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Abstract

It is well known that in many scalar models for the spread of a fitter phenotype or species into the ter-
ritory of a less fit one, the asymptotic spreading speed can be characterized as the lowest speed of a suitable
family of traveling waves of the model. Despite a general belief that multi-species (vector) models have the
same property, we are unaware of any proof to support this belief. The present work establishes this result
for a class of multi-species model of a kind studied by Lui [Biological growth and spread modeled by sys-
tems of recursions. I: Mathematical theory, Math. Biosci. 93 (1989) 269] and generalized by the authors
[Weinberger et al., Analysis of the linear conjecture for spread in cooperative models, J. Math. Biol. 45
(2002) 183; Lewis et al., Spreading speeds and the linear conjecture for two-species competition models,
J. Math. Biol. 45 (2002) 219]. Lui showed the existence of a single spreading speed c* for all species. For
the systems in the two aforementioned studies by the authors, which include related continuous-time
models such as reaction-diffusion systems, as well as some standard competition models, it sometimes hap-
pens that different species spread at different rates, so that there are a slowest speed c* and a fastest speed c�f .
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It is shown here that, for a large class of such multi-species systems, the slowest spreading speed c* is always
characterized as the slowest speed of a class of traveling wave solutions.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It was shown by Fisher [3] that the scalar model
u;t ¼ du;xx þ ruð1� uÞ

for the spread of a more fit population into the territory of a less fit one has traveling wave solu-
tions of all speeds c P 2

ffiffiffiffiffi
dr

p
. Here the spatial density of the fitter of two alleles at a single gene

locus is given by qu(x, t), where the total allelic density q is assumed to be kept at a fixed constant
value. Fisher conjectured that the slowest wave speed c� ¼ 2

ffiffiffiffiffi
dr

p
is also the spreading speed with

which the region {x :u � 1} where the fitter allele dominates takes over the set {x :u(x, 0) = 0}
where the fitter allele is initially absent. This conjecture was proved by Kolmogorov et al. [6]. Sim-
ilar results on the spreading speed as the slowest speed of a family of traveling waves have been
shown for a more general class of reaction-diffusion models which includes Fisher�s quadratic
model as a special case [1,2]. The dynamics of population spread and traveling waves can be ex-
tended beyond reaction-diffusion models to more general formulations. For example, a large class
of scalar discrete-time, and possibly discrete-space, recursions of the form
unþ1 ¼ Q½un
; n ¼ 0; 1; 2; . . . ð1:1Þ

was analyzed in [12]. For a subclass of these models, the spreading speed can be characterized as
the slowest speed of a traveling wave. Such a result is useful, as it is often easier to calculate the
slowest wave speed than to find the spreading speed. The latter is the quantity of biological inter-
est when locally introduced populations are spreading into a new environment. Lui [8] extended
the proof of the existence of a spreading speed to a multi-species version of (1.1)
unþ1 ¼ Q½un
; n ¼ 0; 1; 2; . . . ð1:2Þ

Here the function un(x) is vector-valued, and its components can represent the population densi-
ties at time n of interacting species or age classes. Such a formulation can be applied to reaction-
diffusion systems of the form
½ui
;t ¼ di½ui
;xx � ei½ui
;x þ fiðuÞ; i ¼ 1; 2; . . . ; k;
uð0; xÞ ¼ u0ðxÞ

ð1:3Þ
by letting Q be the so-called time-one map which takes the initial values u0(x) into the value u(x, 1)
at t = 1 of the solution u(x, t) of (1.3). The operator Q in (1.2) may, however, correspond to a
more general class of models. For example, Q may be a non-linear integral operator, or (1.2)
may be an explicit finite difference equation. For the recursion (1.2), Lui [9] showed how to define
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the spreading speed of a class of cooperative systems in population ecology and epidemic theory.
His hypotheses, however, allowed only for a single non-trivial homogeneous equilibrium. Even
though two-species competitive interactions can be transformed to cooperative systems by a
change of variables, the assumption of a single non-trivial equilibrium prevents Lui�s spreading
speed result from being extended to situations involving competitive interactions between species.
These systems may have several non-trivial boundary equilibria, which correspond to the absence
of one or more of the species [11]. A weakening of Lui�s hypotheses to include such non-trivial
boundary equilibria introduces a new possibility – different species may have different spreading
speeds [11,7]. This can happen, for example, when there are two coupled species, at least one of
which exhibits a �strong Allee effect� (bistable dynamics). Such situations, with the possibility of
multiple spreading speeds, are characterized as follows: there is a slowest speed c* with the prop-
erty that no species spreads more slowly than c*, and at least one species spreads at no faster
speed, and there is a fastest speed c�f such that no species spreads at a speed greater than c�f ,
and at least one species spreads at no slower speed.3

The main result of the present work is the fact that the slowest spreading speed c* can always be
characterized as the slowest speed of a family of traveling waves. This is done for the discrete-time
model (1.2) in Section 3. Section 4 shows how to extend this result to continuous-time models such
as (1.3). Example 4.1 shows that the fastest speed can actually be larger than the slowest speed, so
that components travel at different speeds. Section 5 is a summary of our results. In order to facil-
itate the flow of ideas, we have put the more intricate proofs into Appendix A.
The existence of a family of monotone waves of all speeds above a minimal speed is known for

some special cooperative monostable systems of reaction-diffusion equations. (See, e.g., Section
3.4.2 of [10], [5], or [4].) In these cases, our results show that the minimal wave speed is equal
to the spreading speed.
2. Hypotheses and spreading speeds

We begin with some notation. We shall use boldface Roman symbols like u(x) to denote k-vec-
tor valued functions of the single variable x, and boldface Greek letters to stand for k-vectors,
which may be thought of as constant vector-valued functions. Here k is the number of species.
We shall usually think of u(x) as a function of x and the component number. Thus, for example,
u(x)P v(x) means that ui(x)P vi(x) for all i and x, max{u(x),v(x)} means the vector-valued func-
tion whose ith component at x is max{ui(x),vi(x)}, and lim supn!1u

ðnÞðxÞ is the function whose ith
component at x is lim supn!1u

ðnÞ
i ðxÞ. We shall, however, use the usual symbol u v to mean that

ui(x) > vi(x) for all i and x. We use the notation 0 for the constant vector all of whose components
are 0. If b  0 is a constant k-vector, we define the set of functions
3 It
Howe
slowe
c�f dir
Cb :¼ fuðxÞ : uðxÞ is continuous and 0 6 uðxÞ 6 bg.
was stated in our paper [11] that the fastest speed is the number c�þ, which will be given by the formula (2.11).
ver, as stated near the end of Section 2, the proof of the statement that at least one species spreads at a speed no
r than c�þ is incomplete, and we have had to resort here to showing how to define the possibly slower fastest speed
ectly.
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A function w(x) is said to be an equilibrium of Q if Q[w] = w, so that if u‘ = w in the recursion
(1.2), then un = w for all nP ‘. We shall study the evolution of the solution un of the recursion
(1.2) from a u0 near an unstable constant equilibrium H toward a stable equilibrium b  H.
By making the change of dependent variable ûn ¼ un � H if necessary, we shall assume that the
unstable equilibrium H from which the system moves away is the origin 0. We define the trans-
lation operator
T y ½v
ðxÞ :¼ vðx� yÞ
for any real number y. Finally we shall use the convention that in an expression of the form
Q½uðx; r; s; . . .Þ
ðqðy; r; s; . . .ÞÞ, x is a dummy variable. That is, this expression is the result of apply-
ing the operator Q to the function of x which is obtained by thinking of the other variables as
fixed parameters, and evaluating the resulting function at the point qðy; r; s; . . .Þ, which may de-
pend on a new independent variable y and the parameters. We shall make the following assump-
tions about the operator Q in the recursion (1.2).

Hypotheses 2.1.
i. The operator Q is order preserving in the sense that if u and v are any two functions in Cb

with v P u, then Q½v
 P Q½u
. It follows that if only ui is increased, then for any j 6¼ i the spe-
cific growth rate ðfQ½u
gj � ujÞ=uj of the jth species is not decreased. While an increase in ui

may lower the specific growth rate of the ith species, this reduction is not so profound that
the population density of the next generation is decreased. In biological terms, the dynamics
are cooperative and there is no overcompensation.

ii. Q[0] = 0, there is a constant vector b  0 such that Q[b] = b, and if u0 is any constant vector
with u0 0, then the constant vectors un obtained from the recursion (1.2) converge to b as n
approaches infinity. This hypothesis, together with (i) imply that Q takes Cb into itself, and
that the equilibrium b attracts all initial functions in Cb with uniformly positive components.
In biological terms, b is a globally stable coexistence equilibrium. There may also be other
equilibria lying between b and the extinction equilibrium 0, in each of which at least one
of the species is extinct.

iii. Q is translation invariant; i.e., Q½T y½v

 ¼ T y ½Q½v

 for all y. In biological terms this means
that the habitat is homogeneous, so that the growth and migration properties are indepen-
dent of location.

iv. If the sequence vn(x) in Cb converges to vðxÞ, uniformly on every bounded set, then Q½vn

converges to Q½v
, uniformly on every bounded set. This means that for any fixed y,
jQ½v
ðyÞ � Q½u
ðyÞj is arbitrarily small, provided jvðxÞ � uðxÞj is sufficiently small on a suffi-
ciently long interval centered at y. This and the following hypothesis are typically satisfied
for biologically reasonable models.

v. Every sequence vn(x) in Cb has a subsequence vn‘ such that Q½vn‘ 
 converges uniformly on
every bounded set.
The first four of these hypotheses constitute a proper subset of Hypotheses 2.1 of [11]. In order
to permit the modeling of a prevailing wind, a chemotactic gradient, or gravitation, we have
dropped the hypothesis in [11] that Q is reflection invariant. Reflection invariance would, for
instance, require the advection coefficients ei in the reaction-diffusion model (1.3) to be zero.
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Because we shall not discuss the approximation of the spreading speeds by those of linear oper-
ators which was treated in [11,7], we have also dropped all assumptions about the linearization of
Q. We have, however, assumed the global stability of b, which is a consequence of the hypotheses
of [11]. Hypothesis v is not required in [11], but it will be used in establishing the existence of
waves. Our principal tool is the following:

Lemma 2.1 (Comparison Lemma). Let R be an order preserving operator. If un and vn satisfy the
inequalities unþ1 6 R½un
 and vnþ1 P R½vn
 for all n, and if u0 6 v0, then un 6 vn for all n.

Proof. The proof is by induction. If un 6 vn, then unþ1 6 R½un
 6 R½vn
 6 vnþ1. h

As in [11], we shall define two spreading speeds c* and c�f for the recursion (1.2). The slowest
speed c* coincides with the speed of the same name in [11], but the fastest speed c�f may be less
than the speed c�þ of [11], and we shall show that c

�
f is the true fastest spreading speed. We begin

by choosing a continuous vector-valued function /(x) with the properties
i. /ðxÞ is non-increasing in x;

ii. /ðxÞ ¼ 0 for all x P 0;

iii. 0� /ð�1Þ � b.

ð2:1Þ
In order to define the slowest speed, we let a0ðc; sÞ ¼ /ðsÞ, and define the sequence anðc; sÞ by
the recursion
anþ1ðc; sÞ ¼ maxf/ðsÞ;Q½anðc; xÞ
ðsþ cÞg. ð2:2Þ

The operator which takes an into the function on the right is again order preserving. By definition,
a1 P / ¼ a0, and an induction argument shows that for all n, an 6 anþ1 6 b, and anðc; sÞ is non-
increasing in c and s. Thus the sequence an converges to a limit function aðc; sÞ which is again non-
increasing in c and s and bounded by b. An argument of Lui [8] shows that the vectors aðc;�1Þ
are equilibria of Q. The first four of Hypotheses 2.1 imply that aðc;�1Þ ¼ b. It is easily seen that
when c is sufficiently negative, aðc; sÞ � b, or equivalently that aðc;1Þ ¼ b. The function aðc; xÞ
depends on the choice of the initial function /. If we start with a different function /̂ with the
properties (2.1), we obtain a different sequence ânðc; xÞ and a different limit function âðc; xÞ.
Hypotheses 2.1.ii shows that limn!1anðc;�1Þ ¼ b  /̂ð�1Þ. Hence, one can find an integer
N and a translation s such that aNðc; x� sÞ P /̂ðxÞ ¼ â0ðc; xÞ. The Comparison Lemma then
shows that aðc; x� sÞ P âðc; xÞ. In particular, we see that aðc;1Þ P âðc;1Þ. By exchanging
the roles of / and /̂ we also obtain the inequality âðc;1Þ P aðc;1Þ. We conclude that
âðc;1Þ ¼ aðc;1Þ, so that
the vector aðc;1Þ is independent of the initial function /. ð2:3Þ

We define the slowest spreading speed c� 6 1 by the equation
c� ¼ supfc : aðc;1Þ ¼ bg. ð2:4Þ

This name is justified by the following theorem, whose proof will be given in Appendix A.

Theorem 2.1. There is an index j for which the following statement is true: Suppose that the initial
function u0(x) is 0 for all sufficiently large x, and that there are positive constants 0 < q 6 r < 1
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such that 0 6 u0 6 rb for all x and u0 P qb for all sufficiently negative x. Then for any positive � the
solution un of the recursion (1.2) has the properties
lim
n!1

sup
xPnðc�þ�Þ

fungjðxÞ
" #

¼ 0 ð2:5Þ
and
lim
n!1

sup
x6nðc���Þ

fb � unðxÞg
" #

¼ 0. ð2:6Þ
That is, the jth component spreads at a speed no higher than c*, and no component spreads at a lower
speed.

In order to define the fastest speed c�f , we choose a / with the properties (2.1), and let bn(x) be
the solution of the recursion (1.2) with b0ðxÞ ¼ /ðxÞ. We define the function
Bðc; xÞ ¼ lim sup
n!1

bnðxþ ncÞ.
Because Q is order-preserving and translation invariant, Q applied to a monotone function is
again monotone. Thus each bnðxþ ncÞ is non-increasing in x and c, and hence the same is true of
Bðc; xÞ. As in the case of the function aðc; xÞ we can show that Bðc;1Þ is independent of the choice
of the initial function / as long as / has the properties (2.1). We define the fastest spreading speed
c�f by the formula
c�f :¼ supfc : Bðc;1Þ 6¼ 0g. ð2:7Þ
The name fastest speed is justified by the following Theorem, whose proof will be given in
Appendix A.

Theorem 2.2. There is an index i for which the following statement is true: Suppose that the initial
function u0(x) is 0 for all sufficiently large x, and that there are positive constants 0 < q 6 r < 1
such that 0 6 u0 6 rb for all x and u0 P qb for all sufficiently negative x. Then for any positive � the
solution un of the recursion (1.2) has the properties
lim sup
n!1

inf
x6nðc�f��Þ

fungiðxÞ
" #

> 0. ð2:8Þ
and
lim
n!1

sup
xPnðc�fþ�Þ

unðxÞ
" #

¼ 0; ð2:9Þ
That is, the ith component spreads at a speed no less than c�f , and no component spreads at a higher
speed.
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We see from (2.6) and (2.9) that
c�f P c�. ð2:10Þ

If c�f ¼ c�, all components of un spread at the same rate, and we say that the recursion (1.2) has

the single speed c*.

Remark. Eqs. (2.11) and (2.12) of [11] can be considered as a two-sided version of Theorem 2.1 of
the present paper. That is, they deal with an initial function u0(x) which vanishes outside a
bounded set. Eqs. (2.10) and (2.13) of [11] are two-sided versions of the above Theorem 2.2 but
with the speed c�f replaced by the quantity
c�þ ¼: supfc : aðc;1Þ 6¼ 0g. ð2:11Þ

The Comparison Lemma shows that bnðxþ ncÞ 6 aðc; xÞ, so that Bðc; xÞ 6 aðc; xÞ. Therefore
c� 6 c�f 6 c�þ; ð2:12Þ

so that the property (2.9) implies the corresponding property of c�þ. However, the proof in [11] of
the property (2.8) with c�f replaced by c

�
þ is incomplete, and we have been unable to complete it. It

may well be true that c�f < c�þ, in which case (2.9) shows that the inequality (2.8) with c�f replaced
by c�þ cannot be valid. However, we do not have an example to show that this phenomenon actu-
ally occurs.
3. The characterization of c* as the slowest speed of a class of traveling waves

In this section, we show that the slowest spreading speed c* can be characterized as the slowest
speed of a class of traveling waves. A traveling wave of speed c is a solution of the recursion (1.2)
which has the form unðxÞ ¼Wðx� ncÞ with WðsÞ a function in Cb. That is, the solution at time
n + 1 is simply the translate by c of its value at n. Our basic result is the following.

Theorem 3.1. Suppose that Q satisfies Hypotheses 2.1. If c P c�, there is a non-increasing traveling
wave solution Wðx� ncÞ of speed c with Wð�1Þ ¼ b and W(1) an equilibrium other than b.

If there is a traveling wave Wðx� ncÞ with Wð�1Þ ¼ b such that for at least one component i
lim inf
x!1

W iðxÞ ¼ 0; ð3:1Þ
then c P c�. If this property is valid for all components of W, then c P c�þ P c�f .
If there are no constant equilibria other than 0 and b in Cb, then c�þ ¼ c�f ¼ c�, so that the

recursion (1.2) has a single spreading speed.

Proof. We begin with the proof of the first statement. We choose a fixed vector-valued initial
function /ðsÞ with the properties (2.1). For each positive number j we define the sequence
anðc;j; sÞ by the recursion
anþ1ðc; j; sÞ ¼ maxfj/ðsÞ;Q½anðc; j; xÞ
ðsþ cÞg;
a0ðc; k; sÞ ¼ j/ðsÞ.

ð3:2Þ
As shown in Section 2, anðc;j; sÞ is non-increasing in c and s and non-decreasing in n. As
n ! 1, anðc;j; sÞ converges to a limit function aðc;j; sÞ, which is non-increasing in c and s. It
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is not difficult to see that a is lower semicontinuous in c, so that when c P c�, aðc;j;1Þ is a con-
stant equilibrium m other than b. By the property (2.3), m is independent of j.
Because of Hypothesis 2.1.v, there is a sequence nj such that Q½anjðc; j; xþ cÞ
ðyÞ converges

uniformly for y on bounded sets. Since an is non-decreasing in n and Q is order preserving, the
whole sequence Q½anðc;j; xþ cÞ
ðyÞ converges uniformly on bounded sets. It follows from (3.2)
that the sequence anðc; j; yÞ converges to a function aðc; j; yÞ uniformly for y in any bounded set.
Hence aðc;j; yÞ is a continuous function of y, and by Hypothesis 2.1.iv we can take limits in (3.2)
to see that
aðc; j; sÞ ¼ maxfj/ðsÞ;Q½aðc;j; xÞ
ðsþ cÞg. ð3:3Þ

We use jÆj to denote the Euclidean norm. Since b is the only equilibrium in the interior of Cb, we

can choose g > 0 so small that there is no constant equilibrium other than b in the set
fu 2 Cb : jb � uj 6 gg. Since the continuous function jb � aðc; j; sÞj increases from 0 to
jb � mj > g, the intermediate value theorem shows that there exists ‘(j) so that
jb � aðc;j; ‘ðjÞÞj ¼ g. ð3:4Þ

Because of the Eq. (3.3) and Hypothesis 2.1.v, there is a sequence ji ! 0 such that

aðc; ji; xþ ‘ðjiÞÞ converges uniformly for x on bounded sets to a function W(x). Therefore we
may take limits in (3.3) with j ¼ ji and s ¼ y þ ‘ðjiÞ � ðnþ 1Þc and use the translation invariance
of Q to find that
Wðy � ðnþ 1ÞcÞ ¼ Q½Wðx� ncÞ
ðyÞ. ð3:5Þ

Therefore unðxÞ ¼Wðx� ncÞ is a traveling wave solution of the recursion unþ1 ¼ Q½un
 with
jb �Wð0Þj ¼ g. ð3:6Þ

Letting y approach ±1 in (3.5) shows thatWð�1Þ are equilibria. Because jb �WðxÞj is non-

decreasing, the definition of g shows that Wð�1Þ ¼ b, while Wðþ1Þ 6¼ b. Thus W has the
properties in the first statement of the theorem.
To prove the second statement, suppose there is a waveWðx� ncÞ withWð�1Þ ¼ b. Choose a

function /ðsÞ with the properties (2.1) such that /ðxÞ 6WðxÞ. Define the sequence an and its limit
a by means of (2.2) with a0ðc; xÞ ¼ /ðxÞ. Induction shows that anðc; xÞ 6WðxÞ, which implies that
aðc; xÞ 6WðxÞ, and therefore that aðc;1Þ 6 lim infx!1WðxÞ. Hence by definition, c P c� if (3.1)
holds for at least one component, and c P c�þ P c�f if (3.1) is valid for all components.
Finally we note that if the only constant equilibrium other that b in Cb is 0, then the first

statement shows that there is a traveling waveWðx� nc�Þ withWð�1Þ ¼ b andWð1Þ ¼ 0. The
second statement now shows that c� P c�þ P c�f P c�, which establishes the last statement. Thus
Theorem 3.1 is proved. h

Example 3.1. Consider the discrete-time model
pnþ1ðyÞ ¼
Z 1

�1

ð1þ q1ÞpnðxÞ
1þ q1½pnðxÞ þ a1qnðxÞ


k1ðy � xÞdx;

qnþ1ðyÞ ¼
Z 1

�1

ð1þ q2ÞqnðxÞ
1þ q2½qnðxÞ þ a2pnðxÞ


k2ðy � xÞdx;
ð3:7Þ
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for the growth and spread of two species whose population densities at time n and point x are
pn(x) and qn(x). The model states that the species grow and compete according to Beverton–Holt
(or Verhulst) dynamics, and then migrate with the migration kernels ki. That is, kiðxÞdx is the
probability that the ith species moves by a distance between x and xþ dx during one unit of time.
Each ki is thus a probability density. Because we wish to consider such phenomena as prevailing
winds, we do not require these kernels to be symmetric. The parameters ai and qi are all positive. It
is easily verified that the system (3.7) has the unpopulated equilibrium (0,0) and the two mono-
culture equilibria (1,0) and (0,1). We shall consider the invasion of the state (0,1) by the first
species. We assume that
0 < a1 < 1;
so that, for p near zero and q near 1, the growth rate of the first species is positive. That is, the
state (0,1) is invadable. Then there is a coexistence equilibrium ðpþ; qþÞ, where
pþ ¼ 1� a1
1� a1a2

; qþ ¼ 1� a2
1� a1a2

ð3:8Þ
if and only if 0 < a2 < 1. We shall discuss the transition from the monoculture state ð0; 1Þ to the
target state
ðp�; q�Þ ¼
ð pþ; qþÞ if 0 < a2 < 1

ð1; 0Þ if a2 P 1.

�

The change of variables un(x) = pn(x), vn(x) = 1 � qn(x) converts the competitive system (3.7)

into the cooperative system
unþ1ðyÞ ¼
Z 1

�1

ð1þ q1ÞunðxÞ
1þ q1½a1 þ unðxÞ � a1vnðxÞ


k1ðy � xÞdx;

vnþ1ðyÞ ¼
Z 1

�1

a2q2unðxÞ þ vnðxÞ
1þ q2½1� vnðxÞ þ a2unðxÞ


k2ðy � xÞdx.
ð3:9Þ
We shall assume the continuity condition
lim
g!0

Z 1

�1
jkiðxþ gÞ � kiðxÞjdx ¼ 0; for i ¼ 1; 2; ð3:10Þ
which implies that the family of function Q½u
 with u in Cb is equicontinuous. Then Ascoli�s the-
orem implies Hypothesis 2.1.v. It is easily verified that the system (3.9) satisfies the Hypotheses 2.1
with
b ¼ ðp�; 1� q�Þ.

The corresponding spreading speeds c* and c�f give the speeds at which changes in p and q

spread to the right into a population which is initially in the monoculture state (0,1) for all suf-
ficiently large x. We observe that in addition to the equilibria 0 and b, the system (3.9) has the
equilibrium (0,1), which corresponds to the extinction state p = q = 0. This equilibrium lies in
Cb if and only if a2 P 1.
Theorem 3.1 shows that the slowest speed c* of this transition can be characterized as the

smallest value of c for which there is a monotone traveling wave Wðx� ncÞ of the system (3.9)
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with Wð�1Þ ¼ b and W(1) equal to either (0,0) or (0,1). If a2 < 1, then (0,1) is not in Cb, and
hence Wð1Þ ¼ ð0; 0Þ and c�þ ¼ c�f ¼ c�, so that there is a single spreading speed.
4. Traveling waves for continuous-time systems

We shall extend the statement of Theorem 3.1 to well-posed continuous-time problems such as
the reaction-diffusion system
u;t ¼ Du;xx � Eu;x þ fðuÞ;
uð0; xÞ ¼ u0ðxÞ.

ð4:1Þ
Here
D :¼ diagonalðd1; . . . ; dkÞ

and
E :¼ diagonalðe1; . . . ; ekÞ;

are constant diagonal matrices. The mobilities di are positive, but the advections ei may have any
signs. For such a system there is a family of time-t maps Qt, which are defined by the fact that
Qt½u0
ðxÞ :¼ uðx; tÞ. That is, Qt takes the initial values of u to the values of u at time t. For obvious
reasons, this family forms a semigroup in the sense that
Qt1 ½Qt2 ½v

 ¼ Qt1þt2 ½v
 ð4:2Þ
for all positive t1 and t2, and
lim
t&0

Qt½v
 ¼ v. ð4:3Þ
A traveling wave of a continuous-time recursion uðx; t1 þ t2Þ ¼ Qt2 ½uð�; t1Þ
ðxÞ is defined to be a
solution which does not change its shape in time. That is,Wðx� ctÞ is a continuous-time traveling
wave of speed c if and only if
Qt½W
ðxÞ ¼Wðx� ctÞ ð4:4Þ

for all positive t. We can use Theorem 3.1 to obtain the existence of traveling waves for contin-
uous-time systems.

Theorem 4.1. Suppose that Qt is a family of operators on the set Cb with the properties (4.2) and
(4.3) such that each Qt with t > 0 satisfies Hypotheses 2.1. Let c* be the slowest spreading speed of
the recursion (1.2) with Q replaced by Q1. Then for every c P c� there is a traveling wave Wðx� ctÞ
which is non-increasing in x and for which Wð�1Þ ¼ b while W(1) is an equilibrium other than b.

If there is a traveling wave Wðx� ctÞ with Wð�1Þ ¼ b such that for at least one component i
lim inf
x!1

W iðxÞ ¼ 0;
then c P c�. If this property is valid for all components of W, then c P c�þ P c�f .
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If there is a positive t0 such that the recursion (1.2) with Q replaced by Qt0 has no constant
equilibria other than 0 and b in Cb, then c�þ½Qt
 ¼ c�f ½Qt
 ¼ c�½Qt
 ¼ tc�½Q1
 for all t > 0, so that the
recursion has a single spreading speed.

The proof will be found in Appendix A.
It is, of course, useful to know when this Theorem can be applied to the reaction-diffusion sys-

tem (4.1). We have the following result.

Theorem 4.2. Suppose that the system (4.1) has the following properties:

i. fð0Þ ¼ 0, and there is a b  0 such that fðbÞ ¼ 0 which is minimal in the sense there is no con-
stant m other than 0 and b such that fðmÞ ¼ 0 and 0� m 6 b.

ii. The system (4.1) is cooperative; i.e., each fiðaÞ is non-decreasing in all components of a with the
possible exception of the ith one.

iii. f does not depend explicitly on either x or t, and the diagonal matrices D and E are constant.
iv. fðaÞ is continuous and has uniformly bounded piecewise continuous first partial derivatives for
0 6 a 6 b, and it is differentiable at 0. The Jacobian matrix f 0ð0Þ, whose off-diagonal entries
are non-negative, has a positive eigenvalue whose eigenvector has positive components.

v. The mobilities di, which are the diagonal and only non-zero entries of D, are all positive.

Then for every c P c� the system (4.1) has a non-increasing traveling wave solution Wðx� ctÞ of
speed c with Wð�1Þ ¼ b and W(1) a zero of f other than b.

If there is a traveling wave Wðx� ctÞ with Wð�1Þ ¼ b such that for at least one component i
lim inf
x!1

W iðxÞ ¼ 0;
then c P c�. If this property is valid for all components of W, then c P c�þ P c�f .
If the only zeros of fðuÞ in Cb are 0 and b, then c�þ ¼ c�f ¼ c�, so that the system (4.1) has a single

spreading speed.

Proof. The first four of the Hypotheses 2.1 for the time-t map Qt follow as in Section 4 of [11].
Condition (v) implies that the system is uniformly parabolic, so that for each t > 0 the functions
Qt½v
 with v 2 Cb form an equicontinuous family. Hypotheses 2.1.v then follows from Ascoli�s the-
orem. Thus we can apply Theorem 4.1. It is easily verified that Wðx� ctÞ has sufficient differen-
tiability to permit it to be substituted in the differential equation. The equation Qt½W
ðxÞ ¼
Wðx� ctÞ thus implies that uðx; tÞ ¼Wðx� ctÞ solves the system (4.1) with the initial condition
uðx; 0Þ ¼WðxÞ. This proves the existence of waves for all c P c�. The remaining statements follow
from the corresponding statements of Theorem 4.1. Thus Theorem 4.2 is established. h

Example 4.1. Consider the cooperative two-species Lotka–Volterra model
ut ¼ d1uxx þ r1uð1� uþ a1vÞ;
vt ¼ d2vxx þ r2vð1� vþ a2uÞ.

ð4:5Þ
We assume that all parameters are positive constants, and that
a1a2 < 1.
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Then there are four equilibria: The extinction state (0,0), the two monoculture states (1,0) and
(0,1), and the coexistence equilibrium ðu�; v�Þ where
u� ¼ ð1þ a1Þ=ð1� a1a2Þ; v� ¼ ð1þ a2Þ=ð1� a1a2Þ.

It is easily verified that the system (4.5) satisfies the hypotheses of Theorem 4.2 with b ¼ ðu�; v�Þ.
We consider the simultaneous invasion of the extinction state (0,0) by the two species. Because

v P 0, the Comparison Lemma shows that u cannot spread more slowly than it would if v were
replaced by 0 in the first equation of (4.5). The resulting equation is Fisher�s equation, and we
conclude that
c�f P 2
ffiffiffiffiffiffiffiffiffi
d1r1

p
. ð4:6Þ
Similarly we see that because u 6 u�, v cannot spread more rapidly than it would if u were
replaced by u� in the second equation of (4.5). Since the resulting equation is turned into Fisher�s
equation by the change of variable w ¼ v=v�, we conclude that
c� 6 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2r2v�

p
. ð4:7Þ
Thus if the parameters have the property that
d1r1 > d2r2v�; ð4:8Þ

then we must have
c�f > c�.
Then for any c such that c� 6 c < c�f , the traveling wave of speed c given by Theorem 4.1 must
have the property that W(1) is an equilibrium whose u-coordinate is positive, because u spreads
more quickly than c. ThusWð1Þ ¼ ð1; 0Þ. To obtain such a wave, we make the change of variable
û ¼ u� 1, so that in the new coordinates
ût ¼ d1ûxx þ r1ðûþ 1Þð�ûþ a1vÞ;
vt ¼ d2vxx þ r2vð1þ a2 � vþ a2ûÞ.

ð4:9Þ
This system satisfies the hypotheses of Theorem 4.2 with b ¼ ðû� � 1; v�Þ. Moreover, there are no
non-negative constant equilibria other than 0 and b̂ in Cb̂. Thus it has a single spreading speed ĉ

�,
and there is a traveling wave cWðx� ctÞ with cWð1Þ ¼ b̂ and cWð1Þ ¼ 0 if and only if c P ĉ�. Be-
cause we have such a wave for c ¼ c�, we conclude that c� P ĉ�. On the other hand, we observe
that the function ð bW 1ðx� ĉ�tÞ þ 1; bW 2ðx� ĉ�tÞÞ is a traveling wave of the system (4.5), which im-
plies that ĉ� P c�. Thus we find that c� ¼ ĉ�. We have shown that if c�f > c� and the u-component
spreads more quickly than the v-component, the slowest speed c* of the problem (4.5) can be ob-
tained as the single spreading speed ĉ� of the system (4.9). Symmetry shows that when c�f > c� and
the v-component spreads more quickly, then c* can be obtained as the single spreading speed for
the invasion of the state (0,1). A sufficient condition for this is given by interchanging the indices
1 and 2 and replacing v� by u� in (4.8).
There are also parameter values for which the problem (4.5) has a single speed. Suppose, for

instance, that
d2 ¼ d1; r2 ¼ r1; and a2 ¼ a1 < 1.
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If uðx; 0Þ ¼ vðx; 0Þ, the equations show that uðx; tÞ ¼ vðx; tÞ, and hence that

ut ¼ d1uxx þ r1u½1� ð1� a1Þu
;
Since this equation is turmed into Fisher�s equation by the substitution w ¼ ð1� a1Þu, we see
that u and v spread at the speed 2

ffiffiffiffiffiffiffiffiffi
d1r1

p
. Since any initial values can be bounded below by the

initial data with both components equal to minfuðx; 0Þ; vðx; 0Þg and above by the initial data with
both components equal to maxfuðx; 0Þ; vðx; 0Þg, the Comparison Lemma shows that u and v
always spread at this rate. That is c�f ¼ c� ¼ 2

ffiffiffiffiffiffiffiffiffi
d1r1

p
. When c P 2

ffiffiffiffiffiffiffiffiffi
d1r1

p
the Fisher equation has

a traveling wave wðx� ctÞ, and we observe that Wðx� ctÞ :¼ ðð1� aiÞ�1wðx� ctÞ; ð1� aiÞ�1
wðx� ctÞÞ is a traveling wave of our system. Note that Wð�1Þ ¼ b and Wð1Þ ¼ 0.
For other parameter values for which c�f ¼ c�, Theorem 4.2 shows that for c P c� there is a

monotone waveWðx� ctÞ withWð�1Þ ¼ b, but we do not know which of the values (0,0), (1,0),
or (0,1) W(1) has.

Example 4.2. Consider the Lotka–Volterra competition model
p;t ¼ d1p;xx � e1p;x þ r1pð1� p � a1qÞ;
q;t ¼ d2q;xx � e2q;x þ r2qð1� q� a2pÞ;

ð4:10Þ
where di, ri, and ai are positive constants, and the advections ei are constants. This system always
has the two monoculture equilibria (0,1) and (1,0) and the unpopulated equilibrium (0,0). We
shall assume that 0 < a1 < 1 so that the monoculture state (0,1) is invadable. Then there is also
a coexistence equilibrium
ðpþ; qþÞ :¼
1� a1
1� a1a2

;
1� a2
1� a1a2

	 

;

if and only if a2 < 1. We define the target state
ðp�; q�Þ ¼
ðpþ; qþÞ if 0 < a2 < 1;

ð1; 0Þ if a2 P 1.

�

The change of variables u ¼ p, v ¼ 1� q converts the competition system (4.10) into the system
u;t ¼ d1u;xx � e1u;x þ r1uð1� a1 � uþ a1vÞ;
v;t ¼ d2v;xx � e2v;x þ r2ð1� vÞða2u� vÞ;

ð4:11Þ
which is cooperative in the biologically realistic range u P 0, 0 6 v 6 1. It is easily verified that
this system satisfies the conditions of Theorem 4.2 with b ¼ ðp�; 1� q�Þ. We observe that in addi-
tion to the equilibria 0 and b this system has an equilibrium at (0,1), and that this equilibrium is in
Cb if and only if a2 P 1.
The spreading speeds c* and c�f of (4.11) give the speeds at which the components of a solution

of (4.10) which is initially equal to the monoculture (0,1) for all sufficiently large x spread toward
the target state ðp�; q�Þ. Theorem 4.2 characterizes the slowest speed c* as the smallest value of c
for which there is a monotone traveling wave of (4.11) with Wð�1Þ ¼ b and W(1) equal to
either (0,0) or (0,1). When a2 < 1, (0,1) is not in Cb, so thatWð1Þ ¼ ð0; 0Þ and c�þ ¼ c�f ¼ c�. That
is, there is a single spreading speed.
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5. Summary

This paper focuses on extending to a large class of cooperative multi-species models a piece of
folklore which is well known for many scalar models. Namely, the asymptotic speed at which a
new and more fit species invades the territory of an established set of species can be characterized
as the lowest speed of a suitable family of traveling waves of the model. (A traveling wave is a
solution of the equation which has the same shape at each time but which is translated by its speed
c per unit time.) Because the population changes of different species in a multi-species model may
spread at different speeds, this extension is a rather challenging problem. Theorem 3.1 establishes
the desired result for the slowest spreading speed c* of a discrete-time model. Theorems 4.1 and
4.2 show that the same result is true for continuous-time models, and, in particular, for reaction-
diffusion models.
Earlier works have analyzed the population spreading speed for cooperative population models

under particular restrictions on the dynamics [8,9], or under the assumption of symmetric dis-
persal [11,7]. We have shown that such restrictions and assumptions can be relaxed to allow
for more general dynamics and asymmetric dispersal.
While the basic results involve cooperative dynamics, a simple change of variables sometimes

translates the biologically prevalent case of competition into cooperation. Thus we are able to
consider traveling wave solutions for competitive dynamics in two-species discrete-time (perhaps
integro-difference) models (Section 3) and continuous-time (perhaps partial differential equation)
models (Section 4). While our hypotheses permit the system to have a weak Allee effect, they do
exclude a strong Allee effect for the system as a whole.
Appendix A

Proof of Theorem 2.1. Because u0 vanishes for large x and is bounded away from b, we can choose
a function /ðxÞ with the properties (2.1) and a number g such that u0ðxÞ 6 /ðx� gÞ. By noting
that the right-hand side of the recursion (2.2) is bounded below by Q½an
ðsþ cÞ and using the
Comparison Lemma, we find that unðxÞ 6 anðc; x� g � ncÞ. Since an is non-increasing in x, we see
that
sup
xPn cþ12�ð Þ

unðxÞ 6 an c;
1

2
n�� g

	 

6 a c;

1

2
n�� g

	 

.

Thus,
lim sup
n!1

sup
xPn cþ12�ð Þ

unðxÞ

24 35 6 aðc;1Þ.
If we let c ¼ c� þ 1
2
�, the right-hand side is a constant equilibrium other than b. Therefore it has

at least one zero component, and we find (2.5) for this component.
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In order to derive (2.6), we temporarily assume that Q has the additional properties

a. If a is a constant vector with 0 6 a � b, then Q½a
 � b.
b. There is a number c with the property that if uðxÞ ¼ 0 for x P g, then Q½u
ðxÞ ¼ 0 for

x P g þ c.

Choose a function / with the properties (2.1) and with /ðxÞ 6 u0ðxÞ, and let c < c�. By the
definition of c*, anðc; 0Þ increases to b. Therefore there is an index N such that aN ðc; 0Þ  /ð�1Þ.
Since both aN and / are non-increasing and / vanishes for x P 0, it follows that aN ðc; xÞ  /ðxÞ.
Let bn be the solution of the recursion
bnþ1ðxÞ ¼ Q½bn
ðxÞ

with b0ðxÞ ¼ /ðxÞ. Since / 6 u0, the Comparison Lemma shows that un(x)P bn(x) for all n. We
see from Hypotheses 2.1.ii that bnð�1Þ converges to b. Moreover, by the above Property (a),
aNðc;�1Þ � b. Thus we can find an M P N such that bMð�1Þ  aNð�1Þ. Since Property
(b) implies that aNðc; xÞ vanishes for x P Nðc þ cÞ, there is a number s such that
bMðxÞ P aNðc; xþ sÞ.

Since an is non-decreasing in n, anðc; xÞ  /ðxÞ for n P N , so that the maximum in the recur-

sion (2.2) must be equal to Q½an
ðxþ cÞ. Therefore, bnðxþ ncÞ and anðc; xþ sÞ satisfy the same
recursion for n P N . The Comparison Lemma then shows that bnðxþ ncÞ P anþN�Mðc; xþ sÞ
when n P M � N . Therefore
unðxþ ncÞ P bnðxþ ncÞ P anþN�Mðc; xþ sÞ.

Since an is non-increasing, we find that if we take c ¼ c� � �,
sup
x6nðc���Þ

fb � unðxÞg 6 fb � anþN�Mðc� � �; sÞg.
By the definition of c*, the right-hand side approaches zero as n goes to infinity, and this yields
(2.6). We have thus proved (2.6) under the additional assumption that Q has the above properties
(a) and (b). If this is not the case, the following construction produces an operator bQ which
approximates Q from below, and has these properties. Define a �cutoff function� fðsÞ as a smooth
scalar function with the properties

i. fðsÞ is non-negative and non-increasing for s P 0;
ii. fðsÞ ¼ 0 for s P 1;
iii. fðsÞ ¼ 1 for 0 6 s 6 1

2
.

Choose two positive parameters a and d, and define
bQ½v
ðyÞ :¼ minfQ½fðjy � xj=aÞvðxÞ
ðyÞ; ð1� dÞQ½fðjy � xj=aÞvðxÞ
ðyÞ þ dvðyÞg.

It is easily seen that bQ has properties (a) and (b) and satisfies Hypotheses 2.1, bQ½v
 6 Q½v
.

Moreover, bQ½v
 approaches Q½v
 as d goes to zero and a approaches infinity. As in the proof of
Lemma 5.1 of [13], applying the above proof to bQ and taking these limits yields (2.6), and this
finishes the proof of Theorem 2.1. h
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Proof of Theorem 2.2. To prove (2.8), we choose a / which has the properties (2.1) and satisfies
the inequality / 6 u0. By the Comparison Lemma we have un(x)P bn(x). Since bn is non-increas-
ing in x,
inf
x6nðc�f��Þ

unðxÞ P bnðnðc�f � �ÞÞ.
Then
lim sup
n!1

inf
x6nðc�f��Þ

unðxÞ
" #

P Bðc�f � �; 0Þ P Bðc�f � �;1Þ. ðA:1Þ
By definition, the right-hand side is not 0. Hence some component, say the ith component, is
positive, and we obtain (2.8). To prove (2.9), we choose a function / with the properties (2.1)
and the additional property that /ðx� gÞ P u0ðxÞ for some g. By the Comparison Lemma
unðxÞ 6 bnðx� gÞ. Since bn is non-increasing, we find that
sup
xPnðc�fþ�Þ

unðxÞ 6 bn n c�f þ
1

2
�

	 

þ 1
2
n�� g

	 

6 bn n c�f þ

1

2
�

	 

þ s

	 


for any s, provided n is sufficiently large. Thus
lim sup
n!1

sup
xPnðc�fþ�Þ

unðxÞ
" #

6 B c�f þ
1

2
�; s

	 


with s arbitrary. We let s go to infinity to see that
lim sup
n!1

sup
xPnðc�fþ�Þ

unðxÞ
" #

6 B c�f þ
1

2
�;1

	 

¼ 0. ðA:2Þ
Since un P 0, this proves the statement (2.9). Thus Theorem 2.2 is proved. h

Proof of Theorem 4.1. The Eq. (4.4) shows that for any fixed positive t, a continuous-time
traveling waveWðx� ctÞ is a traveling wave of speed ct of the recursion (1.2) with Q replaced by
Qt. Therefore the second and third statements of the Theorem follow immediately from the
corresponding statements of Theorem 3.1.
To prove the existence of the traveling wave when c P c�, we first note that fQp=qg

q ¼ Qp ¼
fQ1g

p when p and q are positive integers, where fQtg
‘ denotes the ‘th iterate of the operator Qt. It

then follows from Theorem 2.1 that the slowest spreading speed cp=q of the operator Qp=q is just
ðp=qÞc�, where c* is the slowest spreading speed of Q1. The proof of Theorem 3.1 then shows that
for each c P c� and for each rational t there is a non-increasing traveling waveWtðx� nctÞ of the
operator Qt which satisfies the equation
jb �Wtð0Þj ¼ g; ðA:3Þ

where g is so small that b is the only constant equilibrium which satisfies the condition
0 6 jb �Wtð0Þj 6 g. We see from Hypotheses 2.1.v and 2.1.iv that there is a sequence ri ! 1
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such that W2�ri ðxÞ converges uniformly on bounded sets to a function W(x) which is again non-
increasing and satisfies the normalization (A.3). SinceW2�ri is a traveling wave for all Qt for which
t is a multiple of 2�ri , Qt½W
ðxÞ ¼Wðx� ctÞ for every t which is a fraction whose denominator is a
power of 2. Let t be an arbitrary positive number, and m any positive integer. Then one can write
t ¼ km2
�m � rm
where km is a positive integer and 0 6 rm < 2�m. Then by (4.2) and the above observation
Qt½W
ðxÞ �Wðx� ctÞ ¼ fQt½W
 � Qrm ½Qt½W

g þ fWðx� cðt þ rmÞÞ �Wðx� ctÞg.
We let m approach infinity, so that rm goes to zero. The property (4.3) shows that the first term
on the right approaches zero, and the continuity of W shows that the second term also goes to
zero. Therefore
Qt½W
ðxÞ ¼Wðx� ctÞ;

so that W is a non-increasing continuous-time traveling wave of speed c. Because W is non-
increasing and satisfies the condition (A.3), we conclude as before that Wð�1Þ ¼ b and W(1)
is an equilibrium other than b. Thus Theorem 4.1 is proved. h
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