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Abstract. The discrete-time recursion system un+1 = Q[un] with un(x) a vector of popu-
lation distributions of species and Q an operator which models the growth, interaction, and
migration of the species is considered. Previously known results are extended so that one can
treat the local invasion of an equilibrium of cooperating species by a new species or mutant.
It is found that, in general, the resulting change in the equilibrium density of each species
spreads at its own asymptotic speed, with the speed of the invader the slowest of the speeds.
Conditions on Q are given which insure that all species spread at the same asymptotic speed,
and that this speed agrees with the more easily calculated speed of a linearized problem for
the invader alone. If this is true we say that the recursion has a single speed and is linearly
determinate. The conditions are such that they can be verified for a class of reaction-diffusion
models.

1. Introduction

Most models for the growth, spread, and interaction of several spatially distributed
species can be written in the form of a discrete-time recursion

un+1 = Q[un], n = 0, 1, 2, .... (1.1)

where the vector-valued function un(x) = (u1
n(x), u

2
n(x), ..., u

k
n(x)) represents the

population densities of the populations of k species or classes at the point x at the
time nτ , with τ a fixed generation time. We shall be concerned with the spatio-tem-
poral behavior of the invasion by one species of an unstable spatially uniform state
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θ from which this species is absent, and the subsequent convergence of the un to a
stable spatially uniform state β.

Our basic assumption is that the operator Q is order-preserving, which means
that increasing all the components of u increases all the components of Q[u]. While
this implies that all the species cooperate, certain models of competition can be re-
duced to this form. The more usual reaction-diffusion models of species interaction
can be put into the form of the recursion (1.1) by defining Q[v] to be the solution
at some fixed time τ of the system with initial values v.

It was shown in Weinberger [21] that many of the properties of a scalar reac-
tion-diffusion equation are also valid for a large class of single-species recursions.
In particular, if Q is order-preserving and invariant under translation and direction
reversal, then, under some natural conditions on Q, there is a spreading speed c∗
with the properties that for any positive ε,

lim
n→∞[max |un(x) − θ| : {x : |x| ≥ n[c∗ + ε]}] = 0 (1.2)

for any initial function u0(x) which lies between θ and β and which coincides with
θ outside a bounded set, and that

lim
n→∞[max{|β − un(x)| : {x : |x| ≤ n[c∗ − ε]}] = 0, (1.3)

for any initial function u0(x) which lies above θ plus some positive constant on a
sufficiently long interval. Equation (1.2) states that if an observer were to move to
the right or left at a fixed speed greater than c∗, the local population density would
eventually look like θ. Equation (1.3) states that if an observer were to move to
the right or left at a fixed speed less than c∗, the local population density would
eventually look like β. That is, the population spreads at roughly the speed c∗.

Moreover, it was shown that c∗ is bounded below by the spreading speed c̄ of
the recursion in which Q is replaced by a truncation of its linearization M at θ:

c∗ ≥ c̄. (1.4)

It was further shown that if Q has the additional property that

Q[u] − θ ≤ M[u − θ], (1.5)

and if for each positive ε there is a δ > 0 such that Q[u] − θ ≥ (1 − δ)(M[u] − θ)

when 0 ≤ u ≤ ε, then

c∗ = c̄. (1.6)

These results extended earlier results for reaction-diffusion models [2].
Most models of interest in population ecology involve the interaction of mul-

tiple species. It was shown by Lui [13] that all the above results can be extended
to a cooperative multi-species system which satisfies certain additional conditions.
These include the requirements that (i) the linearization M of Q is irreducible; and
(ii) there are no other constant equilibria of the recursion (1.1) in the closed paral-
lelepiped with vertices θ and β. Lui gave applications of these results to models of



Analysis of linear determinacy for spread in cooperative models 185

epidemics and of population genetics [14]. Neubert and Caswell [16] have recently
applied the results to a model of the interaction of stages of a single species.

Virtually all models for the interaction of separate species have the property that
a species which is everywhere absent cannot appear spontaneously. That is, uk = 0
implies that the kth component of Q[u] is zero, regardless of the values of the other
components of u. It follows that the partial derivatives of the kth component ofQ[u]
with respect to all but the kth component of u vanish when uk = 0. Therefore, the
linearization of the operator Q about a state in which one of the species is absent
is reducible. (The same argument can be extended to the case in which the invader
has several stages but no spontaneous generation.)

While purely cooperative systems are rare in ecology, it is well known that the
change of variablesu = p, v = 1−q turns the classical Lotka-Volterra competition
system

p,t = d1∇2p + r1p(1 − p − a1q)

q,t = d2∇2q + r2q(1 − q − a2p)
(1.7)

into a cooperative system. This trick is equivalent to the fact that the system (1.7)
is order preserving with respect to the partial ordering whose positive cone is the
fourth quadrant [9]. If one wishes to study an invasion by the first species of the
equilibrium state p = 0, q = 1 and the motion toward the new equilibrium (1,0),
one notes that the extinction equilibrium (0,0) lies on the closed rectangle deter-
mined by these two equilibria. Thus both of Lui’s additional conditions are violated
in this case. Moreover, Lui’s criterion (1.5) would require the restriction of the func-
tion q(1 − q − a2p) to the line p = 0 to lie above its tangent line at q = 1. This is
clearly violated at q = 0.

The purpose of the present paper is to extend Lui’s results in such a way that
they can be applied to invasion processes of certain models for cooperation or
competition among multiple species, including the model (1.7).

The system (1.1) is said to be linearly determinate when the property (1.6)
is valid. A statement of belief that under certain conditions a system is linear-
ly determinate is called a linear conjecture. See, e.g., van den Bosch, Metz and
Diekmann [20] or Mollison [15].

Linear determinacy is heuristically justified by the fact that if u0 = θ outside
a bounded set, then un is near θ for large |x|. Therefore, the behavior for large |x|
and n might be expected to be governed by the recursion obtained by replacing Q

by its linearization around θ. However, this reasoning depends on an interchange
of the limits as |x| and n approach infinity, and hence does not always apply. In fact,
Hadeler and Rothe [5] showed that the spreading speed of the scalar reaction-dif-
fusion equation

u,t = u,xx + u(1 − u)(1 + νu) (1.8)

is given by the formula

c∗ =
{

2 for − 1 ≤ ν ≤ 2√
ν/2 + √

2/ν for ν ≥ 2,
(1.9)
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while the linearized speed c̄ is always 2. Thus linear determinacy is violated for
ν > 2, so that it is not always true. Moreover, the inequality (1.5) is only satisfied
for ν ≤ 1, while linear determinacy is valid for ν ≤ 2. Thus this condition is
sufficient but not necessary for the linear determinacy to hold. Okubo, et al. [18]
applied the above reasoning to the Lotka Volterra model (1.7) for the invasion of
gray squirrels into an existing red squirrel population. Analysis and simulation by
Hosono [7] showed that linear determinacy is sometimes but not always right for
the model (1.7).

Because c̄ is usually much easier to calculate than c∗, it is important to know
conditions which are sufficient for the validity of linear determinacy. We shall ob-
tain such a condition which is less stringent than (1.5) and which can be applied to
ecological invasion problems.

The problem is formulated in Section 2. Lemma 2.2 and Example 2.1 show
that the presence of an extra constant equilibrium in the rectangular parallelepiped
determined by θ and β can produce a new phenomenon. Namely, different com-
ponents of the solution may spread at different speeds, so that there is no single
spreading speed, but only a slowest speed c∗ and a fastest speed c∗+. Lemma 2.3
extends Lui’s formula for the speed c̄ of the truncated linearized recursion to for-
mulas for the slowest speed c̄ and the fastest speed c̄+. Linear determinacy is now
defined to mean that c∗ = c̄ and c∗+ = c̄+.

Our basic results are stated and proved in Section 3. The main result is
Theorem 3.1, which gives a sufficient condition for the recursion (1.1) to be lin-
early determinate and have a single speed. This condition is weaker than (1.5), and
can be satisfied even when there is an extra equilibrium in the parallelepiped with
corners at θ and β. Theorems 3.2 and 3.3 give less stringent sufficient conditions
for the recursion to have a single spreading speed c∗ = c∗+, which may differ
from c̄.

Theorem 4.1 in Section 4 shows how to transfer any spreading result on re-
cursions of the form (1.1) to an analogous result for a reaction-diffusion system.
We then transfer the theorems of Section 3 to this case. Example 4.3 presents a
reaction-diffusion model for the invasion by a competitor of a stable mono-culture
in which the extinction of the original species spreads more rapidly than the pop-
ulation of the invader. Theorem 4.4 shows that this phenomenon does not occur in
the Lotka-Volterra model (1.7), and that every invasion is successful in this model.

There are several reasons for studying the discrete-time model (1.1) rather than
just reaction-diffusion models. As we shall point out in Section 5, the derivation
of reaction-diffusion models, particularly for relatively small populations, is rather
shaky. Secondly, a discrete-time model permits one to treat time-periodic varia-
tions such as annual reproduction and dispersal. Thirdly, we note that simulation
of a continuous-time model is done by discretizing the time as well as space, so
that one is really dealing with a recursion of the form (1.1). As this paper shows,
the study of discrete-time recursions also provides a powerful tool for studying
reaction-diffusion systems.

We shall show in a companion paper [11] that the results obtained here can be
applied directly both to the Lotka-Volterra model (1.7) and to the corresponding
discrete time model
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pn+1(x) = ∫∞
−∞

(1 + ρ1)pn(x − y)

1 + ρ1(pn(x − y) + α1qn(x − y))
k1(y, dy),

qn+1(x) = ∫∞
−∞

(1 + ρ2)qn(x − y)

1 + ρ2(qn(x − y) + α2pn(x − y))
k2(y, dy).

(1.10)

Here k1(y, dy) and k2(y, dy) are probability measures referred to as dispersal ker-
nels which model migration of the two species after they have grown and competed
locally. (The fact that the ki may be measures permits one to treat spatially discrete
migration models.) The change of variables un = pn, vn = 1 − qn converts this
system to a cooperative system, to which Theorem 3.1 can be applied. Theorem 3.4
shows that this model always has a single spreading speed, and that every invasion
is successful in this model.

Both [21] and [13] obtained the above-cited results in the more general setting
of a multidimensional habitat, and without the assumption of rotational symme-
try. This is done by choosing any unit vector ξ and restricting the recursion (1.1)
to sequences un which only depend on the single variable x · ξ to obtain a one-
dimensional recursion, for which one defines a spreading speed c∗(ξ). One then
obtains results analogous to (1.2) and (1.3) where the interval |x| ≥ n(c∗ + ε) is
replaced by the set {x : x ·ξ ≥ n[c∗(ξ)+ε] for some unit vector ξ} and the interval
|x| ≤ n(c∗−ε) is replaced by the set {x : x ·ξ ≤ n[c∗(ξ)−ε] for all unit vectors ξ},
respectively. Since exactly the same procedure works in our more general case, we
shall not carry it out here.

It has been noticed since the pioneering work of Fisher [4] and Kolmogorov,
Petrowski, and Piscounov [8] that spreading speeds can often be characterized as
slowest speeds of travelling waves. It will be shown in another work [12] that,
under some restrictions on Q, both the slowest spreading speed c∗ and the fastest
spreading speed c∗+ of the components can be characterized in this fashion.

2. Hypotheses and spreading speeds

We begin with some notation. The habitat H will denote either the real line (the
continuous habitat) or the subset of the real line which consists of all integral mul-
tiples of a positive mesh size h (a discrete habitat). We shall use boldface Roman
symbols like u(x) to denote k-vector valued functions of the single variable x in
H, and boldface Greek letters to stand for k-vectors, which may be thought of as
constant vector-valued functions. We think of k as the number of species (or stages)
in the recursion (1.1). We define u ≥ v to mean that ui(x) ≥ vi(x) for all i and x,
and u >> v to mean that ui(x) > vi(x) for all i and x. We use the notation 0 for
the constant vector all of whose components are 0.

The operator Q in the recursion (1.1) takes the set C of all continuous vector
valued functions on H with nonnegative components into itself. A function w(x)

is said to be an equilibrium of Q if Q[w] = w, so that if u = w in the recursion
(1.1), then un = w for all n ≥  .

By introducing the new variable û = u − θ if necessary, we shall assume that
the unstable equilibrium θ from which the system moves away is the origin. In
particular, Q[0] = 0. We define the maximum norm
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‖u(x)‖ := sup
x

|u(x)|.

The linear operator M is said to be the linearization (or Fréchet derivative) of Q at
0 if for any ε > 0 there is a δ > 0 such that ‖u‖ ≤ δ implies that ‖Q[u] − M[u]‖
≤ ε‖u‖. The most important property of M is that for every bounded u ≥ 0

M[u] = lim
ρ↘0

[(1/ρ)Q[ρu]]. (2.1)

The operator Q is said to be order-preserving if u ≥ v implies that Q[u] ≥
Q[v]. This means that an increase in any species is beneficial to all species.
A recursion (1.1) in which Q has this property is said to be cooperative.

We define the translation and reflection operators

Ty[v](x) := v(x − y), R[v](x) := v(−x).

The habitat is said to be homogeneous if the growth and migration properties are
the same at all points, and isotropic if the migration properties are the same in both
directions. These properties are equivalent to the statements that the operator Q is
translation invariant in the sense that Q[Ty[v]] = Ty[Q[v]] for all v and y, and
reflection invariant in the sense that Q[R[v]] = R[Q[v]] for all v.

It is easily seen that if Q has these properties, then so does M . In particular, it
follows that M has the representation

(M[v](x))i =
k∑

j=1

∫ ∞

−∞
vj (x − y)mij (y, dy), (2.2)

where eachmij is a bounded symmetric nonnegative measure. (We permit measures
rather than just densities in order to include discrete-space migration models.) It is
useful to introduce the k × k matrix of two-sided Laplace transforms

Bµ =
(∫ ∞

−∞
eµymij (y, dy)

)
. (2.3)

Note that Bµα = M[αe−µx]
∣∣
x=0 for every constant vector α. For the sake of

simplicity, we shall assume that the entries of Bµ are finite for all µ.
A matrix is said to be reducible if the coordinates can be split into two nonemp-

ty disjoint subsets with the property that the (ij) element of the matrix vanishes
whenever i is in the first set and j is in the second. This is equivalent to saying that
the matrix can be put into lower block triangular form by reordering the coordinates
so that the coordinates in the first set come before those of the second. If this cannot
be done, the matrix is said to be irreducible. Because the mij are nonnegative,
the entries of Bµ are nonnegative, and the ij entry of Bµ is 0 if and only if mij

is identically zero, so that the ij entry of B0 is also 0. Thus either all the Bµ are
irreducible or they are all reducible.

By reordering the coordinates, one can put any matrix into a block lower tri-
angular form, the so-called Frobenius form, in which all the diagonal blocks are
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irreducible. (See, e.g. [6].) (An irreducible matrix consists of the single diagonal
block which is the matrix itself.) We shall suppose that this reordering has been
done for B0. Because all the Bµ have the same zero entries, it follows that all the
matrices Bµ are in Frobenius form. A theorem of Frobenius states that any nonzero
irreducible matrix with nonnegative entries has a unique positive eigenvalue, called
the principal eigenvalue, with a corresponding principal eigenvector with strictly
positive coordinates. Moreover, the absolute values of all the other eigenvalues are
no larger than the principal eigenvalue.

Let λσ (µ) denote the principal eigenvalue of the σ th diagonal block from the
top of Bµ. These are, of course, eigenvalues of Bµ.

For any α >> 0 we define

Cα := {u(x) : 0 ≤ u ≤ α}.
We shall make the following assumptions, which are a proper subset of a variant
of those used by Lui [13] .

Hypotheses 2.1

i. Q[0] = 0, and there is a constant vector β >> 0 such that Q[β] = β, which
is minimal in the sense there is no constant ν �= β such that Q[ν] = ν and
0 << ν ≤ β; i.e., 0 and β are equilibria, and there is no constant all-species
coexistence equilibrium below β.

ii. Q is order-preserving on nonnegative functions, so that if u ≥ v ≥ 0, then
Q[u] ≥ Q[v] ≥ 0; i.e., an increase in any species is beneficial (or at least not
detrimental) to all species.

iii. Q is translation and reflection invariant so that Q[Ty[v]] = Ty[Q[v]] for all y,
and Q[R[v]] = R[Q[v]]; i.e., the environment is homogeneous and isotropic.

iv. Q is continuous in the topology of uniform convergence on bounded sets; i.e.,
if the uniformly bounded sequence vn(x) converges to v(x), uniformly on every
bounded set, then Q[vn] converges to Q[v], uniformly on every bounded set.
In other words, the values of Q[v](x) are almost independent of those values
of v(y) with y outside a sufficiently long interval centered at x.

v. a. The matrix Bµ defined by (2.3) has finite entries for all µ and is in Frobenius
form. The principal eigenvalue of its σ th diagonal block is λσ (µ).

b. λ1(0) > 1, so that the equilibrium 0 is invadable; i.e., the populations
which correspond to the first block grow when all populations are suffi-
ciently small;

c. λ1(0) > λσ (0) for every σ > 1; i.e., at the time of the invasion, the growth
rate of the invader is greater than that of the invadees. (Note that if the
invaded equilibrium is stable, λσ (0) ≤ 1 for σ �= 1, so that this follows
from b.)

d. B0 has at least one nonzero entry to the left of each of its diagonal blocks
other than the uppermost one; i.e., when the populations are very small, an
increase in population of the first species increases the populations of all
the other species in a finite number of time steps.

vi. There is a family M(κ) of bounded linear order preserving operators on
k-vector-valued functions with the properties that
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a. for every sufficiently large positive integer κ there is a constant vector
ω >> 0 such that

Q[v] ≥ M(κ)[v] when 0 ≤ v ≤ ω; (2.4)

i.e., in a neighborhood of the zero equilibrium, one can bound the non-
linear operator below by a sequence of linear operators. (Lemma 4.1 will
show that these conditions are automatically satisfied by a reaction-dif-
fusion system. For most other biological models, they are satisfied with
M(κ) = (1 − κ−1)M .)

b. For every µ > 0 the matrices B
(κ)
µ defined by B

(κ)
µ α := M(κ)[e−µxα]

∣∣
x=0

converge to Bµ as κ→∞. This is true for a reaction-diffusion system and
also when M(κ) = (1 − κ−1)M .

Remarks. 1. As we remarked in the Introduction, when a new species invades an
equilibrium of other species, the row of the matrix B0 which corresponds to the
new species has zero off-diagonal elements. Hence in the Frobenius form the in-
vading species appears first, and the first diagonal block is 1 × 1. If there were a
second invading species, there would be another row with only a diagonal element,
and this is excluded by the Hypothesis v.d. Thus in most invasion problems, the
first diagonal block is 1 × 1. If, as in the work of Neubert and Caswell [16], the
population of the invader is subdivided into cooperating stages, the upper left block
will consist of the populations of these stages.

2. We observe that Hypotheses (i) and (ii) show that Cβ is an invariant set for Q.
That is, if u0 is in Cβ, then the same is true of all the un generated by the recursion
(1.1).

3. It is easily verified that Parts (c) and (d) of Hypothesis 2.1.v are equivalent
to the existence of an eigenvector ζ(0) >> 0 of B0 corresponding to the principal
eigenvalue λ1(0).

We recall one of the results of Lui which uses one of his extra conditions.

Proposition 2.1. If the Hypotheses 2.1 are satisfied and if, in addition, the only
constant equilibria on Cβ are 0 and β, then there is a spreading speed c∗ with the
properties that for every positive ε

i. if u0 vanishes outside a bounded interval and 0 ≤ u0 << β, then

lim
n→∞

[
sup

|x|≥n[c∗+ε]
|un(x)|

]
= 0; (2.5)

and
ii. for any constant vector ω >> 0, there is a positive number Rω with the property

that if u0 ≥ ω on an interval of length 2Rω, then

lim
n→∞

[
sup

|x|≤n[c∗−ε]
|β − un(x)|

]
= 0. (2.6)
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This is a special case of Theorems 3.1 and 3.2 of Lui [13]. In order to see what
may happen when the additional condition of this Proposition is not satisfied, we
give a brief sketch of the proof. Choose a fixed vector-valued initial function a0(x)

all of whose components are non-increasing in x and vanish for x ≥ 0, and such
that 0 << a0(−∞) << β. Define the sequence an(c; x) by the recursion

an+1(c; x) = max{a0(x), T−c[Q[an(c; ·)]]}. (2.7)

The operator on the right is again order preserving. By definition, a1 ≥ a0, and
an induction argument shows that for all n, an ≤ an+1 ≤ β, and an(c; x) is non-
increasing in c and x. Thus the sequence an increases to a limit function a(c; x)
which is again nondecreasing in c and x and bounded by β. Lui also showed that
the vectors a(c; ±∞) are equilibria1 of Q. Parts i, ii, v.a, and vi of Hypothesis 2.1
imply that a(c; −∞) = β. It can be shown that a(c; ∞) = β when c is sufficiently
negative. Lui defined

c∗ := sup{c : a(c; ∞) = β}, (2.8)

and showed that this c∗ ≤ ∞ does not depend on the choice of a0.
The monotonicity shows that a(c; ∞) = β for c < c∗. When c∗ > ε > 0, Lui

showed how to combine translates of a(c∗ − ε; x) and a(c∗ − ε; −x) to produce
a nonnegative vector-valued function s0(x) whose components are strictly below
those of β, which vanishes outside a bounded interval, and such that the sequence
sn(x) obtained by solving the recursion (1.1) with this initial function has the prop-
erty that the maximum of |β − sn(x)| on the interval |x| ≤ n(c∗ − ε) converges
to zero as n goes to infinity. It follows from parts (ii), (v.b), and (vi) of Hypoth-
eses 2.1 that if u0 = ω >> 0, then the constants un converge to β. By part (iv)
of Hypotheses 2.1 there are an integer N and a positive Rω such that if u0 ≥ ω
for |x| ≤ Rω, then uN ≥ s0, so that (2.6) is valid. By translating if necessary, one
obtains the same result if u0 ≥ ω on any interval of length 2Rω. (Of course, when
c∗ ≤ 0, the property (2.6) is meaningless.)

Suppose that c∗ is finite. Since, by the extra hypothesis of the Proposition, the
only other equilibrium in Cβ is 0, we conclude that a(c; ∞) = 0 for c > c∗. A
semi-continuity argument then shows that the equality is still true at c = c∗, so that
a(c; ∞) = 0 for c ≥ c∗. For any initial function 0 ≤ u0 << β, which vanishes
outside a bounded interval, let Tα be a translation which takes this interval into
a subset of the negative x-axis, and choose an admissible function a0 such that
a0 ≥ Tα[u0]. Then u0(x) ≤ a0(c

∗; x + α), and therefore

u1(x) ≤ Q[T−α[a0(c
∗; ·)]] = T−α+c∗ [T−c∗ [Qa0]] ≤ T−α+c∗ [a1(c

∗; x)].
1 There is an easily fixed gap in the proof of Lemma 2.6 of [13]. The inequality a(c; ∞) ≤

Q[a(c; ∞)] is proved under the assumption that Q[a(c; s)] is defined, but the limit function
a may not be continuous. However, because a(c; s) is nonincreasing and bounded, one can
construct a continuous piecewise linear function ã ≥ a with the same limits at ±∞. It easily
follows that a(s) ≤ Q[ã(x + s + c)](0) for s ≥ 0, and the desired inequality follows by
letting s approach infinity.
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By induction we see that

un(x) ≤ an(c∗, x − nc∗ + α) ≤ a(c∗, x − nc∗ + α).

Thus when x ≥ n(c∗ + ε), we have

un(x) ≤ a(c∗, nε + α),

which approaches zero as n goes to infinity. Since un(−x) also satisfies the recur-
sion, we obtain the same result for un(−x), and this gives (2.5). Thus the Proposition
is established.

We now examine what happens when the extra assumption that 0 and β are the
only equilibria in Cβ is dropped. One can still define the function a(c; x) as above,
and follow Lui in defining c∗ by (2.8). The only difference is that a(c∗; ∞) may
be an equilibrium ν other than 0. The property (2.6) of a solution of (1.1) which
becomes sufficiently large on a sufficiently large interval is proved as before. It is
natural to define a second speed

c∗
+ := sup{c : a(c,∞) �= 0}. (2.9)

If c∗+ = c∗, we shall say that the recursion (1.1) has a single speed.
We can extend Proposition 2.1 to the case where extra equilibria are present.

We define the projection operator Pσ by saying that Pσ [v] has the same coordinates
as v in the directions corresponding to the σ th diagonal block of B0, and zero com-
ponents in the other directions. We first state a simple algebraic fact, which will be
proved in the Appendix.

Lemma 2.1. Let the Hypotheses 2.1 be satisfied. Then for every constant equilib-
rium ν in Cβ other than β, P1[ν] = 0.

This fact helps prove the following extension of Proposition 2.1.

Lemma 2.2. Let un be a solution of the recursion (1.1). Then for any positive ε

i. if 0 ≤ u0 << β and u0 = 0 outside a bounded interval, then

lim
n→∞[ sup

|x|≥n[c∗++ε]
|un(x)|] = 0, (2.10)

and

lim
n→∞[ sup

|x|≥n[c∗+ε]
|P1[un(x)]|] = 0; (2.11)

ii. for any constant vector ω >> 0, there is a positive number Rω with the property
that if u0 ≥ ω on an interval of length 2Rω, then

lim
n→∞[ sup

|x|≤n[c∗−ε]
{|β − un(x)|}] = 0, (2.12)

and there is a σ > 1 such that when c < c∗+, all the components of a(c; ∞) in
the directions corresponding to the σ th block of B0 are positive, and

lim inf
n→∞ [ inf

|x|≤n[c∗+−ε]
Pσ [un(x)] ≥ Pσ [a(c∗

+ − 1
2ε,∞)]. (2.13)
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Proof. The equation (2.10) is obtained by applying the proof used to establish the
property (2.5) in Proposition 2.1. Because P1[a(c∗; ∞)] = 0 by Lemma 2.1, the
same proof applied to P1[un] yields (2.11). The proof of (2.6) in Proposition 2.1
gives the property (2.12).

The definition (2.9) of c∗+ shows that for c < c∗+, a(c; ∞) is nonzero and non-
increasing in c. Therefore there is at least one σ such that all the components of the
equilibrium a(c; ∞) are positive for all c < c∗+. The proof of Lemma 2.1 shows
that if u0 is uniformly positive on a sufficiently large set, then for |x| ≤ n(c∗+ − ε),
un(x) becomes larger than a(c∗+ − 1

2ε; ∞), and (2.13) follows. Thus the Lemma is
established.

Remark. The properties (2.10) and (2.12) show that no component of un can spread
more rapidly than c∗+ or more slowly than c∗. The properties (2.11) and (2.12) state
that the first component (the invader) spreads at the slowest speed c∗. (2.13) shows
that there is at least one component which spreads at the maximal speed c∗+. Thus
if c∗+ > c∗, there is no single spreading speed. If c∗+ = c∗, the equations (2.10)
and (2.12) show that their common value is the spreading speed of all components
of un.

Example 2.1. Consider the operator

Q[(u, v)] :=




∫∞
−∞(4πd1)

−1/2e−(x−y)2/(4d1)

u(y)[1 + r1(1 − 2 min{u(y), 1} + min{v(y), 1})]dy∫∞
−∞(4πd2)

−1/2e−(x−y)2/(4d2)

[v(y) + r2 max{1 − v(y), 0}(u(y) + v(y))]dy




(2.14)

with d1 and d2 positive, and

0 < r2 < r1 < 1/3. (2.15)

It is easily verified that the Hypotheses 2.1 with β = (1, 1) are satisfied. The points
0, β, and (0, 1) are all equilibria, so that Lui’s additional hypothesis in Proposi-
tion 2.1 is violated. The first component Q1 of the operator Q is bounded above by
setting v ≡ 1:

(Q[(u, v)])1 ≤ Q̃1[u]

:= ∫∞
−∞(4πd1)

−1/2e−(x−y)2/(4d1)u(y)[1 + r1(1 − 2 min{u(y), 1} + 1]dy.

The second component Q2 is bounded below by setting u ≡ 0:

(Q[(u, v)])2 ≥ Q̃2[v]

:= ∫∞
−∞(4πd2)

−1/2e−(x−y)2/(4d2)[v(y) + r2 max{1 − v(y), 0}(0 + v(y))]dy.

Thus if un = (un, vn) satisfies the recursion un+1 = Q[un] with u0(x) = 0 for
large |x|, and if u0 is nonnegative and uniformly less than 1, then un can be bounded
above by the solution ũn of the recursion ũn+1 = Q̃1[ũn] with ũ0 = u0. The results
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on scalar recursions in [21] show that ũn spreads with the speed 2
√
d1 ln(1 + 2r1).

Therefore,

lim
n→∞[sup{un(x) : |x| ≥ n(2

√
d1 ln(1 + 2r1) + ε)}] = 0.

By definition, c∗ ≤ 2
√
d1 ln(1 + 2r1).A similar argument shows that vn is bounded

below by ṽn, which spreads with the speed 2
√
d2 ln(1 + r2). Hence,

lim
n→∞[sup{1 − vn(x) : |x| ≤ n(2

√
d2 ln(1 + r2) − ε)}] = 0,

so that c∗+ ≥ 2
√
d2 ln(1 + r2). Thus if

d2 ln(1 + r2) > d1 ln(1 + 2r1), (2.16)

then the second component spreads at a speed c∗+ greater than the speed c∗ of
the first component. Therefore there is no single spreading speed for this problem
(Figure 1a).

In order to discuss linear determinacy, we need to talk about the spreading
speeds of a recursion in which the operator Q is a truncated linear operator. Let L̃
be a bounded linear order-preserving translation and reflection invariant operator
on C, for which there is a constant vector ω >> 0 such that L̃[ω] >> ω. We
consider the truncated linear recursion

un+1 = min{L̃[un],ω} (2.17)

We suppose that for every µ the matrix B̃µ defined by the fact that

L̃[e−µxα]|x=0 = B̃µα

for every constant vector α has finite nonnegative entries. We suppose the coordi-
nates have been ordered so that these matrices are in Frobenius form. Let λ̃σ (µ)
denote the principal eigenvalue of the σ th diagonal block of B̃µ, and define the
numbers

c̃σ := inf
µ>0

{µ−1 ln λ̃σ (µ)}. (2.18)

Note that c̃σ = −∞ when λσ (0) < 1. The following Lemma gives explicit expres-
sions for the two speeds of the recursion (2.17).

Lemma 2.3. Suppose that the truncated linear operator min{L̃[u],ω} satisfies the
Hypotheses 2.1 with β = ω. Then the slowest spreading speed c̃ of the recur-
sion (2.17) is c̃1, and its fastest spreading speed c̃+ is the largest of the numbers
c̃σ .
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Fig. 1. Numerical simulation of model (2.14) with with r1 = 0.25, r2 = .02, so that (2.15) is
satisfied. The discrete time model (1.1) where Q is given by (2.14) (u = (u, v)) was simulat-
ed numerically on a domain −50 ≤ x ≤ 50 with initial data u = v = 0.1 on −10 ≤ x ≤ 10
and u = v = 0 elsewhere. The solution is shown on the right half of the domain for times
n = 0 to n = 25. Solid lines indicate u and dotted lines indicate v. (a) d1 = 0.5, d2 = 2 so
that (2.16) is satisfied. Note that, as predicted in Example 2.1, the spreading speed of v is
greater than that of u. (b) d1 = 2, d2 = 0.5 so that (2.16) is violated and (3.21) is satisfied.
Note that there is a single spreading speed, as will be predicted by Example 3.3.
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The proof is straightforward, and will be presented in the Appendix.
Linear determinacy concerns the particular case when L̃ is the linearization M

of Q at 0. By Lemma 2.3 the two speeds for the truncation of this operator are the
slower speed

c̄ := inf
µ>0

[µ−1 ln λ1(µ)]. (2.19)

and the faster speed

c̄+ := max
σ

[ inf
µ>0

[µ−1 ln λσ (µ)]]. (2.20)

We shall say that the recursion (1.1) is linearly determinate if c∗+ = c̄+ and
c∗ = c̄.

3. Sufficient conditions for linear determinacy and single speed

We first generalize Lui’s result that c̄ is a lower bound for c∗.

Lemma 3.1. If Q satisfies the Hypotheses 2.1, then

c∗ ≥ c̄, (3.1)

and

c∗
+ ≥ c̄+. (3.2)

Proof. Let  σ be the dimension of the σ th diagonal block of B0. For any  σ -vector-
valued function w(x), we define the k-vector valued function w̃ by saying that its
components corresponding to the σ th block of B0 are those of w, and its remaining
components are zero. We now define the auxiliary operator

Qσ [w] := the  σ -vector whose entries are those coordinates of Q[w̃]

which correspond to the σ th block.

The linearization ofQσ at 0 is the σ th diagonal block ofB0. Because this matrix
is irreducible, Lui’s work shows that Qσ has the single speed cσ , and that

cσ ≥ inf
µ>0

[µ−1 ln λσ (µ)] = c̄σ . (3.3)

(In proving this result, Lui used the special case M(κ) := [1 − (1/κ)]M of the
Hypothesis 2.1.vi. His proof is easily extended to one which only uses Hypoth-
esis 2.1.vi. As Lemma 4.1 will show, our hypothesis has the advantage that it is
automatically satisfied by the time 1 map of a reaction-diffusion model.)

Because Q[Pσ [v]] ≤ Q[v], the components of Q[v] corresponding to the σ th
block are bounded below by those of Qσ applied to the corresponding components
of v. It follows that if un satisfies (1.1), then Pσun spreads at a speed which is at
least c̄σ . This together with Lemma 2.3 proves the inequalities (3.1) and (3.2), so
the Lemma is proved.
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Remarks. 1. It was shown by Lui that ln λ1(µ) is a convex function of µ. The re-
flection invariance of Q implies that λ1(µ) is even in µ. Hence the minimum value
of ln λ1(µ) occurs at µ = 0. Since λ1(0) > 1 by Hypothesis 2.1.v.b, we conclude
that µ−1 ln λ1(µ) > 0. It follows from (2.19) that c̄ ≥ 0, so that c∗ ≥ 0. In fact, a
strengthening of Lui’s proof of the convexity of ln λ1(µ) shows that if the support
of at least one of the measures mij in the first block of the representation (2.2) of
M contains at least one point other than the origin, then c̄ > 0 so that c∗ > 0.

2. The inequality (3.2) implies that if the linearized problem does not have a
single speed so that c̄+ > c̄, then either the recursion (1.1) does not have a single
speed or it is not linearly determinate.

Our main result gives a simple condition under which (1.1) has a single speed
and is linearly determinate. We note that the matrices Bµ all have the same positive
elements. In particular, Bµ again satisfies the Hypothesis 2.1.v.d. It follows as in
Remark 3 after Hypotheses 2.1 that if for some µ, λ1(µ) > λσ (µ) for all σ > 1,
then Bµ has an eigenvector ζ(µ) >> 0 corresponding to the principal eigenvalue
λ1(µ).

Theorem 3.1 (Main result). Suppose that Q satisfies the Hypotheses 2.1.
Let the infimum in (2.19) be attained at µ̄ ∈ (0,∞]. Assume that either

a. µ̄ is finite,

λ1(µ̄) > λσ (µ̄) for all σ > 1, (3.4)

(i.e., for any initial distribution of the form u0 = e−µ̄xα all components of the
solution of the linearized recursion un+1 = M[un] grow at the asymptotic rate
(λ1(µ̄))

ne−µ̄x) and

Q[e−µ̄xζ(µ̄)] ≤ M[e−µ̄xζ(µ̄)]; (3.5)

(i.e., while Q may have an Allee effect so that (1.5) is not satisfied for all u, it
does not display this effect for the particular function e−µ̄xζ(µ̄).)

or
b. there is a sequence µν ↗ µ̄ such that for each ν

λ1(µν) > λσ (µν) for all σ > 1 (3.6)

and

Q[e−µνxζ(µν)] ≤ M[e−µνxζ(µν)]. (3.7)

Then

c∗
+ = c∗ = c̄ = c̄+,

so that (1.1) has a single speed and is linearly determinate.
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Proof. Suppose condition (a) is valid. By definition

M[e−µ̄xζ(µ̄)] = λ1(µ̄)e
−µ̄xζ(µ̄) = e−µ̄(x−c̄)ζ(µ̄).

The hypothesis (3.5) can therefore be written in the form

Q[e−µ̄xζ(µ̄)] ≤ e−µ̄(x−c̄)ζ(µ̄). (3.8)

Let 0 ≤ u0(x) << β and let u0 = 0 for all sufficiently large x. The inequality
ζ(µ̄) >> 0 shows that there is a ρ such that u0 ≤ e−µ̄x+ρζ(µ̄). BecauseQ is trans-
lation invariant, (3.8) shows that the sequence of functions vn = e−µ̄(s−nc̄)+ρζ(µ̄)
satisfies the recursive inequalities Q[vn] ≤ vn+1. We note that if un ≤ vn, then
un+1 = Q[un] ≤ Q[vn] ≤ vn+1. Since u0 ≤ v0, induction shows that un ≤ vn for
all n. Thus for any positive ε

sup{un(x) : x ≥ n(c̄ + ε)} ≤ e−nµ̄ε+ρζ(µ̄). (3.9)

This, together with the same inequality for u(−x), immediately implies the property
(2.5). Therefore

c̄ + ε ≥ c∗
+. (3.10)

Since ε is arbitrary, this inequality and (3.1) show that c̄ ≤ c∗ ≤ c∗+ ≤ c̄, so that
c∗+ = c∗ = c̄. (3.4) shows that c̄σ < c̄1 for all σ > 1, so that c̄+ = c̄.

If condition (b) holds, the above argument gives the inequality (3.8) with µ̄

replaced by µν and c̄ replaced by ln λ1(µν)/µν . Thus

c∗
+ ≤ ln λ1(µν)/µν. (3.11)

By definition, the limit of the right-hand side as ν→∞ is c̄. As above, c̄+ = c̄. Thus
we again have the inequalities c̄ ≤ c∗ ≤ c∗+ ≤ c̄ which imply that c∗+ = c∗ = c̄.
As above, c̄+ = c̄, and the Theorem is established.

Remark. Because c∗ only depends on the behavior of Q[u] on functions which
satisfy the inequalities 0 ≤ u ≤ β, we may replace Q by the smallest translation
invariant order preserving operator which agrees with Q on this set. We define the
function min{u,β} by saying that its ith component at x is min{ui(x), βi}. Then
the condition (3.5) can be replaced by

Q[min{e−µ̄xζ(µ̄),β}] ≤ M[e−µ̄xζ(µ̄)]. (3.12)

This condition is useful if Q is undefined for functions which are not bounded by
β. In principle, the criterion (3.12) is less stringent than (3.5), but it may be harder
to verify.

Example 3.1. As in Example 2.1, we look at the system (2.14) with the conditions
(2.15) on the parameters. An easy calculation shows that

Bµ =
(

ed1µ
2
(1 + r1) 0

ed2µ
2
r2 ed2µ

2
(1 + r2)

)
. (3.13)
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This matrix is already in block diagonal form with 1 × 1 blocks, and λ1(µ) =
ed1µ

2
(1 + r1). Thus µ−1 ln λ1(µ) = d1µ + µ−1 ln(1 + r1) and we find that that

µ̄ =
√

[ln(1 + r1)]/d1 (3.14)

and

c̄ = 2
√
d1 ln(1 + r1). (3.15)

The Hypotheses 2.1 are satisfied. The condition (3.4) is

(1 + r1)
2 > (1 + r1)

(d2/d1)(1 + r2).

A sufficient condition for (3.5) is

p[1 + r1(1 + min{q, 1} − 2 min{p, 1})] ≤ (1 + r1)p

q + r2 max{1 − q, 0}(p + q) ≤ q + r2(p + q)

when (p, q) = e−µ̄xζ(µ̄). The second inequality is satisfied for any nonnegative
(p, q). The first inequality is satisfied when either q ≤ 2p or p ≥ 1/2. Thus the
condition is valid when ζ2(µ̄) ≤ 2ζ1(µ̄). We see from (3.14) and the form (3.13)
of Bµ that ζ(µ̄) is proportional to(

(1 + r1)
2 − (1 + r1)

d2/d1(1 + r2), (1 + r1)
d2/d1r2

)
.

Therefore (3.5) is satisfied when

(1 + r1)
2−(d2/d1) ≥ 1 + (3/2)r2. (3.16)

Since this condition is stronger than the above form of condition (3.4), the inequal-
ity (3.16) implies both conditions of Theorem 3.1. That is, when this inequality is
valid, c∗+ = c∗ = c̄+ = c̄ = 2

√
d1 ln(1 + r1).

Theorem 3.1 gives conditions which are so strong that not only is c∗+ = c∗
so that there is a single spreading speed, but also linear determinacy is valid. It is
useful to have a weaker set of conditions which still implies that c∗+ = c∗. Such
conditions will require the following additional Hypothesis.

Hypotheses 3.1. The operator Q has one of the two properties

a. the family of functions Q[v] with v in Cβ is equicontinuous; or
b. if the nondecreasing sequence vn in Cβ converges to v, then Q[v] is defined,

and Q[vn] converges to Q[v].

Remark. This Hypothesis is always satisfied when H is discrete.
To obtain sufficient conditions for having a single speed, we shall make use of

the following lemma.

Lemma 3.2. Suppose that Q satisfies the Hypotheses 2.1 and 3.1. Let ν ∈ Cβ be a

constant equilibrium other than 0 or β. Assume that there exists an operator Q(ν)

which satisfies Hypotheses 2.1 and has the additional properties
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i. Q(ν)[u] ≥ Q[u] for all u in Cβ;

ii. Q(ν)[u] = Q[u] when u ≥ ν;
iii. the recursion (1.1) with Q replaced by Q(ν) has a single speed cν .

Then a(c∗; ∞) cannot be equal to ν.

Proof. Suppose for the sake of contradiction that a(c∗; ∞) = ν. By (i) the a(ν)
n

defined by (2.7) with Q replaced by Q(ν) and with a(ν)
0 = a0 are at least as large

as the an, and hence
c∗
+ ≤ cν .

If the Hypothesis 3.1.b is valid, we can take limits of both sides of the defining
equation (2.7) to see that a(c∗; x) satisfies the equation

a = max{a0, T−c∗ [Q[a]]}. (3.17)

If, instead, the Hypothesis 3.1.a holds, it is easily seen that a(c∗; x) is continuous.
Then Dini’s theorem shows that the an converge to a uniformly on bounded sets,
and (3.17) follows from (2.7) and Hypothesis 2.1.iv.

Since a(c∗, x) is non-increasing in x and has the value ν at infinity, we con-
clude that a ≥ ν. Then (ii) shows that Q(ν)[a] = Q[a], so that a(c∗; x) =
max{a0(x), T−c∗ [Q(ν)[a]](x)}. We see from the recursion for a(ν) and the order-
preserving property of Q(ν) that if a(ν)

n (c∗; x) ≤ a(c∗; x), then

a(ν)
n+1 ≤ max{a0, T−c∗ [Q(ν)[a]]} = a.

Since a(ν)
0 = a0 ≤ a, induction shows that all the a(ν)

n , and hence also a(ν)(c∗; x),
are bounded by a(c∗; x). Therefore a(ν)(c∗; ∞) ≤ ν, and hence cν ≤ c∗. Thus
we have the inequalities cν ≤ c∗ ≤ c∗+ ≤ cν . This shows that c∗+ = c∗, which
implies that a(c∗; ∞) = 0. This contradicts the assumption that a(c∗; ∞) = ν,
and hence proves Lemma 3.2.

Since Theorem 3.1 gives a sufficient condition for a recursion to have a single
speed, combining it with Lemma 3.2 immediately gives a sufficient condition for
c∗+ = c∗. We recall that P1[α] is the projection of the vector α which replaces
those components which do not correspond to the upper left block of the matrix B0
by zeros.

Theorem 3.2. Suppose that Hypotheses 2.1 and 3.1 are satisfied and that for every
constant solution ν of Q[ν] = ν in Cβ other than 0 and β the operator

Q(ν)[v] := P1Q[max{v,ν}] + (I − P1)Q[v]

satisfies the conditions of Theorem 3.1. Then c∗+ = c∗ so that the recursion (1.1)
has a single speed.

Proof. Theorem 3.1 shows that Q(ν) has a single speed, so that it satisfies the con-
ditions of Lemma 3.2. Therefore a(c∗; ∞) cannot be any equilibrium other than 0.
Therefore c∗+ = c∗, and the Theorem is proved.
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Example 3.2. As in Examples 2.1 and 3.1, we consider the recursion for the oper-
ator (2.14) with the conditions (2.15). There is an extra equilibrium at ν = (0, 1).
The matrix B

(ν)
µ of the operator

Q(ν)[(u, v)] =(∫∞
−∞(4πd1)

−1/2e−(x−y)2/(4d1)u(y)[1 + r1(1 − 2 min{u(y), 1} + 1)]dy∫∞
−∞(4πd2)

−1/2e−(x−y)2/(4d2)[v(y) + r2 max{1 − v(y), 0}(u(y) + v(y))]dy

)

(3.18)

is

B(ν)
µ =

(
ed1µ

2
(1 + 2r1) 0

ed2µ
2
r2 ed2µ

2
(1 + r2)

)
.

The requirement that Q(ν) satisfy the conditions of Theorem 3.1 again reduces to

ζ2 ≤2ζ1, where now ζ is the principal eigenvector ofB(ν)
µ atµ∗ =

√
d−1

1 ln(1+2r1).
This condition can be written as

(1 + 2r1)
2−(d2/d1) ≥ 1 + r2. (3.19)

This is less stringent than the condition (3.16). Of course, this condition also implies
less. Namely it implies the property c∗+ = c∗ but not linear determinacy.

Note that because 2 − (d2/d1) ≤ d1/d2, the condition (3.19) is not satisfied
when d2 ln(1 + r2) > d1 ln(1 + 2r1), which was shown in Example 2.1 to lead to
a violation of the property c∗+ = c∗.

The following alternative to Theorem 3.1 can also be used to prove the single-
speed linear determinacy in some cases.

Lemma 3.3. Suppose that Q satisfies the Hypotheses (2.1) and (3.1), and that there
is an order preserving translation and reflection invariant linear operator L̃ which
satisfies the conditions of Lemma 2.3 and has the additional properties

i. Q[u] ≤ L̃[u] for all u in Cβ.

ii. P1[L̃[u]] = P1[M[u]] where M is the linearization of Q at 0 and P1 is the
orthogonal projection onto the coordinates corresponding to its upper left di-
agonal block.

iii. c̃1 ≥ c̃σ for all σ , where c̃σ is defined by (2.18).

Then c∗+ = c∗ = c̄ = c̄+, so that the recursion (1.1) has a single speed and is
linearly determinate.

Proof. By Lemma 2.3 and (iii), the truncated operator min{L̃[u], αζ̃(0)} where
αζ̃(0) ≥ β has the single speed c̃1. By (ii), this value is the same as c̄. Since (i)
implies that M[u] ≤ L̃[u], we have c̄+ ≤ c̃1 = c̄ ≤ c̄+, so that c̄+ = c̄. Also by
(i), c∗+ ≤ c̃1 = c̄ ≤ c∗, so that c∗+ = c∗ = c̄ = c̄+. This proves the Lemma.
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The conditions (i) and (ii) of this lemma imply that the components of Q[a]
which correspond to the first block of B0 are independent of the remaining com-
ponents of a, which is rarely true of a biological model. However, combining
Lemma 3.3 with Lemma 3.2 yields another sufficient condition for the existence
of a single speed.

Theorem 3.3. Suppose that Q satisfies the Hypotheses 2.1 and 3.1, and that for
each constant equilibrium ν in β other than 0 or β the operator Q(ν)[u] =
P1Q[max{u,ν}] + (I − P1)Q[u] satisfies the conditions of Lemma 3.3.

Then the recursion (1.1) has a single speed.

Example 3.3. The system (2.14) in Examples 2.1, 3.1 and 3.2 has the extra equi-
librium ν = (0, 1). The operator Q(ν) is given by replacing vn by 1 in the first
equation. It certainly satisfies the Hypotheses 2.1 and 3.1. The conditions (i) and
(ii) of Lemma 3.3 are satisfied for this operator when

L̃[(u, v)] :=
(∫∞

−∞(4πd1)
−1/2e−(x−y)2/(4d1)(1 + 2r1)u(y)dy∫∞

−∞(4πd2)
−1/2e−(x−y)2/(4d2)[r2u(y) + (1 + r2)v(y)]dy

)
.

(3.20)

We easily see that c̃1 = 2
√
d1 ln(1 + 2r1), while c̃2 = 2

√
d2 ln(1 + r2). Thus

condition (iii) is satisfied so that c∗+ = c∗ when

d2 ln(1 + r2) ≤ d1 ln(1 + 2r1). (3.21)

Thus Theorem 3.3 shows that this inequality implies the existence of a single speed.

This inequality just says that (2.16) is violated. Thus for this particular system
we have obtained the precise parameter set where there is a single spreading speed.

We can use Theorem 3.3 to show that the model (1.10) for the invasion of an
equilibrium population of the second species by a competing species always has
a single speed. In fact, we find a simple condition on the migration kernel which
produces a hair-trigger effect, in the sense that every invasion is successful. We
assume that α1 < 1, so that the original equilibrium is invadable.

Theorem 3.4. Let 0 < α1 < 1 and let all the other parameters in the system (1.10)
be positive. Then the cooperative system

un+1(x) = ∫∞
−∞

(1 + ρ1)un(x − y)

1 + ρ1(α1 + un(x − y) − α1vn(x − y))
k1(y, dy)

vn+1(x) = ∫∞
−∞

vn(x − y) + ρ2α2un(x − y)

1 + ρ2(1 − vn(x − y) + α2un(x − y))
k2(y, dy),

(3.22)

which is obtained by making the substitution un = pn, vn = 1 − qn in the mod-
el (1.10), has a single speed c∗.

Moreover, if either the habitat H is the real line and there is an open interval
on which the measure k1 has a positive density or H is discrete and every number
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in H can be written as a sum of finitely many numbers to which k1 assigns positive
weights (with repetitions allowed), then there is a hairtrigger effect in the sense
that the property (2.6) holds as long as u0 is not identically zero.

Proof. The dominated convergence theorem for measurable spaces [19] implies
Hypothesis 3.1.b.

The equilibria of the system (3.22) are (0,0), (1,1), (0,1), and ((1 − α1)/(1 −
α1α2), α2(1 − α1)/(1 − α1α2)). When α2 < 1, the latter point is strictly between
(0,0) and (1,1). Therefore it is the point β, and there is no extra equilibrium in Cβ.
Thus the result follows from Proposition 2.1.

If α2 = 1, the fourth equilibrium coincides with the third, while if α2 > 1, the
q-coordinate of the fourth equilibrium is negative so that it no longer relevant. In
these cases, β = (1, 1) and the equilibrium ν = (0, 1) lies in Cβ. The operator

Q(ν) is obtained by replacing vn by 1 in the right-hand side of the first equation
(3.22). We note that for (u, v) in Cβ the numerators of the two fractions in (3.22)
are nonnegative and the denominators are at least equal to 1. Therefore the linear
operator

L̃[(u, v)] :=
(∫∞

−∞(1 + ρ1)un(x − y)k1(y, dy)∫∞
−∞[vn(x − y) + ρ2α2un(x − y)]k2(y, dy)

)
(3.23)

has the property (i) of Lemma 3.3 with Q replaced by Q(ν). It is easily verified
that it also has the property (ii).

To verify property (iii), we note that because k1(y, dy) is reflection invari-
ant, λ̃1(µ) = (1 + ρ1)

∫∞
−∞ cosh µy k1(y, dy) > 1, so that c̃1 ≥ 0. On the other

hand, λ̃2(µ) = ∫∞
−∞ cosh µy k2(y, dy). This function is even and has the value

1 at 0. Therefore µ−1 ln λ̃2(µ) has the limit 0 as µ approaches 0. It follows that
c̃2 = 0 ≤ c̃1. Thus property (iii) of Theorem 3.3 is also satisfied, and the equation
c∗+ = c∗ is established.

To prove the hairtrigger effect, we note that for 0 ≤ u ≤ (1 − α1)/2 and
0 ≤ v ≤ 1, the operator Q determined by the right-hand sides of (3.22) satisfies

Q[(u, v)] ≥




min{(1 − α1)/2,
1 + ρ1

1 + ρ1(1 + α1)/2

∫∞
−∞ u(x − y)k1(y, dy)}

ρ2α2

1 + ρ2[1 + α2(1 − α1)/2]

∫∞
−∞ u(x − y)k2(y, dy)


 .

(3.24)

If the kernel k1 satisfies the additional properties in the last paragraph of the
statement of the Theorem, then Theorem 6.5 of [21] applied to the first equa-
tion shows that if u0 is positive somewhere, the solution of the recursion (1.1)
with Q replaced by the right-hand side of (3.24) converges to ((1 − α1)/2,
ρ2α2(1 − α1)/[2 + 2ρ2 + ρ2α2(1 − α1)]), and the convergence is uniform on
every bounded interval. Since this solution is a lower bound for the solution of
(3.22) with the same initial values, we see that for sufficiently large n, (un, vn) lies
above a fixed constant vector on an arbitrarily large set, so that the last statement
of Theorem 3.4 follows from Lemma 2.2.
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Example 3.4. To see the importance of the extra condition for the hairtrigger effect,
choose the measures k1 = k2 with∫ ∞

−∞
φ(y)ki(y, dy) := τh−2[φ(h) + φ(−h)] + (1 − 2τh−2)φ(0),

and ri = τsi , where h > 0 and 0 < 2τh−2 < 1. Then the system (3.22) is a
somewhat unusual finite-difference approximation with time step τ and space step
h to a reaction diffusion system. The first statement of Theorem 3.4 is valid. If H
is the set of integral multiples of h, the additional condition is also satisfied, so that
there is a hairtrigger effect. If, on the other hand, H contains all the multiples of
h/2, the extra condition is violated. In fact, we see that if u0 vanishes at all the odd
multiples of h/2, then un has the same property for all n, which shows that there is
no hairtrigger effect.

4. Applications to reaction-diffusion systems

In this section, we shall show how to apply the results of the previous sections to a
weakly coupled reaction-diffusion system of the form

[ui],t = di[ui],xx + fi(u), i = 1, 2, ..., k,
u(t, x) = u0(x),

(4.1)

where each di is a nonnegative constant, and f = (f1, f2, ..., fk) is independent of
x and t . This model can be put into the form (1.1) by letting Q be its time τ map.
That is, Qτ [u0] is defined to be the value u(x, τ ) of the solution of this initial value
problem at time τ . The sequence of functions un(x) := u(x, nτ) clearly satisfies
the recursion (1.1) with Q replaced by Qτ .

The following theorem shows that the spreading speed of the time 1 map of a
weakly coupled parabolic system also gives the spreading speed for solutions of the
system itself. Note that this theorem is valid without the assumption that the system
is cooperative. It is, of course, only useful if the existence of a single spreading
speed can be established.

Theorem 4.1. Suppose that f(0) = 0, f(β) = 0, β >> 0, and f(α) is continuous
on the set 0 ≤ α ≤ β. Let Qτ be the time τ map of the weakly coupled, possibly
degenerate, parabolic system (4.1) with constant coefficients. Suppose that the set
Cβ = {u(x) : 0 ≤ u ≤ β} is an invariant set of (4.1) in the sense that any solution
which starts in Cβ remains there. Also suppose that for each τ the recursion (1.1)
with Q = Qτ has a single speed c∗

τ with the properties (2.6) and (2.5). If c∗ is
defined to be c∗

1 , then c∗
τ = τc∗, and for any initial function u0(x) in Cβ which

vanishes outside a bounded set the solution of (4.1) has the properties that for each
positive ε

lim
t→∞

[
max

|x|≥t (c∗+ε)
|u(x)|

]
= 0, (4.2)
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and for any strictly positive constant vector ω there is a positive Rω with the
property that if u0 ≥ ω on an interval of length 2Rω, then

lim
t→∞

[
max

|x|≤t (c∗−ε)
|β − u(x)|

]
= 0. (4.3)

The proof of this Theorem is given in the Appendix.

Remark. If the time one map Q1 has the speeds c∗+ > c∗, a similar proof gives the
analogs of formulas (2.10) to (2.13).

We wish to show how Theorem 3.1 can be applied to the special case where
Q is the time 1 map of the reaction diffusion model (4.1). For this purpose, we
need hypotheses on f which imply that Q satisfies the Hypotheses 2.1. Note that a
constant equilibrium ν is now a vector such that f(ν) = 0.

We observe that if a square matrix A is irreducible and has nonnegative off-
diagonal elements, then there is a constant α such that A+αI is irreducible and has
nonnegative entries. Hence this matrix has a positive principal eigenvalue δ with a
positive eigenvector. We shall call the eigenvalue δ − α of A, which has the same
positive eigenvector, the principal eigenvalue of A.

Hypotheses 4.1

i. f(0) = 0, and there is a β >> 0 such that f(β) = 0 which is minimal in the
sense there are no ν other than 0 and β such that f (ν) = 0 and 0 << ν ≤ β.

ii. The system (4.1) is cooperative; i.e., fi(α) is nondecreasing in all components
of α with the possible exception of the ith one.

iii. f does not depend explicitly on either x or t , and the coefficients di are constant
and nonnegative.

iv. f(α) is continuous and piecewise continuously differentiable in α for 0 ≤ α ≤
β and differentiable at 0.

v. The Jacobian matrix f ′(0) is in Frobenius form. The principal eigenvalue γ1(0)
of its upper left diagonal block is positive and strictly larger than the principal
eigenvalues γσ (0) of its other diagonal blocks, and there is at least one nonzero
entry to the left of each diagonal block other than the first one.

It is obvious from elementary properties of parabolic systems that the first four
Hypotheses 4.1 imply the corresponding Hypotheses 2.1. It is easily seen that the
linearization M at 0 of the time 1 map Q1 is the time 1 map of the linearized system

vi,t = divi,xx + (f ′(0)v)i (4.4)

Separation of variables shows that if the initial data are of the form e−µxα, then
the solution of this system has the form e−µxη(t), where the vector-valued func-
tion η is the solution of the system of ordinary differential equations with constant
coefficients

η,t = Cµη (4.5)

with η(0) = α. The coefficient matrix is given by

Cµ = diag
(
diµ

2
)

+ f ′(0), (4.6)
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where f ′(0) is the Jacobian matrix with entries fi,uj (0). The off-diagonal entries of
Cµ are nonnegative because the system is cooperative.

By definition, the matrix Bµ for the time 1 map M of (4.5) is given by the
formula

Bµ = exp
[
Cµ

]
. (4.7)

It is easily seen that λσ (µ) = eγσ (µ) where γσ is the principal eigenvalue of the σ th
diagonal block of the matrix Cµ defined by (4.6). Thus Hypothesis 4.1.v implies
Hypothesis 2.1.v.

The following Lemma, whose proof appears in the Appendix, states that Hy-
pothesis 2.1.vi is automatically satisfied by the time 1 map of the system (4.1).

Lemma 4.1. If f satisfies the Hypotheses 4.1, then there exists a family M(κ) of
linear maps which satisfies the Hypothesis 2.1.vi.

The following theorem is thus an immediate corollary of Theorem 3.1. Because
λ1(µ) = eγ1(µ), the formula (2.19) for c̄ becomes

c̄ := inf
µ>0

[γ1(µ)/µ].

(There is an analogous formula for c̄+.) Let µ̄ ∈ (0,∞] again denote the value of
µ at which this infimum is attained, and let ζ(µ) be the eigenvector of Bµ which
corresponds to the eigenvalue λ1(µ).

Theorem 4.2. Suppose that f satisfies the Hypotheses 4.1. Assume that either

(a) µ̄ is finite,

γ1(µ̄) > γσ (µ̄) for all σ > 1, (4.8)

and

f(ρζ(µ̄)) ≤ ρf ′(0)ζ(µ̄) (4.9)

for all positive ρ;
or

(b) There is a sequence µν ↗ µ̄ such that for each ν the inequalities (4.8) and
(4.9) with µ̄ replaced by µν are valid.

Then c∗+ = c∗ = c̄ = c̄+, so that the problem (4.1) has a single speed and is
linearly determinate.

Proof. The inequality (4.9) implies that eγ1(µ̄)t−µxζ(µ̄) is a supersolution of (4.1).
The comparison principle for parabolic systems then implies that Q1[e−µ̄xζ(µ̄)] ≤
eγ1(µ̄)e−µ̄xζ(µ̄), and the result follows from Theorem 3.1.
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Remark. Just as the condition (3.5) can be replaced by the condition (3.12) which
depends only on the behavior of Q in Cβ, the condition (4.9) can be replaced by
the condition

f(min{ρζ(µ̄),β}) ≤ ρ{f ′(0)ζ(µ̄)}, (4.10)

which depends only on the values of f in Cβ. This inequality implies that

w := min{e−µ̄(x−c̄t)ζ(µ̄),β} is a supersolution. Note that when ρζi(µ̄) ≤ βi ,
the monotonicity of fi shows that (4.9) implies the ith component of this condi-
tion. On the other hand, when ρζi(µ̄) ≥ βi , the monotonicity of fi implies that
fi(min{ρζ(µ̄),β}) ≤ 0, so that the ith component of the inequality (4.10) is au-
tomatically satisfied. Thus the condition (4.10) is more easily satisfied than (4.9).

Example 4.1. The competition system

p,t = p,xx + p(4 − 4p − q)

q,t = d2q,xx + q[(1 − q)(4q − 3) − 8p]
(4.11)

is transformed into the cooperative system

u,t = u,xx + u(3 − 4u + v)

v,t = d2v,xx + (1 − v)[v(4v − 1) + 8u].
(4.12)

by the change of variables u = p, v = 1 − q. An easy calculation shows that

Cµ =
(

µ2 + 3 0
8 d2µ

2 − 1

)
(4.13)

The Hypotheses 4.1 are clearly satisfied. We find that µ̄ = √
3, c̄ = 2

√
3, and the

conditions (4.8) and (4.10) are satisfied when

d2 ≤ 2/3. (4.14)

Thus c∗+ = c∗ = 2
√

3 whenever d2 ≤ 2/3.

We recall that P1 is the orthogonal projection to the coordinates which corre-
spond to the first block of C0 = f ′(0). By applying Lemma 3.1 to the operator
Q(ν) which is the time one map of the equations obtained by replacing f(u) by
P1f(max{u,ν} + (I − P1)f(u) and using Theorem 4.2, we obtain the following
analog of Theorem 3.2.

Theorem 4.3. Suppose that the Hypotheses 4.2 are satisfied. If every zero ν of f
in Cβ other than 0 or β has the property that the system obtained from (4.1) by
replacing the argument u of f in the equations which correspond to the upper left
block of B0 by max{u,ν} satisfies the conditions of Theorem 4.2, then c∗+ = c∗, so
that the system (4.1) has a single speed.
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Example 4.2. As in Example 4.1, we consider the cooperative system (4.12), which
comes from (4.11) by the usual change of variables. The system now has four equi-
librium states: (0,0), which corresponds to the pre-invasion state p = 0, q = 1;
(0,1), which corresponds to the extinction state p = q = 0; (1,1), which corre-
sponds to p = 1, q = 0, so that the invader has driven the invaded species to
extinction; and (0,1/4). Thus β = (1, 1), and there are two extra equilibria (0,1)
and (0,1/4) in Cβ. In order to apply Theorem 4.3 we need to check for what values

of d2 the two operators Q(ν) satisfy the conditions (4.8) and (4.10) of Theorem 4.2.
The operatorQ(0,1) is the time-one map of the system which is obtained from (4.12)
by replacing v by 1 in the first equation. The calculations which gave the condi-
tion (4.14) now give the condition d2 ≤ 1.

The operator Q(0,1/4) is the time-one map of the system obtained from (4.12)
by replacing v by max{v, 1/4} in the first equation. This leads to the criterion
d2 ≤ 10/13. The conditions of Theorem 4.3 are thus satisfied when

d2 ≤ 10/13. (4.15)

This condition, which is less stringent than (4.14), implies that c∗+ = c∗, so that the
system (4.11) has a single speed.

We can also apply Lemma 3.2 to Q(ν) to obtain the following analog of Theo-
rem 3.3.

Lemma 4.2. Suppose that for each zero ν of f in Cβ other than 0 or β there is a

constant matrix E(ν) with the properties

i. E(ν) ≥ P1f ′(ν) + (I − P1)f ′(0) componentwise;
ii. P1E

(ν) = P1f ′(ν);
iii. The spreading speeds c̃

(ν)
σ of the time one map L̃ of the system (4.1) with f

replaced by E(ν) have the property that their maximum is c̃(ν)
1 .

Then the system (4.1) has a single speed.

Proof. By Lemma 2.3 c̃
(ν)
+ = c̃(ν) = c̃

(ν)
1 . By (i) and (ii), c∗+ ≤ c̃ν = c̄

≤ c∗ ≤ c∗+, which proves the Theorem.

The first component of the function P1f(max{(u, v), (0, 1/4)}) + (I − P −
1)f(u, v) in the definition of Q(0,1/4) in Example 4.2 is u(3 − 4u + max{v, 1/4}),
which is strictly increasing in v when u �= 0 and v ≥ 1/4. Hence there is no matrix
E(0,1/4) with the properties (i) and (ii) of Lemma 4.2. We can, however, obtain
information about the Lotka-Volterra system (4.11) by applying this lemma. As in
Theorem 3.4, we also obtain a hair-trigger effect here.

Theorem 4.4. If all the parameters are nonnegative, r1(1−a1) > 0, and r2a2 > 0,
then the cooperative system

u,t = d1u,xx + r1u(1 − a1 − u + a1v)

v,t = d2v,xx + r2(1 − v)(a2u − v),
(4.16)
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which is obtained from the Lotka-Volterra competition model (1.7) by introducing
the new variables u = p, v = 1 − q, has a single speed c∗.

If, in addition, d1 > 0, there is a hairtrigger effect in the sense that the property
(4.2) is valid as long as u0 = u(0, x) is not identically zero.

Proof. We must only find a matrix E(ν) which satisfies the conditions (i)–(iii) of
lemma 4.2.

The system (4.16) has the equilibria (0,0), (0,1), (1,1), and ((1 − a1)/(1 −
a1a2), a2(1 − a1)/(1 − a1a2)). If a2 < 1, the last equilibrium lies in the interior
of the biologically interesting region C(1,1). In this case, β is this last equilibrium,
and there is no extra equilibrium in Cβ. Thus c∗+ = c∗ by Proposition 2.1.

If a2 = 1, the last equilibrium is just (1,1), while if a2 > 1 it is outside C(1,1).
Thus if a2 ≥ 1, we have β = (1, 1), and ν = (0, 1) lies in Cβ. It is easily seen that
for (u, v) in Cβ the inequalities r1u(1 −u) ≤ r1u and r2(1 − v)(a2u− v) ≤ r2a2u

for the function P1f(max{(u, v), (0, 1)}) + (I − P1)f(u, v) are valid. Moreover,
the right-hand side of the first inequality is the linearization of the left-hand side at
(0,0). Therefore the matrix

E(ν) =
(

r1 0
r2a2 0

)
(4.17)

satisfies the first two conditions of Lemma 4.2.
To verify the Hypothesis (iii), we observe that c̃1 = 2

√
d1r1, while c̃2 = 0.

Thus c̃2 = 0 ≤ c̃1, and the statement c∗+ = c∗ follows from Lemma 4.2.

If d1 > 0, we note that since v ≥ 0, the solution u of (4.16) is bounded below
by the solution û of the Fisher equation

û,t = d1û,xx + r1û(1 − a1 − û)

with the same initial conditions. Since û converges to 1 − a1 uniformly on any
bounded interval as t→∞, we find that for any interval −s ≤ x ≤ s there is a ts
such u ≥ (1 − a1)/2 for |x| ≤ s and t ≥ ts . Then for t ≥ ts the solution v of (4.16)
on [−s, s] is bounded below by the solution v̂ of the Fisher equation

v̂,t = d2v̂,xx + r2[a2(1 − a1)(1 − v̂)/2 − v̂]

which is zero at t = t0 and on the boundaries x = ±s. v̂ approaches the function

a2(1 − a1)

2 + a2(1 − a1)

{
1 − cosh

√
r2[2 + a2(1 − a1)]/2x

cosh
√
r2[2 + a2(1 − a1)]/2s

}

uniformly in x. Because cosh z is a convex function, we find that cosh(z/2) <

[1 + cosh z]/2 for z > 0. Therefore the term in braces is bounded below by [1 −
sech

√
r2[2 + a2(1 − a1)]/2s]/2 for |x| ≤ s/2. Thus the limit function is bounded

below by a2(1 − a1)/{4[2 + a2(1 − a1)]} for −s/2 ≤ x ≤ s/2, when s is suf-
ficiently large. For such s there is a value t̂s of t such that u(x, t̂ ) ≥ (1 − a1)/2
and v(x, t̂) ≥ a2(1 − a1)/{8[2 + a2(1 − a1)]} for −s/2 ≤ x ≤ s/2. Since s is
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arbitrarily large, the last statement of Theorem 4.4 follows from Theorem 4.1 with
the initial time t̂ .

The following example shows that for large values of d2, the model (4.11) for
the invasion of the stable mono-culture (0,1) by a competing species does not have
a single speed.

Example 4.3. As in Examples 4.1 and 4.2, we consider the system (4.12). An upper
bound for the spreading speed of the first component is obtained by replacing v by
1 in the first equation. The result is a Fisher equation, for which linear determinacy
is known to be valid, so that its spreading speed is 4. Thus

c∗ ≤ 4. (4.18)

In order to obtain a lower bound for the spreading speed c∗+ of v, we note that
the right-hand side of the second equation of (4.12) is reduced by replacing u by 0.
Thus if w is a solution of

w,t = d2w,xx + (1 − w)w(4w − 1) (4.19)

and v ≥ w at some time, then v ≥ w for all larger times. It was shown in The-
orems 3.3 and 4.5 of Aronson and Weinberger [1] that this equations displays a
threshold effect. That is, if w(x, 0) is uniformly below 1/4, the solution tends to
0. On the other hand, the fact that

∫ 1/2
0 w(1 − w)(4w − 1)dw > 0 implies that if

w(x, 0) ≥ 1/2 on a sufficiently long interval, the solution approaches 1 uniformly
on every bounded set. In the second case, there is a unique number C such that
there exists a traveling wave solution W(x −nC) of speed C, and this speed is also
the spreading speed. By generalizing the ideas of Hadeler and Rothe [5], Lewis and
Kareiva [10] gave a formula for C which shows that C = √

d2/2.
Choose any c <

√
d2/2, and define the sequence an by the recursion (2.7) with

Q the time 1 map of the system (4.12). Since a(c,−∞) = (1, 1), we can find
an n0 so large that an0(c; −∞) >> (1/2, 1/2). If we set w(x, n0) equal to the
second component of an0(c; x), we see that it is above 1/2 on an infinitely long
interval. By the above comparison, the second component of an(c; x) lies above
w(x + (n− n0)c, n) for n ≥ n0. Since c <

√
d2/2, this lower bound approaches 1

uniformly on bounded sets. We conclude that a(c; ∞) �= 0, so that c∗+ ≥ c. Because
c is any number below

√
d2/2, we conclude that

c∗
+ ≥

√
d2/2.

This inequality combined with (4.18) shows that if

d2 > 32, (4.20)

then c∗+ > c∗, so that there is no single spreading speed.
Figure 2 plots approximations to the speeds c̄, c∗, and c∗+ obtained from nu-

merical simulations of (4.11) as functions d2. As predicted by (4.14), the system
has a single speed and is linearly determinate when d2 ≤ 2/3. In fact, this seems
to hold for d2 ≤ 4. As predicted by (4.15), (4.11) has a single speed c∗+ = c∗ when
d2 ≤ 10/13 but this equality seems to be true for d2 ≤ 8. As predicted by (4.18),
c∗+ > c∗ for d2 > 32, but this also seems to happen for d2 ≥ 16. Thus all our
bounds are sufficient but not necessary.
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Fig. 2. Numerical calculation of wave speeds for the reaction diffusion equation (4.11).
The parameter d2 varies on a log scale. The solid line shows c̄ = 2

√
3, diamonds show nu-

merically calculated values for c∗ and triangles show numerically calculated values c∗
+. The

numerical solution method uses the method of lines and Gear’s method with 1000 spatial
grid points.

5. Discussion

We have shown how to extend the results of Lui [13] in such a way that they can
be applied to ecological invasion processes. This has involved not only the elimi-
nation of Lui’s assumptions of irreducibility and nonexistence of extra equilibria,
but also the weakening of his condition (1.5) in such a way that it can hold in the
case of invasion by a competitor. This weakening can be understood intuitively
by applying the (not always correct) heuristic argument that near the head of the
spreading population the solution of the recursion (1.1) should look like the most
rapidly spreading solution of the linearization of this recursion. That is, it should
behave roughly like e−µ̄xζ(µ̄). Thus it makes sense that Theorem 3.1 only requires
the inequality (1.5) to hold for this function. Note that the replacement of (1.5) by
(3.12) improves Lui’s result on single speed and linear determinacy when his extra
conditions are satisfied.

As Examples 2.1 and 4.3 show, the existence of an extra equilibrium on the
parallelepiped with corners at 0 and β can make different components spread at
different speeds. In Example 4.3 the mono-culture v = 1 is a stable equilibrium
as long as the invader is absent. We have shown that if the mobility d2 of the orig-
inal species is sufficiently large, then the extinction of the first species spreads at
a greater speed than the growth of the invading species. Thus an observer who is
far from the original point of invasion will see the extinction of the first species
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long before the invading species which caused the extinction appears. The origin
of this apparently paradoxical behavior is the fact that when p ≡ 0, the stable state
q ≡ 1 can be driven to extinction by a sufficiently large die-off on a sufficiently
long bounded interval.

Theorem 4.4 shows that such a phenomenon never occurs in the Lotka-Volterra
model. Thus a small change in the details of the model can influence the asymptotic
behavior profoundly.

The trick of converting a competition model to a cooperative system by a change
of dependent variables can be generalized to more than two species, provided the
species can be broken into two “teams” such that each species cooperates with the
species of the same team and competes with those of the other team. In particular,
one can treat the invasion of an equilibrium of cooperating species by an invader
which competes with all these species.

Since “fat” migration tails occur in some models, it of interest to weaken the
condition in Hypothesis 2.1.v.a, which requires that the entries ofBµ are finite for all
µ. If, instead, we only assume that the entries of Bµ are finite for |µ| < α for some
positive α, we define Bµ for all µ by replacing any integral in (2.3) which diverges
by +∞. If the entries of the σ th diagonal block of Bµ are all finite for µ < µ̂σ

but not for µ > m̂σ , then λσ (µ) is finite for µ < µ̂σ and +∞ for µ > µ̂σ , and its
logarithm is still convex. Thus the infimum in the definition (2.18) of c̄1 is taken on
at a point µ̄ of the interval (0, µ̂σ ] where λ1 is finite. The eigenvector ζ(µ̄), which is
required for the conditions of Theorem 3.1 is not defined unless all entries of Bµ̄ are
finite. If we interpret the conditions to include this finiteness assumption, the proof
of Theorem 3.1 goes through without change. Since our other results are based on
Theorem 3.1, they remain true when Hypothesis 2.1.v.a is weakened to require the
entries of Bµ to be finite only on some interval of which 0 is an interior point.

We have defined the concept of linear determinacy as c∗ = c̄ and c∗+ = c̄+. A
stronger definition would be that each species spreads at a speed which is equal
to that of the same species under the recursion with Q replaced by a truncation
of the linear operator M . It is easily seen that for this truncated linear recursion
the spreading speed of the species in the σ th block is the largest of the numbers
c̄τ among those τ ≤ σ with the property that some power of the matrix B0 has a
positive ij entry with i in the τ th block and j in the σ th block.

Although our analysis includes the assumption of reflection symmetry in the
operator Q, the results can be extended to cover the case with no reflection symme-
try. In this case, we define the rightward spreading speeds c∗(+1) and c∗+(+1) by
the formulas (2.8) and (2.9) with the function a defined as before. If R is the reflec-
tion operator R[u](x) := u(−x), then the leftward speeds c∗(−1) and c∗+(−1) are
defined by replacing the operator Q by RQR in the definition (2.7) of the sequence
an. When there are single speeds in both directions, the properties (2.5) and (2.6)
are replaced by

lim
n→∞

[
sup

x≥n(c∗(+1)+ε)

|u(x)|
]

= lim
n→∞

[
sup

x≤−n(c∗(−1)+ε)

|u(x)|
]

= 0 (5.1)
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and

lim
n→∞

[
sup

−n(c∗(−1)−ε)≤x≤n(c∗(+1)−ε)

|β − u(x)|
]

= 0. (5.2)

The obvious adjustments in (2.10) to (2.13) are made if c∗+(+1) > c∗(+1) or
c∗+(−1) > c∗(−1). In two or more dimensions one can define spreading speeds
c∗(ξ) and c∗+(ξ) in the direction of any unit vector by essentially the same formulas.
(See [21], [13], [22]). One can then define the concepts of having a single speed in
the direction ξ or of being linearly determinate in the direction ξ.

As promised in the introduction, we shall say a few words about the advantage
of a discrete-time model (1.1) over a reaction-diffusion model. The derivation of a
reaction-diffusion equation from a stochastic model assumes that the system is in
statistical equilibrium at every instant, while the purpose of the model is to treat
non-equilibrium situations. This inherent contradiction manifests itself by requiring
the possibility of arbitrarily far migration in arbitrarily small time. Another mani-
festation of this contradiction is the fact that the derivation of a reaction-diffusion
model as a limit of a family of stochastic models with a small parameter, as in
Durrett and Neuhauser [3], requires the migration rate to become very large, which
may or may not be biologically reasonable. It was shown by Neuhauser [17] that
under a different assumption the limit is an integro-differential equation model.

Discrete-time models, on the other hand, permit one to wait until some kind
of statistical equilibrium is established before measuring the input-output function.
Our results show that the spreading properties of reaction-diffusion systems are
shared by a more general class of discrete-time recursions. Thus the fact that one
gets qualitatively correct spreading properties does not, in itself, justify the use of
reaction-diffusion models.

Acknowledgements. We thank the two referees for helpful suggestions for improving this
paper.

6. Appendix

In this Appendix we shall present proofs of Lemmas 2.1 and 2.3, Theorem 4.1, and
Lemma 4.1, in that order.

Proof of Lemma 2.1. By Hypothesis 2.1.i, any constant equilibrium ν in Cβ other
than β must have at least one zero component. The order preserving property shows
that if 0 ≤ v ≤ ν, then 0 ≤ Q[v] ≤ ν. That is, Cν is an invariant set of Q. It
follows that if νi = 0, then (B0[ν])i = 0. This property shows that if νi = 0 and
νj �= 0, then the ij entry of B0 must be zero. If νi = 0 for some but not all of the
coordinates i of the σ th block of B0, then writing the coordinates i with νi = 0
before the others would put Bσ into a lower block triangular form, which would
contradict the fact that it is irreducible. Thus the components of an equilibrium ν
corresponding to any diagonal block are either all zero or all nonzero. Suppose that
the components of ν which correspond to the σ th diagonal block vanish. If σ > 1,
the Hypothesis 2.1.v.d shows that there are nonzero elements to the left of the σ th
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diagonal block. That is, unless σ = 1, there is an earlier diagonal block on whose
coordinates ν also vanishes. We conclude that the coordinates of ν corresponding
to the first (upper left) diagonal block of B0 are 0, which is the statement of the
Lemma.

Proof of Lemma 2.3. Because the equations corresponding to the upper left block
B̃0 depend only on the components in these directions and because B̃0 is irreduc-
ible, the results of Lui [13] show that the components of un which correspond to
this first block spread at exactly the speed c̃1. Therefore the slowest spreading speed
must be c̃1.

Let ζ̃σ (µ) >> 0 be an eigenvector of the σ th diagonal block of B̃µ corre-
sponding to its principal eigenvalue λ̃σ (µ). Let µ̃σ ∈ (0,∞] denote the value of µ
at which the infimum in (2.18) is attained. Let P̃σ denote the coordinate projection
to the coordinates corresponding to the σ th diagonal block of B0.

Because of the Frobenius form, P̃σ [L̃[v]] only depends on the P̃τ [v] with τ ≤ σ .
Assume for the moment that the µ̃σ are all finite, and that the numbers λ̃τ (µ̃σ ) are
distinct for all τ ≥ σ . In order to construct a supersolution of the recursion (2.17),
we note that for any positive ρ1 the function

w1(x, n) := ρ1e
−µ̃1(x−nc̃1)ζ̃1(µ̃1) (6.1)

is positive and satisfies the inequality

w1(x, n + 1) ≥ P̃1[L̃[w1(x, n)]]. (6.2)

(Here we think of w1 as the k-vector-valued function obtained by defining the
undefined coordinates to be 0.)

We next construct a vector w2(x, n) corresponding to the components of the
second diagonal block such that

w2(x, n + 1) ≥ P̃2[L̃[w1(x, n) + w2(x, n)]]. (6.3)

We observe that P̃2[L̃[w1]] is e−µ̃1(x−nc̃1) times a nonnegative constant vector.
Since ζ̃2(µ̃1) >> θ, there is a positive η21 such that this constant vector is bound-
ed above by η21ζ2(µ̃1). It is easily verified that for any positive ρ2 the vector

w2 :=max{ρ2e
−µ̃2(x−nc̃2)ζ̃2(µ̃2)+η21[λ̃1(µ̃1)−λ̃2(µ̃1)]

−1e−µ̃1(x−nc̃1)ζ̃2(µ̃1), 0}
(6.4)

satisfies the inequality (6.3).
Since w2 is bounded above by a linear combination of two exponentials, we

can use the same method to find a function of the form

w3 = max{ρ3e
−µ̃3(x−nc̃3)ζ̃3(µ̃3) + η31[λ̃1(µ̃1) − λ̃3(µ̃1)]

−1e−µ̃1(x−nc̃1)ζ̃3(µ̃1)

+ η32[λ̃2(µ̃2) − λ̃3(µ̃2)]
−1e−µ̃2(x−nc̃2)ζ̃3(µ̃2), 0} (6.5)

which satisfies the inequality

w3(x, n + 1) ≥ P̃3[L̃[w1(·, n) + w2(·, n) + w3(·, n)]]. (6.6)
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We inductively define wσ for all σ in this way, and define

w =
∑
σ

wσ

to be the k-vector such that P̃σ [w] = wσ for all σ . By construction,

w(x, n + 1) ≥ L̃[w(x, n)]. (6.7)

If u0 is bounded and vanishes outside a bounded set, we can choose ρ1 so large
that P̃1[u0] ≤ w1(x, n), then choose ρ2 so large that P̃2[u0] ≤ w2(x, n), and so
forth until u0 ≤ w(x, 0). Since un+1 ≤ L̃[un], we find that un(x) ≤ w(x, n)

for all n. Since w is bounded above by a linear combination of the exponentials
e−µ̃σ (x−nc̃σ ), no component of un can spread at a speed greater than the largest of
the c̃σ . On the other hand, by looking at the comparison problem with the initial
value P̃σ [u0], we see that the components corresponding to the σ th block spread
at least the speed c̃σ . We conclude that the fastest spreading speed is the largest of
the c̃σ .

We have established the Lemma under some additional hypotheses. We see from
the the second term on the right of formula (6.4) that something goes wrong when
λ̃2(µ̃1) = λ̃1(µ̃1). This term is e−µ̃1x times a particular solution of the recursion

αn+1 = λ̃2(µ̃1)αn + η21λ̃1(µ̃1)
n. (6.8)

When λ̃2(µ̃1) = λ̃1(µ̃1), this recursion has the solution αn = η21nλ̃1(µ̃1)
n, so that

the singular factor must simply be replaced by n. In this way, we see that if coin-
cidences occur, one obtains formulas for the wσ in which the coefficients ηστ may
be replaced by polynomials in n. This leaves the asymptotic speeds unchanged, so
that the proof is still valid.

Finally, we observe that if one or more of the µ̃σ is infinite, we can replace the
infinite ones by very large values. This increases the spreading speeds by arbitrarily
small amounts, and the argument can be carried through as before. Thus the Lemma
is established.

Proof of Theorem 4.1. Because Cβ is closed and bounded and f is continuous,
there is a number ρ such that |f(u)| ≤ ρ for u ∈ Cβ. As before, let ζ(0) be a
positive principal eigenvector of B0. Choose any positive numbers ε and δ, and an
integer  so large that

ρ/ ≤ (δ/4)|ζ(0)|. (6.9)

The properties (2.5) and (2.6) applied to the time 1 map Q1 and the time 1/ map
Q1/ of the system (4.1) show that c∗

1/ = c∗
1/ := c∗/ . Property (2.5) for Q1/ 

with ε replaced by ε/2 shows that there exists a number Nδ such that

u(x, n/ ) ≤ (δ/2)ζ(0) when |x| ≥ n(c∗/ + ε/2) and n ≥ Nδ. (6.10)

Because |f(u)| ≤ ρ,

ui,t − diui,xx ≤ ρ
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for all i. Standard results for the heat equation show that if u(x, n/ ) ≤ (δ/2)ζ(0)
for |x| ≤ R and u(x, n/ ) ≤ β for all x then

ui(0, t) ≤ [t − n/ ]ρ + (δ/2)ζi(0) + |β|(2πdi[t − n/ ])−1/2e−R2/(4di [t−n/ ]).

(6.11)

We choose R = Rδ so large that the last term on the right is also bounded by
(δ/4)ζi(0) when 0 ≤ [t − n/ ] ≤ 1/ . Thus we find that the inequality (6.9)
implies that

u(x, t) ≤ δζ(0) when |x| ≥ t (c∗ + ε/2) + Rδ, n/ ≤ t ≤ (n + 1)/ ,
and n ≥ Nδ.

(6.12)

We note that if t ≥ max{Nδ/ , 2Rδ/ε}, the inequality for |x| is implied by the
inequality |x| ≥ t (c∗ + ε). Thus we have shown that

lim
t→∞

[
max

|x|≤t (c∗+ε)
|u(x, t)|

]
≤ δ|ζ(0)|.

Since δ is arbitrary, this is exactly the statement (4.2). The statement (4.3) is proved
by applying the same method to the function β − u, and the Theorem is proved.

We remark that if c∗+ > c∗, the same proof gives the analog of Lemma 2.2.

Proof of Lemma 4.1. Choose ρ ≥ 0 such that the diagonal elements of the matrix
f ′(0) + ρI are strictly positive. Hypothesis 4.1.ii shows that all the entries of this
matrix are nonnegative. For any κ > 1 we define M(κ)[v] to be the time one map
of the linear system

w,t = (diag(di))w,xx + (1 − κ−1)f ′(0)w − κ−1ρw
w(x, 0) = v(x).

(6.13)

That is, M(κ)[v](x) := w(x, 1).
It is easily seen that when v = e−µxα, the solution has the separated form

w = e−µxη(t), where η′ = [µ2diag(di) + (1 − κ−1)f ′(0)]η − κ−1ρη. Thus

B(κ)
µ = e−κ−1ρeµ

2diag(di )+(1−κ−1)f ′(0),

and a standard result on ordinary differential equations show that this matrix con-
verges to the matrix Bµ, which is obtained by replacing κ−1 by 0, as κ approaches
infinity. This is Property b of Hypothesis 2.1.vi.

In order to establish Property a, we define for each i the projection

{πi[α]}j =
{
αj if {f ′(0) + ρI }ij > 0
0 if {f ′(0) + ρI }ij = 0.

Note that by the definition of ρ, {πi[α]}i = αi , and that πi[α] ≤ α when α ≥ 0.
Hypothesis 4.1.ii then shows that

fi(α) ≥ fi(πi[α]). (6.14)
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Moreover,

πi[α] · ∇fi(0) = (f ′(0)a)i (6.15)

for all α.
Let σ be a positive lower bound for all the positive entries of the matrix f ′(0)+

ρI . By the triangle inequality

|πi[α]| ≤
k∑

j=1

{πi[α]}j ≤ σ−1{πi[α] · ∇fi(0) + ραi}. (6.16)

for all α ≥ 0.
Let ζ(0) >> 0 be the eigenvector of B0 mentioned in Remark 3 after the Hy-

potheses 2.1. The differentiability of fi shows that for any κ ≥ 1 there is a positive
number δκ such that if 0 ≤ α ≤ δκζ(0), then for all i

∇fi(0) · πi[α] − fi(πi[α]) ≤ (σ/κ)|πi[α]|.
By inserting (6.14), (6.15), and (6.16) into this inequality, we find that

(1 − κ−1)f ′(0)α − κ−1ρα ≤ f(α) when 0 ≤ α ≤ δκζ(0). (6.17)

We now observe that the solution of the system (6.13) with v = ζ(0) is
e[(1−κ−1)γ1(0)−κ−1ρ]tζ(0). Therefore, if

0 ≤ v ≤ δκe
−γ1ζ(0),

then 0 ≤ w ≤ δκζ(0) for 0 ≤ t ≤ 1. Then (6.17) shows that w is a sub-solution
of the system (4.1). Hence, a standard comparison theorem shows that M(κ)[v] ≤
Q[v]. This is the Property a of Hypothesis 2.1.vi with ω = δκe

−γ1ζ(0), and the
Lemma is established.
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