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Social carnivores, such as wolves and coyotes, have distinct and well-defined home
ranges. During the formation of these home ranges scent marks provide important
cues regarding the use of space by familiar and foreign packs. Previous models for
territorial pattern formation have required a den site as the organizational center
around which the territory is formed. However, well-defined wolf home ranges
have been known to form in the absence of a den site, and even in the absence
of surrounding packs. To date, the quantitative models have failed to describe a
mechanism for such a process. In this paper we propose a mechanism. It involves
interaction between scent marking and movement behavior in response tofamiliar
scent marks. We show that the model yields distinct home ranges by this new
means, and that the spatial profile of these home ranges is different from those
arising from the territorial interactions with den sites.

c© 2002 Society for Mathematical Biology

1. INTRODUCTION

Field biologists have observed wolves and coyotes using scent marks to iden-
tify home ranges and territories (defended home ranges) (Mech, 1991). Canids can
distinguish between a foreign scent mark and one of their own (Peters, 1974; Merti-
Millhollen et al., 1986) and, when encountering a foreign scent mark, may mark
over it (Peters and Mech, 1975). Foreign scent marks may also elicit an avoidance
response, with individuals exhibiting an increased probability of moving towards
the center of their home range (Peters and Mech, 1975). Continuum territory mod-
els, based on the above elements of behavior, have been proposed byLewis and
Murray (1993) and others (Lewiset al., 1997; Whiteet al., 1996, 1998; Moorcroft
et al., 1999), and can be derived from random walks, as shown inMoorcroft et al.
(1999). Together the models address how the interaction between scent marking
and movement behavior in response to foreign scent marks can lead to territorial
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patterns. In these models a den site acts as a focal point for the movement of indi-
viduals and this focal point is a necessary element of the model if territories are to
form (Whiteet al., 1996).

However, well-defined wolf home ranges have been known to form in the absence
of a den site (Rothman and Mech, 1979), and even in the absence of surrounding
packs (Mech, 1991). To date, the quantitative models have failed to describe a
mechanism for this process. In this paper we propose a mechanism for the process.
It involves interaction between scent marking and movement behavior in response
to familiar scent marks. We show that the model yields distinct home ranges by
this new means, and that the spatial profile of these home ranges is distinct from
those arising from the territorial interactions with den sites present.

Our modeling approach is to describe the change in the location of an individual
via a random walk process. This leads to a coupled partial differential equation
(PDE)/ordinary differential equation (ODE) model through the limiting processes
of the random walk. The modeling approach is outlined inAronson(1985) and has
been applied widely (Okubo, 1980). Two applications relevant to this paper include
modeling of aggregating insect populations byTurchin (1989), and the modeling
of aggregating populations with long-range interactions between individuals by
Lewis (1994).

In our model formulation it is assumed that the pack is initially isolated, with
no neighboring packs, and no established den site. Individuals both produce scent
marks and modify their movement behavior in response to their pack’s scent marks.
The model, described as a ‘random walk’ process, assumes that the transition prob-
abilities describing spatial movement depend upon the local level of scent marks,
and that scent mark production also depends upon existing scent marks.

Analysis of the coupled ODE/PDE system shows spontaneous formation of well-
defined home ranges for reasonable parameter ranges. These home ranges have
abrupt edges and are stable to perturbations. Energy methods and numerical meth-
ods are used to calculate the home range patterns. The results in this paper contrast
with previous model results whereforeign scent marks and a den site are neces-
sary ingredients for the process of territorial pattern formation (Lewis and Murray,
1993; Whiteet al., 1996; Moorcroftet al., 1999).

2. MODEL DERIVATION

We first consider a derivation in one spatial dimension, and then we extend this
to a two-dimensional (2D) model.

2.1. One-dimensional approach.A classical approach to deriving a PDE model,
based on the movement of an individual comes from a random walk on the real
line (Okubo, 1980). In our formulation, we assume that an individual’s movement
behavior is modulated by local scent density—individuals preferentially remain in
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areas with high scent levels. We begin the random walk derivation by discretiz-
ing both time and space into small intervals of lengthδt andδx, respectively. We
assume that each individual at each point in time decides whether or not to move,
and if so, in which direction. We also assume that an individual can only move a
distance ofδx, or remain in its current position in each successive time step,δt .
We letL(x, t), R(x, t) andN(x, t) be the probabilities of moving to the left, to the
right, and of not moving, respectively, over the next time step. Taking these as the
only possibilities, we have that

N(x, t) + L(x, t) + R(x, t) = 1. (1)

If scent level is high,N(x, t) is close to 1, and the wolf tends not to move, however
if scent levels are low,N(x, t) is small, and the individual is more likely to move.
If we make the assumption that a wolf moves depending only on the scent level at
its present location, it is logical to takeL(x, t) = R(x, t). Combining this with (1)
we get

L(x, t) = R(x, t) =
1 − N(x, t)

2
. (2)

The forward Kolmogorov, or Fokker–Planck equation, relates these probabilities
to the following PDE:

∂u

∂t
= D0

∂2

∂x2
[(1 − N(x, t))u(x, t)] (3)

whereu(x, t) is the expected population density. Details of the derivation are given
in AppendixA. However we note here thatD0 = limδx,δt→0 δx2/2δt is the diffu-
sion coefficient, which is derived under the assumption of rapid movement and
frequent switches in movement direction. For simplicity, we can make the substi-
tution

D(x, t) = D0(1 − N(x, t)), (4)

which brings us to
∂u

∂t
=

∂2

∂x2
[D(x, t)u(x, t)]. (5)

Now, turning our attention to the scent marking equation, we make some simple,
biologically relevant assumptions. We definep(x, t) to be the density of scent
marks. First of all, we assume that wolves mark with scent at a constant rate,γ ,
but increase the marking rate when they encounter scent marks other than their
own. The increasing functionm(p) describes enhanced scent mark rates in the
presence of existing scent marks. Finally, it is assumed that scent marks decay
with time at a constant rate,µ. The equation for scent is then

∂p

∂t
= u(x, t)(γ + m(p(x, t))) − µp(x, t). (6)
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Figure 1. This shows the two possible scent-response functions,m(p), that we use. The
top figure is the piecewise linear, and the bottom is the piecewise quadratic, found in
AppendixB.

The first form we consider form(p) gives the simplest type of response, linear
increase up to some level ofp(x, t), at which the response becomes constant, as in
the first graph of Fig.1. The second form is similar, but it is piecewise quadratic,
as in the second graph of Fig.1.

We assume that the probability of not moving,N(x, t), increases monotonically
with scent densityp(x, t). In the absence of detailed data on the precise relation-
ship betweenN(x, t) and p(x, t) we take this to be

N(x, t) =
p(x, t)

α + p(x, t)
. (7)

The parameterα describes the sensitivity of movement behavior to scent mark
levels when scent mark levels are low. Using this and equation (4), we can find an
explicit expression forD(x, t)

D(x, t) =
D0

1 + p(x, t)/α
. (8)

Our system of equations is now fully defined as

∂u

∂t
=

∂2

∂x2

(
D0u

1 + p/α

)
, (9)

∂p

∂t
= u(γ + m(p)) − µp. (10)
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In our analyses we will assume a domain 0< x < L from which the wolves do
not leave and hence zero-flux boundary conditions,

∂

∂x

(
D0u

1 + p/α

)
= 0 at x = 0, L , (11)

are appropriate.

2.2. Two spatial dimensions.As much insight as a one-dimensional model can
give us, it falls short of reality. In their natural environment, wolves move over two
dimensions. Our 2D derivation uses a similar approach to the one in the previous
section. Once again, we begin with a random walk, but this time we add another
degree of freedom. As before, we letL(x, t), R(x, t) andN(x, t) be the probabil-
ities of moving to the left, to the right and not moving, respectively. We then add
to these the possibilities of moving forward and backward, which we will denote
with F(x, t) andB(x, t). It is also important to note that these values now depend
on two spatial parameters, and thereforex = (x1, x2). Taking these as the only
possibilities, we have

N(x, t) + R(x, t) + L(x, t) + F(x, t) + B(x, t) = 1. (12)

If we assume a wolf’s decision to move only depends on his current position, we
can also assume that

R(x, t) = L(x, t) = F(x, t) = B(x, t) =
1 − N(x, t)

4
. (13)

A derivation analogous to the one in the previous section yields a system of equa-
tions similar to the one-dimensional (1D) case.

∂u

∂t
= 1

(
D0u

1 + p/α

)
(14)

∂p

∂t
= u(γ + m(p)) − µp, (15)

on the solution domain� (Parrish, 1998) where nowD0 = limδx,δt→0 δx2/4δt .
Zero flux boundary conditions become

∇

(
D0u

1 + p/α

)
· n = 0 (16)

on the boundaryδ�, wheren is the outwardly-oriented unit normal vector.
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3. A NONLOCAL APPROXIMATION

In the previous equation for the scent, we assumed that the level of an individ-
ual’s response depends only on local scent densities. This is not realistic however,
because wolves can indeed sense scent markings at a distance (Peters, 1974) We
now take into consideration how scent markings that are near the position of an
individual wolf play a role in the wolf’s decision-making.

Let k(x) be a symmetric, olfactory kernel which integrates to unity and defines
the locally averaged scent mark density by

∫
∞

−∞

k(z − x)p(z, t) dz. (17)

This can be approximated by

p(x, t) = p(x, t) +
σ 2

2

∂2

∂x2
p(x, t) (18)

whereσ 2 is the second moment of the olfactory kernelk, a measure of its variance
or spread (Murray, 1989). When decisions are made based on the locally averaged
scent mark density,̄p can replacep in equation (9) and in the functionm in equa-
tion (10). To keep our analysis analytically tractable, we only consider the case
wherem( p̄) is used in equation (10), with σ 2

≥ 0. This change leads us to a new
scent marking equation:

∂p

∂t
= u(γ + m(p(x, t))) − µp. (19)

We will show thatσ 2 > 0 is required to ensure that (9), (10) are well posed.

3.1. Two-dimensional approximation. In two spatial dimensions, the analysis
yields an analogous result, with

p(x, t) = p(x, t) +
σ 2

2
1p(x, t). (20)

Substituting this into (15), we have an equation identical to (19) wherex is now a
2D spatial coordinate.

It should be noted that in the limitσ = 0 the kernelk corresponds to a delta
distribution centered at the wolf’s current position, so that only local scent densities
are taken into consideration. In this case (19) is simplified to (10) or (15).
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4. ANALYSIS OF EQUATIONS

4.1. Nondimensionalization. Before doing any analysis, we nondimensional-
ize (9) and (19) in order to reduce the number of parameters. It is possible to
reduce the number of parameters by four since there are four variables:u, p, t and
x. The nondimensional variables are

x̂ =
x

L
, t̂ =

µ

ε
t, ε =

D0

µL2
, û =

γ u

αµ
, p̂ =

p

α
, σ̂ =

σ

L
.

After making the aforementioned substitutions and dropping the carets, the nondi-
mensional equations are

∂u

∂t
=

∂2

∂x2

(
u

1 + p

)
, (21)

ε
∂p

∂t
=

u

γ
(γ + m(α p)) − p, (22)

with boundary conditions

∂

∂x

(
u

1 + p

)
= 0 at x = 0, 1. (23)

The parameterε is small when the domain is large relative to spreading due to local
diffusion over the characteristic time scaleµ−1.

An analogous 2D nondimensionalization can be used for (14), (19) to yield

ut = 1

(
u

1 + p

)
, (24)

ε
∂p

∂t
=

u

γ
(γ + m(α p)) − p, (25)

on� with boundary condition

∇

(
u

1 + p

)
· n = 0 on ∂�. (26)

Note that the total number of wolvesU0 is conserved because

d

dt

∫
�

u dx =

∫
�

∇ · ∇

(
u

1 + p

)
dx =

∫
δ�

∇

(
u

1 + p

)
· n ds = 0. (27)
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4.2. Steady state solutions.We now focus on analysis of the 1D spatial system,
(21)–(23), while noting that analysis of the analogous 2D system, (24)–(26), is
similar. Steady state solutions to (21), (22) satisfy

∂2

∂x2

(
u

1 + p

)
= 0, (28)

u

γ
(γ + m(α p̄)) − p = 0. (29)

Application of the zero flux boundary conditions (23) yields

u

1 + p
= const.

If the steady state solution is spatially homogeneous or ifσ 2
= 0, then

u

γ
(γ + m(αp)) − p = 0.

Solving this equation forp = f (u) yields

u

1 + f (u)
= const (30)

(Fig. 2). Details are given in AppendixC. We observe that, depending upon the
value of the constant, there will be one, two or three values ofu satisfying (30).
We define

φ(u) =
u

1 + f (u)
− C, (31)

whereC is chosen to be the unique constant that ensures∫ u∗

3

u∗

1

φ(u) du = 0, (32)

andu∗

1 andu∗

3 are the left and rightmost roots ofφ as shown in Fig.3. This shift
in (31) by a constant will aid the subsequent graphical analysis.

At steady state, (28) becomes

∂2

∂x2
(φ(u)) = 0, (33)

which has the solution

φ(u) = λ (constant). (34)

A steady state solutionus, satisfying (34) for someλ, has a corresponding scent
mark levelps = f (us).
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Figure 2. These are the functionsu/(1 + f (u)) associated withm(p) in Fig. 1. The
equations for these functions are found in AppendixC.
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Figure 3. This is the top function from Fig.2, which is simplyu/(1 + f (u)), along with
three different constants as in (30). The middle constant is the unique value given in (31),
C = 0.299, which satisfies (32), i.e., the constant which makesA1 = A2. The values of
u∗

1, u∗
2 andu∗

3 are 0.495, 1.21 and 2.86, respectively.
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4.3. Dispersion relation. To analyze the stability of a spatially homogeneous
steady state solution(us, ps) we linearize, withu = us + v andp = ps +q, where
|v|, |q| � 1. Substitution into (21), (22) yields the linearized system

δv

δt
≈

(
vxx

1 + ps
−

usqxx

(1 + ps)2

)
, (35)

ε
δq

δt
≈

(
us

(
m′(ps)

γ
q +

σ 2

γ
m′(ps)qxx

)
− q

)
+ v

(
1 +

m(ps)

γ

)
. (36)

If we consider solutions of the form

ŵ =

(
v(x, t)
q(x, t)

)
= est+ikx

(
v0

q0

)
, (37)

then substitutêw into (35) and (36), we have

sŵ =

( −k2

1+ps

usk2

(1+ps)2

1
ε

(
1 +

m(ps)

γ

)
1
ε

(
usm′(ps)

γ
(1 − σ 2k2) − 1

) )
ŵ = Aŵ. (38)

This is the eigenvalue equation for the matrix A. For the equation to be satisfied
for a nontrivial value, we require det(A − s I) = 0. This gives a characteristic
polynomial, which can be solved fors in terms of the wavenumberk. We will
also allowσ 2 to vary to see what effect it has on pattern formation. By looking
at (37), we observe that the wavenumbersk that correspond tos > 0 will grow
with wavelength 2π/k.

Figure4 shows the dispersion relation for(us, ps) = (u∗

2, f (u∗

2)) = (1.21, 3.04)
for the cases whereσ = 0 andσ = 0.01. Note that thisus is found on the
descending (middle) branch ofφ [i.e.,φ′(u∗

2) < 0]. [See Section4.2, equation (C1)
in AppendixC, and Fig.3.] Figure5 shows the same dispersion relation for 0≤

σ ≤ 0.1. For the caseσ = 0, the dispersion relation increases monotonically, and
hence the smallest wavelength perturbations grow the fastest. This is the hallmark
of an ill-posed problem. From a modeling perspective, we observe that this comes
from the random walk process when all scent mark information, however close by,
is ignored, except the scent density immediately under the individual wolf. This
problem is corrected if there is any spatial averaging of scent mark information
(σ > 0). In this case,s > 0 over a range of wavenumbers indicates that spatial
patterns may form spontaneously from the spatially homogeneous solution.

5. AN ENERGY M ETHOD

As mentioned in Section4.2, equation (34) can have either one, two or three
solutions, depending on the value ofλ. This raises the question as to whether
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Figure 6. The curve plotted here is where the dispersion relation is zero. The values
of σ andk in the shaded region correspond to growing perturbations, whereas the values
above the curve lead to decaying perturbations. If we choose a particular value ofσ , we
can now find the range of wavelengths that will grow. See, also, Figs4 and5.

spatially heterogeneous discontinuous solutions may exist for (21), (22) in the limit
asσ → 0, whereu = u1 on measureL1, u = u2 on measureL2 andu = u3 on
measureL3 = 1 − L1 − L2. We investigate this question using an energy method
and focus on the case where the domain size is large(ε → 0). Using this method
we will show that, providing the total number of wolvesU0 is sufficiently large, the
lowest energy solution isL2 = 0 andu = u1 on an interval of lengthL1 andu = u3

on an interval 1− L1, whereL1 is found by solvingu1L1 + (1− L1)u3 = U0. The
region over whichu = u3 is the home range. See, for example, Fig.12.

5.1. Defining the energy. We define our energy to be a quantity which is boun-
ded below, and show that it is a decreasing function of time.

The first thing we might wish to do is consider the case whereε � 1. This
is reasonable because, in our nondimensionalization,ε = D0/(µL2). In realistic
cases,L can be chosen so thatL2

� D0 andµ is of order 1. This reduces (21),
(22) to

∂u

∂t
=

∂2

∂x2
(φ(u)), (39)

whereφ is defined in (31).
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We define our energy to be

E(u) =

∫ 1

0
F(u(x, t)) dx, (40)

whereF ′(u) = φ(u), and observe that

Ė(u) =

∫ 1

0
F ′(u)

∂u

∂t
(x) dx =

∫ 1

0
F ′(u)[φ(u)]xx dx. (41)

Integrating (41) by parts and using the boundary condition (11) to eliminate the
boundary term yields

Ė(u) = −

∫ 1

0

∂

∂x
(F ′(u))

∂

∂x
[φ(u)] dx = −

∫ 1

0

(
∂

∂x
[φ(u)]

)2

dx ≤ 0. (42)

As long as the flux,∂
∂x φ(u), is nonzero,E(u) will decrease with time. Also, since

φ(u) is a bounded function, the energy,E(u) is bounded below foru ≥ 0. This
prompts us to look for a global minimum for the energy, (40).

5.2. Minimizing the energy. To minimizeE(u), we will use Lagrange multipli-
ers and constraint (27). We define

L(u) =

∫ 1

0
F(u) dx − λ

∫ 1

0
(u − U0) dx, (43)

which is the quantity to be minimized. If we assume thatu minimizes this equation,
andu + δη(x) is a variation, then a minimum ofL(u + δν(x)) should occur when
δ = 0. Taking the derivative with respect toδ we get

Lδ =

∫ 1

0
(F ′(u + δη(x))η(x) − λη(x)) dx (44)

evaluating this atδ = 0 we get

Lδ =

∫ 1

0
(F ′(u)η(x) − λη(x)) dx (45)

Lδ =

∫ 1

0
(F ′(u) − λ)η(x) dx. (46)

Sinceη(x) is an arbitrary function, the minimum energy occurs precisely when
F ′(u) = λ which, when substitutingF ′(u) = φ(u), gives us the same condition
as (34): φ(u) = λ. From equation (42) we observe thatφ(u) = λ implies thatE
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Figure 7. This a plot ofφ(u) as defined in (31) and plotted in Fig.3. As mentioned, (34)
can hold for any constant. The solid line isλ = 0. The valuesu1, u2, andu3 correspond to
φ(u) = λ−. With both constants shown, the solution to (34) has three solutions, however,
it is also possible to find constants such that (34) has one or two solutions as well (Fig.2).

is no longer decreasing (Ė = 0). We now consider which value ofλ will give a
global minimum for the energy (40).

We consider the cases shown in Fig.7, where three distinct values ofu sat-
isfy (34), and observe that (40) becomes

E(u) =

N∑
i =1

L i F(ui ), (47)

where
N∑

i =1

L i = 1, (48)

andN is the number of distinct solutions to (34). Using (47) and (48) we find that
the energy equation reduces to a convex combination ofF(ui ). WhenN = 3, we
have that

E(u) = L1F(u1) + L2F(u2) + (1 − L1 − L2)F(u3) (49)

We have one more constraint given in (27) which is

U =

N∑
i =1

L i ui = U0, (50)

whereU0 is the normalized total number of wolves. For the caseN = 3, the choice
of L1 andL2 to give the minimum value forE(u) (49) has been analyzed in detail
by Parrish(1998). Here we give a simple graphical argument. First we observe
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u 

F(u) 

uuu1 2 3
* **

Figure 8. This is the functionF(u) defined in Section5.1. As given in Fig.3, the values of
u∗

1, u∗
2 andu∗

3 are 0.495, 1.21 and 2.86, respectively.

that the functionF corresponding toφ (Fig. 3), whereF ′(u) = φ(u), has the form
shown in Fig.8.

Now for anyL1 andL2 (0 ≤ L1 + L2 ≤ 1) the total population numberU (50)
and the energyE (49) are depicted graphically as the coordinates of a point in the
triangle whose vertices are[u1, F(u1)], [u2, F(u2)] and[u3, F(u3)] (Figs 9–11).
In Fig. 9, the pointsu1, u2 andu3 are chosen so thatφ(u1) = φ(u2) = φ(u3) =

λ+ > 0 (Fig. 7, upper line), and henceF ′(u1) = F ′(u2) = F ′(u3) = λ+ > 0
(Fig. 9). The constraintU = U0 (50) is depicted by the vertical line segment in
Fig. 9, and the minimum possible energy, given thatU = U0, (Emin) comes at the
point where the vertical line segment touches the base of the triangle.

The casesλ < 0 andλ = 0 are shown in Figs10 and 11. Thus the lowest
possible energy comes from the caseλ = 0 whereu1 = u∗

1, u2 = u∗

2 andu3 = u∗

3
(compare Figs9, 10 and11). For this case,u1 = 0.495, u2 = 1.21 andu3 = 2.86.
Using (48) and (50) we find thatL1 = 0.787 andL3 = 0.213.

Our analysis has shown that whenσ , ε → 0, the energy of the system will
decrease untilφ(u) = λ(const). Each value ofλ defines au3 value (within home
range density) and au1 value (outside home range density) and the low-energy so-
lution has measureL1 outside of the home rangeu = u1 and measure 1−L1 within
the home rangeu = u3. The value ofλ which gives the global energy minimum
(minimum over all possibleλ) is λ = 0, with corresponding within home range
density and outside home range density given byu∗

3 andu∗

1, respectively. We now
use numerical simulation to see whether the global energy minimum is achieved.

6. NUMERICAL SOLUTIONS OF THE SYSTEM

Numerical simulations used a finite difference, Crank–Nicolson method with
variable weighting between forward and backward differencing in time for each
equation. For computational simplicity, equation (22) was solved using forward



276 B. K. Briscoeet al.

u
u

1
 u

2
 U0  u 3

 

F(u) 

(U0 , E min
) 

(U,E) 

F(u
2
) 

F(u
3
) 

F(u
1
) 

.
.

Figure 9. This represents the functionF(u), plotted againstu. The triangle is the convex
combination ofF(u1), F(u2) and F(u3), whereλ = λ+ > 0 and an arbitrary energy
value is shown. The energy associated with a particularU0 is somewhere along the vertical
line, and is clearly minimized at the bottom of the vertical line. This implies that at the
minimum energy level, steady state solutions consist only of the values ofu1 andu3, and
u2 is unstable.
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Figure 10. As in Fig.9, but withλ = λ− < 0.
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Figure 11. As in Fig.9, but withλ = 0. If you compare the previous cases (Figs9 and10),
it is clear that the minimum value ofE(u0) for anyu0 occurs when the bottom line of the
triangle connects the local minimums of the function.
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Figure 12. Beginning with a grouped distribution of wolves, a distinct region of high
density marked by an abrupt change to lower densities emerges. The initial distribution
of wolves was given by 1− cos(2πx). In this figure, the steady state values areu1 =

0.492, u3 = 2.79 which [from (30)] corresponds tou/(1+ f (u)) = 0.298 which is within
0.3% of the minimum energy constantC in (31). In this figure,ε = 0.1.

– –

– –

Figure 13. Starting with the same initial conditions as Fig.12, we setσ = 0.01 which
increases the range over which an individual can detect scent markings. The transition
from low to higher densities is not so dramatic, which is consistent with the dispersion
relation (see Fig.4 and discussion in Section6). In this figure,ε = 0.1.
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– –

– –

Figure 14. At higher densities, the solution moves toward a uniform distribution,u = u1.
In this figureU0 = 10.0 andσ = 0.01.

– –

– –

Figure 15. At lower densities, the solution very rapidly moves toward a uniform distribu-
tion, u = u1. In this figureU0 = 0.1 andσ = 0.01.
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– –

– –

Figure 16. We begin here with an approximate uniform distribution with random pertur-
bations, andσ = 0. Since perturbations of infinitely small wavelengths grow the fastest,
there are many regions of high density separated by areas of low density. This simulation
was executed with 100 spatial grid points. Our analysis suggests that as the number of grid
points approaches∞, these areas of higher density would become infinitely small. Simu-
lations were also done with up to 1000 grid points, and match the analytical results. For
this particular case,u3 = 2.84 andu1 = 0.494 which corresponds well withu∗

3 = 2.86
andu∗

1 = 0.495.

– –

– –

Figure 17. Starting with the same initial conditions as Fig.16, we setσ = 0.01. Just
as in Fig.17, the difference is that transitions can no longer be so abrupt, and hence the
computed solution does not have infinitely many areas of high density. It does, however,
develop into two distinct areas of higher density. With different random perturbations, the
solution can exhibit as many as four different areas of high density.
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– –

– –

Figure 18. Starting with different random perturbations, this solution can exhibit four
different areas of high density.

differencing (i.e., explicitly) and equations (21), (23) were solved using backward
differencing (i.e., implicitly). In all simulations shown, we used 100 grid points
in the x direction, which results in only very small differences from the same
simulations done with 800 spatial grid points. Figures12–18 were generated by
down-sampling the amount of points used in both space and time.

It is evident from Figs8 and11 that the global energy minimum (λ = 0 and
u = u1 = u∗

1 on measureL1, u = u3 = u∗

3 on measure 1− L1) can only be
achieved when the normalized total number of wolves,U0, lies betweenu∗

1 and
u∗

3. We chose parameter values as given in AppendixB, so thatu∗

1 = 0.495 and
u∗

3 = 2.86, as shown in Fig.3. Except where noted, the value ofε wasε = 0.01.
The initial wolf density was given by 1− cos(2πx), with the normalized total
number of wolves equal toU0 = 1.0. The scent density was initially zero. The
casesσ = 0 and 0.01 are shown in Figs12 and 13, respectively. In Fig.12,
resulting steady state valuesu1 = 0.492 andu3 = 0.279 correlate closely with the
u∗

1 andu∗

3 values given above. The differences are probably attributable to the fact
that the global minimum energy analysis is valid only in the limitε = 0. We find
that for nonzero initial conditions for scent density, the minimum energy level was
not always achieved, although, equation (34) is always satisfied. This is a topic for
further research.

The edge of the territory in Fig.12, evidenced by the abrupt edge on the numeri-
cal simulation, is consistent with the dispersion relation shown in Fig.5. Whenσ

is nonzero the ‘edges’ on the simulation are rounded off and theu1 andu3 values
are modified (Fig.13).

When the normalized total wolf density exceedsu∗

3, the entire region becomes
‘territory’ (Fig. 14) and when the normalized wolf density is belowu∗

1 no territories



Home Range Formation 281

form (Fig.15). For these cases it can be shown that the lowest energy solutions are
spatially uniform solutions withu = u3 > u∗

1, andu = u1 < u∗

1, respectively.
When initial data are distributed randomly about a spatially uniform wolf density,

theσ = 0 case gives an ill-behaved solution (Fig.16), consistent with our analysis
of Section4.3. However, whenσ = 0.01 the solution is no longer ill-behaved, but
the location of the territory (or territories) depends upon the initial data (Figs17
and18). Although such randomly distributed initial data are not as biologically rel-
evant as the grouped initial data that give rise to a single territory (Figs12and13),
we include these additional simulations to numerically illustrate the full range of
model behavior.

7. DISCUSSION

We have shown that scent marking alone is sufficient to form a home range if
there are two ingredients: (1) a propensity to remain near existing scent marks
and (2) positive feedback, with increased scent marking in the presence of familiar
scent marks. Each of these assumptions is supported by biological literature for
wolves (see Introduction). Resulting home ranges are ‘flat-topped’ with abrupt
edges. This model is most appropriate for sexually immature wolves that are in
minimal contact with other packs.

The model in this paper contrasts with previous models which rely on pack inte-
ractions and existing den sites for territorial pattern formation. These other models
modulate movement by the level of foreign scent marks, as opposed to famil-
iar scent marks, and resulting territorial patterns show expected density gradually
decreasing with distance from the den site (Lewiset al., 1997).

When there is no spatial averaging of scent information (σ = 0), our model is ill-
posed, but once a small level of spatial averaging is included(σ > 0), the problem
becomes well-posed. An analogous situation can be seen for an aggregation model
proposed byTurchin (1989) [see also the discussion inLewis (1994)]. Indeed
our reduced model, given by equation (39), is Turchin’s insect aggregation model,
although derived by a different means. Thus the energy methods in this paper
can be applied to models of aggregation more general than the formation of home
ranges through scent marking.

Our model is, by necessity, simplistic—once home ranges are formed it is well
known that ‘cognitive maps’ are used by canids to navigate around familiar areas
(Peters, 1979), and we have not included this aspect. Furthermore, we assume
that territorial scent marks are made by a single individual, or a single group of
individuals moving together, such as an alpha pair. However, the modeling and
analysis can be considered as a first step towards realistic spatially explicit models
which include interactions with familiar scent marks.
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APPENDIX A: F ORWARD K OLMOGOROV EQUATION

We wish to derive the Fokker–Planck, or forward Kolmogorov equations from the
assumptions in Section2. We defineq(x, t) to be the probability density function
of a wolf’s location at timet . By the assumption that an individual can move at
most a distanceδx at each time step, we have that

q(x, t) = R(x − δx, t − δt)q(x − δx, t − δt)

+N(x, t − δt)q(x, t − δt)

+L(x + δx, t − δt)q(x + δx, t − δt).

What this says is that in order to be at pointx at timet then an individual at time
t − δt was either atx − δx and moved to the right,x + δx and moved to the left, or
at x, and did not move during that time step. In doing this, we have also used the
assumption that probability of moving is independent of everything besides local
scent density. Using (2), we can rewriteq(x, t) in terms ofN(x, t) as

q(x, t) =
1 − N(x − δx, t − δt)

2
q(x − δx, t − δt)

+ N(x, t − δt)q(x, t − δt)

1 − N(x + δx, t − δt)

2
q(x + δx, t − δt).

Now, in order to simplify this, we do a power series expansion of all terms invol-
ving eitherδt or δx. After doing this, and putting all terms that includeδt on the
left-hand side of the equal sign, we are left with

δtqt =

(
δx2

2

)(
∂2

∂x2
[(1 − N(x, t))q(x, t)]

)
+ h.o.t. (A1)

We take the limit asδx andδt → 0 in such a way that

lim
δx→0

lim
δt→0

δx2

2δt
= D0.
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This is called the diffusion limit, and has been commonly used to derive diffusion-
related equations. Another advantage in doing this is that the higher order terms in
the equation all go to zero. If we now defineu(x, t) = u0q(x, t) to be the expected
wolf density, what we are now left with is

∂u

∂t
=

∂2

∂x2
[D0(1 − N(x, t))u(x, t)] (A2)

which is (3).

APPENDIX B: T HE FUNCTION m(p)m(p)m(p)

m(p) =

{
ap 0 ≤ p ≤

b
a

b p ≥
b
a

(B1)

m(p) =


ap 0 ≤ p ≤

b
a

a2

b p2
+

5a
2 p −

9b
16

3b
4a ≤ p ≤

5b
4a

b p ≥
5b
4a

. (B2)

In the simulations, we took the following values for various parameters:

γ = 1 µ = 1 α = 1

a = 0.5 b = 2 D = 1.

APPENDIX C: T HE FUNCTIONS f (u)f (u)f (u) AND φ(u)φ(u)φ(u)

We define f (u) andφ(u) for each particular case ofm(p) as follows: for the
piecewise linearm(p) (B1)

f (u) =

{
u

1+
u
2

0 ≤ u ≤
4
3

u
1+3u u ≥

4
3

(C1)

φ(u) =

{ u(2−u)

2+u − C 0 ≤ u ≤
4
3

u
1+3u − C u ≥

4
3.

(C2)

For the piecewise quadraticm(p) (B2)

f (u) =


u

1+
u
2

0 ≤ u ≤
6
5

5u−4+2
√

6u2−10u+4
u

6
5 ≤ u ≤

5
3

u
1+3u u ≥

5
3

(C3)
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φ(u) =


u(2−u)

2+u − C 0 ≤ u ≤
6
5

u2

6u−4+2
√

6u2−10u+4
− C 6

5 ≤ u ≤
5
3

u
1+3u − C u ≥

4
3.

(C4)
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