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In this paper elements of game theory are used to analyse a spatially explicit home range model
for interacting wolf packs. The model consists of a system of nonlinear partial di!erential
equations whose parameters re#ect the movement behavior of individuals within each pack
and whose solutions describe the patterns of space-use by each pack. By modifying the
behavioral parameters, packs adjust their patterns of movement so as to maximize their
reproductive output. This involves a tradeo! between maximizing prey intake and minimizing
con#ict with neighbors. Evolutionarily stable choices of the behavioral parameters yields
territories that are immune to invasion by groups with alternate behaviors.
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Introduction

Traditional approaches to understanding home
range patterns used optimality theory to examine
intra- and inter-speci"c variation in territorial
behavior (Kodric-Brown & Brown, 1978; Mac-
Lean & Seastedt, 1979; Hixon, 1980; Myers et al.,
1981), reviewed by (Schoener, 1983). These mod-
els have sought to understand the functional
signi"cance of animal's movement behaviors by
examining the costs and bene"ts of di!erent
movement strategies in di!erent environments.
Although these models addressed the issue of
spatial occupation, their representations of space
were largely implicit, with the de"nition of a terri-
torial strategy usually equating to the statement
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that &&an individual occupies area of size x''
(though see also Stamps et al., 1987).

More recently, a new class of models for under-
standing territorial patterns has emerged, in
which explicit patterns of space-use are formally
computed from underlying mechanistic descrip-
tions of individual movement and interaction be-
havior (Benhamou, 1989; Lewis & Murray, 1993;
White et al., 1996; Moorcroft et al., 1999). In
contrast to the earlier optimization models, the
representation of space-use in these models is
fully explicit. Patterns of space-use are derived by
a mathematical scaling of an underlying mechan-
istic model comprising of probabilistic rules for
an individual's movement behavior. The scaling
yields macroscopic equations for patterns of
space-use, expressed in terms of a probability
density function (pdf ) for the expected location of
each individual or group with coe$cients that
re#ect the underlying mechanistic rules of indi-
vidual movement behavior. The scaling approach
( 2000 Academic Press
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used in spatially explicit models of territoriality
has enabled them to successfully address the rela-
tionship between the movement and interaction
behaviors of individuals and resulting patterns of
space-use (White et al., 1996; Lewis et al., 1997).
In addition, due to their spatially explicit nature,
the models can also be used to perform mechanis-
tic analyses of empirical home range patterns
(Moorcroft et al., 1999)*see Fig. 1.

Unlike the earlier optimization models how-
ever, the behavioral rules of movement within
spatially explicit models of territoriality have,
to date, been viewed as "xed properties of
individuals. In this paper, we reconcile the opti-
mization and spatially explicit approaches to
understanding animal territories, analysing the
"tness payo!s of di!erent movement strategies
for wolves in north-eastern Minnesota using
a spatially explicit model of territoriality pro-
posed by Lewis & Murray (1993).

Wolves (Canis lupus) in NE Minnesota live in
packs which occupy and defend well-de"ned ter-
ritories that are stable over long periods of time
(Mech, 1973; Van Ballenberghe et al., 1975) and
as in other carnivores, scent marks are an impor-
tant proximate cue used to indicate home range
FIG. 1. Contour lines showing "t of the Lewis and Mur-
ray (1993) home-range model to relocation data (d) for six
coyote packs at Hanford ALE collected by Crabtree (1989).
The contour lines indicate the shape of the probability
density function for each pack u(x, y) (contour interval is 2),
and the home range centers for each pack are also shown (m).
Based on Moorcroft et al., (1999).
occupation (Brown & MacDonald, 1985). Based
on these observations, Lewis & Murray (1993)
developed a spatially explicit model of territorial-
ity consistent with these empirical observations,
in which territories arise as a result of individuals
exhibiting an avoidance response to the scent-
marks of neighboring packs. In contrast to other
wolf populations, the predator}prey dynamics in
this region are relatively simple, closely approxi-
mating a single-predator, single-prey interaction.
Wolf predation accounts for about 90% of
known mortality of white-tailed deer (Odocoileus
virginianus), and the deer provide approximately
70% of the typical wolf diet (Nelson & Mech,
1981).

Using a simpli"ed implementation of the
Lewis & Murray (1993) spatially explicit model,
we examine the adaptive signi"cance of wolf
home-range patterns in NE Minnesota, analys-
ing the costs and bene"ts that accrue from di!er-
ent movement behaviors when considering
a tradeo! between utilization of an underlying
prey resource (deer) and avoidance of hostile
neighbors. We determine evolutionarily, the
stable movement strategy for individuals that
yields a pattern of space-use that is uninvadable
by packs adopting alternative movement strat-
egies. The results highlight the value of scent-
marks as cues in the spatial partitioning of the
deer prey resource between neighboring wolf
packs. More generally, our work shows how it is
possible to integrate mechanistic and functional
investigations of animal movement patterns.

Modeling

MECHANISTIC HOME RANGE MODEL FOR

WOLF PACKS

We analyse a simpli"ed version of the model
described in Section 3 of Lewis et al. (1997),
considering a pairwise interaction between two
packs, U and V of equal size in a single space
dimension x. The pertinent state variables are the
expected local densities of individuals in the two
packs u(x, t) and v(x, t), and their respective
distributions of scent-marks p(x, t) and q(x, t).
Individuals within each pack exhibit the same
movement behavior, having a random compon-
ent of motion which describes foraging and pa-
trolling behavior, and a directed component of
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motion towards their den site, located at oppos-
ing ends of a one-dimensional domain of length
¸. As they move, individuals scent-mark at a con-
stant rate, and depending on the coe$cients in
model (see below), encounters with foreign scent-
marks may increase the magnitude of their direc-
tional bias in movement towards their den site
(Fig. 2).

Movement Equations

The macroscopic equations for the pattern of
space use resulting from these underlying move-
ment rules are as follows:
Pack U density:
Lu

Lt
hij

local density change

" d
u

L2u
Lx2

hij
random motion

#

L
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c
u
(q)u

hgigj
directed motion
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Pack V density:
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random motion
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with boundary conditions
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indicating that the movements and interaction
occur in the "nite enclosed region between
0)x)¸. These &zero-#ux' boundary conditions
conserve the total number of individuals so that

P
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where ;
0
"<

0
are the "xed number of indi-

viduals in packs U and V.
The parameters d
u

and d
v

govern the strength
of random movement and c

u
(q) and c

v
(p)

are non-decreasing, nonnegative functions
describing the directed component of movement
towards the den site. As shown in an earlier
analysis, these parameters are related to the
characteristics of individual movement; in par-
ticular the "rst and second moments of the
joint distribution of movement speed and times
between turns, and the sensitivity of an indi-
viduals distribution of turning angles to encoun-
ters with foreign scent-marks (Moorcroft,
1997).
Lewis et al. (1997) considered generalized func-
tions for the directed components of motion back
to the den sites c

u
(q) and c

v
(p). Here, we consider

the simple case where c
u
(q) and c

v
(p) are linear

functions of foreign scent mark density (Fig. 3).
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#c
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Scent-mark Equations

For simplicity we assume that individuals mark
at a constant rate l. Thus, at every point x in
spaces the following ordinary di!erential equa-
tions describe production and decay of marks:
Pack U marks:
Lp

Lt
hij

local density change

" lu
hij

deposition by U individuals

! fp
hij
decay

. (7)

Pack V marks:
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hij
local density change
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hij

deposition by V individuals

! fq
hij
decay

, (8)



FIG. 2. Schematic illustrating the movement and interac-
tion rules of the underlying Lewis and Murray (1993) spa-
tially explicit territoriality model (eqns (1) and (2)), shown for
the simple case of a pair of packs, U and V moving on
a one-dimensional landscape. The expected location of the
individuals in the two groups is indicated by the probability
density functions u(x, t) and v(x, t). The movement of indi-
viduals comprises both a random component random
motion and an avoidance response arising from encounters
with foreign scent marks. The density of scent marks by the
two groups at each point in space is given by the functions
p(x, t) and q(x, t), respectively. As individuals move, their
avoidance response to foreign scent marks increases their
probability of turning towards their respective den-sites,
located at opposing ends of the domain. This response
results in the U and V packs having directed component of
motion c

u
(q) and c

v
(p) that act towards their home range

centers, the strength of the directed motion varying in mag-
nitude depending on the local density of foreign scent-marks
encountered (q or p, respectively).

FIG. 3. Functional forms for the directed movement re-
sponses c

u
(q) and c

u
(p). The parameters c

u1
and c

v1
govern

the magnitude of the "xed bias movement direction of indi-
viduals in packs U and V, respectively while the parameters
c
u2

and c
v2

govern the sensitivity to scent-marks of the other
pack [eqns (5) and (6)]. In the non-dimensionalized equa-
tions [eqns (9) and (10)] the magnitude of the movement
terms is scaled by the strength of the pack's random com-
ponent of motion (given by the values of d

u
and d

v
,

respectively).
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where parameters l and f are the rate of scent-
mark production by individuals and the rate of
scent-mark decay, respectively.

PATTERNS OF SPACE-USE

Solutions u(x, t), v(x, t), p(x, t) and q(x, t) for
eqns (1)}(6) reach a time-independent steady state
which depends only upon spatial location x: u(x),
v(x), p(x) and q(x). The solutions of eqns (7) and
(8) show that the expected scent-mark density
faithfully re#ects the expected density of
individuals (p(x)"lu(x)/f and q(x)"lv(x)/f ) and
thus constitute &honest' signals of space use
(Johnstone, 1997). Integration of eqns (1) and (2),
application of the boundary conditions (3) and
the prescribed movement functions (5) and (6)
and non-dimensionalization yield the following
ODEs of the pattern of space-use by the two
groups:

Lu
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#c
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v)u, (9)

Lv
Lx

"(c
v1
#c

v2
u)v, (10)
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FIG. 4: Pure home range model. Shown are solutions to
the Holgate model eqns (12) and (13) with c

u1
"c

v1
"2.26

(top) ( ) u; ( ) v; ( ) h; ( ) u#v and
c
u1
"c

v1
"6 (bottom), ( ) u; ( ) v; ( ) h; ( )

u#v, and the resulting spring distributions of deer h(x, 0),
calculated by (A.4) with j"2 and t"0.15. Note that the
deer distribution h(x) is lowest where the total wolf density is
highest*near the densites at either end of the domain.
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and asterisks have been dropped in eqns (9) and
(10) for notational simplicity.

Parameters c
u1

, c
v1

, c
u2

and c
v2

describe the
movement behaviors of the individuals within the
two packs. In the non-dimensionalization, para-
meters, c*

u1
and c*

v1
re#ect the magnitude of the

"xed bias in an individual's movement direction
(c

u1
and c

v1
) relative to the strength of its random

motion ( d
u

and d
v
) Similarly, c*

u2
and c*

v2
re#ect

the magnitude of the bias in an individual's
movement direction caused by encounters with
foreign scent-marks (c

u2
and c

v2
) relative to the

strength of its random motion (d
u

and d
v
). The

constraints (3) and (4) retain the same form, but
the constants ¸, ;

0
and <

0
in the equation are

now unity. Under this non-dimensionalization,
u(x) and v(x) become probability density func-
tions for the expected location of individuals in
the two packs, and the size of the region has been
rescaled to be length 1. Thus, the probability
density functions u(x) and v(x) for expected
space-use are determined by solving eqns (9) and
(10) subject to the non-dimensionalized integral
conditions (11),

P
1

0

u(x) dx"P
1

0

v(x) dx"1. (11)

It is interesting to consider some special cases
of solutions to eqns (9) and (10). First, if there is
no increase in movement towards the den in the
presence of foreign scent-marks (c

u2
"c

v2
"0),

then the solution to eqns (9) and (10) and eqn (11)
is given by

u(x)"c
u1

exp(!c
u1

x)/(1!exp(!c
u1

)), (12)

v(x)"c
v1

exp(!c
v1

(1!x))/(1!exp(!c
u1

)).

(13)

This solution, in which individuals exhibit a con-
stant bias in movement direction toward their
home range center and do not respond to foreign
scent-marks, is Holgate's (1971) home range
model. We refer to this as the &pure home range'
case (Fig. 4).

Second, if there is no bias in movement to-
wards the den site in the absence of foreign
scent-marks then eqns (9) and (10) become

Lu
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"!c
u2

uv, (14)

Lv
Lx

"c
v2

uv. (15)
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We refer to this as the &pure territorial' case, since
space partitioning is governed only by interac-
tions via foreign scent-marks. Note that for the
symmetric behavior case (c

u2
"c

v2
"c

2
), adding

these equations and applying the conservation
condition (11) shows that u(x)#v(x)"2 for all
0)x)1. Thus, the territories are given by solu-
tions to two logistic equations with space x as the
independent variable:

Lu
Lx

"!c
2
u(2!u),

Lv
Lx

"c
2
v(2!v) (16)
FIG. 5. Pure territorial model. Shown are territorial solu-
tions for u(x) and v(x) given eqns (11) and (16) with c

2
"2.95

(top) ( ) u; ( ) v; ( ) h; ( ) u#v, and c
2
"20.0

(bottom) ( ) u; ( ) v; ( ) h; ( ) u#v, and the
resulting spring distribution of deer h(x, 0), calculated by
(A.4) with j"2 and t"0.15. Notice that the deer distribu-
tion h(x) is uniform throughout the domain.
(Fig. 5). The initial conditions u(0) and v(0) to this
system are chosen to satisfy the integral con-
straints (11).

FITNESS FUNCTION

We assume that the costs and bene"ts asso-
ciated with individuals adopting a particular
movement strategy are determined by the e!ect
of the resulting pattern of space-use on resource
acquisition and on the frequency of aggressive
interactions with neighboring packs. As in many
carnivore societies, wolf packs have strong domi-
nance hierarchies with alpha females and males
dominating the behavior of subordinates (Shel-
don, 1992). While intra-pack interactions can be
complex, we propose that a reasonable initial
assumption is to assume that the packs operate
as cohesive units, maximizing the expected num-
ber of o!spring produced single year by the alpha
female. Although subordinates may attempt to
mate, this is rarely successful and females typi-
cally retain the alpha status for several years
(Mech, 1966; Peterson et al., 1984; Ballard et al.,
1987; Fuller, 1989).

The expected number of o!spring produced in
a single year by a pack alpha female with space-
use u(x) is given by her geometric growth rate R

u
where

R
u
" S

hij
survivorship

) N
u
,

hij
offspring produced

(17)

where S is the probability that the alpha female
survives the year to breed in spring, and N

u
is the

number of o!spring surviving weaning, given
that the alpha female breeds.

Given the spatial distribution of prey h(x, t)
(A.3), we assume that yearly o!spring production
N

u
is a simple function of prey intake

N
u
"ptP

1

0

u(x)H(u (x), v(x)) dx, (18)

where p is the rate of conversion of prey into
o!spring, t is the prey encounter rate and H(u(x),
v(x)) is the average prey density during the year
given the packs have patterns of space use u(x)
and v(x). H(u(x), v(x)) is calculated using a simple
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model for the spatial dynamics of the white-tailed
deer population, the major prey species in this
region (see eqn A.5 in Appendix A).

We assume that the probability of a wolf being
killed as a result of inter-pack aggression as being
proportional to the local encounter rate between
individuals in the two packs au(x)v(x).

The overall death rate k is then given by

k"k
0
#aP

1

0

u(x)v(x) dx, (19)

where k
0

is the natural mortality rate.
This yields the basic reproductive ratio R
R
u
"

expA!k
0
!aP

1

0

u(x)v(x) dxB
hgggggigggggj

survivorship

ptAP
1

0

u(x)H(u(x), v(x)) dxB
hgggggigggggj

offspring produced

(20)
and hence

r
u
"!k

0
#ln(pt)!a P

1

0

u(x)v(x) dx

#lnAP
1

0

u(x)H (u(x), v(x)) dxB (21)

describes the "tness payo!, in terms of a repro-
ductive rate, for pack U. The payo! for pack V,
r
v
, is given by interchanging u(x) and v(x) in the

above formula.
We refer to r

u
and r

v
as &"tness functions'.

A more complete measure of "tness would ac-
count for relatedness between the o!spring and
the alpha female, the future reproductive poten-
tial of the alpha female (due to reproduction in
later years) and variation in population size.
However, since these would further complicate
the model, we do not pursue them further.

PARAMETER VALUES

The "tness payo!s r
u

and r
v

depend on the
density of the deer population, the relationship
between resource intake and o!spring produc-
tion and the costs of aggressive interactions be-
tween individuals in neighboring packs. We para-
meterized the model of deer density and spatial
distribution to give realistic estimates for the
mortality due to predation and the deer recruit-
ment rate (see Appendix A). The value of the
mortality parameter a is di$cult to estimate dir-
ectly, since the overall mortality rate will depend
on the level of home-range overlap, however re-
cent empirical studies have shown that the costs
of inter-pack aggression are high (Mech, 1994).
We assume that if the two packs interacted uni-
formly over the region with no avoidance behav-
ior then each alpha female would have a 50%
chance of surviving aggressive interactions
[a"0.69 in eqn (19)]. For typical degrees of
overlap obtained in the ESS analysis, this gives
mortality rates consistent with empirical
estimates which suggest that inter-pack aggres-
sion accounts for&10% of adult deaths (Mech,
1994).

The natural mortality rate k
0

and the rate
conversion of prey into o!spring pt yield addi-
tive constants in formula (21) and hence their
values do not a!ect the evolutionarily stable
values of c

1
and c

2
. However we can estimate

!k
0
#ln(pt) by calculating reasonable values

for the "tness function (21). Suppose the deer are
at carrying capacity H"1 and there are no inter-
actions with hostile neighbors a"0. Under these
conditions we estimate that the basic reproduc-
tive ratio is approximately 5 (Van Ballenberghe
et al., 1975; Fuller, 1989). Substituting this value
and the value k into eqn (20) gives !k

0
#

ln (pt)"ln (5). This is the value that we use when
calculating the "tness surfaces (see below).

Analysis

We assume that the parameters describing
predator}prey interactions, wolf}wolf mortality
and conversion e$ciency from deer into o!spring
are "xed. We then determine the values of the
movement parameters, c

1
and c

2
, that maximize

the "tness payo! functions r
u

and r
v
, subject to



FIG. 6. Evolutionarily stable strategy for Holgate's (1971)
pure home-range model [eqns (12) and (13)]. Isoclines show
the level curves of the "tness payo! function for the U pack
r
u
[eqn (21)] as a function of the movement strategy of the

individuals of the V pack c
v1

and the movement strategy for
the individuals in the U pack c

u1
. Solid dots indicate values

of c
u1

yielding the maximum value of r
u
for each value of c

v1
.

The point at which the ridge delineated by solid dots crosses
the 1 :1 line de"nes the evolutionarily stable strategy (ESS).
Thus the ESS is c

1*
"2.26 (Point A) which yields a "tness

payo! of r"0.55. The resulting pattern of home ranges are
shown in Fig. 4(a).
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these constraints, assuming a competitive game
between the two packs. Increasing space-use by
either pack involves a tradeo! between foraging
widely for deer (facilitated by low c

1
and c

2
) and

avoiding neighbors (facilitated by high c
1
and c

2
).

We "rst determine the evolutionarily stable
strategies for the pure home range [eqns (12)
and (13) and pure territorial [eqns (14) and (15)]
models.

PURE STRATEGIES

The evolutionarily stable strategy arising for
the pure home range case (c

u2
"c

v2
"0) is de-

"ned by a single value c
1*

, such that if individuals
in both packs have movement behavior c

1*
(i.e.

c
u1
"c

v1
"c

1*
), a change in behavior by a pack

(i.e a change in either c
u1

or c
v1

) will result in
reduced "tness for that pack. In this sense, the
value c

1*
is uninvadable by other c

1
values and

therefore represents a evolutionarily stable strat-
egy or ESS (Maynard-Smith, 1974) of movement
behavior. In a similar way, the evolutionarily
stable movement strategy for the pure territorial
model (c

u1
"c

v1
"0) is de"ned by individuals in

both packs having movement behavior c
u2
"

c
u2
"c

2*
, and that a change in the value of c

2
by

a pack will result in reduced "tness for that pack.
Note that in technical terms, our ESS criterion

is for a &game against the "eld' as opposed
to a pairwise game in which packs attempt to
maximize a "tness di!erential (r

u
!r

v
). Since in

natural populations, packs may have up to six
neighboring packs (Peters & Mech, 1975;
Peterson et al., 1984; Ballard et al., 1987; Fuller,
1989), we propose that &a game against the "eld' is
the more appropriate caricature of the natural
system where a game is being waged in space two
dimensions against multiple neighbors.

We calculated the evolutionarily stable move-
ment strategies for the pure home-range case
(c

u2
"c

v2
"0), and pure territorial case

(c
u1
"c

v1
"0) by numerically evaluating the "t-

ness function (21) subject to eqns (12,13) and
(14,15) respectively (Figs 6 and 7). The ESSs were
determined in the following way. For each value
of c

vi
(where the subscript i indicates the pure

home range (i"1) or pure territorial case (i"2)),
the maximum value of the "tness function for
pack U, r

u
[eqn (21)], is shown with a dot. The
resulting ridge of dots crosses the c
vi
"c

ui
line at

a point whose coordinates de"ne the competi-
tively stable value of c

1
or c

2
. By symmetry, the

equivalent ridge describing the best movement
behavior for individuals in pack V in response to
U pack individuals having movement strategy c

u1
crosses the 1 : 1 line at the same point. At this
intersection point, individuals in both packs will
do worse if they adopt an alternative behavior
and therefore the intersection point constitutes
an evolutionarily stable movement strategy and
the resulting pattern of space-use.

TERRITORIAL VERSUS HOME RANGE

MOVEMENT STRATEGIES

Comparison of the evolutionarily stable
patterns of space-use for the two models shows
that a pure territorial movement strategy results
in higher "tness for both packs than a pure home
range movement strategy (r

u
, r

v
"0.62 vs. r

u
,



FIG. 7. Evolutionarily stable strategy for pure territorial
model [eqns (14) and (15)]. Isoclines show the level curves of
the "tness payo! function of pack U r

u
(21) as a function of

the movement strategy of individuals in pack V (c
v2

) and the
movement strategy of individuals in pack U (c

u2
). Solid dots

indicate the values of c
u2

that maximize the value of r
u

for
c
u2

value. The point at which the ridge delineated by the dots
crosses the 1 : 1 line de"nes the evolutionarily stable move-
ment strategy for the two packs. Thus the ESS is c

2*
"2.95

(Point B) which yields a "tness payo! r
u
"0.62. The result-

ing pattern of home ranges is shown in Fig. 5(a).

FIG. 8. The necessary condition for an ESS for the com-
bined strategy model [eqns (9) and (10)], is that the ridges of
&&x''s and &&o''s intersect. The ridge of &&o''s shows values of c

1
and c

2
for which the "tness of the pack will decrease it

changes its c
1

and the ridge of &&x''s shows values for which
the "tness of the pack will decrease if changes its c

2
. The two

ridges intersect at c
1
"0, c

2
"2.95, which is marked by the

letter B. Refer also to points A and B in Figs. 6 and 7.
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r
v
"0.55, see Figs 6 and 7). This is in part due to

a more complete utilization of the available prey
resource than the pure home-range model [see
Figs 4(a) and 5(a)]. However, in addition, the
pure territorial movement strategy yields sharper
edges in the u(x) and v(x) pro"les, reducing home-
range overlap between the two packs that lowers
the rate of interaction between the packs, increas-
ing survivorship [see Figs 4(a) and 5(a)]. As a re-
sult of these two e!ects, the "tness of individuals
in both packs is higher if individuals adopt a
territorial movement strategy in which the
magnitude of directed movement varies in rela-
tion to foreign scent-marks, rather than having
a directed component of motion of "xed magni-
tude.

We next consider whether these pure strategies
are invasable by a more general strategy that
combines a "xed component of motion with
a territorial response to scent-marks. This pro-
cedure is more complex as it involves potential
changes in two components of movement behav-
ior by each pack. In order to determine whether
any c

1
, c

2
combinations are an ESS, we need
to consider the "tness consequences of indi-
viduals in either of the packs changing their
values of c

1
and c

2
. Two necessary (though not

su$cient) criteria for a combined ESS are that
the pack's "tness decreases if it changes its value
of c

1
and its "tness decreases if it changes its

value of c
2
.

Figure 8 shows potential symmetric strategies
c
u1
"c

v1
"c

1
and c

u2
"c

v2
"c

2
. The ridge of

&&o''s shows values for which the "tness of pack
U will decrease if it changes its c

u1
value in-

crementally and the ridge of &&x''s shows values for
which the "tness of pack V will decrease if it
changes its c

u2
value incrementally. Allowable

incremental changes for the c
u1

value are (i)
a small increase in c

u1
along boundary c

u1
"0

and (ii) a small increase or decrease in c
u1

else-
where. Allowable incremental changes for the
c
u2

value are (i) a small increase in c
u2

along
boundary c

u2
"0 and (ii) a small increase or

decrease in c
u2

elsewhere.
The ridges of &&o''s and &&x''s intersect at c

1
"0,

c
2
"2.95, the pure territorial ESS (point B on

Fig. 8*see also Fig. 7), suggesting that this is the



FIG. 9. Fitness payo! r
u
for pack U as a function of c

u1
and

c
u2

given that pack V has the pure home range strategy
identi"ed in Fig. 7 c

v1
"0, c

v2
"2.95. Point B (c

u1
"0,

c
u2
"2.95 in the "gure) corresponds to B in Fig. 8. At B, the

strategy and "tness of pack U matches that of pack V so that
r
u
"r

v
"0.62. All other possible strategies by pack U how-

ever yield lower "tness, demonstrating that pure home range
strategy c

1
"0, c

2
"2.95 is stable to invasion and thus an

ESS for the combined strategy model, [eqns (9) and (10)].
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ESS for the combined strategy model. Fig-
ure 9 con"rms this, showing how the "tness
payo! to Pack U varies a function of c

u1
and

c
u2

given that pack V has the pure territorial
strategy de"ned by point B (c

v1
"0, c

v2
"2.95).

In all points other than point B, pack U has
a reduced "tness payo! con"rming that the pure
territorial strategy (c

1
"0, c

2
"2.95) is an ESS

for a combined strategy model (Fig. 7).

Discussion

In our analysis of a simple, mechanistic model
of wolf home ranges, the evolutionarily stable
movement strategy for individuals uses foreign
scent-marks to modulate movement towards in-
terior of the home range (c

1*
"0, c

2*
"2.95).

Alternative strategies that include a &built in' bias
towards the den site (c

1
'0) cannot invade this

&pure territorial' strategy.
The ESS for the pure territorial model [eqns

(14) and (15)] satis"es the logistic model [eqn
(16)] with (c
2
"c

2*
"2.95). Here u(x)#v(x)"2,

so that the prey density h(x) is uniform in space.
This pattern of space-use yields higher "tness
than the simple home range strategy (r

u
, r

v
"0.62

versus r
u
, r

v
"0.55), Note that the optimal, as

opposed to evolutionarily stable, strategy would
be to allow c

2
PR so that overlap in the solu-

tions to eqn (16) approaches zero and the solu-
tions approach

u(x)"2(1!H(x!0.5)), v(x)"2H(x!0.5),

where H( ) ) is the Heaviside step function
(H(x)"0 for x(0, H(x)"1 for x*0). Under
this scenario, there are no aggressive interactions
with neighboring packs, space is completely and
equitably partitioned and both packs have higher
"tness (r

u
"r

v
"1.03). However, at least for

parameters given here for wolves, this optimal
strategy is not stable and can be invaded by
a c

2
'0 strategy. The territorial overlap that

arises from the evolutionarily stable movement
strategy shown in Fig. 7, gives rise to aggressive
encounters which confer stability on the patterns
of space-use by the two packs.

A heuristic explanation for the pure territorial
movement strategy ESS, is that, in the absence of
foreign scent-marks, packs with this ESS move-
ment behavior expand their space-use [via simple
di!usion see eqns (1) and (2)] to "ll the room
available. In contrast, alternate &pure home
range' or &combined' strategies with a built-in
bias towards the den site, stop expanding when
the directed and random components of motion
balance, even in the absence of foreign scent-
marks [see eqns (12) and (13) and Fig. 4
for appropriate functional forms for the pure
&home-range' pattern of space use]. In this
senses &home range' and &combined' strategies do
not fully avail themselves of the opportunity to
utilize space that is relatively unoccupied by
neighbors.

As we noted earlier, since individuals scent-
mark at a constant rate, the spatial distribution
of scent-marks is an accurate re#ection of the
pattern of space-use and therefore constitutes an
&honest signal' (Johnstone, 1997). A variation on
eqns (7) and (8), proposed by Lewis and Murray
(1993), allows for increased scent-marking rates
in the presence of foreign scent-marks. The result
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is a &bowl-shaped' scent-mark distribution with
the edges of the scent-mark &bowl' at the interac-
tion zone between territories. This in turn, gives
rise to a &bu!er zone'*an area of low space use
between the packs. In this case, scent-marks are
no longer an accurate re#ection of space-use:
scent-mark levels are highest at the edge of the
territories where space-use declines (Fig. 10). We
are now investigating whether the &pure terri-
torial' strategy remains an ESS in this situation.
It may be that increased sensitivity of marking
rates to foreign scent-marks will heighten scent
levels in the interaction zone between territories
and &blu! ' neighboring packs into retreating.

More generally, our study shows how mechan-
istic home range models can be used to investi-
gate the adaptive signi"cance of animal home
range patterns. In contrast to earlier costs and
bene"t analyses in which concepts of space were
implicit, mechanistic ESS analyses take explicit
account of the relationships between movement
behavior, resulting patterns of space-use and the
subsequent "tness of individuals. In addition, the
spatially explicit nature of the models used in
FIG. 10. The expected patterns of space-use [u(x), v(x)], and
scent mark distributions [p(x), q(x)] when scent-marking
rate increases in response to foreign scent-marks [based on
Lewis et al. (1997)]. Note that this gives rise to a bowl-
shaped scent-mark distribution in which scent-marks no
longer an &&honest' pattern of space-use. ( ) Pack 1 (u);
( ) pack 2 (v); ( ) RLU 1 (p); ( ) RLU 2 (q).
mechanistic ESS analysis permits direct compari-
son to empirical home range patterns (for
example Fig. 1), o!ering a promising way to
integrate theoretical investigations into the func-
tional signi"cance of home range patterns with
empirical measurements of animal movement.

We are grateful to Fred Adler, Bob Crabtree (YES),
Charles Godfray, Henry Horn, Simon Levin and Dan
Rubenstein for helpful discussion. Thanks to Steve
Pacala for supporting Paul Moorcroft.
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APPENDIX A

A Model for the Spatial Distribution of Deer

The major prey species for wolf populations in
Minnesota are white-tailed deer Odocoileus vir-
ginianus. Wolf predation is a major factor a!ect-
ing white-tailed deer densities across the region,
accounting for 90% of all known deaths (Nelson
& Mech, 1981). We use the model proposed by
Lewis and Murray (1993) for the spatial distribu-
tion of the deer population which makes the
following assumptions: (i) wolf territories are sta-
tionary and stable; (ii) Holling Type I (linear)
functional response of wolf predation to local
deer density

Lh
Lt

"!t(u(x)#v(x))h, (A.1)

where h(x, t) is the deer density, u(x) and v(x)
are the expected densities of space-use by pack U
and pack V wolves, and t is the predation rate.
(iii) production of deer each spring given by
Beverton-Holt density-dependent population
dynamics

h(¹ ,̀ x)"
jh (¹~, x)

1#(j!1)h (¹~, x)/K
, (A.2)
where h(¹~, x) and h(¹ ,̀ x) are the local density
of deer immediately prior to and after the spring
birth, and j'1 and K are the growth rate and
carrying capacity of the deer in the absence of
predation.

During the year, predation by wolves accord-
ing to eqn (A.1) reduces deer numbers such that
the population immediately prior to the spring
birth in the following year is

h(¹#1~, x)"h(¹`, x) exp(!t[u(x)#v(x)]),

(A.3)

A &steady-state' solution, which gives no change
in density from spring to spring, satis"es
h(¹#1`, x)"h(¹`, x). Substituting eqns (A.1)
and (A.2) into eqn (A.3) and satisfying this condi-
tion yields the spring deer density immediately
after birth as

h (¹`, x)"maxG0,
j!exp (t[u (x)#v(x)])

j!1 H,
(A.4)

where h*"h/K is the non-dimensionalized deer
density and the asterisk on h* has been dropped
for notational convenience.

Integrating (A.4) from ¹ to ¹#1 yields the
average deer density H(u(x), v(x)) throughout the
year

H(u(x), v(x))"

maxG0,
(j!exp ([u(x)#v(x)]t))

j!1

]
(1!exp (!t(u(x)#v(x))))

t(u(x)#v(x)) H. (A.5)

PARAMETERS

The growth ratio j in eqn (A.2) was chosen as
j"2 giving recruitment rates consistent with
empirical estimates of 30% per annum (Nelson
& Mech, 1981) at approximately 60% of carrying
capacity (the typical equilibrium population
level, for example see Fig. 5).

The predation rate t was estimated assuming
that deer have a mean lifespan of approximately
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seven years, consistent with empirical estimates
(Nelson & Mech, 1981), and giving individual
deer a 10}15% chance of being killed each year.
The precise probability upon location of the deer
in relation to the wolf home ranges. For the case
where the interactions are pure territorial and
symmetric [eqn (16)], the predation pressure is
uniform across the region (u(x)#v(x)"2). Here,
a choice of t"0.15 yields the probability of
surviving a year as

1!exp (!t(u(x)#v(x)))
t(u(x)#v(x))

+0.86, (A.6)

and thus a 14% chance of being killed each year.
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