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Abstract. One crucial measure of a species’ invasiveness is the rate at which it spreads into
a competitor’s environment. A heuristic spread rate formula for a spatially explicit, two-
species competition model relies on ‘linear determinacy’ which equates spread rate in the
full nonlinear model with spread rate in the system linearized about the leading edge of the
invasion. However, linear determinacy is not always valid for two-species competition; it has
been shown numerically that the formula only works for certain values of model parameters
when the model is diffusive Lotka-Volterra competition [2]. This paper derives a set of suffi-
cient conditions for linear determinacy in spatially explicit two-species competition models.
These conditions can be interpreted as requiring sufficiently large dispersal of the invader
relative to dispersal of the out-competed resident and sufficiently weak interactions between
the resident and the invader. When these conditions are not satisfied, spread rate may exceed
linearly determined predictions. The mathematical methods rely on the application of results
established in a companion paper [11].

1. Introduction

While agricultural scientists often try to sponsor beneficial invasions to control
selected pest problems, they are also interested in stemming the invasion of in-
troduced pests [1]. Some biocontrol agents, such as genetically engineered mi-
crobes in agriculture, require both an invasion for effective use, and containment for
effective control [3]. Because invaders may have potentially lethal effects on native
populations, preservation of a species may hinge upon preventing the invasion of
a competitor. For example, there is a clear historical record of the gray squirrel
Sciurus carolinensis out-competing and replacing the red squirrel in the United
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Kingdom [8]. One crucial measure of a species’ invasiveness is the speed at which
it spreads into a competitor’s environment.

In this paper we will establish some sufficient conditions for the validity of
a heuristic spreading speed formula used by Okubo and coworkers [8] to mod-
el the spread of grey squirrel into red squirrel populations. The formula equates
the spreading speed c∗ of the full nonlinear competition system with the spread-
ing speed c̄ of the system linearized about the leading edge of the wave. When
c∗ = c̄ we say that the spreading speed is linearly determined. For general
spatio-temporal models, the belief that a certain list of properties implies linear
determinacy has been called the linear conjecture. (See, e.g., van den Bosch and
coworkers [9] or Mollison [7].) Our companion paper [11] gives sufficient condi-
tions for linear determinacy in cooperative or competitive systems.

Numerical tests by Hosono [2] have shown that, in the case of Lotka-Volterra
competition plus diffusion, c∗ and c̄ are equal only for some values of model param-
eters. Thus blind application of the formula can fail to predict the spreading speed
of the nonlinear competition system. The present work will show how Theorem 3.1
of the companion paper [11] can be applied to obtain parameter ranges for which
the spreading speed is linearly determined in two simple models of two-species
competition.

In Section 2, Theorem 4.2 from our companion paper [11] is applied to the
Lotka-Volterra competition model system

p,t = d1p,xx + r1p(1 − p − a1q),

q,t = d2q,xx + r2q(1 − q − a2p).
(1.1)

to obtain parameter ranges for which the spreading speed is linearly determined.
Here all parameters are positive, and the population densities p and q are required
to be nonnegative.

Section 3 applies a result in [11] to obtain a parameter range on which the spread-
ing speed is linearly determined for the discrete-time spatial spreading model:

pn+1(x) = ∫
R1

(1 + ρ1)pn(x − y)

1 + ρ1(pn(x − y) + α1qn(x − y))
k1(y, dy),

qn+1(x) = ∫
R1

(1 + ρ2)qn(x − y)

1 + ρ2(qn(x − y) + α2pn(x − y))
k2(y, dy).

(1.2)

This model assumes that the life cycle consists of a time period in which the
two species are sedentary and compete locally according to the Beverton-Holt dy-
namics, followed by a dispersal period during which both species migrate without
interacting, growing, or dying. In equation (1.2), all parameters are positive; pn(x)

and qn(x) denote the population densities of two species at time n and position
x respectively; ki represents the probability measures for the dispersals of two
populations, with ∫

R1
ki(y, dy) = 1, i = 1, 2. (1.3)
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We assume that the kernels ki have the symmetry property ki(−y, dy) = ki(y, dy).
This and the convolution forms of (1.2) reflect the facts that the dispersal is isotro-
pic and that the space is homogeneous in the sense that the growth and dispersal
properties are the same at each point.

It is well known that a simple change of variables can change two-species com-
petition models into cooperative models. Lui [5,6] obtained sufficient conditions
for the linear determinacy of a certain class of cooperative multispecies models.
However, analyses of the above continuous- and discrete-time models require a
sharper set of conditions than Lui’s. These conditions are given in our companion
paper [11]. Thus, the present paper is an application of the theory developed in the
companion paper [11] which is, in turn, an extension of work by Weinberger [10]
and Lui [5,6].

2. The Lotka-Volterra competition model

We shall study the Lotka-Volterra two-species competition model (1.1). All param-
eters are nonnegative with r1 and r2 positive, and the population densities p(x, t)

and q(x, t) are required to be nonnegative. This system has, in general, four constant
equilibria: The unpopulated state (0, 0); the first-species monoculture state (1, 0);
the second-species monoculture state (0, 1); and the coexistence state (p∗, q∗),
where

p∗ = 1 − a1

1 − a1a2
, q∗ = 1 − a2

1 − a1a2
. (2.1)

The latter state is in the first quadrant if and only if (1 − a1)(1 − a2) > 0, and is
otherwise irrelevant.

Standard stability analysis shows that the species 1 monoculture state (1,0) is
unstable (invadable by the second species) if and only if a2 < 1, that (0,1) is inva-
dable if and only if a1 < 1, and that the coexistence state (p∗, q∗) is stable when
a1 < 1 and a2 < 1 and unstable when a1 > 1 and a2 > 1. Thus if a1 < 1, we ex-
pect that a population which invades a second-species monoculture state (0, 1) will
grow and that of the second species will diminish until the two populations reach
either the coexistence state (p∗, q∗) (a2 < 1) or the first species monoculture state
(1,0) (a2 ≥ 1). A corresponding invasion of the state (1, 0) can occur if a2 < 1.
When a1 < 1 ≤ a2, so that there is no coexistence equilibrium, we define p∗ = 1
and q∗ = 0, so that the invasion of the state (0,1) always produces a transition
toward (p∗, q∗).

As is well known, the change of variables

u = p, v = 1 − q

converts the system (1.1) into the system

u,t = d1u,xx + r1u(1 − a1 − u + a1v),

v,t = d2v,xx + r2(1 − v)(a2u − v),
(2.2)

which is cooperative in the biologically realistic range 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.
This change of variables maps the monoculture state (0,1) into the origin (0, 0),
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the extinction state (0, 0) into (0, 1) and the state (1,0) into (1,1). The target state
(p∗, q∗) goes into the equilibrium (β1, β2) where β1 = p∗ and β2 = 1 − q∗. Note
that if a2 < 1, then β2 = a2β1 < a2, while β1 = β2 = 1 if a2 ≥ 1. Then (β1, β2) is
the equilibrium state which is closest to (0, 0) in the sense there is no other constant
equilibrium (ν1, ν2) which satisfies 0 < ν1 ≤ β1 and 0 < ν2 ≤ β2. The equilibrium
(0, 0) is unstable, and (β1, β2) is stable. Note that if a1 < 1 and a2 ≥ 1, there is an
extra equilibrium (0, 1) for (2.2) which lies on the closed rectangle with vertices
(0,0) and (β1, β2).

The companion paper [11] shows that there are two-species competition models
in which the two species spread at different speeds. However, Theorem 4.4 of [11]
shows that for the Lotka-Volterra model (1.1) both species spread at the same speed
c∗ and that if d1 is positive, every invasion, no matter how small, succeeds. More
specifically, the following Proposition is a paraphrase of Theorems 4.1 and 4.4
of [11].

Proposition 2.1. If all the parameters are nonnegative, d1 > 0, r1(1 − a1) > 0,
and r2a2 > 0, then the cooperative system (2.2) which is obtained from the Lotka-
Volterra competition model (1.1) by introducing the new variablesu = p, v = 1−q,
has the single spreading speed c∗ and the hairtrigger property, in the following
sense: If 0 ≤ u(x, 0) < β1, 0 ≤ v(x, 0) < β2, u(x, 0) and v(x, 0) are zero outside
a bounded set, and u(x, 0) 	≡ 0, then for every positive number ε

lim
t→∞

[
sup

|x|≥(c∗+ε)t

{u(x, t)2 + v(x, t)2}
]

= 0, (2.3)

and

lim
t→∞

[
sup

|x|≤(c∗−ε)t

{(β1 − u(x, t))2 + (β2 − v(x, t))2}
]

= 0. (2.4)

Because of the above change of variables, one can rewrite this proposition as a
statement about the solution of the Lotka-Volterra system (1.1). Namely, if the
parameters have the above properties, if 0 ≤ p(x, 0) < p∗, q∗ < q(x, 0) ≤ 1,
(p(x, 0), q(x, 0)) = (0, 1) outside a bounded interval, and p(x, 0) 	≡ 0 so that an
actual local invasion occurs, then

lim
t→∞[sup{p2(x, t) + (1 − q(x, t))2 : |x| ≥ t[c∗ + ε]}] = 0, (2.5)

and

lim
t→∞[sup{(p∗ − p(x, t))2 + (q∗ − q(x, t))2 : |x| ≤ t[c∗ − ε]}] = 0. (2.6)

In other words, if an observer were to move to the right or left at a fixed speed greater
than c∗, the local population density (p, q) would eventually appear to approach
(0, 1), and if an observer were to move to the right or left at a speed less than c∗,
the local population density would eventually appear to approach (p∗, q∗).

The following theorem gives a parameter range under which the Lotka-Volterra
competition system (1.1) has a linearly determined spreading speed.
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Theorem 2.1. Suppose that all parameters of the Lotka-Volterra system (1.1) are
nonnegative, that d1, r1(1 − a1), and r2a2 are positive, and that the inequalities

d2
d1

≤ 2
a2a1−1
1−a1

≤ r1
r2

(
2 − d2

d1

) (2.7)

are satisfied. Then the spreading speed c∗ with the properties (2.5) and (2.6) is
equal to the speed c̄ = 2

√
d1r1(1 − a1) of the linearization at (0, 1) of the model

(1.1). That is, the system (1.1) is linearly determinate.

Proof. We again introduce the new variables u = p and v = 1 − q, which converts
the competition system (1.1) into the cooperative system (2.2). The linearization of
(2.2) about u = v = 0 is the system

u,t = d1u,xx + r1(1 − a1)u,

v,t = d2v,xx + r2(a2u − v). (2.8)

We shall prove Theorem 2.1 by using Theorem 4.2 in the companion paper [11].
The conditions of this theorem involve a matrix Cµ, defined to be the coefficient
matrix for the vector of linear combinations of α1 and α2 obtained by substituting
u = α1e

−µx , v = α2e
−µx into the right-hand of (2.8) and setting x = 0:

Cµ =
(
d1µ

2 + r1(1 − a1) 0
r2a2 d2µ

2 − r2

)
.

The eigenvalues of this upper triangular matrix are the diagonal elements γ1(µ) =
d1µ

2 + r1(1 −a1) and γ2(µ) = d2µ
2 − r2. An eigenvector corresponding to γ1(µ)

is the vector (ζ1(µ), ζ2(µ)) where

ζ1(µ) = γ1(µ) − γ2(µ), ζ2(µ) = r2a2. (2.9)

Because the first equation of (2.8) is just the heat equation with linear growth
and because, once u is known, the second equation is an inhomogeneous version
of an equation of the same form, one can solve the initial value problem for the
linearized system explicitly. Well-known methods show that the function u spreads
to infinity with the asymptotic speed

c̄ = inf
µ>0

[µ−1γ1(µ)].

An exercise in calculus shows that this infimum is taken on when µ has the value

µ̄ =
√
r1(1 − a1)/d1, (2.10)

so that

c̄ = 2
√
d1r1(1 − a1). (2.11)

The following Proposition is a specialization to the system (2.2) of Theorem
4.2 of the companion paper [11].
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Proposition 2.2. Suppose that the system (2.2) has the following properties:

i. (0,0) and (β1, β2) are equilibria with the βi positive, and there is no other
constant equilibrium (α1, α2) such that 0 < α1 ≤ β1 and 0 < α2 ≤ β2.

ii. The system is cooperative; that is, the growth term in the u-equation is nonde-
creasing in v and the growth term in the v-equation is nondecreasing in u.

iii. The equations in (2.2) have no explicit x or t dependence.
iv. The growth functions are continuous and piecewise continuously differentiable

for 0 ≤ u ≤ β1 and 0 ≤ v ≤ β2.
v. The upper left element γ1(0) of the matrix C0 is positive and greater than the

lower right element γ2(0), and the (2,1) element of C0 is positive.
vi. With µ̄ defined by (2.10), γ1(µ̄) > γ2(µ̄).
vii. For every positive number ρ each of the right-hand sides of the system (2.2)

evaluated at u = ρζ1(µ̄), v = ρζ2(µ̄) is no larger than the corresponding
right-hand side of the linearization (2.8) evaluated at (ρζ1(µ̄), ρζ2(µ̄)).

Then the spreading speed c∗ of the cooperative system (2.2) is equal to c̄, so
that the system is linearly determinate.

It is easily verified that the system (2.2) satisfies the first five hypotheses of this
Proposition when r1(1−a1) > 0 and r2a2 > 0. The hypothesis (vii) takes the form

r1ζ1(µ̄)[−ζ1(µ̄) + a1ζ2(µ̄)] ≤ 0
−r2ζ2(µ̄)[a2ζ1(µ̄) − ζ2(µ̄)] ≤ 0.

We see from the formula (2.9) for the ζν that if (vi) is valid, then this condition is
equivalent to

γ1(µ̄) − γ2(µ̄) ≥ r2 max{a1a2, 1}.
Because the right-hand side is positive, this condition implies the hypothesis (vi)
as well as (vii). Because the γν are just the diagonal elements of Cµ̄ and µ̄ is given
by (2.10), this inequality is equivalent to the conditions (2.7). Thus we can apply
Proposition 2.2. Since the system (2.2) is equivalent to the original system (1.1),
this establishes Theorem 2.1.

We observe that the parameters ri and di only enter the condition (2.7) as the
ratios d2/d1 and r2/r1. This reflects the fact that a scaling of the x and t variables
takes the system (1.1) with one set of parameters into a system with any other
parameters as long as the values of d2/d1, r2/r1, a1, and a2 are the same, and that
it multiplies c∗ and c̄ by the same constant. Therefore linear determinacy can only
depend on these combinations of parameters.

3. A discrete-time competition model

In this section, we consider the discrete-time competition model (1.2). As in the
Lotka-Volterra model, we shall assume that all parameters are nonnegative, and that
ρ1(1 − α1) and ρ2α2 are positive. The variables pn(x) and qn(x) can be thought
of as functions on the real line. However, if the measures ki consist of discrete
masses at points which are all integral multiples of a positive number h, the domain
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of these functions can be thought of as the set H of these multiples. Then (1.2)
is a discrete-time discrete-space or finite difference model, as is the case for all
simulations.

Like the system (1.1), system (1.2) has four possible constant equilibria: The un-
populated state (0, 0), the first-species monoculture state (1, 0); the second-species
monoculture state (0, 1); and the coexistence state (p∗, q∗), where

p∗ = 1 − α1

1 − α1α2
, q∗ = 1 − α2

1 − α1α2
. (3.1)

The coexistence state lies in the first quadrant if and only if (1 − α1)(1 − α2) > 0,
and is otherwise biologically irrelevant.

This model has the following behavior: the species 1 monoculture state (1,0) is
invadable if and only if α2 < 1, (0,1) is invadable if and only if α1 < 1, and the
coexistence state (p∗, q∗) is stable when α1 < 1 and α2 < 1, and unstable when
α1 > 1 and α2 > 1. When α1 < 1 ≤ α2 so that there is no coexistence equilibrium,
we shall define p∗ = 1 and q∗ = 0, so that the invasion of the state (0,1) always
produces a transition toward (p∗, q∗).

The change of variables

un = pn, vn = 1 − qn

converts the system (1.2) into the system

un+1(x) = ∫
R1

(1 + ρ1)un(x − y)

1 + ρ1(α1 + un(x − y) − α1vn(x − y))
k1(y, dy),

vn+1(x) = ∫
R1

α2ρ2un(x − y) + vn(x − y)

1 + ρ2(1 − vn(x − y) + α2un(x − y))
k2(y, dy),

(3.2)

which is order preserving on the biologically significant range 0 ≤ un ≤ 0,
0 ≤ vn ≤ 1. That is, increasing either un or vn increases un+1 and vn+1. This
change of variables takes the equilibrium (0,1) into (0, 0), the equilibrium (0, 0)
into (0, 1), and the equilibrium (1,0) into (1,1). The target state (p∗, q∗) goes into
the equilibrium (β1, β2) where β1 = p∗ and β2 = 1 − q∗. Then (β1, β2) is the
equilibrium state which is closest to (0, 0) in the sense that there is no constant
equilibrium (ν1, ν2) with 0 < ν1 ≤ β1 and 0 < ν2 ≤ β2. (0, 0) is unstable, and
(β1, β2) is stable. Note that if α1 < 1 and α2 ≥ 1 so that (β1, β2) = (1, 1), there is
an extra equilibrium (0, 1) for (3.2) which lies on the closed rectangle with vertices
(0,0) and (β1, β2).

The following Proposition is a paraphrase of Theorems 3.1 and 3.4 of our com-
panion paper [11].

Proposition 3.1. Let all the parameters in the system (3.2) be nonnegative, and
assume that the quantities ρ1(1 − α1) and ρ2α2 are positive. Assume, moreover,
that either the habitat H is the real line and there is an open interval on which the
measure k1 has a continuous positive density, or H is discrete and every number in
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H can be written as a sum of finitely many numbers to which k1 assigns a positive
weight, with repetitions allowed.

Then the cooperative system (3.2) which is obtained by making the substitution
un = pn, vn = 1−qn in the model (1.2), has a single speed c∗ for both components,
and there is a hairtrigger effect, so that the following property is valid: Suppose
that 0 ≤ u0 < β1, 0 ≤ v0 < β2, u0 and v0 are zero outside a bounded interval,
and u0 	≡ 0. Then for every positive number ε

lim
n→∞[max{(un(x))

2 + (vn(x))
2 : |x| ≥ n[c∗ + ε]}] = 0, (3.3)

and

lim
t→∞[max{(β1 − un(x))

2 + (β2 − vn(x))
2 : |x| ≤ n[c∗ − ε]}] = 0. (3.4)

By recalling the change of variables un = pn, vn = 1 − qn, we conclude that if
0 ≤ p0 < p∗, q∗ < q0 ≤ 1, (p0, q0) = (0, 1) outside a bounded interval, and
p0 	≡ 0 so that an invasion occurs, then

lim
n→∞[max{(pn(x))

2 + (1 − qn(x))
2 : |x| ≥ n[c∗ + ε]}] = 0, (3.5)

and

lim
t→∞[max{(p∗ − pn(x))

2 + (qn(x) − q∗)2 : |x| ≤ n[c∗ − ε]}] = 0. (3.6)

The linearization of (3.2) about u = v = 0 is the system

un+1(x) = ∫
R1

(1 + ρ1)un(x − y)

1 + ρ1α1
k1(y, dy),

vn+1(x) = ∫
R1

α2ρ2un(x − y) + vn(x − y)

1 + ρ2
k2(y, dy).

(3.7)

In order to calculate the spreading speed for the linearized system (3.7), we
need the matrix Bµ, which is defined by setting u = αe−µx and v = βe−µx on the
right hand sides of (3.7), multiplying the result by eµx , and writing the vector so

obtained as a matrix product Bµ

(
α

β

)
. We find that

Bµ =
( 1+ρ1

1+α1ρ1
k̄1(µ) 0

α2ρ2
1+ρ2

k̄2(µ) 1
1+ρ2

k̄2(µ)

)
, (3.8)

where each k̄i (µ) is the moment generating function

k̄i (µ) =
∫ ∞

−∞
eµyki(y, dy), i = 1, 2,

of the probability kernel ki .
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The eigenvalues of this matrix are the diagonal entries

λ1(µ) = 1 + ρ1

1 + α1ρ1
k̄1(µ),

and

λ2(µ) = 1

1 + ρ2
k̄2(µ).

It is easily shown (see Lemma 2.3 of [11]) that the spreading speed of the linearized
problem (3.7) is

c̄ = inf
µ>0

{µ−1 ln[k̄1(µ)(1 + ρ1)/(1 + α1ρ1)]} (3.9)

The following theorem provides sufficient conditions for linear determinacy for
the invasion of the state (0,1) of the system (1.2).

Theorem 3.1. Assume that the probability measures ki in (1.2) are invariant under
the reflection x→ − x, and that their moment generating functions k̄i (µ) are finite
for all µ > 0. Also suppose that the parameters and the measure k1 satisfy the
conditions of Proposition 3.1. Let µ̄ be the value of µ where the minimum in (3.9)
is attained. Assume that either
(a) µ̄ is finite, and

1 + ρ1

1 + α1ρ1
k̄1(µ̄) ≥ 1 + ρ2 max {α1α2, 1}

1 + ρ2
k̄2(µ̄); (3.10)

or
(b) µ̄ = +∞ and there is a sequence µσ→∞ such that for each σ

1 + ρ1

1 + α1ρ1
k̄1(µσ ) ≥ 1 + ρ2 max {α1α2, 1}

1 + ρ2
k̄2(µσ ). (3.11)

Then the spreading speed c∗ of the problem (1.2) is equal to the spreading speed
of the linearized problem c̄ given in (3.9).

Proof.
The eigenvalues of the matrix Bµ in (3.8) are the diagonal entries

λ1(µ) = 1 + ρ1

1 + α1ρ1
k̄1(µ),

and

λ2(µ) = 1

1 + ρ2
k̄2(µ).

An eigenvector of Bµ which corresponds to λ1(µ) is ζ(µ) = (ζ1(µ), ζ2(µ))

where

ζ1(µ) = 1 + ρ1

1 + α1ρ1
k̄1(µ) − 1

1 + ρ2
k̄2(µ), ζ2(µ) = α2ρ2

1 + ρ2
k̄2(µ). (3.12)

We shall use the following proposition which is a specialization to the system
(3.2) of Theorem 3.1 of the companion paper [11].
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Proposition 3.2. Suppose that the system (3.2) has the following properties:

i. (0,0) and (β1, β2) are equilibria with the βi positive, and there is no other
constant equilibrium (α1, α2) such that 0 < α1 ≤ β1 and 0 < α2 ≤ β2.

ii. The system is order-preserving; that is, the right-hand side of each equation
is nondecreasing in both un and vn.

iii. The equations in (3.2) have no explicit dependence on space and time.
iv. ki(y, dy) are nonnegative measures with ki((−∞,∞)) = 1, and

k(−y, dy) = ki(y, dy).
v. The eigenvalue λ1(0) of the matrix B0 is greater than one and greater than the

other eigenvalue λ2(0), and the (2,1) element of B0 is positive.
vi. With µ̄ defined in the statement of Theorem 3.1, either

(a) µ̄ is finite, λ1(µ̄) > λ2(µ̄), and each of the right-hand sides of the system
(3.2) evaluated at u = e−µ̄xζ1(µ̄), v = e−µ̄xζ2(µ̄) is no larger than the cor-
responding right-hand side of the linearization (3.7) evaluated at the same u

and v,
or
(b) µ̄ = ∞, and there is a sequence {µσ } with µσ→∞ as σ→∞ such that
λ1(µσ ) > λ2(µσ ), and each of the right-hand sides of the system (3.2) evaluat-
ed at u = e−µσ xζ1(µσ ), v = e−µσ xζ2(µσ ) is no larger than the corresponding
right-hand side of the linearization (3.7) evaluated at the same u and v.

Then the transition from (0,0) to (β1, β2) has the spreading speed c̄ in the sense
that if 0 ≤ u0(x) < β1, 0 ≤ v0(x) < β2, u0(x) 	≡ 0, and u0(x) = v0(x) = 0
outside a bounded set, then for any positive ε

lim
n→∞[max{(un(x))

2 + (vn(x))
2 : |x| ≥ n(c̄ + ε)}] = 0,

and

lim
n→∞[max{(β1 − un(x))

2 + (β2 − vn(x))
2 : |x| ≤ n(c̄1 − ε)}] = 0.

It is easily verified that the system (3.2) satisfies the first five hypotheses of
this proposition. If µ̄ is finite and if the first part of (vi) is satisfied so that ζ1(µ̄) is
positive, the second part of this hypothesis takes the form

ζ1(µ̄) − α1ζ2(µ̄) ≥ 0,

α2ζ1(µ̄) − ζ2(µ̄) ≥ 0.

These two inequalities can be put into the form

ζ1(µ̄) ≥ max(α1, 1/α2)ζ2(µ̄).

By (3.12), this is equivalent to (3.10). Since ζ2(µ̄) > 0, this inequality also implies
the first part of (vi.a), and hence Proposition 3.2 shows that c∗ = c̄. A similar
calculation shows that (3.11) implies the hypotheses (vi.b). Thus Theorem 3.1 is
established.

In order to apply Theorem 3.1, one needs to know the moment generating func-
tions of the migration kernels k1 and k2. Some kernels of possible interest are given
in the following examples.
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Example 3.1. The moment generating function of the distribution with the Gaussian
density kernel

kg(x) = (π)−1/2e−x2
(3.13)

is

k̄g(µ) = eµ
2/4. (3.14)

Example 3.2. The moment generating function of the distribution with the ‘rooftop’
density kernel

kr(x) = max{1 − |x|, 0} (3.15)

is

k̄r (µ) = 2(cosh µ − 1)

µ2 . (3.16)

Example 3.3. The distribution

kσ (x) = [1 − σ 2]δ(x) + 1
2σ

2[δ(x − 1) + δ(x + 1)], (3.17)

where δ is the Dirac delta distribution and 0 ≤ σ 2 ≤ 1, describes a symmet-
ric random walk on a one-dimensional lattice. Its variance is σ 2, and its moment
generating function is

k̄σ (µ) = 1 + σ 2[cosh µ − 1].

When the measures ki both have form (3.17), the recursion (1.2) permits one
to solve for the values of un+1 and vn+1 at the integers in terms of the values of un

and vn at the integers. This recursion thus leads to a discrete space model in which
un(j) and vn(j) can be interpreted as the total population in the census tract (or
deme) j − 1/2 < x ≤ j + 1/2. Since Q[(u, v)](0) depends only on the values
of u and v at three points, there is a good chance that one can obtain an accurate
description of this function from a reasonable number of experiments. Moreover,
the concept of local interactions between migrations becomes much more precise.

We note that if the probability measure k(x, dx) has the moment distribution
function k̄(µ), then the dilated measure k(h−1x, h−1dx) has the moment distribu-
tion k̄(µh). If k(x, dx) has a density so that it takes the form k(x, dx) = k(x)dx,
then k(h−1x, h−1dx) = k(h−1x)h−1dx, so that the new density is h−1k(h−1x).
With this fact each of the above instances leads to a one parameter family of ex-
amples. For example, the moment distribution of the Gaussian density (πh2)−1/2

e−x2/h2
is eµ

2h2/4, while replacing δ(x±1) by δ(x±h) in (3.17) gives the moment
distribution 1 + σ 2[cosh(µh) − 1].

The difficulty of finding the minimizer µ̄ for the problem (3.9) depends, of
course, on the moment generating function of the kernel k1. One is to find the point
at which the function

µ−1[ln k̄1(µ) + ln{(1 + ρ1)/(1 + α1ρ1)}] (3.18)
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attains its minimum. Because the function ln k̄1(µ) is convex, one can easily show
that the function in (3.18) is convex in the variable 1/µ. Therefore, if µ̄ is finite, it
is the unique solution of the equation

µ
k̄′

1(µ)

k̄1(µ)
− ln[k̄1(µ)] = ln{(1 + ρ1)/(1 + α1ρ1)}, (3.19)

whose left-hand side is increasing in µ. The parameter µ̄ can be found numerically
with a root finder.

The case µ̄ = ∞ is characterized by the fact that the left-hand side of (3.19) is
less than the right-hand side for all positive µ. Because this cannot be established
with a root finder, it is good to have the following criterion, which is derived on
pages 386 and 387 of [10].

Proposition 3.3. µ̄ = ∞ if and only if the support of the measure k1 lies on a finite
interval [−α, α] and k1({α}) ≥ (1 + α1ρ1)/(1 + ρ1).

We see from this Proposition that if kσ , like the Gaussian kernel in Example
3.1 or the rooftop kernel in Example 3.2, has a density, then µ̄ is finite. If k1 is the
random walk measure (3.17) in Example 3.3, Proposition 3.2 shows that µ̄ is finite
if and only if 1

2σ
2(1 + ρ1)/(1 + a1ρ1) < 1. In fact, for kσ the function in (3.18) is

1 +µ−1 ln[ 1
2σ

2(1 + ρ1)/(1 +α1ρ1)] +µ−1 ln[1 + 2(σ−2 − 1)e−µ + e−2µ]. Thus
if 1

2σ
2(1 + ρ1)/(1 + α1ρ1) ≥ 1, this function is always larger than its limit 1 at

infinity so that µ̄ is infinite. If 1
2σ

2(1 + ρ1)/(1 + α1ρ1) < 1, then the function is
smaller than this limit for all sufficiently large µ, so that µ̄ is finite.

Example 3.4. When k1 is a Gaussian kernel (2πσ 2
1 )

−1/2e−x2/(2σ 2
1 ), then ln k̄1(µ) =

σ 2
1 µ

2/2, so that it is easy to find the minimizer µ̄ and the minimum c̄ of the function
in (3.18). In fact,

µ̄ =
√

2 ln[(1 + ρ1)/(1 + α1ρ1)]/σ1, (3.20)

and

c̄ = σ1

√
2 ln

1 + ρ1

1 + α1ρ1
. (3.21)

One can then use the above value of µ̄ in the condition (3.10).
If the ki are Gaussian, so that ki(y, dy) = (4πdi)

−1/2e−y2/(4di )dy, and if the
relation r1(1 − a1) = ln[(1 + ρ1)/(1 + α1ρ1)] holds, we observe that the val-
ues of µ̄ and c̄ of the models (1.1) and (1.2) coincide. If, in addition, the relation
r2(a1a2 − 1) = ln[(1 + α1α2ρ2)/(1 + ρ2)] is satisfied, then the condition (3.10) is
equivalent to (2.7).

4. Discussion

We have obtained some sufficient conditions which assure the linear determinacy
of the Lotka-Volterra competition model with diffusion (see Theorem 2.1), and of
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a related discrete-time model (see Theorem 3.1). In the Lotka-Volterra competition
model these conditions can be interpreted as requiring sufficiently large dispersal of
the invader relative to dispersal of the out-competed resident (d1 ≥ d2/2) and suffi-
ciently weak interactions between the resident and the invader ((a2a1 −1)/(1−a1)

sufficiently small). As we have pointed out earlier, these Theorems give sufficient
but not necessary conditions for the linearization to give the correct spreading speed.
That is, there may be parameter values at which the inequalities in the Theorem are
not satisfied, but for which the linearization still gives the correct wave speed.

Hosono[2] analyzed the Lotka-Volterra model (1.1) for the invasion of the state
(0, 1) by species 1 in detail. He found that, for the case d2 = 0, if (a1a2 − 1)/(1 −
a1) ≤ 2r1/r2, then c̄ given in our Theorem 2.1 is the minimal wave speed. By this
he means that, for c < c∗ there exists no traveling wave solution for (1.1), and
for each c ≥ c∗ there exists a traveling wave solution for system (1.1) (Theorem
2, [2]). We shall show elsewhere [4] that the spreading speed c∗ can, indeed, be
characterized as the slowest speed of a traveling wave. Note that the above in-
equality of Hosono is just the condition (2.7) when d2 = 0. In [2], Hosono used
Heaviside step initial data to compute the minimal wave speed. On the basis of
some numerical experiments, Hosono (Conjecture 6, [2]) conjectured that when
d2/d1 is sufficiently small, the spreading speed is always c̄ when a1a2 ≤ 1, while
if a1a2 > 1, there is a critical number rc such that c∗ = c̄ when 0 < r2/r1 < rc
but not when r2/r1 > rc. Theorem 2.1 shows that the first part of this conjecture
is correct when d2/d1 ≤ 2, and that if d2/d1 < 2 and a1a2 > 1, then c∗ = c̄ when
r2/r2 ≤ (2d1 −d2)(1−a1)/d1(a1a2 −1). Therefore Hosono’s conjectured rc must
satisfy the inequality rc ≥ (2d1 −d2)(1−a1)/d1(a1a2 −1). This is consistent with
Hosono’s computations.

We have not been able to prove the existence of Hosono’s rc. We can, howev-
er, prove that for any fixed values of the other parameters there is a critical value
1 ≤ Ac(d2/d1, r2/r1, a1) ≤ ∞ of a2 with the property that the Lotka-Volterra
system (1.1) is linearly determinate if and only if a2 ≤ Ac(d2/d1, r2/r1, a1). This
statement follows from the observation that the solution of the system (2.2) with
any initial conditions between 0 and 1 is nondecreasing in a2, so that c∗ is non-
decreasing in a2. Because c̄ is independent of a2, one sees that if the system is
linearly determinate for one value of a2, the same is true for all smaller values,
which implies the existence of Ac. When d2/d1 ≤ 2, the second inequality in (2.7)
gives a lower bound for Ac as [1 + (1 − a1) (2 − d2/d1) r1/r2] /a1.

The Lotka-Volterra competition model (1.1) has been applied to populations
which occupy similar niches but differ slightly in competitive ability. Examples
include red and grey squirrel populations in the United Kingdom [8], and genet-
ically engineered (ice-minus) versus wild strain (ice-plus) bacteria Pseudomonas
syringae, strains which differ by a single gene [3]. In both these studies, popula-
tions were taken to share the same growth rates (r1 = r2) and to have competition
coefficients which differ slightly from unity: a1 = 1 − ε, a2 = 1 + ε, 0 < ε < 1,
so that the second condition of (2.7) is automatically satisfied.

A numerical evaluation of the spreading speed for this situation (r1 = r2,
a1 = 2/3, a2 = 4/3) is shown in Figure 1. Here the diffusion coefficient for the
invader is fixed at d1 = 1 and the diffusion coefficient for the retreating species d2
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Fig. 1. Numerical calculation of spreading speed for Lotka-Volterra competition model.
Parameter values are a1 = 2/3, a2=4/3, r1 = r2 = 1 and d1 = 1. The parameter d2 varies on
a log scale. The solid line shows c̄ = √

2 and dots show numerically calculated values for
c∗. The numerical solution method uses the method of lines and Gear’s method with 4000
spatial grid points.

Fig. 2. Numerical simulation of Lotka-Volterra competition model. Parameter values are
a1 = 2/3, a2=4/3, r1 = r2 = 1 and d1 = d2 = 1. Dashed lines show initial conditions.
Solutions are given every 25 time units, and are denoted by the solid curves.
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is varied from 1/128 to 128. It appears that for values of d2 up to 8 the computed
spreading speed c∗ is close to the speed c̄ predicted by the linearization even though
the sufficient condition (2.7) is violated when d2 > 2. However, the two speeds
differ for larger d2. The spreading speed was calculated from the traveling wave
profile for (1.1) which was obtained numerically (Figure 2).
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paper.
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