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Abstract

Habitat structure has broad impacts on many biological systems. In particular, habitat fragmentation can increase the probability

of species extinction and on the other hand it can lead to population outbreaks in response to a decline in natural enemies. An

extreme consequence of fragmentation is the isolation of small regions of suitable habitat surrounded by a large region of hostile

matrix. This scenario can be interpreted as a critical patch-size problem, well studied in a continuous time framework, but relatively

new to discrete time models. In this paper we present an integrodifference host–parasitoid model, discrete in time and continuous in

space, to study how the critical habitat-size necessary for parasitoid survival changes in response to parasitoid life history traits, such

as emergence time. We show that early emerging parasitoids may be able to persist in smaller habitats than late emerging species.

The model predicts that these early emerging parasitoids lead to more severe host outbreaks. We hypothesise that promoting

efficient late emerging parasitoids may be key in reducing outbreak severity, an approach requiring large continuous regions of

suitable habitat. We parameterise the model for the host species of the forest tent caterpillar Malacosoma disstria Hbn., a pest insect

for which fragmented landscape increases the severity of outbreaks. This host is known to have several parasitoids, due to paucity of

data and as a first step in the modelling we consider a single generic parasitoid. The model findings are related to observations of the

forest tent caterpillar offering insight into this host–parasitoid response to habitat structure.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Landscape fragmentation is an increasingly important
form of habitat disturbance that influences species
dynamics. Its effects on landscape structure include
decreased habitat area, increased edge length and altered
distance between patches, all of which may affect species
abundance and the population dynamics of residents of
the habitat.
e front matter r 2004 Elsevier Inc. All rights reserved.
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A number of insect species show population changes
in response to habitat fragmentation. For example,
outbreaks of the North American spruce budworm
(Choristoneura fumiferana) are more severe in contin-
uous forest compared to fragmented stands (Swetnam
and Lynch, 1993; Mott, 1963). In contrast to the spruce
budworm, forest tent caterpillar (Malacosoma disstria)
outbreaks can last longer and are more frequent in
forests fragmented by agricultural clearings (Roland,
1993). The mechanisms driving the outbreak response to
fragmentation are poorly understood but may be a key
to effective pest management. Natural enemies play an
integral part in many insect systems, and therefore
host–parasitoid interaction may be an important factor
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in determining insect outbreaks. The purpose of this
study is to investigate how the coupling between host
and parasitoid is affected by habitat patch-size.
Discrete time models are a natural framework for

studying host–parasitoid insect systems, with species
from temporate climates frequently exhibiting non-
overlapping generations. While many researchers (Has-
sell and May, 1973; Hassell, 1978; May et al., 1981;
Wang and Gutierrez, 1980; Umbanhowar and Hastings,
2002) since the initial model by Nicholson and Bailey
(1935) have focussed on stabilising the host–parasitoid
coexistence equilibrium in discrete time systems we
provide a serious attempt to quantify population cycles,
with respect to length and frequency. In natural insect
systems, population cycles are common, and the peaks
of these cycles are often associated with insect out-
breaks. Rather than looking to stabilise this coexistence,
our interest lies not only in the persistence of the host
and parasitoid, but also in the factors which can
lengthen and shorten these periodic insect outbreaks.
Spatial factors are also an important aspect determin-

ing outbreak characteristics in many insect systems. An
extension of difference equations which are spatially,
explicit and continuous, are integrodifference models.
Integrodifference models describe a life cycle consisting
of two distinct stages, a sedentary stage and a dispersal
stage. Such models were initially applied to address
questions of gene flow (Weinberger, 1982; Lui, 1982a,b)
and have since been applied to ecological questions
(Hardin et al., 1988, 1990; Kot et al., 1996; Neubert and
Caswell, 2000; Lutscher and Lewis, 2004). Integrodif-
ference equations are an ideal tool for investigating a
spatially explicit host–parasitoid system. Two-species
integrodifference models of predator–prey interactions
have received increasing attention in recent years, with
interest in questions of species invasion and spatial
pattern formation (Neubert et al., 1995; Kot, 1992; Kot
et al., 1996; Sherratt et al., 1997). Host–parasitoid
extinction was studied in a spatially discretised integro-
difference model by Allen et al. (2001).It was demon-
strated that dispersal in space can have a stabilising
effect on the populations. A natural progression from
the work of Allen et al. (2001) is to examine the effects
of habitat size.
The study of the critical patch-size necessary for

species persistence was pioneered by Skellam (1951) in
the context of a reaction–diffusion model. Critical
patch-size has since been investigated for a single species
integrodifference equation (Kot and Schaffer, 1986; Van
Kirk and Lewis, 1997; Latore et al., 1998) and recently
persistence in periodically spaced patches has been
studied in the context of marine reserves (Botsford et
al., 2001; Van Kirk and Lewis, 1997). Here, we address
the two-species critical patch-size problem, and also
numerically examine the response of population cycles
to parasitoid behaviour. Temporal cycles have not
received much attention in the integrodifference frame-
work, but the phenomenon is widespread and its
mathematical development is applicable to the study
of numerous insect assemblages. The model presented
here is a spatial extension of an earlier host–parasitoid
model (Cobbold et al., 2004).
We analyse the model in the context of a broad class

of insect systems, however our system of interest is the
forest tent caterpillar (Malacosoma disstria) and its
parasitoid species, native to North America. Hence, we
parameterise the model for this particular example.
During its periodic outbreaks, the high density of

forest tent caterpillars causes mass defoliation of its host
tree, the trembling aspen (Populus tremuloides). During
a 1991 outbreak in Ontario, Canada, 1.9 million
hectares of forest were defoliated (Anonymous, 1991).
Such caterpillar attacks seldom result in tree death, but
growth loss is common. Outbreaks occur approximately
every 11 years, with outbreak densities typically main-
tained for 2–3 years, and up to 6 years (Roland, 1993).
These prolonged outbreaks make tree death more likely.
Outbreaks of this kind are common among defoliating
insects, although the effects of the forest tent caterpillar
are particularly devastating. The forestry implications of
caterpillar control are significant: a one year reduction
in outbreak duration can increase fibre production by as
much as 10% over the course of a 10 year caterpillar
cycle (Anonymous, 1991).
The forest tent caterpillar is attacked by a number of

native host-specific fly and wasp parasitoids. These
interactions are believed to play an important role in the
oscillatory behaviour of these insect species.
In this paper, we formulate an integrodifference

model describing host–parasitoid life-history. Section 3
is devoted to reviewing the dynamics of the non-spatial
model. Sections 4 and 5 focus on the critical patch-size
problem for which we perform a bifurcation analysis.
Our objective is to gain understanding of how insect
outbreaks are influenced by both habitat size and
parasitism. In particular, we examine the interaction
among parasitoid emergence time, parasitoid searching
efficiency, dispersal, and patch size in ensuring hos-
t–parasitoid persistence.
2. Integrodifference model of forest tent caterpillar

interaction with a generic parasitoid

Like many insect species, the forest tent caterpillar
and its fly and wasp parasitoids have life cycles with
one non-overlapping generation per year. We there-
fore formulate a discrete time model to capture the
host–parasitoid dynamics. For simplicity we examine
the effects of a single generic parasitoid species with
the view of extending the model to a multi-parasitoid
system in the future. To study critical patch-size, we
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Fig. 1. Life cycle of the forest tent caterpillar and a generic parasitoid. Exact timing of events is determined by degree days.
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introduce space by extending the model to a system of
integrodifference equations that are discrete in time and
continuous in space.
The caterpillar and its parasitoids are univoltine, so

we increment our model yearly in early May, when
caterpillar hatch begins (Fig. 1). As the caterpillar
population develops through 5 larval stages, density-
dependent mortality from scramble competition can
occur (Rossiter, 1995). Scramble competition for aspen
foliage occurs in the fourth and fifth larval stage and is
modelled using the Ricker Eq. (Ricker, 1954). By mid
summer, the surviving caterpillars pupate, hatch, and
the adult moths disperse to lay their eggs, which then
overwinter. Newly emerged fly and wasp parasitoids
overwinter in the soil and disperse in early spring to
nectar feed and mate. Parasitism of the forest tent
caterpillar can occur from early May onwards, before,
during or after density-dependent host mortality,
depending on the parasitoid species.
When parasitoids disperse in spring, forest tent

caterpillar are either eggs or early instar larvae and are
sedentary. When the adult forest tent caterpillar
disperses as a moth in mid summer the parasitoids are
in diapause and sedentary. During the winter period
separating these two dispersal events both populations
are in diapause. Thus, host and parasitoid development
and interaction occurs from T ¼ 0 to t1 and dispersal of
the adult insects occurs from T ¼ t1 to 1 (cf. Fig. 1).
We let HtðX Þ be the density of the host population in

year t at location X and PtðX Þ be the corresponding
parasitoid density. We assume that parasitoids encounter
their hosts randomly according to a Poisson distribution.
The parasitoid has a searching efficiency a, giving a
probability e�aPtðX Þ of a host escaping parasitism. Two
descriptions of parasitism were considered by Cobbold et
al. (2004), clumped parasitoid attacks described by the
negative binomial distribution and random attacks
described by the Poisson distribution. Attacks on the
forest tent caterpillar were best described by the Poisson
distribution. A more general description of parasitism is
described by the negative binomial, which allows for
clumping of parasitoid attack. Cobbold et al. (2004)
analysed the non-spatial host–parasitoid model using
this more general description of parasitism, the qualita-
tive behaviour of the model was found to remain
unchanged as the parameter describing clumping was
varied. We do expect that the results that will be
discussed in this paper will hold under the negative
binomial model, this would broaden the class of insect
systems for which the results can be applied.
Density-dependence in the host population affects the

reproduction of parasitoids if a parasitised host dies
before the parasite emerges from it. Therefore, it is the
time of emergence rather than the time of parsitising
that determines the effect of host density-dependence on
parasitoid reproduction. We model this effect by
inserting the term e�baHtðX Þ into the parasitoid equation
(1), where ba ranges from 0 to r=K : The case ba ¼ 0
describes the situation that parasitoids emerge before
density-dependence acts on the host population. From
each parasitised host there emerges one parasitoid. The
other extreme ba ¼ r=K describes the case that para-
sitoids merge after density-dependence acts on the hosts.
Only those host that survive can produce next-genera-
tion parasitoids. Intermediate values of ba describe
concurrent parasitism and density-dependence. Once
parasitoids have emerged from the host, the dynamics of
the two populations decouple for the rest of the season.
The equations for the vital dynamics (Htþt1ðY Þ and
Ptþt1 ðY Þ in Eq. (1)) were introduced by Cobbold et al.
(2004), a full discussion of the model and its application
to the forest tent caterpillar can be found there. The
host–parasitoid models by Beddington et al. (1975) and
Wang and Gutierrez (1980) are special cases of this more
general formulation.
Finally, we describe dispersal, the host and parasitoid

densities at each spatial location X at the start of the
next generation can be found by integrating over all
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possible locations Y, from which the individual could
have successfully dispersed. This yields
Htþ1ðX Þ ¼

Z
O

KH ðX ;Y Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

Prob. of the host successfully

moving from Y to X

HtðY Þ � er
z}|{

Intrinsic

growth

� e�rHtðY Þ=K
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

Prop. of hosts surviving

density-dependence

� e�aPtðY Þ

zfflfflfflffl}|fflfflfflffl{
Prob. of hosts not

being parasitised

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Htþt1 ðY Þ¼Hosts at Y which disperse at time tþt1

dY ;

(1a)

Ptþ1ðX Þ ¼

Z
O

KPðX ;Y Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

Prob. of the parasitoid successfully

moving from Y to X

HtðY Þ � e�baHtðY Þ

zfflfflfflffl}|fflfflfflffl{
Prop. of parasitised hosts

surviving density-dependence

� ð1� e�aPtðY ÞÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
Probability of hosts

being parasitised

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ptþt1 ðY Þ ¼ Parasitoids at Y

which disperse at time t þ t1

dY :

(1b)
The functions, KH ðX ;Y Þ and KPðX ;Y Þ are prob-
ability density functions with mean 0, variance s2h and s

2
p

and describe dispersal kernels for the host and
parasitoid populations respectively. They describe the
probability of successful movement from location Y to
location X. The spatial domain is denoted by O and
includes only regions of suitable host habitat.

2.1. Parameterisation

2.1.1. Population dynamic parameters

The parameters describing forest tent caterpillar and
parasitoid vital dynamics are from field data and the
results are summarised in Table 1. (See Cobbold et al.
(2004) for a detailed discussion of parameter estimation
and data collection).

2.1.2. Dispersal parameters

Dispersal parameters (s2h;s
2
p) of the forest tent

caterpillar and its parasitoids are considerably more
difficult to estimate. In mark-recapture experiments,
only 3/3000 adult parasitoids were recaptured (Roland
and Taylor, 1995). They travelled up to 300m from the
release point, giving an idea of possible dispersal
distance. The adult moth stage of the forest tent
caterpillar has been recorded to travel on the order of
1 km or further. An estimate for parasitoid dispersal
distance is 300–800m depending on species (Roland and
Taylor, 1997, 1995). To estimate s2h and s2p we assume
that 90% of the host population travel within a
800–1000m radius and that 90% of parasitoids disperse
a distance of 300–800m. Assuming a Gaussian dispersal
kernel gives:

s2h � 0:235� 0:367 and s2p � 0:058� 0:235:
Adopting a Laplace distribution yields:

s2h � 0:241� 0:377 and s2p � 0:060� 0:241:
These distributions are compared in Fig. 2. Experimental
data from a variety of insects show dispersal kernels with
leptokurtic tails, consistent with the Laplace kernel
(Makino et al., 1987; Taylor, 1978; Dobzhansky and
Wright, 1943; Aikman and Hewitt, 1972). In the absence
of further data, we assume a Laplace kernel for adult
forest tent caterpillar dispersal. The Laplace kernel has a
‘fatter tail’ compared to the Gaussian kernal, which
corresponds to rare long distant dispersal events such as
those driven by wind for example. Mechanistically the
Laplace kernel corresponds to random movement with a
constant settling rate. Although these estimates of
dispersal are very approximate, we feel, based on
personal observation of flight of these insects, that they
are reasonable and all our results can be easily
interpreted for smaller or larger dispersal distances.

2.2. Non-dimensionalisation

A suitable non-dimensionalisation for the dynamics
of the model is given by

htðX Þ ¼
HtðX Þ

K
; ptðX Þ ¼ aPtðX Þ; r ¼ Ka; a ¼ baK ;

where htðX Þ and ptðX Þ are the non-dimensionalised host
and parasitoid densities, respectively. Initially we will
consider a one-dimensional spatial domain of length L

(km). Scaling the domain length to x ¼ X=L yields the
following non-dimensional system of equations:

htþ1ðxÞ ¼

Z 1

0

khðx; yÞhtðyÞe
re�rhtðyÞe�ptðyÞ dy; (2a)

ptþ1ðxÞ ¼

Z 1

0

kpðx; yÞrhtðyÞe
�ahtðyÞð1� e�ptðyÞÞ dy: (2b)
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Table 1

Parameter values for the model kinetics, estimated from experimental data.

Parameter Description and (units) Parameter range Typical value

r Host intrinsic growth rate 0.05–0.9 0.7

K Host carrying capacity 200–300 260

(# of cocoons counted in a 15min

collection time)

a Parasitoid searching efficiency 0.009–0.033 0.031

(Area searched during a 15min

cocoon count per parasitoid)ba Parasitoid mortality due to 0–r=K 0.9r=K

host density-dependent mortality

(per host density)

a and K are estimated using time linked cocoon counts of host and parasitoid densities taken over several years together with defoliation levels to

estimate K. ba was found by experimentally isolating hosts at different densities and estimating the carrying capacity for each host larval instar. Lastly,
an adult forest tent caterpillar lays an egg band containing 150–300 eggs and mortality is typically 98%, yielding our estimates of host growth rate r.
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Fig. 2. Dispersal kernels used for both host and parasitoid popula-

tions. Individuals are released at 0 and the resulting probability density

function (PDF) is plotted. The Laplace kernel has ‘fatter’ tails

compared to the Gaussian kernel, but both give the same qualitative

model results. The parameter used to generate these profiles is: s2 ¼
0:2ðkm2Þ:
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In the case of the Laplace kernel, we set Lh ¼ L
ffiffiffiffiffi
2
s2

H

q
and

Lp ¼ L
ffiffiffiffi
2
s2

P

q
; which gives,

khðx; yÞ ¼
Lh

2
expð�Lhjx � yjÞ and

kpðx; yÞ ¼
Lp

2
expð�Lpjx � yjÞ:

Lh and Lp are the effective domain lengths and measure
the domain length relative to dispersal distance. (Lh and
Lp are used in calculations, however, figures illustrate
the dimensional domain length L.)
3. Dynamics of the non-spatial system

Given that the forest tent caterpillar, like many host
insects, is subject to attack from a number of specialist
parasitoid species, it is interesting to examine the effect
of parasitoid characteristics on host outbreaks. The
behaviour of the non-spatial host–parasitoid system
depends on both the strength of host density-dependent
mortality experienced by the parasitoid (a), and on
parasitoid searching efficiency (a). We first summarise
the effects of parasitoid timing a; reported by Cobbold
et al. (2004), extending the results presented by Neubert
and Kot (1992).

3.1. Variation in parasitoid timing (a)

The non-dimensionalised non-spatial model has only
three parameters: a;r and r and exhibits rich dynamics
ranging from host–parasitoid extinction to a host–par-
asitoid limit cycle and even chaos. Fig. 3 summarises the
behaviour of the model in r� r parameter space and is a
special case of the stability plots generated by Cobbold
et al. (2004) and Neubert and Kot (1992). The timing of
parasitism (a), often over looked in discrete time models,
is shown to have a large affect on the population
dynamics in host–parasitoid models, affecting persis-
tence and the period and amplitude of temporal cycles.
The two extremes of parasitoid timing are parasitism

followed by density-dependence (a ¼ 0) and density-
dependence followed by parasitism (a ¼ r), these two
cases are presented in Fig. 3a and b, respectively. For
each stability plot, the central region (II) describes stable
coexistence of the host and parasitoid. An increase in r
leads to a loss of stability of the coexistence steady state
via a Hopf bifurcation, a decrease in r leads to a
transcritical bifurcation and an increase in r gives a
period-doubling bifurcation. The effect of parasitoid
emergence time a; is to deform the stability boundaries.
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Consider fixed values for r and r marked by the � in
Fig. 3a and b. Increasing a from 0 to r changes the stable
coexistence equilibrium to parasitoid extinction. This
example demonstrates that the emergence time of the
parasitoid has implications when evaluating a parasitoid
as a biological control agent. (See Cobbold et al. (2004)
for a more detailed discussion).
Biologically realistic parameter values for the forest

tent caterpillar place the model in the region of
parameter space where the host and parasitoid popula-
tions oscillate on a limit cycle irrespective of the value of
a: Population cycles are consistent with the periodic
outbreaks of the forest tent caterpillar. To validate the
model for the forest tent caterpillar we fixed parameters
using experimental data and calculated the correlation
between the model and an independent historical time
series (Cobbold et al., 2004). A 75–95% correlation
between model and data was found. Simulations show
differences between outbreak and non-outbreak host
densities are at least 4–5 orders of magnitude, consistent
with field observations for the forest tent caterpillar
(Hodson, 1941).
The population cycles showed a decrease in period in

response to an increase in a; furthermore the number of
(a) (b)

Fig. 3. r � r�parameter space describing the stability of the host–par-
asitoid coexistence equilibrium. Region II marks stable host–parasi-

toid coexistence. As r decreases the equilibrium loses stability via a

transcritical bifurcation T, resulting in parasitoid extinction. As r
increases stability is lost through a hopf bifurcation HB, generating

periodic cycles in the two populations. As r is increased a subcritical

flip bifurcation SF, occurs leading to parasitoid extinction. Finally for

large r and r chaotic behaviour occurs (IV). Plot (a) a ¼ 0; gives the
special case studied by Beddington where parasitism is followed by

host density-dependent mortality. Plot (b) a ¼ r; is the other extreme
where density-dependence is followed by parasitoid emergence. The

boundaries were calculated using a linear stability analysis by

examining which parameters violated the Jury conditions. Changing

a distorts the stability boundaries and can affect the persistence of the
parasitoid species. For example, fix r and r (see �), when a ¼ 0 the

dynamics are in region II when a ¼ r the dynamics are in region I.
years the host spends at high density decreased (results
not shown, see Cobbold et al. (2004)). In summary, late
emerging parasitoids were associated with less severe
host outbreaks when compared to early emergers.

3.2. Variation in scaled parasitoid searching efficiency

(r ¼ Ka)

Parasitoid searching efficiency (a) can vary among
parasitoid species. Searching efficiency incorporates a
range of parasitoid attack strategies, such as ovipositing
directly in or on the host versus ovipositing on damaged
foliage which may be subsequently consumed by the
host.
The effect of parasitoid searching efficiency on host-

outbreak duration and frequency can be calculated from
the model numerically (Fig. 4). Outbreak frequency is
the period of the host cycle averaged over several
periods. Outbreak duration is taken to be the proportion
of one period for which the host density is above some
arbitrary threshold, in this case 70% of K. Since the
population cycles are a consequence of a Hopf bifurca-
tion they are aperiodic and hence we also average the
outbreak duration over several periods. Despite taking
averages, we still find fluctuations in outbreak duration.
This is a consequence of limit cycle deformation as r is
changed. The population cycles make up discrete points
on the limit cycle, the deformation of this cycle can push
points that are initially near the outbreak threshold to
move above or below. The model predicts that efficient
searchers (large r) prolong outbreak duration, but
reduce outbreak frequency. A single prolonged outbreak
can be more severe than multiple short outbreaks over
the same time frame, since the repeated annual foliage
damage makes habitat dieback more likely.
It is somewhat counter intuitive that efficient search-

ers lead to more severe host outbreaks and, therefore,
greater tree damage. Numerical simulations offer one
explanation (Fig. 5). Parasitoids with large r rapidly
suppress the host population causing parasitoid num-
bers to rapidly decline. Following the crash, the host
population recovers faster than the parasitoid popula-
tion allowing a long severe outbreak before parasitoids
can control the hosts once more. Differences in r could
occur in response to changes in the dominance by wasps
(efficient) versus fly (inefficient) parasitoids.
In Section 4 we study the full spatial model (Eq. (2))

and investigate the effect of space on these population
processes.
4. Dynamics of the spatial system: a single continuous

forest

In sufficiently large domains, the behaviour of
the spatial model is similar to the behaviour of the
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Fig. 4. Illustrating the period and outbreak-duration of oscillations in the host, as a function of r; scaled parasitoid searching efficiency. (a) The
period of oscillations increases as a function of r; i.e. efficient parasitoids are associated with infrequent outbreaks. (b) The average proportion of one
period spent at outbreak density (ht40:4; for other threshold levels the trend remains unchanged) increases as a function of r: Host outbreaks are
more severe under efficient parasitoids. (c) and (d), the maximum host and parasitoid density reached during a cycle increases with parasitoid

searching efficiency. Parameter values used to generate these profiles are as follows: r ¼ 0:96 and a ¼ 0: Initial conditions were h0 ¼ 0:6; p0 ¼ 0:2:
Simulations were run for 7000 time iterations to ensure we are not observing transients, and the last 200 iterates were used to determine average

period and outbreak duration.
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non-spatial counterpart. In the other extreme when the
suitable habitat domain is very small we may find
extinction, giving rise to a critical patch-size problem. A
natural question to ask is: what behaviour can be
observed in smaller spatial domains? In this section we
address the critical patch-size problem by numerically
generating a bifurcation plot of the model for a fixed
parameter set (Fig. 6). In the next section we look at
some analytical results.
Consider the model on a one-dimensional spatial

domain O ¼ ½0;L
 of suitable habitat. Insects that
disperse and remain within O survive and reproduce
there. Those leaving O land in unsuitable habitat and
die. We refer to L as the forest size and use this as a
parameter in our bifurcation analysis. The spatial
average of the host and parasitoid densities over the
habitat O are used as bifurcation variables.
To numerically construct a bifurcation diagram, we

first discretise Eq. (2) in space using 33 grid points
yielding a set of coupled difference equations. These
equations are coupled via the discretised redistribution
kernel which is obtained by approximating the integral
using Simpson’s rule. To ensure the accuracy of this
discretisation, spatial grids containing up to a 161 points
were also considered and bifurcation results were
compared to numerical simulations of the integrodiffer-
ence model using a fast Fourier transform on a spatial
grid containing on the order of 2000 points (Andersen,
1991; Brewster and Allen, 1997). Thirty three grid points
proved sufficient for good numerical accuracy while
maintaining speed of calculation. The AUTO package
(Doedel et al., 1991) is used to generate the bifurcation
diagram (Fig. 6).
The bifurcation plot demonstrates that domain size

can significantly influence population dynamics (Fig. 6).
Small patch sizes (region A, Fig. 6) result in host and
parasitoid extinction. Host dispersal out of the habitat
patch reduces the host population to a level too small to
persist and consequently the parasitoid population is
driven to extinction.
In slightly larger patches (region B, Fig. 6) a host-only

equilibrium is established. Parasitoid absence can be
explained by host dispersal: loss through the boundary
and are large enough to drive host numbers below those
required to sustain the parasitoid population. Isolated
patches of this type could provide a refuge for host
insects. This in fact has been observed by Roland and
Taylor (1995) who found that some isolated aspen
stands supported caterpillars but remained uninfested
by particular parasitoids species.
When larger patch sizes are considered (region C,

Fig. 6), the host and parasitoid populations coexist. A
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further increase in domain size moves the dynamics into
region D, here the system undergoes a Hopf bifurcation,
leading to temporal oscillations in both host and
parasitoid densities. These oscillations are equivalent
to the periodic outbreaks observed in many insect
populations. We illustrate the temporal oscillations in
Fig. 7. For small spatial domains there is little spatial
variation in the host and parasitoid distributions, spatial
oscillations become apparent for sufficiently large L as
seen in Fig. 7.
5. Critical patch size problem: analytical classification of

forest size

In Section 4, we only allowed the spatial parameter L,
to vary and demonstrated the existence of critical patch
sizes for host–parasitoid persistence. We now generalise
these results by presenting two analytical methods to
calculate critical patch size as a function of model
parameters. The first method involves converting a
linearised system of equations to a boundary value
problem which can then be used to derive a stability
boundary separating stable equilibria. The second
method uses the formulation of a caricature model
which is spatially implicit. Stability boundaries, and
hence critical patch sizes of the spatially implicit system,
are then determined using the Jury conditions. We show
that the two methods are related and agree numerically.
The two approaches both have merits and pitfalls which
we will discuss. The implications of these analytical
expressions are then presented in Section 5.3.

5.1. Boundary value problem

We analytically classify forest size according to the
presence and absence of host and parasitoid by using
and extending results from Kot and Schaffer (1986),
Van Kirk and Lewis (1997) and Lutscher and Lewis
(2004).

5.1.1. Critical patch size problem 1: host persistence

We first consider the boundary dividing regions A and
B in Fig. 6 to determine the minimum domain size that
permits host growth. We linearise (Eq. (2)) about the
trivial equilibrium ðh�

ðxÞ; p�ðxÞÞ ¼ ð0; 0Þ; yielding:

htþ1ðxÞ ¼

Z 1

0

khðx; yÞe
rhtðyÞ dy; (3a)

ptþ1ðxÞ ¼ 0: (3b)

The parasitoid equation vanishes, so the problem
becomes one-dimensional. The stability of the trivial
equilibrium is determined using linear operator theory.
We consider the eigenvalues (l) of Eq. (3), by looking
for solutions of Eq. (3) of the form htðxÞ ¼ ltfhðxÞ: This
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Fig. 6. Bifurcation diagram of the full spatial model, with the spatial

average of (a) host and (b) parasitoid populations (averaged over L)

plotted against patch size (L). The plots were generated using the

AUTO package by discretising space into 33 grid points and applying

Simpson’s rule to approximate the integration. The solid lines indicate

stable steady states and the dashed lines are unstable equilibria. The

dotted lines indicate a bifurcation. In region A, where both host and

parasitoid are extinct, a combination of dispersal and resource

limitation prevent species persistence. As the domain is increased we

observe a stable host-only steady state in region B. The hosts are still at

a sufficiently low density that they cannot support a parasitoid

population. Increasing L further gives region C, where host and

parasitoid coexist. For large domains we pass through a Hopf

bifurcation, marked with the box (&), indicating periodic temporal

oscillations (region D). Parameter values used to generate this figure

are: s2h ¼ 0:25; s2p ¼ 0:01; a ¼ 0; r ¼ 8; r ¼ 0:96:
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yields the eigenvalue problem

lfhðxÞ ¼

Z 1

0

Lh

2
expð�Lhjx � yjÞerfhðyÞ dy: (4)

By repeatedly differentiating Eq. (4) we obtain a
boundary value problem which can be solved analyti-
cally, where the boundary conditions are found by
solving the eigenvalue equation at the two end points of
the domain, x ¼ 0 and 1. The differential equation we
obtain is given by

f00
hðxÞ ¼ �L2h½ð1=lÞe

r � 1
fhðxÞ; (5)

with flux boundary conditions

Lhfhð0Þ � f0
hð0Þ ¼ 0; and Lhfhð1Þ þ f0

hð1Þ ¼ 0: (6)

(See Van Kirk and Lewis (1997) for a detailed derivation
and discussion of this class of equation).
The operator presented in Eq. (4) is compact the

kernel is positive, hence the eigenvalue determining
stability is always positive (Krasnoselskii, 1964). Loss of
stability can therefore only occur through l ¼ þ1 in this
discrete dynamical system. Setting l ¼ þ1 will indicate
the location of the stability boundary separating host
extinction from host persistence. We solve the boundary
value problem (Eqs. (5) and (6)) using half angle
formulae. We obtain an expression for critical domain
length as a function of host per capita growth rate er;
and variance in host dispersal distance s2h (see Van Kirk
and Lewis (1997) for a discussion).

LABðrÞ ¼

ffiffiffiffiffiffiffi
2s2h

q
tan�1½1=

ffiffiffiffiffiffiffiffiffiffiffiffi
er � 1

p

ffiffiffiffiffiffiffiffiffiffiffiffi

er � 1
p : (7)

The dimensional parameter LAB; is the critical patch size
(in km) separating patches of host extinction (region A,
Fig. 6) from those of host persistence (region B). Eq. (7)
shows that host persistence is independent of parasitoid
densities.

5.1.2. Critical patch size problem 2: parasitoid

persistence

The next critical patch size problem we study answers
the question, when parasitoids persist in a patch. We
calculate the stability boundary separating regions B
and C in Fig. 6. This problem proves to be more
difficult. We linearise (Eq. (2)) about the heterogeneous
equilibrium, ðh�

ðxÞ; 0Þ; and as before set htðxÞ ¼ ltfhðxÞ

and ptðxÞ ¼ ltfpðxÞ; giving an eigenvalue problem,

lfhðxÞ ¼

Z 1

0

khðx; yÞ½ðe
re�rh�

ðyÞ

� rh�ðyÞere�rh�
ðyÞÞfhðyÞ

� ðh�
ðyÞere�rh�ðyÞÞfpðyÞ
 dy; ð8aÞ

lfpðxÞ ¼

Z 1

0

kpðx; yÞrh�
ðyÞe�ah�ðyÞfpðyÞ dy: (8b)

We notice that the parasitoid (8b) decouples; since we
are concerned only with conditions for parasitoid
persistence, it is sufficient to study only this equation.
We repeatedly differentiate Eq. (8b) to obtain the
following Sturm Liouville problem with spatially vary-
ing coefficients:

f00
pðxÞ ¼ �L2p½ð1=lÞrh�

ðxÞe�ah�ðxÞ � 1
fpðxÞ; (9a)

Lpfpð0Þ � f0
pð0Þ ¼ 0 and Lpfpð1Þ þ f0

pð1Þ ¼ 0: (9b)

The spatial dependence of the coefficients h�
ðxÞ; prevents

us from being able to solve the boundary value problem.
However, we can show there exists a constant h which
gives the true solution to (9a) (see Appendix A for
details). We therefore approximate the coefficients
(h�

ðxÞ) by constants, yielding an equation analogous to
Eq. (5). So our goal is to find the constant which best
approximates h: A natural choice of constant is the
spatial average of h�

ðxÞ; hav ¼
1
jOj

R
O h�

ðxÞ dx: When the
spatial variation in h�

ðxÞ is small it is clear why we
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Fig. 7. (a)–(b) The evolution in time of the spatial distribution of the host and parasitoid populations respectively. (c)–(d) illustrate the spatial

average of the host and parasitoid density respectively, plotted over time. The first time point (t ¼ 1) corresponds to the dotted line in (a)–(b), the

dot–dash line corresponds to t ¼ 2 and the dash line corresponds to t ¼ 3; finally the solid line is t ¼ 4; we would like to plot more, however the plot
becomes difficult to read. The populations are undergoing temporal oscillations consistent with periodic host outbreaks. The spatial distributions

show spatial variation, in particular we observe a non-concave shape to the profiles. The parameters used to generate these profiles are r ¼ 0:96;
r ¼ 8; a ¼ 0; s2h ¼ 0:25; s2p ¼ 0:01; with a Laplace dispersal kernel. The simulation was run for 200 time iterates, with the final 13 plotted.
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would expect such an approximation to work. Van Kirk
and Lewis (1997) numerically showed that this approx-
imation also works well even when hav and h�

ðxÞ differ
quite significantly.
Calculating hav is done using the ‘‘average dispersal

success approximation’’ Sh (Van Kirk and Lewis, 1997),
details are given in Appendix B. In summary,

h � hav ¼
ln Sh

r
þ 1; where Sh ¼ 1�

1� expð�LhÞ

Lh

:

(10)

This approximation improves as domain size L in-
creases.
Using the approximation in (10), we can now solve

the modified Sturm Liouville problem,

f00
pðxÞ ¼ �L2p ð1=lÞrhe�ah � 1

h i
fpðxÞ; (11a)

Lpfpð0Þ � f0
pð0Þ ¼ 0; and Lpfpð1Þ þ f0

pð1Þ ¼ 0:

(11b)

The problem is now reduced to one equivalent to Van
Kirk and Lewis (1997), yielding an implicit function of
dimensional domain length LBC ; we note that h is also a
function of LBC ;

tan LBC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhe�ah � 1

2s2p

s !
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhe�ah � 1

q : (12)

The domain length necessary for parasitoid persis-
tence is L4LBC ; and is dependent on both the host and
parasitoid parameters. In Section 5.3 we discuss this
relationship.
The boundary value method presented here has

the advantage that we can obtain an exact solution for
LAB; the critical host patch size, and a good approxima-
tion to LBC ; the parasitoid critical patch size. However,
we are restricted to using a Laplace dispersal kernel,
which may not be appropriate for all insect species. We
will now follow another approach to analytically
calculate an approximation to LAB and LBC : The second
approach uses a spatially implicit caricature model,
which does not give exact solutions, but works for
general kernels. In Section 5.2, we illustrate the
approach using the Laplace kernel so we can compare
the two methods.
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5.2. Average dispersal success approximation

In Section 5.1 the average dispersal success approx-
imation is used to approximate the spatial equilibrium.
In this section we will use this approximation to
construct a system of spatially implicit equations
describing host–parasitoid interaction. Van Kirk and
Lewis (1997) showed that in the case of a single
population such a spatially implicit approximation
captured the bifurcation structure of the full spatial
model very well. We will numerically demonstrate that
the same is true of the two species model,

htþ1 ¼ Shhte
re�rht e�pt ; (13a)

ptþ1 ¼ Sprhte
�aht ð1� e�pt Þ; (13b)

where Sh ¼ 1� 1�expð�LhÞ

Lh
and Sp ¼ 1�

1�expð�LpÞ

Lp
(aver-

age dispersal success for host and parasitoid, respec-
tively) describe the effect of space on the population
densities. (See Lutscher and Lewis (2004) for a general
exposition of the theory for structured populations.)
Eqs. (13) arise from the average dispersal success

approximations of Section 5.1 and Appendix B. The
spatially implicit model is consistent with the assump-
tions used in the analysis of the explicit model (2) in
Section 5.1. Namely, the host-only steady state ðh ¼

1þ lnðShÞ=r; p ¼ 0Þ of the average dispersal success
model is the same as the average host density hav used
to approximate h�

ðxÞ; the spatially dependent host-only
equilibrium of (2). Eqs. (13) can be arrived at by
spatially averaging the full model and applying the
method presented in Appendix B.
5.2.1. Critical patch size problem 1: host persistence

The stability boundaries for host–parasitoid persis-
tence can be determined by using the eigenvalues of
model (13) and applying the Jury conditions (Jury 1964,
1974) (See Kot (2001) for a general discussion of the
stability theory for discrete time models). To examine
host persistence, we look at the Jacobian matrix of Eq.
(13) linearised about the steady state ðh ¼ 0; p ¼ 0Þ: The
parameter regions for which the steady state is stable
(lo1) are separated from regions of instability (l41) by
the boundary,

l ¼ Sher ¼ 1; or 1� e�r ¼
1� expð�LAB

ffiffiffi
2

p
=shÞ

LAB

ffiffiffi
2

p
=sh

:

(14)

Eq. (14) depends on the same parameters that appeared
in the stability boundary calculated using the boundary
value approach (7). The expressions themselves are quite
different, however, in Section 5.3 we demonstrate that
the two methods give virtually the same boundary curve.
5.2.2. Critical patch size problem 2: parasitoid

persistence

Next we characterise the domain length LBC ; which
separates a host-only equilibrium from host–parasitoid
persistence. The system is linearised about ðh ¼ 1þ
lnðShÞ=r; p ¼ 0Þ and the stability boundary is calculated,
yielding:

Spre�a

S
a=r

h

¼ 1�
Spr lnðShÞe

�a

S
a=r

h

; (15)

where Si ¼ 1�
1�expð�LiÞ

Li
and Li ¼

LBC

ffiffi
2

p

si
:

The transcendental equation (15) has a similar
parameter relationship as the stability boundary gener-
ated via the boundary value approach. In Section 5.3,
we demonstrate that the average dispersal success
approach works well for the Laplace kernel, as well as
other kernels.

5.3. Conclusions from the stability boundary analysis

Sections 5.1 and 5.2 provide equations for the stability
boundaries separating host extinction from host persis-
tence (LAB Eqs. (7) and (14)), and host only equilibria
from host–parasitoid coexistence (LBC Eqs. (12) and
(15)). We use these results to study the impact of
dimensional patch size (L), dispersal (sh;sp), scaled
parasitoid searching efficiency (r) and emergence time
(a) on the parasitoids ability to coexist with the host. In
Fig. 9, we show the effects of a and r relative to r on
coexistence. We observe that the boundary value
approach and the average dispersal success formulation
give virtually indistinguishable stability curves. More-
over, we have generated points on the stability boundary
by numerical simulation of the full model, verifying the
accuracy of our approximations (Fig. 9a).

5.4. Variation in dispersal (sh;sp)

The parameter scaling in Section 2.2 shows that
increasing dispersal distance of either the host or
parasitoid is equivalent to increasing critical patch size.
The relationship is of the form

Lffiffiffiffiffiffiffiffi
s2

h=p

q ¼ constant:

We have assumed that dispersal of the other population
is fixed here. We now consider a fixed habitat size L and
examine the trade-off between host and parasitoid
dispersal necessary for coexistence. The stability bound-
ary is shown in Fig. 8. We see that for large host
dispersal, the parasitoid must disperse less than the host;
while for small host dispersal, shorter or longer
parasitoid dispersal both allow coexistence. When host
dispersal is large, the loss through the boundary is high.
While there are sufficiently many hosts at the centre of
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the domain to support a parasitoid population, this is
not the case near the edge.
If we consider a fixed host and parasitoid dispersal

and reduce the domain size L, the maximum parasitoid
dispersal that ensures coexistence is reduced, thus longer
dispersing parasitoids are driven to extinction. In the
Roland and Taylor (1997) study of the forest tent
caterpillar it was shown that one of its farthest
dispersing parasitoids A. aldrichi, does poorly in
fragmented stands measured at a 425m scale, while C.

malacosomae a shorter dispersing species, responded to
forest structure at a much finer scale. The interaction
between host and parasitoid dispersal is not the only
explanation for this finding, as these parasitoids also
differ in timing and searching strategy and the habitat
was part of large matrix of forest. This is however, an
insightful example of how dispersal and habitat size
influence parasitism in a real system.

5.4.1. Variation in parasitoid emergence time (a)

Recall that a ranges between 0 and r. We introduce
the new parameter a ¼ a=r; the proportion of the host
density-dependent phase occurring prior to parasitoid
emergence or equivalently, the fraction of host density-
dependent mortality experienced by the parasitoid.
Density-dependent mortality of the host and subsequent
parasitoid mortality is linearly dependent on the host
growth rate (r), so by scaling out r from the parameter a
we can compare the effect of parasitoid timing under
different host growth rates. The parameter a varies
between 0 and 1. Fig. 9a shows the LBC stability curve
for several values of a: The LBC stability curve shifts up
the domain length axis (L) in response to increases in a:
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Fig. 8. In sh � sp-space, for a fixed domain length L ¼ 0:7 km (solid

line) (and L ¼ 0:6km dash line) we plot the stability boundary LBC ;
separating parasitoid persistence and extinction. When host dispersal is

high, the parasitoid can also persist with a shorter dispersal distance.

The parameters used in this plot are: r ¼ 8; r ¼ 0:96; a ¼ 0:
Thus, early emerging parasitoids can persist in a smaller
domain than can later emergers. By avoiding density-
dependent mortality of their host, early emerging
parasitoids have increased survival. Fewer hosts and a
corresponding smaller domain are then required for
parasitoids persistence.
To put this result in a biological context, consider

Arachnidomyia ð¼ SarcophagaÞ aldrichi (Sarcophagi-
dae), a dominant, late emerging pupal fly parasitoid
on forest tent caterpillars. The model predicts that this
species would require a relatively large stand of aspen
forest to persist. Observational studies lend some
support to this theory, in that the rates of parasitism
by this fly increase with increased proportion of the
landscape that is covered by forest; a pattern that is
particularly apparent when forest cover is measured at a
course spatial scale ð4800mÞ: As well, the dominance
by A. aldrichi within the parasitoid community varies
geographically, with greater dominance in Ontario
(Sippell, 1957) compared to in Alberta (Parry, 1995), a
Prior
to d-d Efficient

searchers

(a) (b)

Fig. 9. Stability boundaries in r � L space for the host–parasitoid

system (r, host growth rate, L, patchsize in Km). The thick solid line is

the LAB stability boundary. Above the line the hosts persist, below we

have extinction. The stability boundary from both the average

dispersal success model and the boundary value approach are plotted,

but the curves are indistinguishable. The thin solid lines indicate the

LBC stability boundary. Above the thin lines the parasitoid can persist,

below we have parasitoid extinction. (a) shows thin lines for a range of

parasitoid emergence times a: 0, 0.2, 0.5, 0.6, 0.8, 1; where 0
corresponds to parasitoid emergence prior to density-dependent host

mortality and 1 corresponds to emergence after density-dependence.

Bifurcation points (�) were found by simulation of the full model and

show that the analytical stability boundaries have extremely good

agreement with the true bifurcation points. (b) shows the effect of

varying r; scaled parasitoid searching efficiency. The thin lines are
plotted for r ¼ 2; 5; 8; 10: Poorer searchers require a larger domain to
survive, or smaller average dispersal distance to persist. The dispersal

parameters used to generate these figures are: s2h ¼ 0:25;s2p ¼ 0:01:
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pattern generally correlated with more contiguous forest
stands in the former, and smaller stands interspersed
with agricultural matrix in the latter.
It seems reasonable that the higher the host fecundity,

r, the smaller the patch size required for parasitoid
survival. This is the case for early emergence (a ¼ 0). As
a increases however, the r � L-parameter space for
coexistence shrinks and at higher values of r the
parasitoid cannot survive in any size patch. An
explanation for this result is that large r leads to heavy
density-dependent mortality of the host, which in turn
affects the parasitoid population. Thus, larger domains
can prevent host overcrowding up to a point, but at high
r the resulting parasitoid mortality is too high for the
parasitoids to persist. The overcompensatory nature of
the Ricker density-dependence is acting. The U-shape
prediction from the analysis is verified against numerical
simulation as indicated by the crosses in Fig. 9.
When a is small, parasitoids emerge very shortly after

host density-dependent mortality begins and parasitoid
survival is high. In this case the U-shape behaviour of
the stability boundary occurs only at very large r. Early
emerging parasitoids can therefore persist in a smaller
domain than late emerging parasitoids. Those para-
sitoids emerging early from third and fourth instar
larvae (e.g. Aleiodes malacosmatos), in fact are most
effective relative to the later emerging flies, in smaller
patches (Roland and Taylor, 1997; Rothman and
Roland, 1998).

5.4.2. Variation in scaled parasitoid searching efficiency

(r ¼ Ka)

Fig. 9b illustrates the effects of r on the stability
boundaries. Decreasing r results in the need for larger
domain sizes for parasitoid persistence. More efficient
searchers can invade and coexist in smaller stands of
aspen than poorer searchers. This result follows quite
naturally from the biology. Parasitoids such as the wasp
Aleiodes malacosmatos and the fly Carcelia malacosomae

(Tachinidae) that tend to be very good searchers and
attack forest tent caterpillar hosts directly, are most
effective in more fragmented forest stands (Roland and
Taylor, 1997). In contrast, other fly parasitoids are less
efficient at finding hosts, such as Patelloa pachypyga

(Tachinidae) and Leschenaultia exul (Tachinidae) that
lay first instar fly maggots that must subsequently find
and penetrate host pupae; these species are most
dominant in larger forest patches (Roland and Taylor,
1997).
The stability boundary calculations enable us to

examine the trade-off between searching efficiency and
emergence time required for parasitoid persistence in a
fixed habitat size (Fig. 10). By fixing r and L we plot r as
a function of a: The profile describes the stability
boundary separating parasitoid persistence from a host
only equilibrium. Above the curve the model predicts
host–parasitoid coexistence. Fig. 10 illustrates the
predictions for two parasitoid species A and B which
differ only in emergence time. Species A emerges early
and B emerges late. For a host growth rate of r ¼ 0:96;
both species A and B can persist with the host. If we now
consider a habitat with r ¼ 2:96; then only species A, the
early emerging parasitoid persists, a consequence of
density-dependence affecting later parasitoids. If we
increase the searching efficiency of B we find that it too
can then persist with the host.
In summary, theoretical predictions suggest early

emerging parasitoids are less susceptible to changes in
host growth rate. Increasing parasitoid searching
efficiency can compensate for the effects of late
emergence; however, the later the parasitoid emerges
the more efficient it needs to be to guarantee persistence
with the host. Our model illustrates that host outbreak
dynamics are potentially sensitive to the type of
parasitoid species present in the system.
We have considered the effects of a single parasitoid

species, parasitoid interaction in a multi-parasitoid
community are likely to affect these theoretical predic-
tions, although the extreme cases where parasitoid
abundance is dominated by one species could be
described by this model. Our results suggest that it is
necessary to study the effect of forest management
practices on both the host and parasitoid populations
and not just the host species.
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6. Discussion

Forest fragmentation has implications for biodiversity
and species and habitat conservation. We have exam-
ined the effects of a major component of habitat
fragmentation, namely patch size, on the dynamics of
host–parasitoid interaction. These interactions typically
result in temporal cycles of the insect populations. We
developed a simple integrodifference model which
considers a single isolated patch of habitat. Varying
patch size alone and allowing complete mortality
outside of the habitat is the classical setting for studying
critical patch size and represents the ‘extreme’ or ‘worst’
case scenario for habitat fragmentation. In contrast to
considering the effect of very small patches of habitat,
when we consider a large contiguous habitat, the model
essentially reduces to a non-spatial system. We have
demonstrated that in this scenario, the timing of
parasitoid emergence from the host and searching
efficiency of the parasitoid can be influential in
determining the frequency and severity of host out-
breaks.
The non-spatial model shows that increases in

parasitoid searching efficiency induce less frequent, but
longer host outbreaks, early emergence of the parasitoid
has a similar affect on increasing outbreak severity. In
systems where multiple specialist parasitoid species
parasitise the same host species the relative abundance
of the parasitoid types may be crucial in determining the
severity of host outbreaks.
The sensitivity of insect outbreaks to parasitoid

behaviour also holds in a spatially explicit setting. The
critical patch-size necessary for host–parasitoid persis-
tence increases as a function of a; the timing of
parasitism, thus later emerging parasitoids require larger
habitat for survival. This phenomenon is driven by host
loss through the patch boundary. The boundary
conditions considered in this paper allow free movement
out of the habitat into the surrounding hostile matrix. In
natural populations, this simplistic model of no edge
effects is likely to be unrealistic. Field observations for
the forest tent caterpillar for example, have found the
adult moths fly loops out from the forest edge and then
return with some eventually leaving the forest entirely.
Van Kirk and Lewis (1999) derived a dispersal kernel
from a random walk that allowed for some probability
of not moving at the habitat edge. We have not studied
this kernel here, but our analysis can easily be applied to
such a kernel and we hypothesise that the critical patch
size for host–parasitoid persistence would decrease.
Thus, persistence under mixed boundary conditions
would guarantee persistence when edge responses reduce
flux from the boundary. Our estimate of critical patch
size can therefore be regarded as conservative.
Truely isolated habitat patches, such as studied in the

critical patch-size problem, occur rarely for these insect
populations. More naturally, one would expect a
network of patches connected by interpatch dispersal.
Integrodifference models for single and structured
species on finitely many or infinitely many periodically
spaced patches have been formulated by Van Kirk and
Lewis (1997), Botsford et al. (2001), and Lutscher and
Lewis (2004). The average dispersal success in those
cases increases compared to a single patch, since
individuals leaving one patch may end up in another
patch, and consequently still contribute to offspring
production. Since an increased average dispersal success
translates into increased overall growth rates, we expect
that a population can survive in networks of patches,
even if some or all individual patches are smaller than
the critical patch-size. Studying such networks in the
framework of integrodifference equations is an impor-
tant next step to understanding the effects of fragmenta-
tion on population dynamics.
The paucity of dispersal data for our study species,

the forest tent caterpillar, implies that our assumed
dispersal kernel may also be subject to error. Lockwood
et al. (2002) examined the effect of five dispersal kernels
on the average dispersal success for a single population.
There was little difference in average dispersal success
among kernels, however the laplace kernel gave the
lower bound on critical patch size and the gamma
distribution gave an upper bound. Thus, in systems for
which there is reason to expect dispersal to be
concentrated at sites some distance from the point of
release, as observed with seed shadows generated in
some plant systems, then in such cases our estimate of
critical patch size may no longer be conservative.
We assumed one specific form of host density-

dependence, namely overcompensatory Ricker density-
dependence because our study system shows this
response. Overcompensation is not necessary for the
prediction that later emerging parasitoids require larger
critical patch size for persistence, only some form of host
induced parasitoid mortality is required. However, the
prediction that for high host growth rates, late emerging
parasitoids may not be able to persist at all (see the U

shape in Fig. 9), is a consequence of the overcompensa-
tory dynamics. Bellows (1981) describes methods for
estimating the functional form of density-dependence
from data. An extension of the work is to generalise the
results presented here to compensatory and under-
compensatory dynamics. The theta-Ricker model of
density-dependence has a free parameter to describe
compensation and would be a logical choice for
extending this work to a wider class of host–parasitoid
systems.

6.1. Application to the forest tent caterpillar

In this paper, we parameterised the model for our
system of interest, the forest tent caterpillar and its
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parasitoids. The community of parasitoid species differs
among geographical regions, as do the frequency and
duration of forest tent caterpillar outbreaks (Cooke,
2001). The model predicts that it is possible to have
small regions of habitat that support only hosts. Thus,
the model indicates that fragmentation has the potential
to exacerbate host outbreaks by providing refuges.
Empirical studies have found that some sites do harbour
forest tent caterpillar in the absence of parasitoids.
Moreover, the theory suggests that late emerging

parasitoids such as Arachnidomyia aldrichi require a
large habitat and should not persist in small isolated
stands as found in highly fragmented forests. Roland
and Taylor (1995) have shown that A. aldrichi appears
fairly insensitive to inter-patch distance, which may help
this species to persist in small isolated aspen stands.
However, not all late emerging parasitoids possess the
same resilience to patch isolation, one reason for this is
differing dispersal patterns.
The critical patch-size problem suggests that para-

sitoid searching efficiency (a, or scaled searching
efficiency r ¼ Ka), and emergence time (a), have
opposing affects on forest tent caterpillar outbreaks.
Later emerging parasitoids in the model require an
increased searching efficiency to successfully persist in
an isolated patch. Interestingly, the three latest-emer-
ging parasitoids A. aldrichi, P. pachypyga and C.

malacosomae have quite different searching strategies.
A. aldrichi lays first-instar maggots that must search and
find host pupae, P. pachypyga lays eggs on foliage which
must be subsequently ingested by feeding caterpillars,
and C. malacosomae oviposits directly on the host.
Among these three, and consistent with model predic-
tions, it is the more efficient searcher, C. malacosomae,
that persists best at low host density (Parry, 1995) and
persists best in small forest patches (Roland and Taylor,
1997). We cannot compare our critical patch size
estimates directly to data because we do not have
sufficient information on dispersal. However, the
survival of later emerging parasitoids places an upper
bound on critical patch size, suggesting a focus for
parasitoid dispersal studies.
In the introduction we noted that spruce budworm

outbreaks also respond to habitat structure. We have
not attempted to parameterise the model for this insect,
however, the spruce budworm is also univoltine and is
subject to parasitism. A High rate of parasitism of
mature larvae by the wasp Meterorous trachynotus

(Viereck) was seen in declining budworm populations
in Maine and New York (Kucera and Orr, 2004). The
spruce budworm is known to have a very high
reproductive capacity (r). A large value of r, together
with late emerging parasitoids (large a) place our model
in a region of parameter space where very large habitat
regions are necessary for coexistence of the host and
parasitoid (See Fig. 9a for large values of r). This result
partially depends on the budworm exhibiting over-
compensatory density-dependent mortality, which is
possible given that foliage availability is frequently a
limiting factor for outbreaks and the tree size within a
stand is important for achieving budworm outbreaks.
Bird predation is very high in spruce budworm
populations and is a factor which also needs to be
considered, but certainly the budworm is amenable to
the general framework and techniques presented here.
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Appendix A. The existence of a constant solution for a

Sturm Liouville problem

There is a constant h such that if h�
ðyÞ is replaced by h

the eigenvalues of the operator L do not change, where
L is given by

lfðxÞ ¼
Z 1

0

Kðx; yÞf ðh�
ðyÞÞfðyÞ dy ¼ LfðxÞ: (16)

To prove this, we first notice that

min
z

f ðh�
ðzÞÞ

Z 1

0

Kðx; yÞfðyÞ dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼LminfðxÞ

p
Z 1

0

Kðx; yÞf ðh�
ðyÞÞfðyÞ dy

pmax
z

f ðh�
ðzÞÞ

Z 1

0

Kðx; yÞfðyÞ dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼LmaxfðxÞ

: ð17Þ

This holds for every function f and f. Therefore, the
operators are ordered as follows: LminpLpLmax and
thus, L is a positive operator. Krasnoselskii (1964)
proved that the corresponding dominant eigenvalues of
these operators satisfy: lminplplmax:
If we now consider the operator c

R 1
0

Kðx; yÞfðyÞ dy;
which exists for each c. We can say that there exists
some c such that lc ¼ l where c ¼ f ðhÞ: In summary,
there is a constant h which satisfies Eq. (16).
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Appendix B. Estimating hav

Our goal is to estimate hav; the spatial average of the
host only steady state h�

ðxÞ:

hav ¼
1

jOj

Z
h�
ðxÞ dx:

We do not know the function h�
ðxÞ explicitly; however

we have an implicit equation for h�
ðxÞ:

h�
ðxÞ ¼

Z
khðx; yÞh

�
ðyÞere�rh�ðyÞe0 dy

¼

Z
khðx; yÞf ðh

�
ðyÞÞ dy: ð18Þ

Using an approach developed by Van Kirk and Lewis
(1997) we can now estimate hav: By the mean value
theorem there exists some ĥðyÞ such that:

f ðh�
ðyÞÞ � f ðhavÞ ¼ f 0

ðĥðyÞÞðh�
ðyÞ � havÞ: (19)

Substituting Eq. (19) into Eq. (18) yields the following
expression:

h�
ðxÞ ¼ f ðhavÞ

Z
khðx; yÞ dy|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

dispersal success
¼sh ðxÞ

þ

Z
khðx; yÞf

0
ðĥðyÞÞðh�

ðyÞ � havÞ dy: ð20Þ

When the spatial variation in h�
ðyÞ is small, then

h�
ðyÞ � hav and therefore the last term in Eq. (20) is very

small, so we may neglect it. It turns out that we may
neglect this term even when the spatial variation in h�

ðyÞ

is large. Large spatial variation will occur, for example,
when edge effects are severe. In this case, the edges will
be characterised by low population size (i.e.
h�
ðyÞ � havo0) and correspondingly high growth rate

(f 0
ðĥðyÞÞ), giving a large negative product

f 0
ðĥðyÞÞðh�

ðyÞ � havÞ: In the interior, the converse is true,
i.e. h�

ðyÞ � hav40; f 0
ðĥðyÞÞ is low, and the product is

small and positive. Since the edge area is small relative
to the interior, the sum of few edge and many interior
products is small and can be neglected. The larger the
domain, the smaller the term we neglect. Van Kirk and
Lewis (1997) demonstrate numerically that this holds.
Neglecting the last term of Eq. (20) yields

h�
ðxÞ � f ðhavÞshðxÞ: (21)

It remains to calculate hav: By taking the spatial average
of Eq. (21), we obtain an estimate of hav:

h ¼ f ðhÞSh where Sh ¼
1

jOj

Z
O

shðxÞ dx: (22)

Adopting a Laplace dispersal kernel, we can calculate
the average dispersal success function Sh; exactly:

Sh ¼ 1�
1� expð�LhÞ

Lh

:

Taking the function f as described in (18), Eq. (22) can
be solved for hav to give:

hav ¼
ln S

r
þ 1:
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