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Abstract

Methods to design a sampling strategy should depend on the research question involved when conducting the experiment. The
objective of this study is to design a seed trap configuration surrounding a parent plant when the long distance component of the
seed dispersal kernel is of interest. In particular, as a population’s invasion speed depends mainly on the tail of the dispersal kernel,
the sampling design in this study is based on calculating this quantity. The optimality criterion is to minimize the mean squared
error (MSE) of the estimated invasion speed (using a limited number of traps) with respect to the “true” calculated invasion
speed. Detailed procedures are given on how to calculate an invasion speed, both in a 1D and a 2D setting, with examples on
how to implement the method to get a local optimal sampling strategy usingCalluna vulgaris as a test system. Results show
a trade-off between nearby sampling (many seeds, no long-distance dispersal measured) and distant sampling (few seeds, but
long-distance dispersal measured).
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. Introduction

Dispersal is an important strategy for species sur-
ival (Murray, 1986). Establishment of species in their
ew environment affects ecosystem’s dynamics by

ts influence on, e.g. biodiversity(Malanson, 1996)
nd competition(Jesson et al., 2000; Matsinos and
roumbis, 2002). Vegetation, in particular, can spread
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rapidly when huge numbers of seeds are being
persed over long distances from the parent plant.
spread rate can be used as a measure of invasiv
and can be calculated using information on the
of the dispersal kernel(Kot et al., 1996; Lewis et a
2005).

Although work has been done to assess short
tance dispersal(Jongejans and Telenius, 2001), exper-
imental studies on measuring the tail of distribu
kernels are rare. Still, seeGreene and Johnson (19
1996), for long-distance wind dispersal research of
seeds. See alsoParadis et al. (2002), Nurminiemi et
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(1998) and Tackenberg (2003)for some methods to
analyse dispersal data.

A dispersal kernelk(x) is a probability density func-
tion associated with moving distancex in a single dis-
persal event. Knowledge of the dispersal pattern of
seeds from a parent plant and growth and survival of
these individuals at new sites gives insight in the spread
rate of vegetation at population level. In this paper, we
will focus on the sampling design for estimating veg-
etation spread into a new environment based on seed
counts in traps surrounding a single point source. It will
be shown that measurement of the “tails” of the disper-
sal kernels in the field plays a dominant role in the esti-
mation of the population spread, but that optimal sam-
pling effort as a function of distance from the source
plant involves a trade-off between nearby sampling
(many seeds, no long-distance dispersal measured) and
distant sampling (few seeds, but long-distance disper-
sal measured).

Accurate field measurements are a prerequisite to
understand the mechanisms behind long distance seed
dispersal. A good sampling design is important to
achieve this goal. An optimal spatial sampling design
for studies on pollen dispersal was given byAssunç̃ao
and Jacobi (1996). Their interest was in the shape of
the dispersal curve. The kernel was estimated by a his-
togram, based on observed counts of individuals in the
field. The optimal sampling design, in that case, min-
imized the error in estimating the shape of the kernel.
This is equivalent to minimizing the area of the differ-
e d the
h sign
r plant
w thm
i an-
i nce
d dis-
p ich
e com-
p ed in
t g the
b hen
o nel
i sist
o par-
e ) of
t wave
s iffi-

cult computationally, hence we use a sequential design
where seed traps are added one at a time. Although se-
quential sampling does not result in a global optimal
design, it does ensure that each additional seed trap is
placed at the locally optimal location of the remaining
open sites, and thus approximates a global optimum.

The first step in obtaining a good sampling design
is knowledge about the true dispersal kernel. As this is
unavailable, a useful approach requires an initial guess
on the dispersal kernel obtained from field data on, for
example, a related species. The sampling design is then
based on this initial estimate for the true kernel with the
idea of subsequently getting step by step improvement
towards an optimal design from repeated field experi-
ments.

By way of example, our analysis will be based on
work by Bullock and Clarke (2000), who measured
dispersal for the heather plantCalluna vulgaris in the
field. Heather plants have very light seeds which are
dispersed by wind over long distances. As the bushes
produce many seeds, this is a good plant to study seed
dispersal. With this species, an accurate long distance
dispersal pattern can be measured in the field. In this pa-
per, we will first calculate the spread rate ofC. vulgaris
from the preliminary studies ofBullock and Clarke
(2000)on the approximate shapes of dispersal kernels.
This so called “true” spread rate will then be used to de-
termine a sequential seed trap configuration when only
a limited number of seed traps is available and gaining
insight in the tail of the dispersal kernel is our goal.
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nce between the continuous dispersal curve an
istogram estimator. As a consequence, their de
esulted in concentrating samples near the parent
here most of the seeds fall. However, their algori

s not applicable when the invasion speed of org
sms is of interest, and information on long-dista
ispersal events, as described by the tails of the
ersal kernels, is crucial. A different approach wh
mphasizes the measurement of the long distance
onent of the spatial spread in the field, is present

his paper. Our sampling design is based on gettin
est estimate for the invasion speed of species w
nly limited information on the seed dispersal ker

s available from seed trap data. The design will con
f placing seed traps at several distances from a
nt plant such that the mean squared error (MSE

he estimated wave speed with respect to the true
peed is minimized. Such global optimal design is d
First, we show how to calculate an invasion sp
ith an example on using seed dispersal data to
ulate the speed. Then, the sampling design pro
ill be defined with a step-by-step approach on h

o implement the method of sequential sampling ba
n the preliminary calculated invasion speed. Su
uently, a detailed explanation of the procedure to

ually get the sampling design with detailed steps u
eed dispersal as an example will be given followe
esults for the specificC. vulgaris test system unde
onsideration. Our goal is to provide a “user guide”
uture applications of this method. A better insigh
he long distance component of the dispersal patte
he field is the basis for the development of mechan
odels for ecological processes.Hemerik et al. (2004,

or example, stress the need for knowledge on the
ersal behaviour to predict the expansion velocit

he western corn rootworm into Europe. An impro
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Table 1
Variables used in the procedures to obtain an optimal sampling design
in this study

Variable Explanation

c(s) Theoretically derived true wave speed from the dispersal
kernelk(x)

ch(s) Assumed “true” wave speed calculated from the his-
togram dispersal kernel,kh(x)

c̄h(s) Expected “true” wave speed calculated using multiple
histogram dispersal kernels

ĉh(s) Estimated average wave speed from limited seed trap
data

k(x) True dispersal kernel
kh(x) True dispersal kernel in the form of a histogram
k̂h(x) Estimated dispersal kernel from limited field data in the

form of a histogram
M(s) Moment generating function (MGF) for the dispersal

kernel,k(x)
Mh(s) Moment generating function (MGF) for the histogram

dispersal kernel,kh(x)
R0 Basic reproductive number
S Total number of seeds over all sampling distances
Dn Thenth sampling distance with respect to the source
Lj The furthest sampling distancesj with respect to the

source in a field with lengthL

sampling design would also help in the development
of models in the field of risk assessment(Lewis et al.,
1996; Reshetin and Regens, 2003). That is, a good in-
sight in spatial spread associated with the dispersion of
pathogenic and/or genetically modified microbes is of
major importance to build models in cases where sam-
pling needs to be limited from a hazard perspective.
The general discussion will give some considerations
on how to apply this method to other systems.

To help reading through the procedures in this paper
a summary of the most frequently used variables is
given inTable 1.

2. The theory of calculating invasion speeds

2.1. Spread in one spatial dimension

A full derivation of the theory of one-dimensional
invasion speeds can be found inKot et al. (1996). To
be able to follow the arguments in this paper, however,
only a general insight in the theory is required.

Consider a population that is in the initial stage of
the spread into a habitat as part of the design of a field
experiment. As the plant is being introduced in low den-

sities into a habitat in which it has not previously been
grown, the assumption of density-independent popula-
tion dynamics is justified. We can, therefore, assume a
population whose density (N) at location (x) changes in
time (t) through reproduction and dispersal following:

Nt+1(x) =
∫ ∞

−∞
k(x − y) R0 Nt(y) dy, (1)

whereR0 > 1 represents the basic reproductive num-
ber (the number of offspring produced by one parent
organism which survive at least until the next reproduc-
tion time(Heesterbeek, 2002)). The functionk(x − y)
is the dispersal kernel describing the relative frequen-
cies of distances traveled (fromy to x) as individu-
als disperse within one time step. This model assumes
separate growth and dispersal events and discrete non-
overlapping generations, although it also can be used
to approximate growth and dispersal when generations
overlap. Repeated application of Eq.(1) describes the
expected spatial distribution of individuals as time pro-
gresses from one time step to the next. The spatial
spread ofNt(x) describes spread of the invading popu-
lation. We consider an invading population whose lead-
ing edge is described by an exponentially decreasing
function

Nt(x) = b e−sx, (2)

whereb represents the population density at pointx =
0 at some given timet.
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If organisms move forward with a constant dista
at each point in space (x), then

Nt+1(x) = Nt(x − c) and so

Nt+1(x) = b e−s(x−c).
(3)

Fig. 1demonstrates visually the population dyna
cs formulated by Eqs.(2) and (3). Substituting Eqs
2) and (3)in Eq.(1) gives

e−s(x−c) =
∫ ∞

−∞
k(x − y) R0 b e−sy dy. (4)

hanging variables tou = x − y andx yields

e−sx esc = R0
∫ −∞
∞ k(u) e−s(x−u) (−du)

= R0
∫ ∞
−∞ k(u) e−sx esu du

(5)

nd hence

sc = R0M(s). (6)
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Fig. 1. Assume the numbers (N) in a population to decrease with
exponentially bounded tails as the distance (x) from the source in-
creases. And, each time step the population progresses with a con-
stant speed (c) (Eqs.(2) and (3)).

Here,

M(s) =
∫ ∞

−∞
k(u) esu du (7)

is the moment generating function (MGF) for the dis-
persal kernelk(u). This defines a dispersion relation
between the speedc and the wave steepnesss as

c(s) = 1

s
ln(R0M(s)). (8)

Eq.(8) indicates a relation between the shape of the
wave and the invasion speed that involves the MGF of
the dispersal kernel. That is, an invasion speed (c) can
be calculated for every slope (s) of the wave (Eq.(8)).
However, typically, the initial distribution of the invad-
ing plant will not decline exponentially, as described
by Eq. (2). Rather, it will be confined to some finite
region.Weinberger (1982)proved rigorously that, for
such initial distributions, the asymptotic spread rate of
the population is given by the minimum value ofc(s):

c = min
s>0

{
1

s
ln(R0M(s))

}
. (9)

This argument was explained heuristically byKot et al.
(1996).

Note that the moment generating function (Eq.(7))
gives exponentially increasing weight to the tails of the
dispersal kernelk. Hence, the moment generating func-

tion is defined only for exponentially bounded func-
tions. Given exponentially bounded tails, the “fatter”
the tails, the larger the moment generating function for
any givens and the larger the value ofc in (9) and
thus the faster the invasion process. When the tails of
the dispersal kernel are not exponentially bounded, ac-
celerating invasions, with infinite asymptotic speeds,
result(Kot et al., 1996).

2.2. Spread in two spatial dimensions

Typical spread for a plant species will occur in two
spatial dimensions, rather than the one spatial dimen-
sion assumed above. Analysis for the case of 2D spread
is given in detail inLewis et al. (2005). Here, it is
assumed that dispersal need not be symmetric in all
directions, but that it is translationally invariant (i.e.
does not vary from one location to the next). The ker-
nel k(x) describes the probability density associated
with dispersingx1 units east andx2 units north. It is
then possible to calculate the spread rate for a “planar”
wave front. The “planar” wave front refers to a well
established invasion process, which has progressed
to the point where one can approximately divide in-
vaded and uninvaded locations with a straight line in
x1, x2, space which is perpendicular to a unit vector
describing movement in directionw. The formula for
the asymptotic rate of spread(9) remains unchanged,
but the formula for the moment generating function
i

M
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w∫
r
r
t F in
E

s now

(s) =
∫ ∞

−∞

∫ ∞

−∞
k(u)e(s u·w) du. (10)

his is equivalent to calculating the moment gene
ng function of a one dimensional kernel, which is

arginal distribution of an initial dispersal kernel
D given byk(x). To see this observe

M(s) = ∫ ∞
−∞

[∫ ∞
−∞ k(u) dη

]
es ξ dξ.

= ∫ ∞
−∞ kM(ξ) es ξ dξ,

(11)

here ξ = u · w, η = u · w⊥ and kM(ξ) =
∞
−∞ k(u) dη. Thus, integration ofk(x) in the di-
ection perpendicular to the population spreadw
esults in the 1D marginal distributionkM(ξ), and
his kernel can then be used to calculate the MG
q.(7).



A. Pielaat et al. / Ecological Modelling 190 (2006) 205–222 209

3. Calculating invasion speeds in practice

3.1. Invasion speed from seed trap data

When the dispersal kernel of seeds is unknown, but
their densities are being sampled by seed traps at var-
ious distances from a source plant, one natural distri-
bution to employ is the histogram

kh(x) =
{

fi, if ξi−1 ≤ x ≤ ξi for − L ≤ |x| ≤ L

0, otherwise,

(12)

wherekh(x) is the histogram for the distribution of
seeds from a parent plant at locationx = 0 in a field of
length 2L, andfi is the relative frequency of seeds on
the intervali with end pointsξi−1, ξi. Here, the first and
last histogram points areξL0 = −L andξLj = L. We
assume thatkh(x) is the “true” histogram describing
dispersal of a population of seeds. When we estimate
kh(x) from limited field data we writêkh(x).

In order to calculate an invasion speed using the his-
togram (Eq.(12)) for the dispersal kernel, its moment
generating function has to be derived first, that is

Mh(s) = 1

s

Lj∑
i=1

fi(exp(sξi) − exp(sξi−1)) (13)

This moment generating function is used in(9) to yield
a speed of

c
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front can be calculated from field data in a similar way
as described above for the 1D case. That is, calculate the
marginal distribution of the initial 2D dispersal kernel
to get the MGF (see Section2.2, Eq.(11)) and use its
result in Eq.(14) to calculate the invasion speed.

3.2. Monte-Carlo methods

Suppose we have an estimate for the dispersal kernel
k(x). How do we calculate the corresponding invasion
speedc? Analytical or numerical integration of the ker-
nel is one choice to calculate the MGF (Eq.(7)) needed
to calculatec. However, in higher dimensions Monte-
Carlo simulation is easier to apply. For example, any
arbitrary probability density functionk(x) can be ap-
proximated by forming a histogram derived of many
independent and identically distributed (i.i.d.) random
samples fromk.

When k(x) describes dispersal in two spatial di-
mensions, its marginal distribution in directionw can
be approximated by a histogramkh(z), wherez is the
signed distance in directionw by the following proce-
dure. To do this, first generate many i.i.d. random sam-
ples fromk. Then, for each random sample, calculate
ξ = x · w. Lastly, generate a histogram of theξ values
and use Eqs.(13) and (14)to give the spread ratech.
This method is used in Section6.2where the expected
spread rate ¯ch is a Monte-Carlo estimate ofc. While
Monte-Carlo methods give inexact solutions they are
simple to use and accurate enough for the question at
h
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h = min
s>0

{
1

s
ln(R0Mh(s))

}
. (14)

ere, the indexh indicates that the dispersal ker
s taken to be a histogram. Of course, the histog
Eq. (12)) does not exactly describe the true distri
ion of seeds in a field, and the histogram assump
an introduce some small bias in the calculation
he wave speed due to the arbitrary chosen numb
bins” (Clark et al., 2001). However, simulations sho
hat, given at least 20 “bins”, such bias is extrem
mall relative to errors arising from uncertainty as
iated with having very few observations in the tai
he dispersal kernel. Thus, this bias is of little pra
al significance when designing field studies. For
emainder of this paper, this source of bias is igno

When field data consists of seed counts on a la
2D wave speed can be obtained. The 2D planar
and.

. “Optimal” sampling design for seed dispersal

As the following procedures apply to an optim
onfiguration of seed traps in the field, assumpt
bout the physical field characteristics have to be m
xplicit first. As a first approach, we assume the fi

s a flat terrain without any major vegetation grow
nd no predominant wind direction. The experime
et-up consists of a source of one or more parent p
unched together as a single point source surrou
y seed traps in one or more wind directions (e.g. no
ast, south–east, south–west and north–west). Co

ng data from the field results in number of seeds
eed trap (i.e. per surface area) at various distances
he source.
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4.1. Optimality criterion

4.1.1. An estimate for the invasion speed from
limited field information

The first step into calculating an invasion speed from
field data is to have a general insight in the reproduc-
tion and dispersal pattern of the test species. The next
step is then to link these population characteristics to
an invasion speed. Following the assumptions in Sec-
tion 2, the calculation actually only needs two inputs
(see Eqs.(12)–(14)), that is,

1. R0 : basic reproductive number
2. kh(x): histogram of dispersal distances

This means that the extent of species invasiveness de-
pends on the number of seeds that will germinate the
next growing season at sites they were dispersed to
from a parent plant.

If we knew the true spatial distribution of seeds from
a parent plant, then we could immediately calculate the
spread rate of the population using Eq.(9), and no field
sampling would be necessary.

Here, we consider the case where we do not know
the precise form of the dispersal kernel covering the
long distance component. However, we assume some
preliminary sampling has been done which provides
us with preliminary estimates for the dispersal kernel
spread ratech (14). The error in these estimates de-
pends on the level of preliminary sampling. However,
f s
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w ds.
H
w y the
M
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e
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t
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M

Of course, lack of information on the true spread rate
c hampers our ability to calculate the bias. However,
the expected spread rate ¯ch (Section3.2) allows us to
minimize an approximation to the MSE

MSE = Var(ĉh) + (E(ĉh) − c̄h)2. (16)

4.1.2. Practical considerations with an
application to seed dispersal

The ideal seed trap configuration would consist of
placing a maximum number of traps that fit in each tran-
sect surrounding the source plant (i.e. divide the length
of the transect by the diameter of a seed trap to get this
maximum number). However, filling all the transects
with the maximum number of seed traps would, from
a practical point of view, be impossible in most cases.
From a trapping efficiency viewpoint, seed traps were
chosen to be 10 cm in diameter and four transects were
used each with a length of 100 m. This means a max-
imum of 1000 seed traps would fit in each direction,
whereas a manageable number appeared to be at most
300 per transect. Therefore, the optimality criterion is
to define the locations of at most 300 traps in the field
in such a way that the mean squared error (Eq.(16))
of the estimated average invasion speed with a reduced
number of seed traps, ˆch, with respect to the “true”
calculated average invasion speed using the maximum
number of seed traps, ¯ch, is minimized. Results will
show how much more information is gained, i.e. how
much the MSE decreased, with each additional placed
s

5

e”
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o
H ular
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f ing
a tion
o
d g
t -
t -
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or reasons explained in Section3.1, this source of bia
s ignored for our test system and so we proceed
h were the “true” wave speed. In the example gi
n Section5, the quantity ¯ch represents the average
ave speedsch generated by Monte-Carlo metho
ere, each wave speed calculation forch used Eq.(14)
hereMh was based on the histogram generated b
onte-Carlo Simulation (Section3.2).
We now ask how to distribute seed traps in s

equent sampling efforts so that we can use this
ata to most closely estimate the “true” expected sp
ate. We assume that this subsequent sampling giv
stimate for the expected spread rate, i.e. ˆch. Close-
ess to the “true” expected spread rate is achi

hrough minimizing the mean squared error of ˆch. In
ther words, our goal is to minimize the variance p
ias squared

SE = E(ĉh − c)2 = Var(ĉh) + (E(ĉh) − c)2. (15)
eed trap.

. The procedure: dispersal in 1D

Eq. (14) shows that, in order to calculate a “tru
ave speed, an initial guess on the distribution of s
ver a whole field transect has to bemade (Eq. (12)).
owever, the number of seeds found in a partic
eed trap will differ for separate dispersal events
rom year to year). So, the first step into design
n “optimal” seed trap configuration is the genera
f various data sets representing theinitially assumed
ispersal pattern ofC. vulgaris over a transect usin

he histogram of Eq.(12). With those spatial distribu
ions a “true” expected wave speed (¯ch) can be calcu
ated (Fig. 2a). Then the “optimal” design procedu
Fig. 2b) includes the following steps: (i) start with
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Fig. 2. Schematic representation of calculating a “true” average spread rate, ¯ch (a) and the sequential sampling design (b). (MC-methods refers
to the Monte-Carlo simulations as described in Section3.2.)

initial limited number of seed traps over the sampling
domain. (ii) Find the location of the next trap in such a
way that the mean squared error of the now estimated
average wave speed (i.e. ˆch) is minimized with respect

to the calculated “true” expected wave speed (¯ch). (iii)
The sample location resulting in the smallest MSE is
the location of the next seed trap in the field. (iv) This
process should then be repeated until the maximum
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number of samples that can be taken from a practical
point of view are assigned to a location. A summary of
the procedure is given inFig. 2band will be explained
in more detail in the next two sections.

5.1. Calculating the “true” spread rate, ch, for C.
vulgaris

Recently,Bullock and Clarke (2000)sampled dis-
persal ofC. vulgaris seeds over distances up to 80 m

using field traps. They summarized their data with an
empirically derived probability density function of the
form

k(x) =
{

TA (α e−βx+z + γ (x + z)−ρ), z ≤ x ≤ 100 m

0, otherwise,

(17)

whereTA represents the total sample area at distance
x, andα, β andγ are positive parameters. The variable
z represents the edge of the point source and disper-
sal of seeds beyond 100 m was not measured. For the
purpose of this discussion we assume no seeds disperse
further than 100 m (see discussion later in this section).
The power functionx−ρ decreases much more slowly
t r
t tern.
A rms
s sal
m -
p from
t ,
1

of
t can
b s-
t
e e-
f raw
d er),
w rat-
i
t m

spread ratech and repeat this many times to calculate a
mean spread rate which is taken to be the “true” spread
ratec̄h.

To calculate the “true” invasion speed forC.
vulgaris both R0 and the distribution of seeds in the
field (Eq.(14)) have to be known. From a Lefkovitch
matrix model R0 was found to be approximately
2. One thousand data sets were used to generate
histograms representing seed dispersal, following the
empirical equation (Eq.(17)) (Bullock and Clarke,
2000). This equation can be extended to

S =
{∑Lj

n=1 SDn = ∑Lj

n=1 ADn (α exp(−β(Dn + z)) + γ(Dn + z)−ρ), for z ≤ Dn ≤ 100 m

0, otherwise.
(18)

The expression (α exp(−βDn) + γD
−ρ
n ) in Eq. (18)

gives the number of seeds found at distanceDn (n
= 1, 2, . . . ,total number of sampling distances (Lj))
from the edge of the source (z). The parametersα,
β, γ and ρ (ρ > 1) describe the shape of the seed
distribution. in order to get long tails in the dispersal
curve. Multiplying this expression with the sample
area at distanceDn, ADn , results in the total number of
seeds trapped at some distance from the source,SDn .
Summing the number of seeds found at all distances,
n = 1, 2, . . . ,Lj, results in the total number of seeds
over all sampling distances,S. Values for the separate
terms in this study were found from literature and
from this particular field set-up (Table 2).

Seed traps were 10 cm in diameter in this study and

m-
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is-
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eed

d

han e−βx for largex. Thus, the termx−ρ accounts fo
he long-distance component of the dispersal pat
lthough this model lacks a mechanistic basis, te
caling like e−βx occur in simple mechanistic disper
odels(Neubert et al., 1995)and the termx−ρ also ap
ears when the spatial spread of seeds is derived

he physics on wind flow patterns (Okubo and levin
989).

Of course, when some initial parametric form
he dispersal kernel is known, an invasion speed
e estimated using Eq.(9) instead of using the hi

ogram estimator as presented in Section3.1. How-
ver, oftenlimited field data is all we have. Ther
ore, rather than constructing a histogram of their
ispersal data (which is not published in their pap
e mimic the process of field sampling by gene

ng 10,876 i.i.d. dispersal distances using Eq.(17), use
his to form a histogram (Fig. 4), calculate a histogra
only one trap was used per distance, soADn is con-
stant (i.e. 7.854× 10−3 m2) at each distance. The sa
pling domain (from−L to L) stretched over an are
of 40,000 m2 which made the furthest sampling d
tance from the edge of the source in the center of
field to be 100 m. This means a maximum of 1000 s
traps fitted in each direction, i.e.n = 1, . . . , 1000. As

Table 2
Parameter values and variables used for Eq.(18) in this study (base
onBullock and Clarke (2000))

Parameters and variables Value

S 10876
ADn 7.854× 10−3 m2

Lj 1000
α 72× 106

β 8.42
γ 5098
ρ 1.46
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no predominant wind direction is assumed, the aver-
age values over Tables 1–3 fromBullock and Clarke
(2000)were used for the parametersα, β, γ andρ as an
initial approximation. Finally, the total number,S, was
calculated to be 10,876 seeds being caught in the seed
traps. This calculation was based on having the first
trap being placed at the edge of the bush, i.e. having
Dn = Dn + 0.5 m, since the bush was 1 m in diameter.

As heather bushes may produce different seed dis-
persal patterns in separate experiments, 1000 separate
data sets were generated from Eq.(18) using Monte-
Carlo methods and stored as histograms following
Eq. (12) to simultaneously being used for optimiza-
tion purposes. That is, each data set was simulated us-
ing a random generator together with the inverse CDF
method, applied to the cumulative distribution function
of Eq.(18), to assign a deposition siten to each released
seed. This means 10,876 numbers between 0 and 1
were generated representing the seeds that were blown
into the field from the heather bush. Then the seed trap
distanceDn each seed would fly in was calculated fol-
lowing the CDF extracted from the PDF (i.e. Eq.(18)).
As the sampling domain is restricted to some distance
from the source, one should be aware that some seeds
will always fly out of the domain. Simulations showed
that, in this case, about 10 seeds would travel further
than 100 m, i.e. 0.1% of the total number of “released”
seeds.

The next step towards an “optimal” sampling de-
sign was to first calculate the expected “true” speed
( e
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The expected invasion speed, ¯ch, for C. vulgaris from
the 1000 generated histograms was calculated to be
c̄h = 358 cm year−1.

5.2. The sequential sampling design

As a starting point towards the sequential sampling
procedure, a limited number of seed traps (t = 100)
were evenly spaced over the sampling region (i.e. in a
line from the source plant up to the end of the domain
with lengthL). Then, seed traps were added sequen-
tially. The location of each new seed trap was chosen so
as to minimize the MSE as given in Eq.(16). This meant
that for every following seed trap, an entire distribution
of average ˆch values was calculated corresponding to
every possible location of the new seed trap. In other
words, for every possible new location, joint with the
already occupied sites, an average ˆch was calculated us-
ing the histogram formulas (Eqs.(12)–(14)) applied to
the 1000 generated data sets (see Section5.1). The dif-
ference with calculating a ¯ch is that now the histograms
used to calculate ˆch consisted of limited information,
i.e. having seed counts only at sites where seed traps
are available.

A detailed step-wise procedure for obtaining a se-
quential sampling design is given inAppendix Band
is visualized in (Fig. 2b).

As wind is assumed to be uniform in all directions,
the resulting location of the seed traps (following the
procedure inAppendix B) can be put in any transect
o
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c̄h, Eq.(14)) of the traveling wave evolving from th
pplication of Eq.(18) for the histogram of seed di
ersal. That is, a speed when all possible locat
1, . . . , DLj , of the domain in a 1D setting are fill
ith seed traps continuously.
Fig. 2agives an overview of how to obtain the “tru

xpected wave speed. A detailed description of the
edure is given inAppendix A.

The data sets generated using the CDF me
Appendix A and Fig. 2a) on the continuous func
ion (Eq.(18)) were saved in the form of a histogra
eeded to describe the dispersal kernel (Eq.(12)). In

his study, the transect was divided ini = 100 inter-
als each having a length of 1 m and son = 10 seed
raps were incorporated in an interval fromξi−1 to ξi.
enerated data sets with a number of seeds at eac

anceDn (Eq.(18)) were distributed over the interva
n order to get the histogram for the dispersal ker
pposite to the parent plant.

. The procedure: dispersal in 2D

The procedures presented up until now are base
D analysis, whereas, of course, seeds are being s

n 2D. This section describes two possible method
ow to proceed when an optimal design is to be

ained taking a 2D spread into account. The first me
ill show how the sampling algorithm can be chan

elatively easily to allow for aggregation of seed tra
eaning to allow for more than one seed trap at

ame distance from the source. More than one
rap can be placed at the same distance from the s
y filling adjacent sites along the circumference
certain radius. In addition to this, a more elabo

hange will show how to make a sequential samp
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design when the marginal distribution is derived from
the dispersal kernel (Eq.(18)).

6.1. Aggregation of seed traps

Bullock and Clarke (2000)used a sampling design
where the number of seed traps increased with dis-
tance from the source. The algorithm presented in this
study so far, however, only allows for at most one
seed trap at each distance from the source. Therefore,
their sampling design could never be verified using
an optimal design based on invasion speeds. To test
whether the design would change towards a more ag-
gregated form of pot placement similar to the design
by Bullock and Clarke (2000), the procedure was ad-
justed to allow for more than one seed trap at any
distanceDn. More specific, it means that instead of
decreasing the number of open sites with increasing
number of placed pots, the number of available sites
stays constant (i.e. the maximum available) from the
start until the end of the procedure. The algorithm
for sequential sampling as presented in Section5.2
will only change with respect to the number of places
tested for each new seed trap. Whereas seed traps were
only placed at open sites in the 1D setting, now all
sites will be tested for each additional seed trap. This
results, in this case, in (T − t) is 200× 1000 sites
to be tested to find the sampling design instead of
testing 900× 899× 898× · · · × 700 sites in the 1D
case.
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Fig. 3. Schematic representation of calculating a marginal distribu-
tion (Dn = r cos(θ)) of seeds originally being spread in 2D.

example, have seeds being spread in 2D (Fig. 3).
And, assume the wave front is represented by a vector
w = (1, 0). Then, integrating overy will result in a
distribution kernel, which is now a kernel in 1D again
with seeds being redistributed in the direction of the
wave front (Fig. 3). This distribution kernel will differ
qualitatively from the original model used byBullock
and Clarke (2000)(Eq. (18)). That is, an increased
proportion of the original number of released seeds
will be deposited atD0 (because of spread parallel to
the wave front) and, therefore, not contribute to the
wave speed at all. In addition, the effect of including
an angle in the deposition will increase towards
the end of the domain. The ultimate distance being
spread from the source (in 1D) will decrease relatively
more for seeds that were initially deposited far from
the source than for those that were deposited close
by (in 2D) due to the application of the marginal
distribution.

This theory can be applied to seed dispersal by cal-
culating a marginal distribution in thex direction to
find the dispersal of heather seeds from a point source.
First step is to transform the 1D model (Eq.(18)) into a
2D model, i.e. writeDn in terms of a (x, y) coordinate.
So,

S =
Lj∑
r=1

Sr =
Lj∑
r=1

Ar(α exp(−βr) + γr−ρ)

for r ≤ 100, (19)
.2. Applying the marginal distribution

Not only the distance a seed is spread, but also i
ection becomes important when an optimal samp
esign is based on invasion speeds in 2D. That is, w
seed is spread parallel to the wave front this

oes not add anything to the invasion speed no
er how far it is being spread (Fig. 3). Subsequently
hen the angle of spread with respect to the wave

ncreases up to 90◦ downwind, its contribution to th
ave speed increases to a maximum. Therefore
ave speed should be a weighted function of the
le under which seeds are being deposited from
ource.

One approach to account for a weighted w
peed is calculating the marginal distribution of s
eposition in the direction of the wave front. F
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wherer =
√

x2 + y2. So, r is the distance from the
source where seeds are deposited (Fig. 3). However,
now having an actual position in a 2D plane assigned
to it. With S = 10,876 seeds being released from the
source and knowing the distanceDn each seed travels
(see Section5.1), anx, y coordinate can be assigned
to each seed. Seeds will be randomly distributed in
the field if no predominant wind direction is assumed.
That is, drawS random numbers between 0 and 2π

representing the angles (θ) assigned to each distance
Dn in order to get accompanying values forr. Thenx =
r cos(θ) andy = r sin(θ). And sox = Dn = r cos(θ)
will give the marginal distribution of seeds in 1D when
the wave front is parallel to they direction.

The calculations then follow the procedure as ex-
plained in the previous sections and lead to an expected
wave speed, ¯ch of 152 cm year−1.

7. Results

7.1. Dispersal in 1D

Fig. 4shows one of the histograms,kh(x), for seed
dispersal used to obtain an optimal sampling design
in 1D. The histogram is generated from the dispersal

Fig. 4. One of the 1000 seed dispersal kernels,kh(x) (Eq. (12)) for
the original field data ofBullock and Clarke (2000)using Eq.(18)
and parameter values fromTable 2. Note that the scale of they-axis
has been set to an upper limit of 10 in order to visualize seed numbers
at all distances. The first two bars (2 m) actually account for over 95%
of the dispersed seeds.

Fig. 5. Optimal seed trap location using histogramskh(x) (Eq.(12))
representing the original field data ofBullock and Clarke (2000)and
R0 = 2. The dashed line indicated the frequency of the initial 100
equally spaced pots.

kernel fitted byBullock and Clarke (2000)for field data
of C. vulgaris (Eq. (18) andTable 2). Note that most
of the 10,876 released seeds were deposited near the
source and that the first two bars (corresponding to the
first two meters) inFig. 4actually, on average, account
for 10,812 of the dispersed seeds.

The optimal location of seed traps whenC. vulgaris
seeds are dispersed from a point source is shown in
Fig. 5. That is, the optimal placement of an extra 200
pots on top of an initial uniform distribution of 100
pots (indicated by the dashed line inFig. 5) over a
1D domain of 100 m. The optimal design is based on
implementing the dispersal pattern as shown inFig. 4
and anR0 of 2 in Eq.(14) followed by a minimization
of the MSE with respect to the “true” wave speed in
this setting.

The seed trap configuration inFig. 5 can be ex-
plained both from a mathematical and biological point
of view. As the tail of the distribution kernel gives the
most information on invasiveness of species a majority
of the seed traps should be put there. From a biological
viewpoint it is known that the probability of finding
a seed is very small at the very edge of the domain.
Therefore, it is better to sample a little closer to the
source so both qualitative and quantitative information
is guaranteed.

Figs. 6 and 7show the change in the components of
the MSE (Eq.(16)) when the field is being filled with
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Fig. 6. Estimated average wave speed ˆch (cm year−1) approaching
the “true” average wave speed ¯ch (358 cm year−1) with increasing
number of placed seed traps when the original field data ofBullock
and Clarke (2000)andR0 = 2 is used.

seed traps giving rise to the optimal seed trap configura-
tion of Fig. 5. The figures show that there is a trade-off
between having a small bias of the estimator ˆch and de-
creasing the variance of ˆch when it comes to choosing
the best site for the next pot. In other words, a trade-
off between precision and accuracy of the estimator.
The relatively big increase in the bias of ˆch when plac-
ing pot number 71, 89 and 174 (Fig. 6) is apparently

Fig. 7. Decrease in the mean squared error (cm2) of ĉh with respect
to c̄h and change in the variance of ˆch with increasing number of
placed seed traps when the original field data ofBullock and Clarke
(2000)andR0 = 2 is used.

overcompensated with a decrease in the Var(ˆch) in or-
der for the MSE to still decrease,Fig. 7. The relatively
large decrease in the variance of ˆch for these pots corre-
sponds to placing a seed trap close to the source (i.e. at
60, 50 and 30 cm, respectively, not shown). Therefore,
the estimated wave speed ˆch dropped with respect to
the “true” wave speed ¯ch, but apparently gave rise to a
significant decrease in Var(ˆch) in order for the MSE to
decrease.

7.2. Dispersal in 2D

Allowing for aggregation of seed traps, i.e. the pos-
sibility of placing more than one seed trap at the same
distance from the source plant, did not change the op-
timal sampling design shown inFig. 5. This indicates
that spreading seed traps over more distances is pre-
ferred over aggregation when 300 seed traps are to be
placed in a field where a maximum of 1000 would fit
in 1D.

Calculating the marginal distribution from an initial
seed dispersal in 2D when a random wind frequency
distribution was applied resulted in the histogram
representing the dispersal pattern in 1D as shown
in Fig. 8. Note the change in scale on they-axis
for this figure compared toFig. 4, indicating a seed

l
n.
in

e bars
Fig. 8. One of the 1000 seed dispersal kernels,kh(x) (Eq. (12)) for
the field data ofBullock and Clarke (2000)applying the margina
distribution to Eq.(19) with a random wind frequency distributio
Note that the scale of they-axis has been set to an upper limit of 1
order to visualize seed numbers at all distances. The first thre
(3 m) actually account for over 95% of the dispersed seeds.



A. Pielaat et al. / Ecological Modelling 190 (2006) 205–222 217

Fig. 9. Optimal seed trap location using histogramskh(x) (Eq.(12))
when the marginal distribution to Eq.(19) with a random wind fre-
quency distribution is applied andR0 = 2. The dashed line indicates
the frequency of the initial 100 equally spaced pots.

dispersal pattern which is concentrated even closer to
the source. This resulted in a left shift in the optimal
sampling design (Fig. 9). As very few seeds are being
dispersed at larger distances, a sample effort near the
source is preferred over seed traps at relatively long
distances. Catching the tail of the seed dispersal kernel
means putting seed traps relatively close to the source
where the probability of finding a seed is actually
significant.

Figs. 10 and 11show the statistics resulting in the
pot configuration presented byFig. 9. In general, the
algorithm chose to put subsequent seed traps further
away from the source (not shown) causing the bias of
the estimator ˆch to decrease relatively more (Fig. 10)
than its variance to increase in order to still have a
decrease in the MSE (Fig. 11).

The application of the 1D model (Eq.(17)) com-
pared to using a 2D model (Eq.(19)) shows clear dif-
ferences in the preliminary calculated “true” invasion
speedch. That is, the 1D model results in a “true” in-
vasion speed of 358 cm year−1 (Fig. 6), a value which
is more than twice as high than the true invasion speed
calculated from the 2D model, which is 152 cm year−1

(Fig. 10).
The general pattern of seed trap configuration did

not change in any of the simulations when different
values ofR0 in the range from 1 to 10 were tested.

Fig. 10. Estimated average wave speed ˆch (cm year−1) approach-
ing the “true” average wave speed ¯ch (152 cm year−1) with increas-
ing number of placed seed traps when the marginal distribution to
Eq. (19) with a random wind frequency distribution andR0 = 2 is
used.

Fig. 11. Decrease in the mean squared error (cm2) of ĉh with respect
to c̄h and change in the variance of ˆch with increasing number of
placed seed traps when the marginal distribution to Eq.(19) with a
random wind frequency distribution andR0 = 2 is used.

8. Discussion

Long-distance seed dispersal is a relatively rare
event during a plant’s stage of seed spread. As most
seeds will be deposited close to the parent plant, the
probability of finding a seed in field experiments de-
creases with distance from the source due to spatial
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aspects. Still, it is those long-distance dispersal events
which facilitates plants to invade into new habitats and,
therefore, enhance species survival. As a consequence,
a statistically well justified sampling design is of major
importance when gaining information on these highly
unpredictable tails of a dispersal pattern from field ex-
periments is the study objective.

The calculation of a species’ invasion speed empha-
sizes what happens in the tail of a dispersal kernel. A
sampling design based on this population characteris-
tic is therefore an obvious approach. This calculation
has the additional advantage that it only requires gen-
eral insights in the growth and redistribution dynam-
ics of the population (expressed inR0 and a dispersal
kernelk(x) for the spatial spread, respectively). After
the actual field experiment the sampling design can be
adjusted according to improved insights into the pop-
ulation dynamics. Moreover, the simulations for this
study revealed that the sampling design is generally
insensitive to anR0 in the range of 1–10.

Typical parametric dispersal kernels include the
Gaussian, and Laplace (back-to-back exponential) ker-
nels. Use of the histogram to calculate wave speeds
gives an added advantage over typical parametric de-
scriptions ofk(x) when the precise shape of the disper-
sal kernel is not known a priori. Although this method
will not work if the data collector had no idea whatso-
ever of the distribution of dispersal distances, yet the
histogram formulation allows for a high level of flexi-
bility in the shape of the kernel. Indeed, the histogram
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Eq. (12) can be applied directly to create a histogram.
Then, the method of bootstrapping can be used to
generate multiple data sets to be used for further
calculations.

The procedure for sequential sampling as described
in this paper reveals why this method is actually sub-
optimal. To find the optimal sampling design in this
setting the procedure should calculate the MSE of ˆch

with respect to ¯ch for all possible site combinations in
which t seed traps could be placed in the field. That
is, comparing the MSE of ˆch with respect to ¯ch for all(

t

Lj

)
possible seed trap location combinations. As

this is a computationally impossible task a suboptimal
algorithm of sequential sampling is used. In this case,
the MSE ofĉh with respect to ¯ch for all (Lj − (t + 1))
left locations is calculated each time a new seed trap is
placed in the field.

The MSE of the estimator ˆch is used as the actual
statistic for the optimal pot configuration. This statistic
has two components; the variance of the estimator
(Var(ĉh)) and its bias (E(ĉh) − c̄h). This means that
with the attempt of approaching the “true” expected
wave speed ¯ch when searching for the optimal position
of the next pot in the field, also minimizing the error
of E(ĉh) with respect to theX ĉh values calculated
from the X generated dispersal histograms plays an
important role in the optimal design. For this reason ˆch

does not approach ¯ch continuously inFig. 6, but drops
when the algorithm chooses to put a pot close to the
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llows one to accurately depict the shape of the ta

he dispersal kernel.Kot et al. (1996)show that simpl
arametric (one or two parameter) kernels used to
ulate spread rates can introduce significant bias i
ave speed estimates. In the example shown inKot et
l. (1996), speeds varied by an order of magnitude w
ifferent parametric forms were fitted to classic ins
ispersal data fromDobzhansky and Wright (1943.
elated issues, including a non-parametric estim
re discussed inClark et al. (2001).

In this paper we apply Monte-Carlo methods
reate multiple seed dispersal histograms. For
onte-Carlo simulations we used the dispersal ke

tted to field data byBullock and Clarke (2000
Eq.(18)). However, when only field data are availa
ource in order to obtain a relatively larger decreas
he variance (Fig. 7). This means that although emp
is is put on calculating a “true” wave speed, ¯ch, from
imited field data, still the algorithm makes sure t
he variability in the actually estimated wave spe
ˆh, with this limited information is minimized. Fro

practical viewpoint this demonstrates that, while
tails” of the dispersal kernel can play a dominant r
n the estimation of population spread, in actual
ptimal sampling effort, given a fixed number of s

raps involves a trade-off between nearby samp
many seeds, no long-distance dispersers) and d
ampling (few seeds, long-distance dispersers).
rade-off occurs because minimizing the mean squ
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rom accurately measuring the tails) and the preci
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Furthermore, the trade-off between precision and accu-
racy meant that the sequential sampling design assigns
no seed traps (beyond the initial baseline level) to the
furthest dispersal distances (seeFigs. 5 and 9). In other
words, given the finite number of seed traps, sampling
of the tails of the dispersal kernels beyond 100 m is
insignificant.

Although using invasion theory to obtain an opti-
mal sampling design has a solid basis from a statis-
tical viewpoint, experimental drawbacks will always
exist. That is, gaining insight into the tail of a distri-
bution kernel requires sampling at long distances from
the source. However, as the sampling domain is always
restricted in a practical sense, it is impossible to get
all the information in the tail. As a consequence, the
estimated wave speed, ˆch is compared to a “true” wave
speed, ¯ch on a restricted domain. The sampling design
will, therefore, always only be an approximation for the
real optimal seed trap configuration on an “infinite” do-
main. Of course, it depends on the shape of the initially
assumed distribution kernel how far the domain should
be extended and, with that, the introduced sampling er-
ror will depend on the population’s dispersal pattern. In
this case, using Eq.(18) as the initial dispersal kernel,
only 10 out of about 10,000 released seeds traveled out
of the domain (L = 100 m), i.e. about 0.1% calculated
from simulations.

In addition,Figs. 6 and 10show the huge difference
in the calculated “true” wave speed ¯ch when dispersal
in 2D is considered compared to dispersal in 1D. The
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and, therefore, on the thickness of the tail towards the
end of the sampling domain. Therefore, a slight spread
of samples about the main sample effort to catch the
tails is needed to still gain enough information for fur-
ther analysis.
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Appendix A. Calculation of the “true” expected
wave speed

1. Make a histogram,kh(x) (Eq. (12)), of the pre-
liminary known dispersal kernelk(x) using Monte-
Carlo methods, i.e.
(a) Derive the cumulative distribution function

(CDF) for the kernelk(x). This results in a func-
tion which outcomeF (x) lies between 0 and 1
for every value ofx.

(b) DefineS, the total number of seeds that will be
released from the plant source in the field.

(c) Use a random generator to generateS numbers
between 0 and 1.

come

of

o-
set

tial

that
ta
um-
first
opulation invades less than half as fast in the 1D ve
he 2D case. Also,Fig. 10shows a relatively huge ga
etween ˆch andc̄h compared toFig. 6. Apparently ther

s not enough seed traps used to be able to captu
ittle information in the tails needed to reach an invas
peed of 152 cm year−1 (Fig. 8). As more seeds a
ound at long distances from the source in a 1D se
Fig. 4) less seed traps have to be put at long dista
o still be able to capture the tail of the dispersal ke
nd so the gap between ˆch andc̄h is less (Fig. 6). This
tatistical error (as arising from a finite sample s
ill decrease when the sample sizeN increases. In tha
ase, the “variance” component of the mean squ
rror will approach zero.

Based on this study, an optimal sampling desig
atch the tail of dispersal kernels involves sampling
ards the end of the domain. However, sampling e
hould depend on the amount of information ga
(d) Each generated number represents an out
F (x) of the CDF.

(e) Assign a distancex to theS generated values
F (x) using the inverse CDF.

(f) Save this data set containingS distances ass
ciated with each dispersed seed. This data
will be used again during the actual sequen
design procedure.

(g) Define the lengthξi−1 to ξi of each of thei in-
tervals (bins) for the histogram. (ξi − ξi−1 = L

i
,

wherei is at least 20).
(h) Create an array MaxBins of sizei.
(i) Form the histogramkh(x) (Eq.(12)) by this array

MaxBins:
i. Assign the appropriate number of seeds

fall in each element of MaxBins from the da
set created in step 1e. For example, the n
ber of seeds that will be assigned to the
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element is the total number ofx values from
the data set that lie between distanceξ0 and
ξ1 (the length of the first bin).

2. Generate more (say,X) histogramskh(x) following
steps 1c to 1(i)iX times.

3. For each generated histogram, calculate its moment
generating functionMh(s) following Eq.(13)using
theX produced arrays MaxBins.

4. For each generated histogram, calculate an invasion
speedch following Eq.(14)and save their values.

5. Calculate and average invasion speed ¯ch using
the X invasions speeds calculated in step 4 (¯ch =∑X

j=1
chj

X
) and save its value.

Appendix B. Procedure to obtain a sequential
sampling design

1. Define the maximum number of seed traps (T) to be
put in the field for the experiment.

2. Define the diameter (Ø) of the seed traps to be used.
3. Recall the bin size (ξi − ξi−1) used in Section5.1,

step 1g to create a histogramkh(x).
4. Calculate the maximum number of seed traps (Max-

Traps) that would fit in the field with length
L.

5. Create an array Max of length MaxTraps. This array
will be used to create a histogram̂kh(x).

6. Place an initial number of seed traps (t out of T) in
very
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counts) go in which of thei bins defined in Sec-
tion 5.1, step 1g. So,

i. e = T
i

elements of Max per bin.
ii. The sum of the firste elements go in the first

element of MaxBins, the sum of the second
e elements of Max go in the second element
of MaxBins, and so on until the sum of the
laste elements of Max, which go in the last
element of MaxBins. In other words,

iii. For k = 1 do
∑e

j=1 Maxj = MaxBinsk.

For k = 2 to i do
∑ke

j=e+1 Maxj =
MaxBinsk.

(b) This results in a histogram̂kh(x) (Eq.(12)) pre-
sented by MaxBins with seed counts based on
thet seed traps.

9. Repeat steps 7b to 8b for all the data sets produced
in Section5.1, step 1f, which will giveX histogram
estimatorŝkh(x).

TheseX histograms,̂kh(x), form the basis for the fol-
lowing procedure; the sequential sampling design. The
following algorithm is a guide to selecting the optimal
site in the field for the left (T − t) seed traps.

1. Load the first of theX histogramŝkh(x) in the form
of Max (in which each element contains the actual
seed counts per seed trap) and load the associated
data set from Section5.1, step 1f.

2. Start with the next,t = t + 1, seed trap and put it
eed
ent,
eeds
nce
pen
n
In

eed

3 site
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e

4
unt,
oci-
the array Max at evenly spaced sites (i.e. at e
(MaxTraps

t
)th element of Max starting at the first

ement). This will correspond to havingt seed trap
in the field having distancesx1 = 0, x2, . . . , xt .

. Assign a number of seeds to each of thet placed
seed traps in Max following:
(a) Recall the data set as saved in Section5.1,

step 1f.
(b) Define the number of seeds that fall in e

of the t placed seed traps. That is, count
number ofx values from the data set that f
betweenx1 + Ø, x2 + Ø, . . . , xt + Ø and sav
their values in the corresponding element of
array Max.

. Make a histogram̂kh in MaxBins from the limited
(t) seed trap data in Max:
(a) Define which of the elements of Max (that m

or may not contain a seed trap and thus s
at the first element of the array Max having no s
counts (open site). This will be the second elem
as the first element has already been filled with s
when the firstt traps were assigned. The dista
from the source in the field associated with this o
site is the one next tox1 + Ø (the actual location i
the field of the first element of the array Max).
other words, the site in the field of this new s
trap isx1 + Ø + Ø = x1 + 2 · Ø.

. Define the number of seeds that fall at this open
by counting the number ofx values from the dat
set that fall betweenx1 + Ø andx1 + 2 · Ø and sav
this additional value in the array Max.

. Recalculate the histogram̂kh(x), in the form of
MaxBins now having one extra seed trap co
which is at the element in the array Max ass
ated with seed trapt = t + 1. Use step 8(a)iii from
the previous procedure to do this.



A. Pielaat et al. / Ecological Modelling 190 (2006) 205–222 221

5. This will give a recalculated histogram̂kh(x)
(Eq. (12) in MaxBins with seed counts based on
the (t + 1) seed traps.

6. Repeat steps 2–5 to recalculate the left (X − 1) his-
togramsk̂h(x). Note thatt = t + 1 in step 2 still
refers to the first extra seed trap in addition to thet
initially placed seed traps (just repeating the same
procedureX times).

7. Calculate an average invasion speed for theX re-
calculated histograms based on a limited number
of seed traps (i.e.,t + 1). Use Eqs.(13) and (14)
for each histogram. The average invasion speed is

ĉh =
∑X

j=1
ĉhj

X
.

8. Create a matrix SpeedSiteMSE and store the value
of ĉh in the first column. Store the location of
the (t + 1)th seed trap in the second column of
this matrix (this is the element number in Max
(same for allX arrays Max) where the (t + 1)th
seed trap was placed). The third column is re-
served for the associated MSE which is about to be
calculated.

9. Calculate the MSE following equation Eq.(16)us-
ing the ĉh from step 7 and the ¯ch as calculated in
Section5.1 step 5 and save its value in the third
column of SpeedSiteMSE.

In order to find the actual optimal site for this (t +
1)th seed trap do:

1 f the
in

et
s

2 ow-

,

trap

-
ts of

(d) Enter these counts in the appropriate Max array
in the element associated with the new position
of the seed trap.

3. Follow the previous procedure from step 4 to 9. Note
that now the matrix SpeedSiteMSE does not need
to be created again, just add the outcomes as a new
entry.

4. Repeat steps 1–3 until every of the MaxTraps− (t +
1) left open sites in the field has been tested and
thus associated with an average ˆch value and a MSE
saved in SpeedSiteMSE.

5. Finally the best site in the field for this (t + 1)th
seed trap has been located, which is the one having
the smallest MSE in the matrix SpeedSiteMSE.

6. Put the seed trap which resulted in the smallest MSE
(found in step 5) in Max. This means, get the seed
counts associated with the location of this seed trap
from the data set (Section5.1, step 1f) and put them
at the appropriate location in Max. Do this for all
theX arrays Max.

Now (t − 1) seed traps still need to be placed at their
optimal site in the field. The question is to find the
optimal site for the nextt = t + 1 seed trap and repeat
the procedure untilt = MaxTraps. In order to find the
optimal site for each additional seed trap, repeat the last
two procedures. Note that nowt = t + 1 in “Start with
the next,t = t + 1, seed trap. . . ” of step 2 actually
refers to adding an extra seed trap.

R

A tud-
arked

B al by
ogia

C of
. 51,

D ions,
,

G sal of

G rom a
. Reposition the same seed trap to the next o
MaxTraps− (t + 1) left open “test” elements (
each of theX arrays Max associated with theX his-
togramsk̂h(x)). By “repositioning” we mean: s
the element of Max where this (t + 1)th seed trap i
placed at the moment, back to zero.

. Start with step 3 of the previous procedure. H
ever, note to enter the correct number ofx values in
each of theX Max arrays at the new position. So
(a) Load the appropriate data set from Section5.1,

step 1f with each of theX Max arrays.
(b) Define between which distances (xbegin and

xend) from the source the repositioned seed
would end up in the field.

(c) Count the number ofx values from the appro
priate data set that lie between the end poin
the new positionxbegin andxend.
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