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Abstract. This paper is concerned with mathematical analysis of the ‘critical domain-size’
problem for structured populations. Space is introduced explicitly into matrix models for
stage-structured populations. Movement of individuals is described by means of a dispersal
kernel. The mathematical analysis investigates conditions for existence, stability and unique-
ness of equilibrium solutions as well as some bifurcation behaviors. These mathematical
results are linked to species persistence or extinction in connected habitats of different sizes
or fragmented habitats; hence the framework is given for application of such models to ecol-
ogy. Several approximations which reduce the complexity of integrodifference equations are
given. A simple example is worked out to illustrate the analytical results and to compare the
behavior of the integrodifference model to that of the approximations.

1. Introduction

In the ‘critical domain-size’ problem for structured populations, reproduction and
maturation of the structured population take place locally within an inhabitable
patch or ‘reserve’, and loss from the inhabitable patch to uninhabitable exterior
regions takes place due to dispersal across the patch boundary. This loss can be
considered as a an ‘edge effect’ [9], where overall population growth is diminished
due to boundary loss.

Whereas the total reproductive rate of the population scales with patch area,
the dispersal loss scales with boundary length. Since surface area scales with the
square of the linear dimension, boundary loss dominates dynamics of small patches
but plays a diminished role in the dynamics of larger patches. The assumption that
a small population grows in the absence of boundary loss leads to the existence of
a critical size for the patch, below which the population cannot persist, and above
which populations can grow. In turn, the critical domain-size provides a tool for
reserve design and conservation [2,4].

A first model for critical domain-size in one space dimension, consisting of
exponential population growth, Fickian diffusion, and a completely hostile exterior,
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was analyzed in [16] and [29]. These analyses have been extended to cover more
complex spatial domains [30] and multiple interacting species [5]. Such models are
formulated using assumptions of continuous-time reproduction and dispersal.

By way of contrast, in the absence of explicit spatial effects, stage- or age-
structured matrix models have been the ‘work-horse’ for ecologists interested in
population growth and persistence [6]. The single most important quantity in matrix
models is the leading eigenvalue of the matrix. If it is greater than one, then the
population can grow or persist. Matrix models have been applied in many different
areas like fisheries [7], insects [15] or tree management [28], to name but a few.

The addition of dispersal into discrete-time models results in integrodifference
equations [19]. It is appropriate if reproduction and dispersal occur as discrete non-
overlapping events. In the scalar case, the critical domain-size problem has been
analyzed in detail [32]. The more realistic case, which allows for both population
and spatial structure and for stage-specific dispersal processes, is the stage-struc-
tured integrodifference model [26]. The purpose of this paper is to analyze the
critical domain-size problem for the stage-structured integrodifference model, to
provide the mathematical framework to study the effects of habitat fragmentation,
and to derive approximations that link the analysis to the simpler matrix model
case.

2. Modeling background

Simple difference equations of the form

ut+1 = f (ut ) = b(ut )ut (1)

have been used widely to model the evolution of the density ut of a population with
discrete non-overlapping generations indexed by t. The function f describes the
net effect of production of offspring and removal of individuals, and b stands for
the per capita production minus mortality rate. Individuals are not differentiated
with respect to age or stage. They are lumped together over the spatial domain in
which the population lives, and environmental heterogeneity is neglected.

Extensions of (1) to stage-structured population models are written in matrix
form

u(t + 1) = F(u(t)) = B(u(t))u(t), (2)

where now u = (u1, . . . , um)
T is the vector of densities of stages 1 . . . m and B is

the matrix of net production rates. The entry bij is the net rate with which stage i is
produced from stage j. The most comprehensive overview of the setup and appli-
cation of these matrix models together with a detailed reference list can be found
in [6]. Both model types, (1) and (2), exhibit a wide range of possible behavior
from approaching equilibria or cycles to existence of strange attractors and chaotic
behavior [6,18,31].

An extension of (1) to include spatial locations and movement of individuals
assumes that population dynamics are governed by (1) and dispersal is governed
by a probability density function or kernel k(x, y) that describes the likelihood of
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jumping from y to x in a single time step. When growth and dispersal are separated
in time, the integrodifference model results

u(t + 1, x) =
∫
�

k(x, y)f (u(t, y), y)dy, (3)

where � denotes the domain of interest.
Although integrodifference models were initially formulated to study popu-

lation genetics, recent applications have been made to ecological problems. One
problem is the study of speeds of invasions and shapes of fronts. We will not address
this question here, but give references for the sake of completeness [17,24,35,36].
Another problem regards critical domain-size and population persistence in frag-
mented habitats.

The first application of (3) to persistence in ecology was [19], where the model
was derived, linear analysis was performed and the shapes of equilibrium solutions
were studied numerically. Several aspects of density dependence and the possibility
of pattern formation in homogeneous habitats were studied in [1]. A generaliza-
tion of (3) to include temporal variation is given in a series of papers [11–13].
Existence and stability of fixed points and cycles were studied in the case where
f varies periodically in time or even stochastically. Different dispersal strategies
were compared with respect to persistence. The bifurcation structure of (3) was
closely examined in [32]. An approximation for the spatial shape of the equilib-
rium solution in terms of the dispersal success function (see Section 5) was given.
Persistence in a periodically varying heterogeneous domain was studied.

Much as the scalar model (1) can be extended to equation (3), the stage-struc-
tured model (2) can also be spatially extended. While this type of spatial stage-
structured model has been used to model biological invasions [26], we are not
aware of a systematic mathematical treatment of stage-structured integrodifference
models for persistence in fragmented habitats. However, there is a growing interest
amongst ecologists in applying such models, e.g., to reserve design [2].

The first goal of this paper is to thoroughly formulate stage-structured integro-
difference models and to generalize the existence and bifurcation results of [32]
(Section 3). In particular, Section 3.2.2 is somewhat technical and can be skipped at
first. In Section 4, the theoretical results on the critical domain-size are illustrated
with an example and numerical simulations. Then, several approximations are pre-
sented, which can be used to determine stationary solutions, their spatial shape and
their stability without using excessive computer power or demanding large datasets
(Section 5). Some effects of habitat fragmentation are discussed in Section 6. In
Section 7, we extend part of the theory developed in Section 3 to the case where
certain stages are sedentary.A table of the most frequently used symbols is included
in appendix A.1.

3. Formulation and analysis of the model

3.1. Formulation

We assume that the non-spatial model (2) for a population with m stages and non-
overlapping generations is given. To introduce space, we denote � ⊂ R

n as the
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spatial domain of interest. We exclude all points from� where the population can-
not settle and reproduce. We account for possibly varying conditions in the domain
by allowing the matrix of production rates, B(u, y), to depend on space explicitly.
We assume that there is emigration from the domain but there is no immigration
into the domain. We assume that � is closed and bounded.

To describe dispersal we denote kij (x, y) as the probability that an individ-
ual at stage i which was produced from stage j at the point y ∈ � settles at
x ∈ � during one dispersal period. Together, these kernels form the dispersal
matrixK(x, y) = (kij (x, y)). The dispersal matrix may depend only on the signed
distance K(x, y) = K(x − y) rather than on precise locations, as is the case with
the commonly used Laplace kernel with variance σ 2,

k(x, y) = 1√
2σ 2

exp

(
−
√

2

σ 2 |x − y|
)
. (4)

This kernel can be derived from the assumption that dispersers move randomly
and settle at a constant rate [3,27]. If habitat quality, habitat selection, and bound-
ary effects have to be taken into account [33], then the simplifying symmetry
assumption is, in general, not valid. Dispersal kernels can also be constructed from
observational data. If there is no mortality due to dispersal, then for all y

∫
�

kij (x, y)dx ≤
∫

Rn
kij (x, y)dx = 1, (5)

since individuals are lost when they leave the domain. If there is mortality due to
dispersal, then the second integral is less than one.

Now, for each stage i we multiply its production with its dispersal kernel,
kij bij uj , and sum over all stages j to obtain the spatially explicit model for repro-
duction and dispersal as (compare [26])

u(t + 1, x) = A(u(t))(x) =
∫
�

[K(x, y) ◦ B(u(t, y), y)]u(t, y)dy, (6)

where ◦ denotes the Hadamard product of entrywise matrix multiplication.

3.2. Analysis

Biologically, we are interested in finding the critical domain-size, its dependence
on parameters, steady states and the long term behavior of solutions of (6). Mathe-
matically, this translates into finding the leading eigenvalue of the linearization at
zero, its dependence on parameters, bifurcations, and uniqueness and stability of
fixed points. This section is devoted to provide all these mathematical tools.

The compactness and differentiability conditions established in Lemma 1 be-
low ensure that we can use the theory of completely continuous operators in the
analysis to follow. We then establish the main result on the linearization under
quite strong assumptions (Theorem 1). In Section 3.2.2 we discuss how to relax
these assumptions to include more biologically relevant scenarios. The proofs and
some formulations in this section are quite technical and can be skipped at first.
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Section 3.2.3 explores dependence on parameters. Lastly, we study existence and
uniqueness of positive fixed points if the zero state is unstable.

It is convenient to work in the product space L2 = (L2(�))m and its positive
cone. The following will be assumed throughout the paper.

(A1) The per capita production is bounded independent of the population size, i.e.,
0 ≤ bij (u, y) ≤ bmax < ∞ for all i, j. Furthermore, bij (u, y) is continuous
w.r.t. y and continuously differentiable w.r.t. u.

(A2) If bij is nonzero then kij satisfies kij ∈ (L2(�))2.

Lemma 1. Under the assumptions (A1–2) it follows from Sections 17.3 and 17.8
in [21] that A : L2 → L2 as defined in (6) is positive and completely continuous.
From Section 17.5 and Theorem 17.1 in [21] we see that A is strongly Fréchet dif-
ferentiable at u = 0 w.r.t. the positive cone. Its derivative the positive, completely
continuous linear operator given by

A′(0)φ(x) = Dφ(x) =
∫
�

[K(x, y) ◦ B(0, y)]φ(y)dy. (7)

Assumption (A1) generalizes [13,32] where it was assumed that the total pro-
duction f (u) = b(u)u is bounded independently of u. For a non-structured pop-
ulation, this assumption is natural. It implies that b(u) → 0 as u → ∞. This
implication is too strong for the stage-structured model. In the scalar case, (A1)
reduces to saying that f is asymptotically linear.

The “dispersal behavior” of sedentary stages is described by the delta distri-
bution kij (x, y) = δ(x − y). This case is excluded by assumption (A2) since the
operator A in general fails to be compact then. The last section of this paper is
devoted to a more thorough investigation of this case.

3.2.1. Linear analysis
A linear operator is called superpositive [21] if it has a simple positive dominant
eigenvalue with positive eigenfunction, and no other eigenfunction is positive. If
an operator is superpositive then the stability of zero and the asymptotic behavior
of the equation are determined by the leading eigenvalue and the corresponding
eigenfunction. In what follows, we derive biologically relevant conditions under
which D is superpositive.

A matrixB is called primitive if some power ofB has strictly positive entries [6].
This condition is often satisfied in models for structured populations. We assume
the following spatial version of primitivity.

(A3) The matrixB(0, y) is primitive for each y ∈ � and its sign structure does not
change throughout the domain, i.e., if bij (0, y) is positive for some y ∈ �
then it is positive for all y ∈ �.

In biological terms, if stage j produces stage i somewhere in the domain, then it
does so everywhere, possibly at different rates.

Theorem 1. Assume (A1–3). In addition, assume that there are constants 0 < κ ≤
kij ≤ κ on � for all pairs (i, j) for which bij is nonzero. Then D is superpositive.

We give the proof in appendix A.3 by first showing that the operator is
u0-positive in the sense of [20].



298 F. Lutscher, M.A. Lewis

3.2.2. Relaxing the assumptions
The positivity assumption in Theorem 1 implies that dispersers can reach any point
in the domain from any other point within one dispersal period. This assumption
seems unreasonable for some species. In order to relax this assumption, we first
assume the domain� to be connected. The condition on the kernels then becomes:

(A4) For all kij 	= 0 there is a simultaneous non-negative symmetric continuous
subfunction κ(x, y) = κ(y, x) ≤ kij (x, y) ≤ κ, and there is a constant δ
such that for all x ∈ � the measure of the set {y ∈ � | κ(x, y) ≥ κ > 0} is
at least δ.

The last condition in (A4) says that each point in the domain is accessible to indi-
viduals from an area of size at least δ. Assumption (A4) in particular covers two
cases of interest. If dispersers stay close to where they originated then kij (x, y) = 0
if |x − y| is large. The area from which a point can be reached then is a neighbor-
hood of the point itself. In the other extreme, if individuals move at least a certain
distance from where they originated, then the dispersal kernel is zero for x = y, as
in the double Weibull kernel with appropriate parameters [27]. Then (A4) requires
that the minimal distance which individuals travel is small enough compared to the
domain size.

Proposition 1. Assume (A1–4) and that � is connected. Then D is superpositive.

Finally, we write � = ⋃̇
γ=1...��γ as a disjoint union of connected compo-

nents. Hereafter, Latin characters always refer to stage whereas Greek characters
refer to spatial domains. The connectivity matrix C = (cαβ) for continuous kernels
kij is given by

cαβ =
{

1 if for some x ∈ �α, y ∈ �β, i, j : kij (x, y)bij (0, y) > 0
0 else

(8)

Then we need the following last assumption

(A5) The matrix C is primitive.

Assumptions (A4) and (A5) together imply that an individual of stage i at point x
can get to any other location y ∈ � and stage j through dispersal and production
in finitely many generations. This assumption is the natural generalization of the
assumption in [13] that dispersers can reach any point in the domain from any
other point in finitely many generations. In mathematical terms this means that the
operator D is irreducible.

Proposition 2. Let � = ⋃̇
γ=1...��γ be the disjoint union of connected compo-

nents and assume that (A1–5) hold. Then D is superpositive.

Proofs of both propositions are given in appendix A.3.
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3.2.3. The relation between survival, growth and domain length
We now study the dependence of the leading eigenvalue λ on some growth param-
eter P and on the domain length L.

Lemma 2. (a) On a fixed domain, suppose that the matrix of production rates
B(0, y;P) is non-decreasing in P. Denote λ(P ) as the dominant eigenvalue.
If at least one entry of B(0, y;P) is strictly increasing in P then so is λ(P ).

(b) Fix P, and let � = [0, L]. Assume that the kernel is of the form K(x, y) =
K(x − y) > 0 and denote λ(L) as the leading eigenvalue. Then λ(L) is a
strictly increasing function of L.

Part (b) of the Lemma can be extended to higher dimensional domains and
more general kernels. The formulation becomes more complicated, for example,
one has to find an appropriate domain size parameter L. We formulate a more
general version in appendix A.3 where we also give the proof.

The implicit function theorem applied at the bifurcation point gives

dP/dL < 0, (9)

provided the conditions of the Lemma are satisfied. Hence, on smaller domains the
population needs a higher growth rate to survive. This conclusion and inequality
(9) were already reached in [32] for scalar integrodifference models. The correct
proof, however, is provided in the two preceding lemmas.

3.2.4. Nonlinear analysis
To ensure existence of a nonzero fixed point, which is not the point at infinity, we
impose the following condition.

(A6) There is some matrix-valued function B(∞, y) such that

‖B(u(y), y)− B(∞, y)‖ ≤ const.

‖u‖ , for large ‖u‖. (10)

Lemma 3. Suppose (A1,2,6) are satisfied. Then, by 3.2.1 in [20] and Theorem 17.2
in [21], the operator A has a strong asymptotic derivative at infinity. It is given by
the completely continuous operator

A′(∞)φ(x) =
∫

[K(x, y) ◦ B(∞, y)]φ(y)dy. (11)

Proposition 3 (Existence of fixed points). Assume (A1–6). Suppose that the spec-
tral radius of A′(∞) is less than one and that the dominant eigenvalue of D is
greater than one. Then by Thm. 4.11 in [20], A has a positive fixed point. In the
scalar case, the condition on the spectral radius at infinity reduces to the slant
asymptote of f having slope less than one.

(A7) The production rates satisfy (∂/∂ul)bik ≤ 0 for all i, k, l, and the inequality
is strict for at least one set i, k, l.
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Assumption (A7) states that the population experiences some population pressure.
In particular, we exclude the Allee effect that a population benefits from an increase
in density, at least for some intermediate density range. Recall that the dominant
eigenvalue λ(L, P ) of the linear operator D(L, P ) on � = [0, L] is increasing in
the growth parameter P and the domain length L under some conditions. We first
fix L and denote by P ∗ = P ∗(L) the critical value where λ(L, P ∗) = 1.

Lemma 4 (Bifurcation I). Assume (A1–7) are satisfied and the spectral radius of
A′(∞) is less than one, independent of P close to P ∗. Assume that the production
rates bij are non-decreasing in P and that at least one of the rates is increasing in
P. Then there is a transcritical bifurcation at P = P ∗, i.e., a continuous branch of
solutions intersects the zero solution. The nonzero solution is positive for P > P ∗.

Vice versa, we can fix P and denote by L∗ = L∗(P ) the critical domain length
where λ(L∗, P ) = 1. To formulate the next lemma, it is convenient to introduce
the dispersal success functions

sij (y) =
∫
�

kij (x, y)dx, (12)

which we discuss in detail in Section 5.

Lemma 5 (Bifurcation II). Assume (A1–7) are satisfied and the spectral radius of
A′(∞) is less than one, independent of L close to L∗. Assume that the dispersal
success functions sij are non-decreasing in L and that at least one of them is
increasing inL. Then there is a transcritical bifurcation atL = L∗, i.e., a continu-
ous branch of solutions intersects the zero solution. The nonzero solution is positive
for L > L∗.

The proofs are given in appendix A.3.
In the scalar case it is known [32] that the non-negative fixed point is unique and

stable whenever it exists, provided that the function f (u) = b(u)u is monotone and
concave. The Beverton-Holt growth function satisfies the conditions but the Ricker
function does not. The result can be generalized to the stage-structured model as
follows.

Proposition 4 (Uniqueness of fixed points). Let the assumptions of Proposition 3
be satisfied. Assume in addition that the function

u → B(u)u (13)

is increasing and that

t → B(tu) (14)

is decreasing for 0 ≤ t ≤ 1.Then A is concave and monotone and hence by Thm. 6.3
in [20] the positive fixed point is unique. By Thm. 6.6 in [20] every solution with
u0 	= 0 converges to the positive fixed point.

In appendix A.2, conditions (13), (14) are given in coordinates and some exam-
ples that satisfy the two conditions are worked out. In natural populations, periodic
cycles occur frequently and hence a unique stable fixed point may be unrealistic.
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4. Example and simulations

We introduce dispersal into the matrix model from [25] on a connected one-dimen-
sional habitat patch. Simulations illustrate the theory above. In particular, we ask:
Keeping the dispersal parameters fixed, how does the behavior of the spatial model
compare to the one of the non-spatial model? Vice versa, keeping the population
vital rates fixed, how does the behavior of the spatial model depend on dispersal?

The population in the matrix model [25] is divided into juveniles, u1, and adults,
u2. Survival of stage j is given by the rate ρj . Juveniles mature at rate γ, and adults
produce juveniles at rate P. The model equation reads

u(t + 1) = Bu(t) =
(
ρ1(1 − γ ) P

ρ1γ ρ2

)
u(t), u =

(
u1
u2

)
. (15)

In [25], a detailed study is given in the four cases that exactly one of the param-
eters depends on the total density u1 + u2 according to a negative exponential.
We concentrate on the case of density-dependent reproduction, i.e., we replace the
parameterP in (15) byPe−(u1+u2).The results from [25] in that case are: For small
values P < P0 the zero state is the unique stable equilibrium of (15). At P = P0
there is a transcritical bifurcation to a stable positive equilibrium. For P > Pc this
equilibrium loses stability through a series of flip bifurcations, which eventually
lead to chaotic behavior ([25], Figures 2a, 5a). The bifurcation values P0 and Pc as
well as the population level at the positive steady state and the basic reproductive
number R0 are computed explicitly ([25], Equation (9) and Tables 3, 4).

We choose each dispersal kernel as a Laplace kernel and, for simplicity, assume
that all kernels have the same variance, i.e., kij (x, y) = k(x, y) as in (4). We work
on the normalized spatial domain � = [−1, 1]. Changing the domain to [−L,L]
is equivalent to replacing the variance of the kernels by σ 2/L2, [32]. Instead of P
and L we work with P and σ 2.

The assumptions of Theorem 1 and Lemma 2 are satisfied. Therefore, there is
a leading eigenvalue, and it is increasing in P and L, and hence decreasing in σ 2.

Assumption (A6) is satisfied with

B(∞) =
(
ρ1(1 − γ ) 0
ρ1γ ρ2

)
. (16)

Hence, by Proposition 3 there is a fixed point in case that the leading eigenvalue of
the linearization is greater than 1. There is no Allee effect, and hence by Lemmas 4
and 5 there are transcritical bifurcations from the trivial steady state as P increases
or σ 2 decreases.

Since we are interested in the effects of space, we concentrate on σ 2 and fix
the other parameters as in [25], i.e., ρ1 = 0.5, ρ2 = γ = 0.1. Figure 1 shows,
for fixed P, how the stable equilibrium emerges and changes shape for decreasing
variance σ 2 (or increasing domain length L). Both, juveniles and adults, grow with
the domain length. The dashed lines give the dispersal success approximation as
explained in Section 5. Simulations are done using Matlab, its FFT-routine and
4096 space points.



302 F. Lutscher, M.A. Lewis

−1      1   

0  

1  

σ2=0.5

spatial domain

de
ns

ity

−1      1   

0  

1  

σ2=0.08

spatial domain

de
ns

ity

−1      1   

0  

1  

σ2=0.02

spatial domain

de
ns

ity

Fig. 1. The true steady state (solid line) and the dispersal success approximation (dashed
line) for P = 30 and σ 2 = 0.5, σ 2 = 0.08 and σ 2 = 0.02. The upper profiles show the
juveniles, the lower ones the adults.

The exponential density-dependence Pe−(u1+u2) does not satisfy the concavity
condition (13) for uniqueness of fixed points in Proposition 4. Hence, we expect
further bifurcations for appropriately chosen values ofP.All density profiles in Fig-
ure 1 are concave, which simply is an effect of the loss of individuals through the
boundary. It turns out that secondary bifurcations, domain length and non-concave
profiles are closely related.

In Figure 2 we give some examples of cycles with non-concave shapes. The
two local maxima near the edges of the domain in the 2-cycle result from an inter-
play of loss through the boundary, the Ricker dynamics and the small (relative to
the domain size) dispersal distance. If the population density at the boundary is
lower than in the middle of the domain, then the Ricker dynamics produce more
individuals close to the boundary than in the middle. Since dispersal is small, this
pattern is still seen after the smoothing effect of dispersal. In the next time step, the
Ricker dynamics produce only few offspring close to the boundary, some of which
are then lost through the boundary, and hence we are back to the beginning.

Since all the dispersal kernels are equal, we can explicitly compute the relation-
ship between the intrinsic growth rate and the domain length at the first bifurcation
point, thereby extending the results in [19,32]. We denote φ = (φ1, φ2) and write
the linearized equation as

λφ(x) =
∫ 1

−1

1√
2σ 2

exp

(
−|x − y|√

σ 2/2

)
Bφ(y)dy, (17)
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Fig. 2. Non-concave shapes of cycles. The 2-cycle for P = 370 and σ 2 = 0.08 shows
one non-concave profiles for juveniles (solid lines). Similarly, the 4-cycle for P = 570 and
σ 2 = 0.5. The last plot shows a 4-cycle for P = 700 and σ 2 = 0.02, in which also the adult
stage has non-concave profiles.

with B as in (15). Differentiating twice leads to the equivalent formulation

φ′′(x) = −
√

2

σ 2

(
1

λ
B − I

)
φ(x), (18)

with boundary conditions

φ′(±1)±
√

2

σ 2 φ(±1) = 0. (19)

At the bifurcation point, we have λ = 1, which implies that the leading eigen-
values of B is greater than 1. Solutions of the boundary value problem (18), (19)
are symmetric with respect to x −→ −x. The exponential ansatz φ(x) = ψeζx

leads to

ζ 2 = −
√

2

σ 2 (µj − 1), (20)

where µ1,2 are the eigenvalues of B with the corresponding eigenvectors ψ1,2.We
have µ1 > 1, µ2 < 1.Applying the symmetry condition, we are left with the two
possible solutions

ψ1 cos

(√
µ1 − 1√
σ 2/2

x

)
, ψ2 cosh

(√
1 − µ2√
σ 2/2

x

)
. (21)
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Using the boundary conditions and the requirement that the solution be positive,
we can rule out the second possibility and arrive at the relation

√
2

σ 2 = tan−1(1/
√
µ1 − 1)√

µ1 − 1
, (22)

which for the scalar case was given in [19] equation (60), and [32] equation (28).
This argument generalizes to arbitrary dimension provided that all eigenvalues of
B are real and only the leading eigenvalue is greater than 1.

The leading eigenvalue µ1 of B obviously depends on the growth parameter
P. We plot the relation between σ 2 and P in Figure 5, where we compare it with
approximative values derived in Section 5 and results from numerical experiments.

5. Approximations

Dispersal matrices contain many parameters, and model (6) might require intensive
computing. In this section, we present some helpful approximations. These approx-
imations are based on the redistribution function, the dispersal success function,
and the average dispersal success which we introduce below. The patch approxima-
tion reduces the integrodifference equation to a difference equation in some finite
dimensional state space. It was first mentioned in [13] for a non-structured popula-
tion. The dispersal success approximation gives the approximate spatial distribution
of the stationary solution of the integrodifference equation in terms of the stationary
solution of the non-spatial model and some information about the dispersal process.
It was first worked out for a non-structured population on a single habitat patch in
[32] and for two patches in [14]. The underlying idea for both approximations is
to average over homogeneous habitat-patches. We generalize both approximations
to a stage-structured population on finitely many habitat-patches. Then we derive
approximations of the eigenvalues which determine persistence and stability of a
population.

5.1. Characteristics of dispersal

Integrating the dispersal kernels with respect to point of settlement, we obtain the
dispersal success functions sij (y).These give the probability with which an individ-
ual of stage i that was produced from stage j at location y after the dispersal phase
successfully settled in the domain �. The matrix of dispersal success functions is
defined by

S(y) =
∫
�

K(x, y)dx =
(∫

�

kij (x, y)dx

)
= (sij (y)). (23)

If no individuals are lost through the boundary then sij (y) = 1 (compare (5)) but
in general

0 ≤ sij (y) ≤ 1. (24)

The functions sij (y) correspond to a point release experiment. At the point y one
releases individuals of stage i produced from stage j, and after one dispersal period
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one determines the fraction of individuals that are still in the domain. The average
dispersal success is given by

Ŝ = 1

|�|
∫
�

S(y)dy = 1

|�|
∫
�

∫
�

K(x, y)dydx. (25)

The redistribution functions rij (x) correspond to an area release experiment.
Individuals of stage i produced from stage j are distributed homogeneously over
the whole domain with density N.After one dispersal period the expected density
of individuals at x ∈ � is Nrij (x). The matrix of redistribution functions is

R(x) =
∫
�

K(x, y)dy =
(∫

�

kij (x, y)dy

)
= (rij (x)). (26)

The function R is nonnegative but need not be bounded pointwise.
If the probability of dispersing from y to x is the same as the one from x to y,

the dispersal kernel is symmetric, K(x, y) = K(y, x), which implies R = S. The
Laplace kernel (4) is an example. Its dispersal success function is given by

s(y) = 1 − 1

2
e
−
√

2
σ2 cosh

√
2

σ 2 y, (27)

see [32], and the average dispersal success is (see Figure 3)

ŝ = 1 − 1

2

√
σ 2

2

(
1 − e

−2
√
σ2
2

)
. (28)

In general, the two functions R and S are different. Assume, for example, that in
a non-structured population (m = 1) the choice of settlement location depends
only on the quality of the habitat at that point. Then k(x, y) = k(x), and so the
redistribution function r(x) is just a multiple of k whereas the dispersal success
function s(y) is constant.
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Fig. 3. The average dispersal success ŝ of the Laplace kernel (4) depending on the variance
σ 2.
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5.2. Patch approximation

We assume that � is divided into disjoint connected components �α, α = 1 . . . �,
each of which is spatially homogeneous. Recall that Greek letters to refer to space
and Latin ones to stage. Averaging the population over each component, we get the
vectors Uα(t) = (Uα1 (t), . . . , U

α
m(t))

T as

Uα(t) = 1

|�α|
∫
�α

u(t, x)dx (29)

for each patch �α. On each patch we get the matrix of production rates

Bα(·) = B(·, y)|�α . (30)

Substituting (29) and (30) into the right hand side of the master equation (6) and
integrating the result over habitat patch α we obtain the time evolution of the pop-
ulation averages as the m× �-dimensional system

Uα(t + 1) =
�∑
β=1

[
Sαβ ◦ Bβ(Uβ(t))]Uβ(t), (31)

where Sαβ are matrices of averaged dispersal success from patch �β to �α,

Sαβ = 1

|�α|
∫
�α

∫
�β

K(x, y)dydx, α, β = 1, . . . , �. (32)

On a single patch, formula (31) simplifies to an equation of the form (2):

U(t + 1) = [Ŝ ◦ B(U(t))]U(t), (33)

where Ŝ is the average dispersal success given by (25).
Since the integration over space has to be performed only once instead of at

every time step, the iteration (31) is computationally faster than the full model
(6), in particular, if the integrals are not convolutions. If dispersal is homogeneous
within patches then the approximation (31) is indeed the true solution of (6).

5.3. Dispersal success approximation

We briefly recall the approximation for an unstructured population and a symmet-
ric kernel as derived in [32]. Denote u∗(x) as the nonzero equilibrium solution of
(3) and ū as its spatial average. If |u∗(x) − ū| is small, then the dispersal success
approximation

u∗(x) = s(x)b(ūa)ūa, (34)

is of first order in |u∗(x) − ū|. Integrating this equation on both sides gives the
spatial average ū as the approximate solution of the algebraic equation

ūa = ŝb(ūa)ūa, (35)
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where s(x) and ŝ are given by (23) and (25). The corresponding formula in the
case of two habitat-patches has been derived in [14]. Dropping the assumption of
symmetric kernels, we instead get the redistribution approximation

u∗(x) = r(x)b(ūa)ūa, (36)

where r(x) is the redistribution function (26) for the kernel k and ūa is still given
by (35). Recall that (34) and (36) can be quite different.

In the stage-structured case on a single habitat-patch �, we denote by u∗ the
stationary solution of (6) and form the average

ū = (ū1, . . . , ūm)
T = 1

|�|
∫
�

u∗(x)dx. (37)

We abbreviate F(w) = [K ◦B(w)]w.Using the fundamental theorem of calculus,
the steady state equation of (6) can be written as

u∗(x) =
∫
�

[K(x, y) ◦ B(ū, y)]dy ū

+
∫
�

∫ 1

0
DF(ξu∗ + (1 − ξ)ū) dξ (u∗ − ū) dy, (38)

where DF denotes the derivative of F .We now assume that the steady state solu-
tion u∗ is close to its spatial average and that DF is order 1. These assumptions
are valid if the domain is large with respect to the dispersal distance and if the pro-
duction rates are smooth functions of the density. We also assume that the habitat
is homogeneous such that B does not depend on y. Then to first order we have

u∗(x) =
[∫

�

K(x, y)dy ◦ B(ū)
]
ū = [R(x) ◦ B(ū)]ū, (39)

and in the special case of symmetric kernels u∗(x) = [S(x) ◦ B(ū)]ū. Integrating
both sides and dividing by the volume of �, we get the vector-valued fixed-point
equation

ūa = [Ŝ ◦ B(ūa)]ūa, (40)

with Ŝ as in (25), which determines ū to first order.
For several homogeneous habitat patches �α, α = 1 . . . �, with Bα(·) =

B(·, y)|�α , the redistribution approximation is given by

u∗(x) =
∑
α

[Rα(x) ◦ Bα(ūα)]ūα, (41)

where Rα(x) is the number of arrivals at x from patch �α. For symmetric kernels
we obtain the dispersal success approximation by replacing Rα with Sα, where
Sα(x) is the dispersal success from x into patch �α, compare (32). The first-order
approximation of the population average at the equlilbrium solution is given by the
fixed point of the matrix-valued equation

ūα =
∑
β

[Sαβ ◦ Bβ(ūβ)]ūβ . (42)
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5.4. Example continued

Since all dispersal kernels in our example are assumed identical, the dispersal suc-
cess approximation of the spatial version of (15) simplifies to

u∗(x) = s(x)B(ū)ū, ūa = ŝb(ūa)ūa. (43)

The result is plotted as the dashed lines in Figure 1. True and approximation solution
agree well for the adult stage but not quite as well for the juvenile stage. In deriv-
ing the dispersal success approximation, we assumed that the profile is sufficiently
close to a constant. Whereas the adult stage is close to a constant, the juvenile stage
is not, and hence the difference was to be expected.

5.5. Eigenvalue approximation

We now approximate the leading eigenvalue λ of the operator D in (7). We denote
the corresponding eigenfunction by φ = (φ1, . . . , φm)

T . On each patch�α we get
the average φ̄α as in (29). Assuming again that B is constant on each patch�α, we
integrate both sides of the equation λφ = Dφ over the domain and substitute φ̄ for
φ to get the approximate equation

λφ̄α =
∑
β

[
Sαβ ◦ Bβ(0)dy] φ̄β, (44)

with Sαβ as in (32). On a single habitat patch the formula is

λφ̄ =
[
Ŝ ◦ B(0)

]
φ̄, (45)

which is exactly the eigenvalue problem for (33) linearized at zero.
Since individuals may be lost through the boundary, one expects that the total

number of individuals at steady state in the spatial model (6) is lower than in the
non-spatial model (2). Also, one expects that the leading eigenvalue of the lineari-
zation in the spatial case is smaller than the one for the corresponding non-spatial
model, i.e., in the spatial case, the population needs to have a higher growth rate
in order to persist. The following lemma can be shown using the theory of positive
operators [20].

Lemma 6. Denote by λn the leading eigenvalue of the linearization φ → B(0)φ of
the non-spatial model (2) and by λsp the leading eigenvalue of the approximation
of the linearized spatial model (45). Then

λsp ≤ λn.

Next, assume that both models (2) and (6) have a unique positive fixed point. Denote
by û = F(û) = B(û)û the fixed point of the non-spatial model and by ūa the fixed
point of the approximation of the spatial model, see (40). In the case of only one
stage (m = 1) assume that F ′(ūa) < 1. In the general case assume that F is
monotone and asymptotically sublinear. Then

ūa ≤ û.
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Finally, we find appoximate conditions for stability of the positive steady state.
We denote u∗(x) and ū as above, and start with an unstructured population on
a connected habitat. Then, for some function w(t, x) close to u∗, the difference
satisfies

w(t + 1, x)− u∗(x)

=
∫
k(x, y)[f (w(t, y))− f (ū)]dy +

∫
k(x, y)[f (ū)− f (u∗(y))]dy

≈
∫
k(x, y)f ′(ū)[w(t, y)− u∗(y)]dy.

An approximation of the eigenvalue at the steady state of (3) is hence given by the
eigenvalue equation

λφ = f ′(ū)
∫
k(x, y)φ(y)dy = (b(ū)+ b′(ū)ū)

∫
k(x, y)φ(y)dy, (46)

which has a simple dominant real eigenvalue of the same sign as f ′(ū) and in abso-
lute value less than f ′(ū).Replacingφ by its spatial average gives an approximation
in terms of the average dispersal success,

λ ≈ ŝf ′(ū) = ŝ(b(ū)+ b′(ū)ū). (47)

For m > 1 stages the eigenvalue of the steady state u∗(x) is approximated by the
eigenvalue equation (compare [6] for the non-spatial case)

λφ̄ = [Ŝ ◦ B(ū)]φ̄ +
m∑
1

[
Ŝ ◦ ∂B(ū)

∂uk
ū

]
φ̄k. (48)

5.6. Example continued

The approximate linearized model is φ → ŝB(0)φ. Hence, its leading eigenvalue
λsp = ŝλn is just a multiple of the eigenvalue of the non-spatial model with ŝ ≤ 1.
This was the first claim of Lemma 6. For the second claim, we denote ū(ŝ) as the
fixed point in (43) and û as the fixed point of the non-spatial model (15). Obviously,
ū(1) = û. Both components of ū are increasing functions of ŝ, as plotted in Figure
4, and hence, ū ≤ û.

Following [25], we can compute the first bifurcation point P0(ŝ) of (43),

P0(ŝ) = (1 − ŝρ2)(1 − ŝρ1(1 − γ ))

ŝ2ρ2γ
. (49)

The point at which the positive steady state loses stability is given by

Pc(ŝ) = P0(ŝ) exp

{
2ŝ(1 − ŝρ2 + ŝρ1γ )(ρ1(1 − γ )+ ρ2)

(1 + ŝρ2 − ŝρ1γ )(1 − ŝρ2)(1 − ŝρ1(1 − γ ))

}
. (50)

These two bifurcation points are approximations to the bifurcations of the
spatially explicit model according to the eigenvalue approximations (45) and (48).
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Fig. 4. The equilibrium ū1 (solid) and ū2 (dashed) as a function of ŝ.

In Figure 5 we plot P0 and Pc as functions of the variance σ 2. We see that P0 is
a good approximation to the true value given by (22). We also plot the results of
some numerical experiments done on the spatially explicit model. The bifurcation
points predicted by the approximation and the results from the numerical experi-
ment agree quite well. The secondary bifurcation point Pc is decreasing for very
small variances. This fact is somewhat surprising since dispersal in space usually
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Fig. 5. True, approximate and experimental relation betweenP and σ 2 at the first and second
bifurcation point. The true relation at the first bifurcation as given by formula (22) is plotted
as the dash-dot line. It agrees quite well with the function P0 (solid) from the approximation
(49) and with the bifurcation values found in numerical experiments (stars). The relation at
the second bifurcation point cannot be computed explicitly. The approximation Pc (dashed)
as in (50) agrees quite well with the experimental values (stars).
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has a stabilizing effect. But the numerical results are independent of the number of
grid points, and the first order approximation shows the same behavior.

6. Application

We study the simplest occurence of habitat fragmentation, namely how a gap in
the domain affects population persistence and dynamics. More specifically, we
show how the population is affected by a disturbance of fixed size, depending on
where the disturbance occurs. This investigation is by no means complete since
the number of parameters increases dramatically as we add space and dispersal to
matrix models. But it shows how the tools developed above can be applied to real
ecosystems.

We continue the example from Section 4 on the domain [−1, 1], from which
we delete a connected subdomain of length 0.1, i.e., 5% of the total domain. Hence,
the total domain consists of two patches

� = [−1,M − 0.05] ∪ [M + 0.05, 1], (51)

where M denotes the center of the gap. Since the dispersal kernel is symmetric, it
suffices to look at 0 ≤ M ≤ 0.95.

First, we study how persistence of the population is affected depending on which
part of the domain is missing. In Figure 6 we plot the maximum densities of u1 and
u2 and the approximate eigenvalue (45) as a function of M. The parameters are
P = 15 and σ 2 = 0.08.We see that the population does not survive if the gap is in
the middle of the domain, but it is established if the gap is closer to the boundary of
the domain. According to the nonlinear model, the critical value isM ≈ 0.15. The
approximate eigenvalue at M = 0.015 is λn ≈ 0.99 and hence, the approximation
is within 1% of the true value.

Next, we show that for different parameters, P = 82, σ 2 = 0.5 a population
might or might not exhibit cycles, depending on where the gap is in the domain.
Figure 7 shows the two extreme cases with the gap being in the middle and the pop-
ulation at a stable steady state (left) and the case without gap and the population
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Fig. 6. Persistence and gap location. The maximum density of u1 and u2 shows a transcrit-
ical bifurcation as the center point of the gap, M , is shifted from the center of the domain
(M = 0) to the boundary (M = 0.95). On the right, the approximate eigenvalue is plotted.
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Fig. 7. Dynamics and gap location. With the gap in the middle, the population reaches a
stable steady state (left). Without gap, the population exhibits a two-cycle (right). The solid
lines represent u1, the dashed lines are u2.

exhibiting a two-cycle (right). As the gap is moved outwards from the center, the
amplitude of the cycles decreases until the cycles disappear at some point.

7. Stages without dispersal

Not always do individuals move between two successive reproductive phases. Math-
ematically, this “staying-in-place” strategy [12] is described by the kernel k(x, y) =
δ(x − y). In assumption (A2) we excluded this choice of k since the operator A
in (6) would not be compact. This problem was already mentioned in [13], where,
in order to make the theory applicable, the delta distribution was replaced by some
approximate kernel which insured the necessary compactness properties.

In the study of speeds and shapes of traveling fronts, compactness of the oper-
ator A is not required. For a single population, in which some proportion is not
dispersing, the speed of the front was studied in [34]. For structured populations
the speed of a front was given in [26].

Sedentary stages occur naturally in structured populations. In many cases, the
theory developed in Section 3 can still be applied. The biological reason for this
is that wherever one starts in the life cycle, one has to go through some dispersal
phase eventually. Mathematically, this means we look at some power An of the
operator A.

As an example, we first consider a biannual species, in which both age classes
reproduce. The matrix B is the simplest primitive Leslie matrix

B =
(
β1 β2
µ 0

)
, (52)

where βj is the production rate from stage j andµ is the survivorship. If we assume
that dispersal occurs only at reproduction, then k21 = k22 = δ.We denote k11 = k1,

k12 = k2. Then

u1(t + 1, x) =
∫
k1(x, y)β1(u(t, y))u1(t, y)+ k2(x, y)β2(u(t, y))u2(t, y)dy,

u2(t + 1, x) = µu1(t, x). (53)
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The operator A here is not compact. However, the operator A2 given by

u1(t + 2, x) =
∫
k1(x, y)β1(u(t + 1))u1(t + 1, y)dy

+
∫
k2(x, y)β2(u(t))µu1(t, y)dy,

u2(t + 2, x) = µ

∫
k1(x, y)β1(u(t, y))u1(t, y)

+k2(x, y)β2(u(t, y))u2(t, y)dy, (54)

is compact as long as µ > 0 is independent of u. Hence, the theory developed in
Section 3 applies to A2.

To proceed with the general theory we first consider the linear case, in particu-
lar the study of critical domain-size for the case with sedentary stages. We restrict
ourselves to the case of a connected habitat�.We decompose the linear operator (7)

Dφ(x) =
∫

[K(x, y) ◦ B(0, y)]φ(y)dy = (D1 + D2)φ(x), (55)

such that D1 contains all the entries where kij satisfies (A2) and is zero otherwise.
The operator D2 contains the functions bij where kij = δ and is zero otherwise.
Then D1 is compact and D2 is bounded. The following lemma is proved in appendix
A.3.

Lemma 7. Assume that D2 is nilpotent of order n0, uniformly in y ∈ �. Then Dn

is compact for all n ≥ n0. If, in addition, assumptions (A1,3) hold and (A4) holds
for the kernels in D1, then D is superpositive for some n ≥ n0. In particular, if the
spectral radius of D is greater than one, then the zero solution of (6) is unstable.

The conditions in the nonlinear case are somewhat more restrictive. We now
decompose the nonlinear operator (6)

A(u)(x) =
∫
K(x, y) ◦ B(u(y), y)u(y)dy = (A1(u)+ A2(u))(x) (56)

as above, i.e., such that A1 contains all the entries where kij satisfies (A2) and is
zero otherwise. The operator A2 contains the functions bij where kij = δ and is
zero otherwise. Then A1 is compact and A2 is bounded.

Lemma 8. Assume that A2 is linear in u and nilpotent of order n, uniformly in
y ∈ �. Then An is completely continuous.

If the assumptions of the previous lemma are satisfied, then existence of fixed
points for An can be studied as in Proposition 3. A fixed point of An, of course,
corresponds to a periodic orbit of A, such that the period is a divisor of n.However,
the operator An+1 is likewise compact. If for both powers, n and n + 1 existence
of a unique fixed point can be established, then this fixed point is also the unique
fixed point for A.

To conclude, we discuss two examples. Structuring a population by age, one
obtains a Leslie matrix for B [23]. If dispersal occurs during reproduction, then
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the conditions of the previous lemma are satisfied. Grouping individuals by some
stage other than age, generally gives a positive probability that an individual stays
in the same age class for more than one time step. If the stages are ordered succes-
sively then B has the form of a Lefkovitch matrix [22], which is a Leslie matrix
with additional terms on the diagonal. In that case, all the kernels on the diagonal
must satisfy (A2), i.e., individuals which remain in some age class must disperse,
in order for the assumption of the previous lemma to be satisfied. However, this
seems to be an artifact of the grouping. If one assumes that for each state there is a
maximum number of cycles for which an individual can remain in this stage, then
dividing each state into the maximal number of cycles within that stage, one obtains
a matrix B on a larger state space but with no diagonal entries. Hence, assuming
dispersal only during reproduction is again sufficient to satisfy the assumptions of
the previous lemma.

8. Discussion

Analysis of the critical domain-size problem is a crucial aspect of the mathematics
of conservation. Stage-structured matrix models are well established as models for
populations at risk [6], but do not include explicit spatial aspects of the species’
habitat and dispersal. In this paper, we include these aspects into matrix models
and analyze persistence and bifurcation of solutions to the resulting matrix integro-
difference equations.

The strength of such stage-structured integrodifference models is that they allow
explicit depiction of specific life stages and dispersal events. Although the full
model formulation is complex, various approximations allow us to simplify the
explicit spatial model into a pseudo-spatial matrix model. These are the dispersal
success approximation and the redistribution approximation. From these we can
approximate the spatial solutions and their bifurcation structure.

This work can be considered as an extension of Van Kirk and Lewis’ [32]
analysis of scalar integrodifference models to include stage-structure, fragmented
habitats, and non-dispersing stages. The results in Section 3 are similar to their
results for non-structured populations in connected habitats. The technical issues
of compactness of the operator when there are non-dispersing stages are not fully
resolved (Section 7), although, for typical models, the operator can be shown to be
compact by analyzing population dynamics over an extended time step.

In Theorem 1 and its generalizations, we list sufficient conditions for the theory
to work, mainly compactness, positivity and irreducibility. In case compactness
fails, Section 7 gave conditions under which the results still apply. If irreducibil-
ity fails, for example if (A3) is violated, then the eigenvalue need not be simple
and the components of the eigenfunction need not all be positive. Note that irre-
ducibility requires an interplay between population dynamics and dispersal. One
can think of scenarios in which a well-mixed population has a primitive matrix
but spatial heterogeneity and limited dispersal lead to a spatial operator which is
not u0-positive. Vice versa, one can think of a population on isolated sites that has
reducible matrices, yet given sufficient dispersal between the sites, the operator of
the spatial model can be irreducible.
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Our hope is that the results in this paper will lay the foundation for detailed
analysis of population persistence in explicitly fragmented habitats. As such, the
model and its conclusions should be compared to other model types, for example
individual-based models or spatially-explicit stochastic models [8]. As the popu-
lation size decreases, we expect stochastic events to play an important role. We
also expect the average dispersal success to be helpful for other types of spatial
models such as metapopulation models [10]. There, it is usually assumed that hab-
itat patches are small relative to their distance to other patches, and that dispersal
between patches follows a negative exponential function of the distance. The aver-
age dispersal success is based on individual movement assumptions and gives a
more detailed description of dispersal between patches.
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A. Appendix

A.1. Table of frequently used symbols

u = (u1, . . . , um) density of a population with m stages
u∗ density at equilibrium
ū spatial average of u∗
B, b per capita birth rate for structured/scalar population
F, f total production for structured/scalar population
�,�α (component of) habitat
K, k, kij (matrix of) dispersal kernels
S, s, sij (matrix of) dispersal success functions
Ŝ, ŝ (matrix of) average dispersal success
R, rij (matrix of) redistribution functions
A,D integrodifference operator, linsarization
λ leading eigenvalue of D
φ = (φ1, . . . , φm) (eigen-) function in linearization
P population growth parameter
L domain length measure
σ 2 variance of dispersal kernel
Uα average of u on patch �α
Bα the (constant) birthrate on patch �α
Sα(x) dispersal success from x into patch �α
Sαβ Average dispersal success from patch �β into �α

A.2. Examples to Proposition 4

In the scalar case, the condition that f (u) = b(u)u is monotone and concave can
be written in terms of b as −b(u) ≤ b′(u)u ≤ 0. In the vector-valued case, if
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we assume all production rates to be smooth we can write conditions (13), (14) as
∂kbij ≤ 0 for all i, j, k and

∑
j

∂kbij (u)uj ≥ −bik(u). (57)

Hence, we get lower bounds for the partial derivatives. In particular, if for some
i, k we have bik = 0 then necessarily ∂kbij = 0 for all j. This means, if stage k
does not produce stage i then all the production rates bij are independent of stage
k. In particular, the bij cannot depend on the total population in that case.

We consider an age-structured model with Leslie matrix

B =




b1 b2 b3 . . . bm
σ1 0 0 . . . 0
0 σ2 0 0
...
...
. . .

. . .
...

0 . . . σm−1 0



. (58)

By the remark above, the survival rate σj can depend only on the age class uj . The
condition onσj for monotonicity and concavity then reduces to the one-dimensional
condition

−σj (uj ) ≤ σ ′
j (uj )uj ≤ 0 for all j. (59)

If each birth rate bj depends only on uj then conditions (13), (14) become the
one-dimensional condition as well. If each bj depends on the total population, then
the conditions read∑

j

b′
j (ũ)uj ≥ − sup

k

bk(ũ) where ũ =
∑
j

uj . (60)

If bj depends on some weighted sum, then the condition is

wk
∑
j

b′
j (û)uj ≥ −bk(û) for all k, where û =

∑
j

wjuj (61)

The Beverton-Holt model for a single population is b(u) = α/(1 + βu). We use
this functional for each bj , i.e.,

bj (ũ) = αj

1 + βj ũ
. (62)

In the special case βj = 1 for all j we can write out the conditions above as

∑
j 	=k

αjuj

(1 + ũ)2
+ αj

1 + ũ

(
uk

1 + ũ
− 1

)
≤ 0. (63)

This leads to ∑
j 	=k
(αj − αk)uj − αk ≤ 0, (64)



Spatially-explicit matrix models 317

from which we see that necessarily αj = αk for all k, j. Hence, the case of equal
birth rates bj (ũ) = α/(1 + ũ) satisfies the condition for existence of a unique fixed
point. In case the bj depend on the weighed sum (61), i.e.,

bj (û) = αj

1 + û
, (65)

the condition reads
∑
j

αjwkuj

(1 + û)2
≤ αk

1 + û
, (66)

which gives
∑
j

(wkαj − wjαk)uj ≤ αk. (67)

Assuming all weights are positive, this condition is satisfied if

wj

wk
= αj

αk
. (68)

This means that classes have to be weighted exactly according to their “productiv-
ity”-parameter αj .

A.3. Proofs

Proof of Theorem 1. We first show that if Bn is positive for some non-negative
matrix B, then Bn+1 is positive and hence, Bn+l is positive for all l ≥ 0. The
i, j -entry of Bn+1 is

m∑
l=1

bil


 m∑
h1=1

· · ·
m∑

hn−1=1

blh1 . . . bhn−1j


 . (69)

By assumption, the terms in brackets are all positive. If the i, j -entry of Bn+1 was
zero, then necessarily bil = 0 for l = 1...m. But this implies that the ith row of
any power of B is zero, which is a contradiction.

Since the bij are continuous and the domain is compact, one can choose the
power n such that Bn(0, y) is positive independently of y.

Taking powers of D and using Fubini’s Theorem, we compute the i-entry

(DNφ(x))i =
∫

· · ·
∫ ∑

· · ·
∑

ki,l1(x, y1) . . . klN−1j (yN−1, yN)

×bi,l1(y1) . . . blN−1j (yN)φj (yN)dy1 . . . dyN . (70)

We choose N large enough such that BN is positive. By assumption (A3), for each
pair (i, j), at least one of the products of the entries of B in (70) is positive. Also,
from (A3) and continuity ofB we get a lower bound bij ≥ bmin > 0 for all nonzero
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bij . By assumption, all the kernels are bounded above and below. Hence, we get
the estimate

(κbmin)
N

∫
φ(y)dy ≤ DNφ(x) ≤ mN(κbmax)

N

∫
φ(y)dy. (71)

Therefore, D is u0-positive with u0 = 1 (see 2.1 in [20]). Then by Thm. 2.5 [20]
there is at least one positive eigenvalue with non-negative eigenvector� of D. The
positive cone in L2 is reproducing, and so by Thm. 2.10, the eigenvalue is simple.
By Thm. 2.13, it is also dominant. Furthermore, by Thm. 2.11 no other eigenvector
is in the positive cone. It remains to show that the eigenvector� is positive. Suppose
that there is a set�0 of positive measure on which the i-th component of� is zero.
Then for sufficiently large n we find

0 = (λn�i(x))|�0 = (Dn�(x))i|�0 > 0, (72)

by (70), which is a contradiction. ��
Proof of Proposition 1. We first assume that the set � contains an open neighbor-
hood of the diagonal in�2, i.e., using assumption (A4) we find an ε > 0 such that
for all nonzero kernels we get

kij (x, y) ≥ κ for |x − y| ≤ ε. (73)

For a connected bounded habitat, there is a number N0 such that each point is
connected to each other point by a path of length less than N0. The mathematical
expression for that fact is given by the N0-fold iteration of nonzero kernels being
positive:

kN0(x, y) =
∫

· · ·
∫
kij (x, y1) . . . khl(yN0 , y)dy1 . . . dyN0 ≥ κN0 . (74)

Now choose N ≥ N0 such that BN is positive. Then, as above, one of the products
of the entries of B in (70) is positive and by assumption (A2) and (74) the corre-
sponding product of the kernels is also positive. Hence we get the estimate (71) and
the proof continues as above.

For arbitrary � we observe that for all x ∈ � by symmetry

κ2(x, x) =
∫
κ(x, y)κ(y, x)dy =

∫
κ(x, y)κ(x, y)dy ≥ κδ > 0. (75)

By continuity then, κ2 is positive for |x − y| small enough. Hence, using twice as
many iterations we are back to the first case. ��
Proof of Proposition 2. We first prove this proposition under the assumption that
there is only one stage, and that the kernel is continuous. The idea is that, given
x ∈ �α and y ∈ �β, we find a sequence of points y = z1, . . . , zN = x such
that k(zi, zi−1) > 0.We call such a sequence a connecting path. Then DN satisfies
inequalities (71) and hence D is superpositive.

Without loss of generality we can assume that the kernel k is positive in some
neighborhood of the diagonal of each �2

α. First, we use primitivity of C to find
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a sequence β = γ1, . . . , γn = α such that cγi+1γi = 1. This gives a sequence of
points yi ∈ �γi and xi+1 ∈ �γi+1 such that k(xi+1, yi) > 0. On each compo-

nent �γi we apply Proposition 1 to find a sequence xi = y0
i , . . . , y

Ni
i = yi with

k(y
j+1
i , y

j
i ) > 0. Since � is compact, there exists a number N0 such that for any

x, y ∈ � a connecting path can be chosen with length at most N0.

In the case of m > 1 stages one combines the idea above with primitivity of
B as in Theorem 1. In the case that the kernels are not continuous one defines the
connectivity matrix C as follows:

cαβ = 1 if
∫
�α

∫
�β

kij (x, y)bij (0, y)dydx > 0 (76)

for some i, j. Then the same arguments work. ��
Proof of Lemma 2. By assumption, we have B(0, y;Q) ≥ B(0, y;P). Hence,
Dn(Q) ≥ Dn(P ) and so λ(Q) ≥ λ(P ). We establish that in fact λ(Q) > λ(P ).

We write

D(Q)ψ(x) = D(P )ψ(x)+
∫

[K(x, y) ◦ (B(0, y;Q)− B(0, y;P))]ψ(y)dy.
(77)

Iterating, we get

Dn(Q) = Dn(P )+ C(Q,P ) (78)

for some linear operator C(Q,P ) ≥ 0. Then

λn(Q)φ(·;Q) = Dn(Q)φ(·;Q)
= Dn(P )φ(·;Q)+ C(Q,P )φ(·;Q)
= Dn(P )φ(·;Q)+ f, (79)

where f is positive (see Theorem 1). For sufficiently large n we have

Dn(P )f ≥ εφ(·;P) (80)

for some ε > 0. Then by Thm. 2.16 in [20] the equation

λ(Q)ψ = D(P )ψ + f (81)

does not have a solution for λ(Q) ≤ λ(P ). But since φ(·;Q) is a solution by con-
struction, we necessarily have λ(Q) > λ(P ). This completes the proof of Lemma
2 (a).

We now formulate Lemma 2 (b) in greater generality. Suppose two domains
�1, �2 ⊂ R

n are given, with �1 ⊂ �2, such that �2\�1 has nonempty interior.
Denote by Dj the corresponding linear operators and by Kj their corresponding
kernels.

(A8) Assume that on�1, D1 andD2 share the same population projection matrix
B and that the restriction of K2 to �2

1 equals K1.

Then, the leading eigenvalue of D2 is strictly larger than the one of D1.
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To prove the claim, we view L2(�1) as a subset of L2(�2). A function ρ on
�1 is extended to ρ̂ on �2 by setting it to zero on �2\�1. On L2(�2) we define
the cut-off operator Z in a similar way as

Zψ(x) =
{
ψ(x) x ∈ �1,

0 x ∈ �2\�1.

We denote D̂1 as the extension of D1 to L2(�2), i.e.

D̂1ψ = D̂1Zψ. (82)

In particular, for ρ ∈ L2(�1) we have

D̂1ρ = D̂1Zρ̂. (83)

Then we may write for ψ ∈ L2(�2),

D2ψ = [Z + (I − Z)]D2[Z + (I − Z)]ψ

= ZD2Zψ + ZD2(I − Z)ψ + (I − Z)D2Zψ + (I − Z)D2(I − Z)ψ

= ZD2Zψ +G1ψ, (84)

whereG1 is the sum of operators containing (I −Z). Due to assumption (A8), we
find that ZD2Z = D̂1. Equation (84) is has a form similar to (77), and we proceed
similarly as above. The positive eigenfunction φ of D2 to the eigenvalue λ2 satisfies

λn2φ = D̂n
1φ +G2φ, (85)

whereG2 is some linear operator. In the definition of the domain in 3.1, we assumed
that points at which the species cannot settle and reproduce are excluded from�1,2.

Therefore, the operator G2 is positive. The claim follows as above.
Obviously, the claim of Lemma 2 (b) as stated in the main text follows from the

above. The condition K(x, y) = K(x − y) insures that the kernel on the smaller
domain is simply the restriction of the kernel on the larger domain. The general
formulation of the lemma applies in particular to families of domains of fixed shape
with one size parameter L. ��
Proof of Lemmas 4 and 5. We denote the positive eigenvector of D by�.The inner
product on L2 is given by

〈φ,ψ〉 =
∫
φT (x)ψ(x)dx. (86)

Then the adjoint operator of D is

D∗ψ(y) =
∫

[KT (x, y) ◦ BT (0, y)]ψ(x)dx. (87)

The operator D∗ is superpositive if D is, we denote the corresponding positive
eigenvector by �.
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Fixing L, the operator A can be written as

A(P )(u) = D(P ∗)u+ B(P ∗)u(P − P ∗)
+ C(P ∗)(u)+ o(‖u‖2, |P − P ∗|), (88)

where the linear operator B is given by

B(P ∗)u =
∫

[K(x, y) ◦ ∂

∂P
B(0, y;P ∗)]u(y)dy, (89)

and the quadratic form C = (C1, ..., Cm) has entries

Ci (P ∗)(u) =
∫
uT (DBi)udy, (90)

where the l, j -th entry of the matrix DBi is given by

(DBi)lj = kij (x, y)
∂

∂ul
bij (0, y;P ∗). (91)

Following the argument 56.5 in [21] we have to show the following two conditions:
〈B(P ∗)�0, �0〉 > 0 and 〈C(P ∗)�0, �0〉 < 0. The inner product

〈B(P ∗)�0, �0〉 =
∫ ∑

l

∫ ∑
j

klj (x, y)
∂

∂P
blj (0, y;P ∗)�0j (y)dy �0l (x)dx

(92)

is positive if all blj are non-decreasing in P and at least one blj is increasing in P.
Similarly, the inner product 〈C(P ∗)�0, �0〉 is negative by assumption (A7). This
completes the proof for fixed L.

Fixing P, we can write A(L) as in (88) with P,P ∗ replaced by L,L∗. The
linear operator B is now given by

B(L∗)u =
∫

[
∂

∂L
K(x, y;L) ◦ B(0, y)] u(y)dy, (93)

and C is just as above with the parameter L∗ appearing inK and the parameter P ∗
deleted from B.We only have to show that 〈B(P ∗)�0, �0〉 > 0. Rearranging (92)
we write in coordinates∫ ∑

l

∑
j

{
∂

∂L

∫
klj (x, y;L)�0l (x)dx

}
blj (0, y)�0j (y)dy �0l (x)dx. (94)

Since �0 is positive, the assumptions on the dispersal success functions also hold
for the weighed dispersal success

s�lj (y;L) =
∫
klj (x, y;L)�0l (x)dx, (95)

and hence, the inequality holds. ��
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Proof of Lemma 7. Since D1 is completely continuous and D2 is continuous, both
products D1D2 and D2D1 are completely continuous. The power of D can be
written as a sum of products of D1 and D2,

Dn = Dn
1 + Dn−1

1 D2 + Dn−2
1 D2D1 · · · + Dn−1

2 D1 + Dn
2 , (96)

and the last term vanishes for n ≥ n0, such that Dn is completely continuous.
Hence, all nonzero points in the spectrum of Dn are eigenvalues of finite multiplic-
ity. Therefore, by the spectral mapping theorem all nonzero points in the spectrum
of D are eigenvalues of finite multiplicity.

Assumptions (A1–4) ensure positivity of some sufficiently high power of D in
the same way as they did in Proposition 1, so that Dn is superpositive for some n.
Denote by µ the simple dominant positive eigenvalue of Dn with unique positive
eigenvector ψ. Denote by λ any eigenvalue of D which satisfies λn = µ and the
corresponding eigenvector by φ. Then

µφ = λnφ = Dnφ (97)

and hence by uniqueness φ = ψ (up to scalar multiples). Therefore λ has to be
positive. Monotonicity of the power function implies µ > 1 iff λ > 1 and also that
λ is dominant. Finally, Theorem 2.10 in [20] gives that λ is simple. ��

Proof of Lemma 8. The idea is the same as in the proof above. Due to nonlinearity
one has to be somewhat more careful. We write

An(u) = A1(An−1(u))+ A2A1(An−2(u))+ · · · + An−1A1(u)+ Anu. (98)

The last term vanishes since A2 is nilpotent, all other terms are compact. ��
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11. Hardin, D.P., Takáč, P., Webb, G.F.: Asymptotic properties of a continuous-space dis-
crete-time population model in a random environment. J. Math. Biol. 26, 361–374
(1988)
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