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Université Victor Segalen Bordeaux 2, 33076 Bordeaux Cedex, France; *Author for correspondence
(e-mail: fhilker@ uos.de; fax: +49-541-969-2599)

Received 16 November 2004; accepted in revised form 22 February 2005

Key words: Allee effect, epidemiology, invasion, pathogen, reversal, SI model, slow-down, travelling wave

Abstract

Infectious diseases are often regarded as possible explanations for the sudden collapse of biological inva-
sions. This phenomenon is characterized by a host species, which firstly can successfully establish in a non-
native habitat, but then spontaneously disappears again. This study proposes a reaction-diffusion model
consisting of a simple SI disease with vital dynamics of Allee effect type. By way of travelling wave analysis,
conditions are derived under which the invasion of the host population is slowed down, stopped or reversed
as a consequence of a subsequently introduced disease. Hence, pathogens can dramatically control the rate
of spread of invasive species.

Introduction

Biological invasions are regarded as one of the
most severe ecological problems, being responsi-
ble for the extinction of indigenous species, sus-
tainable disturbance of ecosystems and economic
damage. Consequently, there is increasing need to
control and manage invasions. This requires an
understanding of the mechanisms underlying the
invasion process. Recently, many factors have
been identified that affect the speed and the pat-
tern of the spread of an introduced species, either
empirically and/or theoretically, such as stochas-
ticity (Lewis 1997, 2000; Lewis and Pacala 2000;
Malchow et al. 2004), resource availability, spa-
tial heterogeneity (Murray 2003), environmental
borders (Keitt et al. 2001), predation (Fagan and

Bishop 2000; Vinogradov et al. 2000; Owen and
Lewis 2001; Petrovskii et al. 2002a, b), competi-
tion (Okubo et al. 1989; Hart and Garder 1997),
evolutionary changes (Lambrinos 2004), large-
scale phenomena such as weather conditions or
(long-range) dispersal/transport effects (Henge-
veld 1989; Williamson 1996; Shigesada and
Kawasaki 1997; Clark et al. 2001). For recent re-
views see Fagan et al. (2002), Case et al. (2005),
Hastings et al. (2005), Holt et al. (2005) and
Petrovskii et al. (2005).

Substantial populations of introduced alien
species are reported to establish successfully, but
then to collapse spontaneously (Simberloff and
Gibbons 2004). This phenomenon is also referred
to as population crash. Pathogens are often sug-
gested as an explanation, but in most cases there
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are neither documented empirical data nor iden-
tified pathogens.

Detailed theoretical studies of the influence of
infectious diseases on the spread of species are
still missing, but see Petrovskii et al. (2005),
though there seems to be strong empirical evi-
dence that pathogens and parasites play a major
role in invasion biology, cf. Keane and Crawley
(2002), Torchin et al. (2002), Clay (2003), Tomp-
kins et al. (2003), Anderson et al. (2004), Lee
and Klasing (2004), Prenter et al. (2004) and ref-
erences therein.

The goal of this paper is to find conditions
under which a subsequently released disease can
be responsible for the decline, block or slow-
down of established invasive species. Therefore, a
two-component reaction-diffusion model describ-
ing the transmission of the pathogen and the
spread of the host population is introduced in
the next section. The host population exhibits a
strong Allee effect (Dennis 1989; Courchamp
et al. 1999; Stephens and Sutherland 1999; Ste-
phens et al. 1999). The peculiar role of the Allee
effect in biological invasions has been increas-
ingly acknowledged in recent studies (Lewis and
Kareiva 1993; Kot et al. 1996; Veit and Lewis
1996; Grevstad 1999; Takasu et al. 2000; Owen
and Lewis 2001; Wang and Kot 2001; Garrett
and Bowden 2002; Petrovskii et al. 2002a, b; Shi-
gesada and Kawasaki 2002; Wang et al. 2002;
Liebhold and Bascompte 2003; Cappuccino 2004;
Davis et al. 2004; Drake 2004; Leung et al. 2004;
Petrovskii et al. 2005).

Reaction-diffusion models are essential and
analytically tractable tools for understanding
invasion dynamics (Shigesada and Kawasaki
1997; Okubo and Levin 2001; Murray 2003).
This study is based on travelling wave analysis
(e.g. McKean 1970; Aronson and Weinberger
1975; Hadeler and Rothe 1975; Fife and McLeod
1977), in order to determine the front speeds
which correspond to the asymptotic rate of
spread. This approach can be traced back to the
seminal works of Luther (1906), Fisher (1937),
Kolmogorov et al. (1937) and Skellam (1951).

The outline of this paper is as follows. First,
the model is described in the ‘Mathematical
model’ section. Examples of different patterns of
spread are then given by way of numerical simu-
lations, including both the slow-down of invasion

and the population decline to ultimate extinction.
The travelling wave analysis in the fourth section
reveals the conditions for the different behaviour.
Finally, these results are discussed and related to
similar work and a more general view of invasion
patterns.

Mathematical model

We consider a spatiotemporal model for the
spread of an invading species and its interplay
with an introduced infectious disease. Therefore,
the total population density P=P(t, x) ‡ 0 at
time t and spatial location x is split into a sus-
ceptible S=S(t, x) ‡ 0 and an infected part
I=I(t, x) ‡ 0 with P=S+I. The epidemiological
structure of the considered infectious disease is
illustrated by the transfer diagram in Figure 1.
Let g(P) be the per-capita growth rate. We
assume that the host population is subject to a
strong Allee effect, say

gðPÞ ¼ aðKþ � PÞðP� K�Þ; ð1Þ

where K+>0 is the carrying capacity and K),
0< K)< K+, is the minimum viable population
density, below which the disease-free population
goes extinct due to the Allee effect. The parame-
ter a>0 regulates the maximum growth rate.
There is no recovery from the disease: Once a
susceptible individual is exposed, it remains a
lifelong carrier of the pathogen. Transmission be-
tween susceptibles and infected is via the stan-
dard incidence, also called proportionate mixing
or frequency-dependent transmission, cf. Nold
(1980), Hethcote (2000) and McCallum et al.
(2001). Infected individuals suffer an additional
disease-related mortality a > 0, also called the
virulence. There is no vertical transmission, i.e.,

Figure 1. Transfer diagram of the infectious disease. More

explanations can be found in the text.
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infected do not transmit the disease to their off-
spring. Thus, infected reproduce into the suscep-
tible class, and the per-capita net growth rate is
split into

gðPÞ ¼ bðPÞ � lðPÞ

with b(P) ‡ 0 being the fertility function
and l(P) ‡ 0 being the mortality function. We
shall consider the following forms of b(P)
and l(P), for which (1) holds:

bðPÞ ¼ að�P2 þ ½Kþ þ K� þ e�Pþ cÞ; ð2Þ

lðPÞ ¼ aðePþ KþK� þ cÞ; ð3Þ

with parameters c ‡ 0 and e ‡ 0. The fertility
function is quadratic and concave, i.e., b(P) is
increasing with P for low densities, reaching a
maximum value at some intermediate density and
decreasing for high densities. This may be due to
biological reasons inducing the Allee effect, see
the references in the introduction. The mortality
function is assumed to increase linearly with the
population density as it is usually assumed in
logistic growth models. Note that with increasing
values of the parameter e, the decreasing branch
of the fertility function becomes less prominent in
the range P 2 [0, K+]. In the mortality function,
the effect of density dependence increases with e.
The parameter c controls both vital functions in a
density-independent way. Strictly speaking, Equa-
tions (2–3) make sense as long as the fertility
function remains nonnegative; this holds true at
least for 0 £ P £ K++K)+e, which is suffi-
cient for this model. Together with diffusion as
spatial propagation mechanism, we obtain a sys-
tem of two partial differential equations (PDEs)

@S

@t
¼ �r

SI

P
þ bðPÞP� lðPÞSþDSDS; ð4Þ

@I

@t
¼ r

SI

P
� lðPÞI� aIþDIDI; ð5Þ

where D is the Laplacian and r>0 the transmis-
sion coefficient. This model has been proposed
and investigated by Hilker et al. (submitted) for
equal diffusion coefficients D=DS=DI, because
the disease is assumed not to affect the spreading
behaviour. The same assumption will be used in
this paper.

In their numerical simulations, they found that
a spreading population can go extinct when the
disease is introduced supplementarily. This is a
spatial phenomenon, because in the spatially
homogeneous case both the host population and
the disease coexist. This paper is concerned with
an analytical explanation of this effect. There-
fore, we restrict ourselves to one-dimensional
space, i.e. x=x, and introduce the dimensionless
quantities

~S ¼ S

Kþ
; ~t ¼ aK2

þt; ~x ¼ Kþ

ffiffiffiffi

a

D

r

x;

~I ¼ I

Kþ
; ~u ¼ K�

Kþ
2 ð0; 1Þ; ~a ¼ a

aK2
þ
> 0;

~r ¼ r

aK2
þ
> 0; ~c ¼ c

K2
þ
� 0; ~e ¼ e

Kþ
� 0:

Dropping the tildes for notational simplicity, we
thus obtain for (4–5) the system

@S

@t
¼ �r

SI

P
þ ð1þ uþ e� PÞPþ c½ �P

� ePþ uþ cð ÞSþ @
2S

@x2
; ð6Þ

@I

@t
¼ r

S

P
� eP� u� c� a

� �

Iþ @2I

@x2
; ð7Þ

where P=S+I now denotes the dimensionless
total population density. The number of parame-
ters has been reduced from eight to five. System
(6–7) is studied along with no-flux boundary con-
ditions. Because we are interested in an invasion
problem with a subsequently introduced disease
in the wake of the invasion, we differentiate three
regions of initial conditions. Without loss of gen-
erality, the right boundary is assumed to be still
non-invaded. In the middle, there are only sus-
ceptibles. At the left boundary, the disease is
assumed to have been introduced such that sus-
ceptibles and infected coexist:

Sð0;xÞ¼Sl> 0 if x<xS and 0 otherwise; ð8Þ

Ið0;xÞ¼ Il> 0 if x<xI and 0 otherwise; ð9Þ

with xS > xI > 0. There is a singularity in sys-
tem (6–7) at the trivial solution. Introducing the
prevalence i=I/P 2 [0,1], we reformulate (6–9) in
(P, i) space:
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@P

@t
¼ ð1� PÞðP� uÞ � ai½ �Pþ @

2P

@x2
; ð10Þ

@i

@t
¼
�

r� a� c�ð1þ uþ e� PÞP� ðr� aÞi
�

i

þ 2

P

@P

@x

@i

@x
þ @2i

@x2
; ð11Þ

Pð0; xÞ ¼
Sl þ Il if x<xI,

Sl if xS � x<xI;

0 if x � xS;

8

<

:

ið0; xÞ ¼
Il=ðSl þ IlÞ if x<xI;

0 if xI � x<xS;

ir 2 ½0; 1� if x � xS:

8

>

<

>

:

ð12Þ

Note the convenient expressions in (10), but due
to the transformation, (11) contains a term with
the inverse of P and the spatial derivatives of
both P and i. However, if we consider the spa-
tially homogeneous version of (10–11), the singu-
larity vanishes. The stationary states and their
stabilities are summarized in Table 1. They have
been found by Hilker et al. (submitted) for a
generalized model with b(P) being concave
and l(P) being nondecreasing and convex. There
may be up to six equilibria. Periodic solutions
are proven not to exist (Poincaré-Bendixson the-
ory). The dynamics are bistable. If r ) a<c, the
disease cannot establish and the host population
either goes extinct or approaches the carrying
capacity, depending on the initial conditions.

Further increasing the disease-related parameter
combination r)a, the trivial solution becomes
unstable and the disease-induced extinction state
ð0; i2 ¼ 1� c

r�aÞ emerges. This equilibrium corre-
sponds to extinction as a consequence of infec-
tion (de Castro and Bolker 2005). While the host
population tends to zero, the prevalence
approaches i2 > 0. Next, if r ) a>u+c+ue, up
to two coexistence states appear. The smaller one
(P3), i3)) is always unstable, while the larger one
(P3+, i3+) changes stability with the disease-free
carrying capacity state and is locally stable as
soon as it exists. The nontrivial equilibria disap-
pear if additionally

e >
r
a
ð1� uÞ; ð13Þ

c<
ðr� aÞðuþ aÞ

a
� ½rð1þ uÞ þ ae�2

4ar
: ð14Þ

In this case the dynamics are monostable with a
globally stable disease-induced extinction state.
The total population densities of the coexistence
states are

P3þ;3�¼
1

2

�

1þuþea
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þuþea
r

� �2

�4
r
ðr�aÞðuþaÞ�ca½ �

r

�

:

ð15Þ

They can be found as the roots of the two
nontrivial, quadratic nullclines

Table 1. Results of the stability analysis of the spatially homogeneous version of (10–11).

The left column contains the stationary states (P*, i*). The other columns are divided according to the parameter regions along the ray

for r ) a which are separated by the values in the top row. The most right column corresponds to the case that Equations (13–14) hold

additionally. �l.a.s.� stands for locally asymptotically stable, �g.a.s.� for globally asymptotically stable, and �–� means that the stationary

state does not exist or is not feasible.
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iðPÞ ¼ ð1� PÞðP� uÞ
a

¼ r� a� c� ð1þ uþ e� PÞP
r� a

;

ð16Þ

which are displayed, for example, in Figure 6a.

Slow-down and reversal of invasion fronts:

numerical observations

When the invasion front of the host population is
not influenced by the disease, for example if i=0,
system (10–11) reduces to a single-species model in
which growth is described by a strong Allee effect.
In this case, the invasion takes place via a travel-
ling frontal wave with the unique speed

v ¼ 1
ffiffiffi

2
p 1� 2uð Þ; ð17Þ

cf. Lewis and Kareiva (1993). If u < 1/2, the
population front propagates in positive direction,
while it runs backward otherwise.

In this paper we assume that the population
initially propagates forward, say 0 < u < 1/2,
and still continues spreading when the disease is
introduced in the wake of the invasion front of
the host species, i.e.

• we restrict ourselves to the parameter region in
which the coexistence state is stable, cf. Table 1,

• the initial conditions prevent mere extinction
due to the Allee effect, say (i) at least Pl > u
and (ii) the spatially critical threshold length is
exceeded (Hilker et al. submitted), i.e. xS is
large enough.

This section is concerned with numerical simu-
lations. The second summand on the right-hand
side of (11) causes enormous numerical difficul-
ties. Note that it can be interpreted as an advec-
tion term with velocity

� 2

P

@P

@x
;

i.e. the direction of the advection depends on the
spatial gradient of P. The term does not play a
role at the head and the wake of the fronts,
because there at least one of the spatial derivatives
vanishes. However, this term could become impor-
tant if the transition layers of both fronts for P

and i overlap. Therefore, we consider for the
numerical simulations system (6–9). In order to
numerically handle the singularity, a threshold d is
applied, below which the transmission terms are
set to zero. Throughout this paper, it will be kept
as small as d=10)100. As will become evident
below, the underlying reason is that the extinction
state S=I=0 is stable. Experiences from numeri-
cal simulations elucidate that this extremely small
choice of d is necessary, in order to avoid artificial
effects at the propagating wave front. Moreover, a
sufficiently small time discretization is required.

Extensive numerical investigations indicate the
emergence of travelling frontal waves. An exam-
ple is given in Figure 2, where the numerical
solutions are displayed in P and i state variables.
At the head of the population front, the host
species continues invasion in open space with
speed v1. The infection spreads into the suscepti-
ble population at carrying capacity with speed v2
and settles towards the coexistence state (Fig-
ure 2a). If the prevalence front comes closer to
the population front, there is a sudden boost of
the prevalence in front of the population front
(Figures 2b, c). Due to diffusion, there is a band
of microscopic prevalence values moving ahead
the actual prevalence front. Together with small
total population densities, the system dynamics
quickly tends to the disease-induced extinction
state, because the trivial state is unstable. The
travelling wave thus connects the coexistence
state with the disease-induced extinction state,
which has to establish from the trivial state. A
too small choice of the threshold d in the numeri-
cal scheme would affect an abrupt interruption of
the rapid propagation of the disease-induced
extinction state through the empty space (with
speed v3). Note that it is instructive to display
the dynamics in P and i, because otherwise the
decisive distinction between the unstable trivial
state (0, 0) and the stable disease-induced extinc-
tion state (0, i2) would be not as obvious.

The appearance of the prevalence ‘‘hump’’ in
front of the front is a transient effect of small
densities, which has also been referred to as the
‘‘atto-fox problem’’ (Mollison 1991). Since this is
often regarded as artificial, note that the effect
could be damped by simply applying an appro-
priate threshold, below which densities are set to
zero, cf. Gurney et al. (1998), Gurney and Nisbet
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(1998) and Cruickshank et al. (1999). The results,
however, would qualitatively remain the same,
namely the disease-induced extinction state prop-
agates to the right-hand side, while the coexis-
tence state moves with speed v4. In the example

shown, the population front becomes recessive
(Figures 2d–f), and the population ultimately
goes extinct. For other parameter values, e.g. a
smaller value of the virulence, the population
front remains invasive, but with a slower wave

Figure 2. Reversal of invasion fronts, when the introduced disease catches up the front of the host population. The solid line rep-

resents P, the dotted line i. Solutions are obtained, as throughout this paper, by integrating (6–9) with the Runge–Kutta scheme of

fourth order for local interactions, with the explicit Euler scheme for diffusion and applying a threshold as described in the text

due to the singularity at the trivial state. Other parameter values: a=0.5, r=1.6, c=0.1, e=0.5, u=0.1, Sl=1, Il=0.001, xS=500,

xI=200.
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speed, i.e. v4<v1. The reversal and slow-down of
the invasion fronts are illustrated in the range
expansion diagram in Figure 3.

The next section is concerned with finding ana-
lytical conditions for either the slow-down or the
reversal. This is achieved by deriving approxima-
tions for the wave speed v4.

Travelling wave analysis

Although there are some results proving the exis-
tence of travelling wave solutions to systems
similar to (6–9), e.g. Dunbar (1983, 1984, 1986),
Hosono (1989), Huang et al. (2003) and Li et al.
(submitted), we know of no proof of travelling
wave solutions for this specific system. For the
case that one species (predator) spreads into the
range of another spreading species (prey), simu-
lations by Sherratt et al. (1995, 1997) and Petrov-
skii and Malchow (1999, 2001) show that
spatiotemporal dynamics can result in irregular
oscillations – provided that the local dynamics
fulfill some special conditions. Since these
requirements differ from the properties of our
model, we do not expect such a behaviour. As a
result from the numerical simulations in the pre-
vious section, we consider travelling wave solu-
tions to (10–12) of the form ~PðzÞ ¼ Pðt; xÞ and
~iðzÞ ¼ iðt; xÞ with z=x)vt and wave speed v.
Omitting the tildes for notational simplicity
and substituting, we get the following system of
ordinary differential equations of second order

0 ¼ P00 þ vP0 þ ð1� PÞðP� uÞ � ai½ �P; ð18Þ

0 ¼ i00 þ vþ 2

P
P0

� �

i0

þ
�

r� a� ð1þ uþ e� PÞP� c

� ðr� aÞi
	

i;

ð19Þ

where the prime denotes differentiation with re-
spect to z. Focusing on the situation discussed
last in the previous section, cf. Figure 2f, we
specify the boundary conditions as

Pð�1Þ ¼ P3þ; Pð1Þ ¼ 0;

ið�1Þ ¼ i3þ; ið1Þ ¼ i2:

Our main interest is in the direction of the travel-
ling wave, say whether it moves to the left or to
the right. Because of this we consider Equation
(18) for the total population density. By intro-
ducing Q=P¢, this single equation of second
order can be reduced to a system of two equa-
tions of first order, namely

P0 ¼ Q; ð20Þ

Q0 ¼ �vQ� ð1� PÞðP� uÞ � ai½ �P; ð21Þ

with boundary conditions

Pð�1Þ ¼ P3þ; Pð1Þ ¼ 0;

Qð�1Þ ¼ 0; Qð1Þ ¼ 0:

Note that (21) depends on the prevalence i,
which induces mathematical difficulties. In the
subsection ‘Exact wave speed solutions for fast
dynamics’, we will determine exact wave speeds
for cases, in which we can make use of different
time scale dynamics. This enables us to approxi-
mate the prevalence. In the subsection ‘Approx-
imations for small r’, we show that we can also
find good approximations for other cases.

Exact wave speed solutions for fast dynamics

Our model depends on five parameters, cf. (18–
19). However, u is restricted to be within the inter-
val (0, 0.5), cf. section ‘Slow-down and reversal of
invasion fronts: numerical observations’. Further-
more, the virulence a cannot be very large, because
otherwise there are too many deaths due to the

Figure 3. Range expansion of the total population for a=0.3

(slow-down) and a=0.5 (reversal). The range is the (dimen-

sionless) distance which is occupied by the species with densi-

ties above some threshold, here set to 0.01. The slopes of the

displayed lines correspond to the wave speeds. Other parame-

ters as in Figure 2.
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disease, and vital dynamics would become irrele-
vant. Thus, there remain the three parameters r, e
and c. In this subsection, we will investigate the
cases in which the transmission coefficient r
becomes very large. This situation may arise when
the disease is transmitted very fast. Moreover, the
combinations of additionally large growth param-
eters e and/or c are also taken into account. In all
these cases, a unique wave speed can be approxi-
mated analytically. The case that r is small will be
considered in the next subsection.

Firstly, we assume that both the disease trans-
mission as well as the vital dynamics (births and
deaths) occur on a fast time scale, i.e., we replace
e, c and r by e/e, c/e and r/e, respectively, and
then let e fi 0. Consider Equation (11) for i.
Substituting e, c and r as indicated and multiply-
ing with e yield

e
@i

@t
¼ r� ea� c�ðeþ euþ e� ePÞP�ðr� eaÞi½ �i

þ e
2

P

@P

@x

@i

@x
þ e

@2i

@x2
:

With e fi 0, this reduces to

0 ¼ r� c� eP� ri½ �i;

and thus i=0, which corresponds to the disease-
free states, or

i ¼ 1� c

r
� e

r
P ð22Þ

for cases in which the infection can establish.
The total population density of the stable coexis-
tence state reduces to

P3þ ¼
1

2

"

1þ uþ ea
r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

1þ uþ ea
r

�2

� 4
�

uþ a� ca
r

�

r

#

:

ð23Þ

Hence, the prevalence can be described by the
linearly decreasing straight line (22), cf. Fig-
ure 4a. Incorporating this in (20–21) yields

P0 ¼Q;

Q0 ¼ �vQ� ð1�PÞðP� uÞ� a 1� c

r
� e

r
P

� �h i

P:

We are looking for a heteroclinic connection
between (P, Q)=(P3+, 0) and (P, Q)=(0, 0).
Therefore, following Lewis and Kareiva (1993)
and Murray (2002), we make the ansatz

P0 ¼ Q ¼ APðP3þ � PÞ:

Then

P00 ¼AP0ðP3þ � 2PÞ ¼A2PðP3þ �PÞðP3þ � 2PÞ;

and substituting these expressions together with
(22) in (18) yields

0¼
�

ð2A2�1Þ
|fflfflfflfflffl{zfflfflfflfflffl}

c2

P2þ 1þuþae
r
�vA�3A2P3þ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c1

P

�u�aþca
r
þvAP3þþA2P2

3þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c0

�

P:

This equation must hold for all P 2 [0, P3+].
For P=0 it obviously does, and for all other val-
ues of P we require that c2=c1=c0=0. From
c2=0 we obtain a condition for A, namely

A ¼ � 1
ffiffiffi

2
p ;

and from the remaining two conditions c1=c0=0
we obtain equations for the wave speed v. They
must be equal, which they are, indeed, for the
values of A as above and P3+ as in (23).

Because we are looking for a connection from
(P,P¢)=(P3+,0) to (P,P¢)=(0,0), P must de-
crease, which means that P¢ £ 0 and that the tra-
jectory is situated in the fourth quadrant. Hence,
choosing A ¼ �1=

ffiffiffi

2
p

, we obtain the unique
wave speed

v ¼
ffiffiffi

2
p

4

�

� 1� u� ea
r

þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

1þ uþ ea
r

�2

� 4

�

uþ a� ca
r

�

s

�

:

ð24Þ

Figure 5a shows (24) in comparison with the
numerically obtained values, demonstrating that
the speeds match very well.

Next, we can repeat this procedure analo-
gously for all other cases of fast dynamics,
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Figure 5. Analytically derived wave speeds (24–27) for the different combinations of fast transmission and vital dynamics, cf. Fig-

ure 4 (same parameter values). The points are numerically obtained results.

Figure 4. Solutions of the PDE system (6–9), restricted to the asymptotic propagation of the travelling fronts, displayed in (P, i)

phase plane with cross points, for different cases of fast dynamics. The solid lines are the prevalence approximations as given in

the respective panel. The dotted lines are the nullclines of the total population, cf. the left part of (16). Parameter values: (a)

e=c=100.0, r=205.0, a=0.5, (b) e=100.0, c=0.1, r=205.0, a=0.15, (c) e=100.0, c=0.1, r=205.0, a=0.2, (d) e=c=0.1,

r=205.0, a=0.12. All other values have been kept as u=0.3, Sl=S3+, Il=I3+, xS=500, xI=200.
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obtaining approximations for the prevalence as
given and plotted in Figures 4b–d. Note that a
large c corresponds to the situation in which
both the fertility as well as the mortality func-
tion occur on a fast time scale. For a large e,
the effect of density dependence is increased.
Hence, the dynamics become fast for high densi-
ties. The respective approximations of i are in
all cases straight lines. If e is large, then they
depend on P (Figures 4a–b). Otherwise, i can be
approximated by a constant. For large values of
c, this constant is below unity (Figure 4c),
otherwise it is exactly unity (Figure 4d). The
corresponding wave speeds are

v¼
ffiffiffi

2
p

4

�

� 1� u� ea
r

þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

1þ uþ ea
r

�2

� 4ðuþ aÞ

s

#

ðlarge e;rÞ;

ð25Þ

v¼
ffiffiffi

2
p

4

�

� 1� u:

þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ uÞ2� 4 uþ a� ca
r

� �

r

#

ðlarge c;rÞ;

ð26Þ

v ¼
ffiffiffi

2
p

4
�1� uþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� uÞ2 � 4a
q

� �

ðlarge rÞ:

ð27Þ

The plots in Figures 5b–d underline the good
approximation of the wave speeds obtained in
numerical simulations. The analytic solutions

reveal that the waves exist, i.e. v is a real num-
ber, as soon as the stable coexistence states exist
in the corresponding situations, cf. for instance
(23). Note that v can become negative. In this
case, there is a reversal of the invasion front. A
zero-velocity corresponds to the stop of the inva-
sion. Though such a stationary front is superim-
posed by noisy fluctuations in nature and thus
unlikely to be observed, this can be an explana-
tion for at least transient species borders in spa-
tially homogeneous environments, cf. Holt et al.
(2005) and references therein. In the case that
exclusively r is large, the speed only depends on
u and a. In the other cases, the speed addition-
ally depends on e, c and r. To be more precise,
just the ratios of e/r and c/r influence the rate of
spread. Note that in all the cases of fast dynam-
ics, the prevalence is approximated by its null-
cline of the non-spatial model. This is due to the
fact that the disease transmission occurs on the
fast time scale.

Approximations for small r

If r is small, which corresponds to a slow trans-
mission of the disease, while the vital dynamics
occur on a fast time scale, i.e. one or both of the
parameters e and c are large, then the disease
cannot establish. This means that there is no
coexistence state, cf. the parameter regions in
Table 1. In the last remaining situation neither
the disease transmission nor the vital dynamics
occur on a fast time scale. In this case, the preva-
lence cannot be approximated as before. How-
ever, experiences from numerical simulations
indicate that, nonetheless, an estimate of the un-
ique wave speed can be obtained.

Figure 6. (a) Asymptotic front solution of the PDE system (6–9), displayed in (P, i) phase space with cross points. The solid and

the dotted line are the nullclines of i and P, respectively. (b) Analytically approximated wave speeds (28) in dotted line and (30) in

solid line. The points are numerically obtained results. Parameter values as in Figure 2.
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Consider for example the dynamics in Fig-
ure 6a, which corresponds to the situation shown
in Figure 2. There is still an apparent similarity
between the PDE solution and the nullcline of
the prevalence, cf. (16), which makes us to try to
approximate i in this way. I.e., we incorporate
the ansatz

i ¼ 1� c

r� a
� 1þ uþ e

r� a
Pþ 1

r� a
P2;

cf. (16), in Equation (21) and proceed as in sub-
section 4.1, thus obtaining the unique wave speed

v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðr�aÞ
r

r

3r
2ðr�aÞP3þ�1�u�a

1þuþ e

r�a

� �

;

ð28Þ

with P3+ as in (15). This analytical approxima-
tion is plotted against the virulence in Fig-
ure 6b (dotted line). The predicted wave speeds
closely match the numerically observed ones.
Only for intermediate values of a are there
slight underestimations. Note that the wave
speed becomes positive again for large viru-
lences, i.e. the population front propagates for-
ward again.

There are, however, situations in which the
PDE solution cannot be approximated by the
nullcline, and these can naturally be assumed to
be the more general case. An example is given in
Figure 7a: The PDE solution would suggest
rather a singular perturbation analysis than an
approximation by the nullcline. Yet another
approach is now set out. We seek another
approximation of the term (1)P) (P)u) )ai in
Equation (18). Let us try

ð1� PÞðP� uÞ � ai ¼ ðP3þ � PÞðP� P3�Þ; ð29Þ

of which we know that this clearly holds for
i=P3+ and i=P3). Note that this ansatz corre-
sponds to the case if i would be a constant (as
for example in the single-species models in Mur-
ray (2002, 2003)). Figure 7b shows both the left-
hand side and the right-hand side of (29) with
values of i from the numerical front solution.
They are in good accordance for all P 2 [0,P3+].
Hence, let us make use of this approximation
and substitute the term (1)P) (P)u) )ai in (21)
by the right-hand side of (29). Then we obtain

P0 ¼ Q;

Q0 ¼ �vQ� ðP3þ � PÞðP� P3�ÞP:

Figure 7. (a) Asymptotic front solution of the PDE system (6–9), displayed in (P, i) phase plane with cross points. The solid and

the dotted line are the nullcline of i and P, respectively. (b) Approximation of the term (1)P)(P)u))ai (crosses) by the right-hand

side of (29) (solid line). The data for i stem from the front solution of the PDE system. (c) Approximated wave speed (30) in solid

line and numerically calculated data (points). Parameter values: u=0.2, e=0.1, c=0.4, a=0.1, r=0.9, Sl=S3+, Il=I3+, xS=100,

xI=50.
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Finally, we yield the following simple expression
for the unique wave speed

v ¼ 1
ffiffiffi

2
p P3þ � 2P3�½ �: ð30Þ

As we can easily see, the wave exists if the coex-
istence states exist. An invasion front is predicted
to be reversed, if the stable coexistence state is
not at least double the size of the unstable one.
The spread rate is always smaller than (17),
because 0<u<P3)<P3+<1. This means that
the introduction of the disease slows down the
host population. In Figure 7c, (30) is plotted
against a and compared with the numerically ob-
tained wave speeds, demonstrating a good accor-
dance. This parameter setting is an example in
which the wave speeds do not become negative
for feasible a. Actually, Equation (30) can also
be applied to the parameter setting in Figure 6.
The resulting wave speed approximation is plot-
ted in Figure 6b as well (solid line). Compared
with (28), (30) fits very accurately for intermedi-
ate values of a, while there is a slight underesti-
mation for large values. However, both estimates
yield the same threshold values of the virulence
for the transitions from an invasive to a recessive
wave and vice versa.

The wave speeds for the fast dynamics as sum-
marized in subsection 1 can be obtained as spe-
cial cases of both (28) and (30) by simply letting
the respective parameters become large. All these
wave speed approximations as well as the dis-
ease-free wave speed (17), are particular cases of
the fundamental setting with cubic nonlinearities
in the interaction term of the PDE. Say, if r0, r1,
and r2 denote the roots of this polynomial, then
the wave speed is given by

v ¼ 1
ffiffiffi

2
p r2 � 2r1 þ r0½ �:

In the case of (30) we have r2=P3+, r1=P3) and
r0=0.

Finally, we are interested in the impact of the
Allee threshold u on the reversal dynamics. In
Figure 8, the predicted wave speeds (30) are plot-
ted against both the virulence and the Allee
threshold. For fixed values of u, there is a mini-
mum wave speed for some intermediate virulence
a. When the Allee threshold is varied, the wave
speed decreases with u. This can also easily be

checked by looking at the wave speed equations
and their dependence on u. The parameter
regions, in which a front reversal is possible, gets
larger with increasing Allee threshold. Recall that
for u>0.5 the disease-free host population wave
would be recessive anyway.

Discussion and conclusions

In this paper we have considered a reaction-
diffusion model describing the spatiotemporal
spread of a species which is governed by a strong
Allee effect as well as an infectious disease. The
invasion takes place via a travelling frontal wave.
It has been shown that this invasion front of the
host population can be slowed down, stopped or
reversed by subsequently introduced pathogens.
The invasion reversal and thus the ultimate pop-
ulation extinction depend on the virulence. When
the additional disease-related mortality is within
a certain range, the deaths due to infection over-
balance the growth at the head of the population
front.

The asymptotic rate of propagation decreases
with an increasing strength of the Allee effect, i.e.
a larger threshold u. This agrees with the results
from single-species models, in which Allee effects
slow down travelling wave solutions of reaction-
diffusion (Lewis and Kareiva 1993; Wang and

Figure 8. Dependence of the analytic wave speed solution

(30) on the Allee threshold u and the virulence a. The points

are numerically calculated wave speeds. The grey lines are iso-

lines of zero wavespeed and indicate transition from a reces-

sive to an invasive wave. The thick black line delineates the

feasible parameter region in which the coexistence state exists.

Other parameters chosen as in Figure 2.
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Kot 2001) and integrodifference equations (Wang
et al. 2002). The possible reversal of invasion
fronts has also been found by Owen and Lewis
(2001) in a predator–prey model where the prey
exhibits an Allee effect. Predator–prey and epide-
miological SI models obey some structural anal-
ogy. Critical parameters for the reversal of the
fronts are the predator mortality and the disease-
related mortality, respectively. In both the preda-
tor-prey and the infectious disease model, the
local models with neglected diffusion would pre-
dict coexistence. Recessive waves (‘waves of
extinction’) have also been observed by Lewis
and van den Driessche (1993) in a model of ster-
ile insect release, in order to control an insect
invasion. It would be interesting to know, what
happens in a competition or any other model
with negative impact on the focal species, when
the latter is subject to an Allee effect.

This study has shown that reversal is possible
for Allee thresholds u even approaching zero.
Owen and Lewis (2001) have observed in their
examples critical thresholds of about u=0.4
for prey–predator interactions of simple
Lotka-Volterra type and of about u=0.3 for
prey–predator interactions of Holling type III.
Future work will have to consider different trans-
mission functions. For instance, considering mass
action transmission one could also investigate
whether the reversal depends on the disease-in-
duced extinction state. Since the recessive waves
are possible in prey–predator systems with Lotka-
Volterra interaction, we would expect them also
to occur in epidemiological models with transmis-
sion dynamics other than the standard incidence.

Owen and Lewis (2001) assumed that the preda-
tor diffuses much faster than the prey species,
which, from a mathematical point of view, allows
the application of singular perturbation theory.
Here, we have considered equal diffusion coeffi-
cients of susceptibles and infected. The assump-
tions that some dynamical components are fast
allowed the problem to be treated analytically.
Alternative approaches were also proposed which
are based upon numerically observed features to
guide an ansatz for deriving the wave speed
expression as well. The diffusion coefficient of the
infected could also be assumed to be reduced as a
result of the infection. Hence, the diffusion coeffi-
cients would be unequal but still of the same order

of magnitude. The analysis based on the fast
dynamics assumptions should also hold in this
case. Whether the alternative approaches turn out
to be similarly accurate, would have to be checked
in respective extensive numerical simulations.

A prerequisite of the reversal, however, is that
one of the species is still invading into open space,
while the other one is able to catch up this front.
This can be regarded to be often the case, because
invasion usually takes place by introduction of a
small number of individuals. When these are dis-
ease-free, the pathogen is left behind and not pres-
ent in the new habitat before another introduction
of infected individuals (Pimentel 1986).

Population crashes of alien invaders cannot be
caused by indigenous pathogens, because they
would have prevented a successful establishment.
Mutational effects are more unlikely than the
subsequent release of native pathogens, since
evolution tends to coexistence states rather than
to extinction, e.g. Roughgarden (1975), Ewald
(1994), Yamamura (1996) and Boots and Sasaki
(2003). Moreover, recent quantitative studies of
Mitchell and Power (2003) and Torchin et al.
(2003) demonstrate that invasive species, both
plants and animals, appear to suffer from fewer
pathogens and parasites in their new habitat than
in their native range.

There are a lot of models dealing with the con-
trol of epidemic spread or investigating the
impact of infectious diseases on non-native spe-
cies, e.g. the control of rabies, see Murray (2003)
and references therein, and immunocontraception
(McCallum 1996; Courchamp and Cornell 2000;
Suppo et al. 2000). Usually, the density of the
host species is only reduced due to the disease,
but the population does not go extinct spatially.
Hence, this phenomenon can be ascribed to the
Allee effect, which is another evidence that Allee
dynamics are a source of complex spatiotemporal
dynamics (Lewis and Kareiva 1993; Owen and
Lewis 2001; Petrovskii et al. 2002a, b, 2005).

The results of this study clearly highlight the
importance and role of infectious diseases in inva-
sion processes. Furthermore, they indicate that
the introduction of natural pathogens may be
applicable as a biological control method, in order
to eradicate a pest species or at least to slow down
its spread. This depends on the availability of
appropriately harmful diseases and the range of
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their release. However, possible adverse effects to
the ecosystem such as transmission to indigenous
species have to be taken into account, of course.
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