of tree populations during the
Holocene.

Finally, when considering tree range shifts in response to
future climate change, it is important to recognize that the
migrations of tree species may be quite different from those
observed in the historical pollen record. In particular, the
fragmented nature of modern forest landscapes and the
presence of newly-introduced host-specific predators and
pathogens may diminish, or further strengthen, the
influence of transient Janzen–Connell effects on a species’
rate of spread.
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Appendix A. Rate of spread in the absence of pathogens

To calculate the invasion speed, we linearize about the
leading edge of the invasion and equate the speed of the
nonlinear system (Eqs. (4)–(5)) with the speed of the
linearized system. Note that since this approximation is not
guaranteed to work in multispecies models (e.g. Hosono,
1998; Weinberger et al., 2002; Lewis et al., 2002), we also
checked our analytic wave speed calculations against
numerical simulations.
If the density of the two species in front of the wave

of colonizers is S1 ¼ S̄1;S2 ¼ S̄2 then at the leading edge
of the wave we have ðS1 � S̄1;S2 � S̄2Þ ¼ ðs1; s2Þ,
where 0pjs1j; js2j51. To leading order, the system then
becomes

qs1

qt
ðx; tÞ ¼ Ūf 1

Z 1
�1

Dðy� xÞs1ðy; tÞdy� s1ðx; tÞ

� f 1S̄1ðs1ðx; tÞ þ s2ðx; tÞÞ, ðA1Þ

qs2

qt
ðx; tÞ ¼ Ūf 2

Z 1
�1

Dðy� xÞs2ðy; tÞdy� m2s2ðx; tÞ

� f 2S̄2ðs1ðx; tÞ þ s2ðx; tÞÞ, ðA2Þ

where Ū ¼ 1� S̄1 � S̄2.
To calculate the spread rate we consider exponentially

decaying traveling wave solutions of the form s1, s2
/ expð�aðx� ctÞÞ. Substitution into (A1)–(A2) and appli-
cation of a solvability condition yields a dispersion relation
cðaÞ between the spread rate c and the steepness of the wave
a. For perturbations that are initially localized in space, we
equate the spread rate of invading population c� with the
minimum speed

c� ¼ min
a40

cðaÞ. (A3)

We need the spatially homogeneous equilibria S̄1 and S̄2

in order to evaluate the degree to which the environment is
already invaded at the leading edge of the wave
Ū ¼ 1� S̄1 � S̄2. When species 1 has invaded previously,
S̄1 ¼ 1� 1=f 1, S̄2 ¼ 0 and Ū ¼ 1=f 1.
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The case with species 2 spreading into an environment
previously invaded by species 1 yields

qs2

qt
ðx; tÞ ¼ f 2ð1� S̄1Þ

Z 1
�1

Dðy� xÞs2ðy; tÞdy� m2s2ðx; tÞ.

(A4)

Substitution of an exponential decaying wave front into the
above equation yields

acs2 ¼ f 2ð1� S̄1ÞD̂ðaÞs2 � m2s2, (A5)

where D̂ðaÞ is the moment generating function for the plant
dispersal kernel D. Since D is a composite Laplace kernel
(DðxÞ ¼ ð1� pÞ expð�jxjÞ=2þ ð1� pÞbl expð�bljxjÞ=2 (see
Table 1), the moment generating function is

D̂ðaÞ ¼ ð1� pÞ
1

a2 � 1
þ p

b2l
a2 � b2l

(A6)

defined for a less than 1 and bl .
Substituting (A5) into (A3) yields the following equation

for the wave speed:

c� ¼ min
a40

1

a
ðf 2ð1� S̄1ÞD̂ðaÞ � m2Þ, (A7)

where 1� S̄1 ¼ 1=f 1. Assuming equal mortality rates
ðm2 ¼ 1Þ, Eq. (A7) is positive whenever f 2 exceeds f 1,
indicating that colonization occurs. When there is no
existing tree community, 1� S̄1 ¼ 1 and Eq. (A7) becomes

c� ¼ min
a40

1

a
ðf 2D̂ðaÞ � m2Þ (A8)

Mollison’s (1977) equation for the rate of spread of an
epidemic.

A.1. Neutral invasion case

Assuming equal mortality rates ðm2 ¼ 1Þ, note that as f 2

approaches f 1 the above spread rate (A7) approaches zero.
To understand this case better, we observe that when f 2 ¼

f 1 Eqs. (4) and (5) add to give

qS

qt
ðx; tÞ ¼ ð1� Sðx; tÞÞf 1

Z 1
�1

Dðy� xÞSðy; tÞdy� Sðx; tÞ,

(A9)

where Sðx; tÞ ¼ S1ðx; tÞ � S2ðx; tÞ. The steady state S ¼

1� 1=f 1 defines an invariant manifold for the two equation
system (4) and (5): S1ðx; tÞ þ S2ðx; tÞ ¼ 1� 1=f 1. More-
over, it is straightforward to show that this is a stable
manifold, i.e., if we start close to S1ðx; tÞ þ S2ðx; tÞ ¼
1� 1=f 1 we will soon approach it. In the case where the
resident species S1 has density S̄1 ¼ 1� 1=f 1 and a few
individuals of the second species S2 are introduced locally
we start close to S1ðx; tÞ þ S2ðx; tÞ ¼ 1� 1=f 1 and ap-
proach it asymptotically. At this point the approximation
Uðx; tÞ ¼ 1=f 1 is valid. Substituting this into (5) yields

qS2

qt
ðx; tÞ ¼

Z 1
�1

Dðy� xÞS2ðy; tÞdy� S2ðx; tÞ

¼ 0 ðA10Þ

and hence the invading population does not grow, but
simply spreads into the resident population by redistribut-
ing spatially. A similar situation has been analysed for
Lotka–Volterra competition with spread (Okubo et al.,
1989; Lewis et al., 1996).
Appendix B. Rate of colonization in the presence of

pathogens

Linearization of Eqs. (7)–(8) for i ¼ 1; 2 about the
leading edge of a spreading populations leads to the
following equations for perturbations about the equili-
brium at the leading edge ðs1; s2; i1; i2Þ:

qs1

qt
ðx; tÞ ¼ Ūf 1

Z 1
�1

Dðy� xÞ½s1ðy; tÞ þ di1ðy; tÞ�dy

� R0 s1ðx; tÞĪ1 þ S̄1

Z 1
�1

Bðy� xÞi1ðy; tÞdy

� �
� s1ðx; tÞ � f 1ðS̄1 þ dĪ1Þðs1ðx; tÞ þ s2ðx; tÞ

þ i1ðx; tÞ þ i2ðx; tÞÞ, ðB1Þ

qi1

qt
ðx; tÞ ¼ R0 s1ðx; tÞĪ1 þ S̄1

Z 1
�1

Bðy� xÞi1ðy; tÞdy

� �
� i1ðx; tÞ, ðB2Þ

qs2

qt
ðx; tÞ ¼ Ūf 2

Z 1
�1

Dðy� xÞ½s2ðy; tÞ þ di2ðy; tÞ�dy

� R0 s2ðx; tÞĪ2 þ S̄2

Z 1
�1

Bðy� xÞi2ðy; tÞdy

� �
� m2s2ðx; tÞ � f 2ðS̄2 þ dĪ2Þ

�ðs1ðx; tÞ þ s2ðx; tÞ þ i1ðx; tÞ þ i2ðx; tÞÞ, ðB3Þ

qi2

qt
ðx; tÞ ¼ R0 s2ðx; tÞĪ2 þ S̄2

Z 1
�1

Bðy� xÞi2ðy; tÞ

� �
� m2i2ðx; tÞ. ðB4Þ

Focusing on (B1)–(B4), we can approximate the rate of
spread of the colonizing species by considering the rate at
which an uninfected colonizer spreads into an infected
competitor ðS̄2 ¼ 0; Ī2 ¼ 0; i2 ¼ 0Þ.
Plant density levels ahead of the wave are at equilibrium

levels so that densities at the leading edge of the wave are
S̄1 ¼ 1=R0, and Ī1 is given by the larger root of

df 1Ī
2
1 þ

f 1

R0
ð1þ dÞ � df 1 þ 1

� �
Ī1 þ

1

R0
1� f 1 þ

f 1

R0

� �
¼ 0,

(B5)
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In this case, Eqs. (B3) and (B4) become

qs2

qt
ðx; tÞ ¼ ð1� S̄1 � Ī1Þf 2

Z 1
�1

Dðy� xÞ

�½s2ðy; tÞ þ di2ðy; tÞ�dy� m2s2ðx; tÞ. ðB6Þ

Exponentially decaying traveling wave solutions for the
invader take the form s2 ¼ k1 expð�aðx� ctÞÞ. Substitution
into Eq. (B6) yields

acs2 ¼ ð1� S̄1 � Ī1Þf 2D̂ðaÞs2 � m2s2. (B7)

As above we compute the minimum wave speed c� as

c� ¼ min
a40

1

a
ðð1� S̄1 � Ī1Þf 2D̂ðaÞ � m2Þ. (B8)

As with Appendix A, our heuristic calculations given here
were checked against numerical simulations.

B.1. Rate of spread of the colonizer’s pathogen

We can approximate the rate of spread of the colonizer’s
pathogen assuming a fixed density of uninfected colonizers
ahead of the wave of infection S̄240; s2 ¼ 0. In this case
Eq. (B4) simplifies to

qi2

qt
ðx; tÞ ¼ R0S̄2

Z 1
�1

Bðy� xÞi2ðy; tÞdy� m2i2ðx; tÞ. (B9)

Assuming that the threshold density of susceptibles is
exceeded S̄2 ¼ m2=R041 in Eq. (B9) gives us

c�i ¼ min
a40

1

a
ðR0S̄2B̂ðaÞ � m2Þ. (B10)

B.2. Conditions for equal rates of spread

A composite case is that of uninfected plants spreading
at the speed given by Eq. (B8) followed by infected plants
spreading at speed c�i . If c�i oc�, then the infected plants will
spread slower than uninfected plants. We conjecture that if
c�i 4c� infection will initially spread faster than the
uninfected plants ahead but, as infection starts to catch
up and the level of S2 diminishes, the spread rate for
infected plants will asymptotically match c�. This will lead
to a scenario where the infection follows the spreading
plant population, but at a distance.

In this case S̄1 ¼ m=R0, Ī1 satisfies Eq. (B5), S̄2 ¼ Ī2 ¼ 0
and s2; i240. Eqs. (B3) and (B4) then become

qs2

qt
ðx; tÞ ¼ ð1� S̄1 � Ī1Þf 2

Z 1
�1

Dðy� xÞ

�½s2ðy; tÞ þ di2ðy; tÞ�dy� m2s2ðx; tÞ, ðB11Þ

qi2

qt
ðx; tÞ ¼ � m2i2ðx; tÞ. ðB12Þ

Exponentially decaying traveling wave solutions for
the invader take the form s2 ¼ k1 expð�aðx� ctÞÞ,
i2 ¼ k2 expð�aðx� ctÞÞ. Substitution into (B11)–(B12)
yields

acs2 ¼ ð1� S̄1 � Ī1Þf 2D̂ðaÞ s2 þ di2½ � � m2s2, ðB13Þ

aci2 ¼ �m2i1. ðB14Þ

This can be rewritten as the matrix equation

M
s2

i2

" #
¼

0

0

� �
, (B15)

where

M ¼
�acþ ð1� S̄1 � Ī1Þf 2D̂ðaÞ � m2 ð1� S̄1 � Ī1Þf 2D̂ðaÞd

0 �ac� m2

2
4

3
5:

ðB16Þ

A non-trivial solution requires that one of the diagonal
elements of M is equal to zero. If the lower right element of
M is set to zero, then both upper elements are positive. The
corresponding eigenvector has entries of opposite sign, and
one of s1 or i1 is negative and hence biologically
implausible. Thus, the wave speed is given by setting
the top left element equal to zero so that ac ¼

ð1� S̄1 � Ī1Þf 2D̂ðaÞ � m2. Proceeding as above we compute
the minimum wave speed c� as

c� ¼ min
a40

1

a
ðð1� S̄1 � Ī1Þf2D̂ðaÞ � m2Þ, (B17)

which is the same as Eq. (B8).
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