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How Predation can Slow, Stop or Reverse a Prey Invasion
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Observations on Mount St Helens indicate that the spread of recolonizing lupin
plants has been slowed due to the presence of insect herbivores and it is possible
that the spread of lupins could be reversed in the future by intense insect herbivory
[Fagan, W. F. and J. Bishop (2000). Trophic interactions during primary sucession:
herbivores slow a plant reinvasion at Mount St. Helens.Amer. Nat.155, 238–251].
In this paper we investigate mechanisms by which herbivory can contain the spatial
spread of recolonizing plants. Our approach is to analyse a series of predator–
prey reaction–diffusion models and spatially coupled ordinary differential equation
models to derive conditions under which predation pressure can slow, stall or re-
verse a spatial invasion of prey. We focus on models where prey disperse more
slowly than predators. We comment on the types of functional response which give
such solutions, and the circumstances under which the models are appropriate.

c© 2001 Society for Mathematical Biology

1. INTRODUCTION

This study is motivated by interesting data on the recolonization by lupins (Lupi-
nus lepidus) of Mount St Helens’ north slope. The eruption of Mount St Helens
in 1980 caused complete extermination of all plant and animal species in a large
area known as the Pumice Plains, presenting an excellent opportunity for the study
of primary succession—the formation of biological communities in the absence of
historical influences.

In 1981, a species of lupin began to recolonize the Pumice Plains region of Mount
St Helens. In the mid 1980s, the first herbivore populations (chiefly lupin-specific
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lepidopterans) were identified within the lupin colonies, and in 1990 these her-
bivores first reached the lupin ‘wavefront’ (Fagan and Bishop, 2000) which was
several kilometres away from the initial introduction site. Experiments at the site
show that the herbivores induce a decrease in the per capita growth rate of lupins
at low densities, and it has been suggested that these herbivores may stall or even
reverse the spread of lupins (Fagan and Bishop, 2000). This leads to the question of
whether such behaviour is possible in models for predator–prey dynamics, where
the herbivore is the ‘predator’ and the lupin is the ‘prey’.

In keeping with the biology we assume that the prey disperse much more slowly
that the predators. Our main focus is analysis of spread rates for predator and
prey populations in nonlinear reaction–diffusion models. First we consider sim-
ple predator–prey models, described by convex nonlinear growth of prey, types
I–III functional and numerical responses, and diffusion of prey and predator (Sec-
tion 2). We demonstrate that the introduction of predators into such systems will
not reduce prey spread rate. We then move to a more general model framework for
predator–prey models which includes nonconvex growth functions for the prey. We
demonstrate that to slow population spread via predation requires at least a ‘weak’
Allee effect for the prey-only dynamics (reduced growth rate for unexploited prey
population at low density), and to reverse population spread via predation requires
a ‘strong’ Allee effect for the prey-only dynamics (negative growth rates for un-
exploited prey populations when at low density). In the reaction–diffusion formu-
lations, stationary (zero spread rate) solutions are structurally unstable. However,
this is not the case for spatial patch models. In Section3 we consider an explicitly
patchy model, given by spatially coupled ODEs, which admits stationary solutions
for a range of parameter values. Section4 includes a discussion, together with
suggestions for future research.

2. A REACTION –DIFFUSION PREDATOR –PREY M ODEL

We consider the nonlinear reaction–diffusion predator–prey model

ut = εDuxx + ru f (u)− φvh(u) (1a)

vt = Dvxx + γ vh(u)− δv. (1b)

This model arises from adding spatial movement terms, described with diffusion,
to a classical predator–prey dynamics [see for example,May (1974)]. The per
capita prey growth rate isr f (u). The strictly monotonic functional and numerical
responses,φh(u) andγh(u) have identical form, withγ /φ describing conversion
efficiency. We defineK to be the carrying capacity for the prey in the absence of
predation and we assume that, in the absence of prey, predator populations will not
grow, so thatf (K ) = h(0) = 0. We also assume that the model has a coexistence
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equilibrium(us, vs) which is stable in the ODE sense (i.e., in the absence of diffu-
sion). The parametersr andφ allow us to scale the continuous functionsf andh
so that maxu∈[0,K ] f (u) = h(K ) = 1. The parameterε, 0 < ε � 1, reflects the
assumption that prey disperses much more slowly than predators.

Introducing the following dimensionless quantities:

t∗ = r t , x∗ = x

√
r

D
, u∗ = u/K , v∗ =

φv

r K
,

f ∗(u∗)= f (u), h∗(u∗) = h(u), γ ∗ =
γ

r
, δ∗ =

δ

γ
, (2)

and dropping asterisks for notational simplicity gives

ut = εuxx + u

(
f (u)−

v

u
h(u)

)
(3a)

vt = vxx + γ v(h(u)− δ). (3b)

Our conditions onf andh become:

f (1) = 0, max
u∈[0,1]

f (u) = 1, h(0) = 0, h(1) = 1.

Steady states for this model are an extinction steady state,(u, v) = (0,0), a prey-
only steady state(u, v) = (1,0)—corresponding to primary succession before
predators have arrived, and a coexistence steady state

us = h−1(δ), vs =
us f (us)

h(us)
=

us f (us)

δ
. (4)

The relevant range of predator mortality rateδ for a non-negative coexistence equi-
librium is 0≤ δ ≤ 1.

Stability of the prey carrying capacity in the absence of predation and stability of
the coexistence equilibrium require that

f ′(1) < 0, g′(us) < 0, (5)

where

g(u) = u
f (u)

h(u)
. (6)

Becauseh is strictly monotonic with root atu = 0, g is defined for positiveu.
Extensive simulations of the full nonlinear PDE model with zero flux boundary

conditions indicate that compact initial datau(x,0) andv(x,0) numerically con-
verge to travelling wave solutions for a wide variety of growth functionsf and
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Figure 1. With logistic growthf (u) = 1−u and type II predationh(u) = (α+1)u/(α+u),
introduced predators catch up to prey and form a travelling wave joining extinction and
coexistence equilibria. Notice that the predators do not slow the spread of prey after they
catch up with them. Boundary conditions are zero flux foru andv. Parameter values are
δ = 0.9, α = 0.2, γ = 1, ε = 0.001 in (3). Dashed lines show initial conditions, solid
lines show solutions up tot = 200 at intervals of 10 dimensionless time units.

functional responsesh, providingε is sufficiently small, i.e., providing the preda-
tors diffuse fast enough relative to prey so as to be able to ‘catch up’ with the
prey. An example, shown in Fig.1, uses logistic growth for the prey and type II
predation.

In Fig. 1 the predators catch up to the prey, but do not slow the spread of prey
at all. In Section2.2 we will show that this is a general feature of predator–prey
models with logistic prey growth. However, as we will show in Section2.3, intro-
duction of an Allee effect in the prey dynamics makes it possible for the spreading
prey to be slowed by predation. Another kind of solution is also possible, with
or without an Allee effect for the prey. Predators can stop the prey as they ap-
proach the right-hand end of the domain. This case has been used by Hastings and
coworkers (Hastingset al., 1997) to explain stationary predator–prey distributions.
However, in the context of predator–prey invasions, we will show that existence of
this stationary solution depends upon zero-flux boundary conditions for predators
and prey (see Section2.4).

We know of no proof of existence and convergence of initial data to travelling
waves such as those seen in Fig.1. This remains an interesting open problem.
Work by Dunbar(1986) proves existence for similar dynamics, but with boundary
conditions describing spread of predators into prey. Also, related work bySher-
ratt et al. (1997) and others shows that predators spreading into prey can exhibit
complex spatiotemporal behaviour which cannot be described by a travelling wave
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if the coexistence equilibrium is unstable, i.e., if the second condition in (5) is
violated. However, based on our numerical results, we consider the case where
compact initial data for (3) has converged to an expanding wave solution whose
spread, both to the left and to the right, asymptotically takes the form of a travelling
wave. Without loss of generality we consider the travelling wavefront connecting
(us, vs) with (0,0):

0= cU ′ + εU ′′ +U

(
f (U )−

V

U
h(U )

)
(7a)

0= cV′ + V ′′ + γV(h(U )− δ). (7b)

lim
z→∞

U (z) = lim
z→∞

V(z) = 0, lim
z→−∞

U (z) = us, lim
z→−∞

V(z) = vs (8)

wherez= x − ct is the travelling wave coordinate with wave velocityc.

2.1. Prey-only waves.Existence of travelling waves and convergence of initial
data to such waves have been analysed in detail for the prey-only model

u+t = εu
+

xx + u+ f (u+). (9)

by Aronson and Weinberger(1975) and others. Providingu+ f (u+) has the appro-
priate concave-down shape

f (u) > 0 on 0< u < 1, f (u) < 0 for u > 1, f (0) = 1
(10)

then compact initial data converge asymptotically to left- and right-moving travel-
ling waves with speed

c+ = 2
√
ε f (0). (11)

Without loss of generality we focus on the right-moving wave. This joinsu = 1
andu = 0 with a monotonic waveu+(x, t) = U+(x − c+t) with velocity c+ and
0≤ U+ ≤ 1.

The above conditions onf (10) are sufficient to guarantee wave speed (11) for
equation (9), but are not necessary. In particular, the condition that the maximum
per capita growth rate occurs at the lowest possible density [f (0) = 1] can some-
times be relaxed. By way of example, if we choose the quadratic function

f = k(1− u)(u− a), a ≤ 1 (12)

with the scaling factork so that the maximum per capita growth rate is unity,

k =

{
− 1/a for a ≤ −1
4/(1− a)2 for −1≤ a < 1,

(13)
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then spread rate for (9) is

c+ =

{
2
√
−εak for a ≤ −1/2

√
2εk(1/2− a) for −1/2≤ a ≤ 1

(14)

(Hadeler and Rothe, 1975; Rothe, 1981; Lewis and Kareiva, 1993). The sufficient
conditions given above (10) guarantee wave speedc+ = 2

√
−εak only for the

values ofa yielding f (0) = 1, (a ≤ −1) whereas this speed is also correct for
−1 < a ≤ −1/2. We will use this quadraticf given in equation (12) in an
example below.

Waves with speed given by (11) are called ‘pulled waves’ (Hadeler and Rothe,
1975) because the speed is governed by behaviour of the leading edge. Linearizing
aboutu+ = 0 yields

u+t = εu
+

xx + u+ f (0), (15)

and, for compact initial data, it is straightforward to show that the spread rate
for any level setu = uL asymptotically achieves (11) (Aronson and Weinberger,
1975). Waves that are not pulled are said to be ‘pushed’ (Hadeler and Rothe, 1975).
Here, the dynamics exhibit an Allee effect and population growth at intermediate
densities drives the wave forward as individuals reproduce at high rates and spill
over, via diffusion, to the front of the wave where per capita growth rates are lower.
Thus sufficient conditions for a pulled wave are given by (10), although these may
not be necessary.

2.2. Linear analysis. In this section we show that introduction of predators will
not slow the spread of prey, providing the prey-only wave (9) is a ‘pulled wave’,
i.e., has speedc+ given by (11) (see above). We show this by demonstrating that
the predator–prey travelling wave can move no slower thanc+ (11).

It is straightforward to show that, in the absence of diffusive terms, the region 0≤

u ≤ 1, v ≥ 0 is an invariant set for (3). It follows that this region remains invariant
when the diffusion terms are included (Smoller, 1994). Thus non-negative initial
data will remain non-negative for all timet and spacex values, and prey density
will remain below or at carrying capacity (u = 1) for all time and space, providing
it initially starts below or at carrying capacity. Furthermore, if the compact initial
prey densityu(x,0) in (3) is above carrying capacity, we can boundu(x, t) above
for all time t > 0 by the solutionu+(x, t) to the model with no predation (9) and
initial datau(x,0). As described above this solutionu+(x, t) asymptotically lies
between zero and one, and we thus conclude the same foru(x, t).

We now use the above results coupled with linear analysis to show that predator–
prey travelling waves can go no slower thanc+ (11). In some neighbourhood of
any hyperbolic equilibrium(u, v) = (û, v̂) for (7), flow of the nonlinear system is
governed by its linearization,

0= cU ′ + εU ′′ + (û f ′(û)+ f (û)− v̂h′(û))U − h(û)V (16a)
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0= cV′ + V ′′ + γ v̂h′(û)U + γ (h(û)− δ)V, (16b)

(Perko, 1991). Eigenvaluesλ for this linear system satisfy∣∣∣∣ ελ2
+ cλ+ û f ′(û)+ f (û)− v̂h′(û)

γ v̂h′(û)

∣∣∣∣ −h(û)
λ2
+ cλ+ γ (h(û)− δ)

= 0. (17)

Analysis about the leading edge of the wave (v̂ = 0) yields

λU
±
=
−c±

√
c2− 4ε(û f ′(û)+ f (û))

2ε
, (18)

with eigenvector(U,U ′,V,V ′) = (1, λU
±
,0,0), and

λV
±
=
−c±

√
c2− 4γ (h(û)− δ)

2
, (19)

with eigenvector(U,U ′,V,V ′) = (0,0,1, λV
±
). Thus, analysis about the leading

edge of the travelling wave (7)–(8), û = 0, gives a necessary condition

c2
≥ 4ε f (0) (20)

for non-negative prey density.
Recall that when the prey-only wave is ‘pulled’ equation (11) gives its spread

rate. In this case, we conclude from (20) that the predator–prey travelling wave
moves no slower than the prey-only wave. Indeed, using the fact that the solution
u+(x, t) to (9) with initial datau(x,0) is an upper bound to the solutionu(x, t)
to (3a) we observe that the predator–prey travelling wave must move at precisely
the pulled speed so thatc = c+ = 2

√
ε f (0). In addition, whenf satisfies the

above sufficient condition for a pulled wave (10), then the predator–prey travelling
wave has speedc = c+ = 2

√
ε.

It is also instructive to consider the case where predators spread into a prey pop-
ulation which is at carrying capacity so that boundary conditions are

lim
z→∞

U (z) = 1, lim
z→∞

V(z) = 0, lim
z→−∞

U (z) = us, lim
z→−∞

V(z) = vs

(21)
[see alsoDunbar(1986)]. Sinceh(1) = 1 > δ, a necessary condition for predator
density to remain non-negative is

c2
≥ 4γ (1− δ). (22)

Indeed, numerical simulations indicate that the speed that predators ‘catch up’ to
a spreading prey population is given by smallest possible value ofc in (22). For
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example, the simulation illustrated in Fig.1 usedε = 0.001, δ = 0.9, γ = 1,
which gives predicted speeds for the predator–prey invasion asc = 0.063 and for
the predator catch-up wave asc = 0.63. These match very closely with speeds
calculated from the simulation speeds. Even though the minimum possible speed
is often the one selected in multispecies waves [see for example,Murray (1989)],
it should be noted that this is not always the case (Hosono, 1998). For further
discussion of this seeLewiset al. (2000) andWeinbergeret al. (2000).

2.3. An example introducing the Allee effect.Our results from the previous
section indicate that when the prey-only wave is a ‘pulled wave’ then the introduced
predator cannot slow the wave, and prey and predator spread at the prey-only wave
speed. If the predator is to stop the prey invasion, i.e., ifc = 0 in (7), equation (20)
requires thatf (0) ≤ 0. In this case prey growth dynamicsu f (u) have a ‘strong’
Allee effect—the per capita prey growth rate must be negative at sufficiently small
prey density. We refer to the case 0< f (0) < 1 as having a ‘weak’ Allee effect—
the per capita prey growth rate is reduced but remains positive at small prey density.
As shown below, the spread of prey populations with a weak Allee effect may be
slowed but not stopped by introduction of the predator.

Figure2 shows numerically calculated wave speeds for predator prey model (3),
with f given by (12) and a type I functional responseh(u) = u. The solid and
dashed curves are the first and second equations in (14), which determine the speed
of the prey-only wave for thisf . These curves are drawn heavier in their region of
validity according to (14). The numerically calculated predator–prey wave speed
matches the prey-only wave speed for values ofa where the prey-only wave is
‘pulled’ (−2≤ a ≤ −0.5). It lies below the prey-only ‘pushed’ wave speed but on
or above the linear wave speed for−0.5≤ a ≤ 0.5.

Using the above terminology, the prey-only dynamics exhibit a weak Allee effect
for −1 < a ≤ 0 and a strong Allee effect for 0< a ≤ 0.5. Thus the effect of
introducing predators shows a wide range of behaviour. When the prey have a weak
Allee effect (−1 < a ≤ 0), the introduction of predators can (−0.5 ≤ a ≤ 0), but
need not (−1 ≤ a < −0.5) slow the spread of prey. When the prey have a strong
Allee effect (0< a ≤ 0.5), the introduction of predators slows the prey and can
[ac(δ) < a ≤ 0.5], but need not [0< a ≤ ac(δ)] reverse the spread of prey.
Here the critical Allee thresholdac(δ) for which predators can reverse prey spread
depends upon predator mortalityδ. In this simulationδ = 0.76 andac(δ) = 0.421.
As we will show in Section2.6, ac(δ) ∈ [0.394,0.5] for type I predation.

Figure3 shows the temporal progression for a simulation with an Allee effect
in the prey dynamics: a small introduction of predators behind a colonizing wave
of prey rapidly catches up the prey wavefront and the two populations spread as a
wave of coexistence. The speed of the wave of colonizing prey is 0.07, whereas
that of the predator wave is 0.92. Once the predators catch up to the colonizing
wave front, the speed of the resulting coexistence wave (c = 0.04) is less than that
of the prey alone, and an order of magnitude less than that of the predators in their
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Figure 2. Numerical and theoretical wave speed results for a predator–prey system with
cubic prey dynamics (3), (12) and type I predationh(u) = u. Model parameters are given
by γ = 1, δ = 0.76 andε = 0.01. Solid and dashed lines show the possible speeds for the
prey-only case, given by the first and second equation of (14). Heavier lines indicate the
speed appropriate fora value, as indicated in (14). Crosses and squares show the speed of
spread of both prey and predator.

pursuit of the prey. Thus the predators have slowed the spread of the prey.
We now focus on the coexistence wavefront which arises after the predators have

caught up with the prey. Because the movement of prey is small relative to preda-
tors (ε = 0.01) there is a sharp transition inu from the coexistence steady state on
the left to zero on the right. Inside this transition layer,v is constant (v = v0) to
leading order ofε. As discussed below, within the transition layer,u is governed
to leading order by a scalar PDE withv = v0 as a parameter. Outside the transition
layer, εuxx � 1, and so to leading order the prey population is determined by a
first-order ODE. Figure4 shows the(u, v) phase plane, including the nullclines,
and with the final PDE solution from Fig.3 superimposed. As expected, trajecto-
ries follow theu-nullcline v = g(u), until a rapid transition to the other nullcline
u = 0. This motivates the singular perturbation construction given below.

2.4. Singular perturbation analysis of the wavefront.Our approach is to use the
above ideas to formulate the travelling wave problem (7)–(8) in terms of transition
and outer layers (Conway, 1984; Fife, 1976), and to concentrate on the construction
of such solutions with zero speed (c = 0). This focus on stationary solutions is
motivated by the idea that the boundary between invasive and recessive waves is
given by the locus of points in parameter space that allows such solutions. We then
extend this approach to cover the case where there is a stationary solution induced
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Figure 3. Spatial solution for the predator–prey model (3), with f (u) = k(u− a)(1− u),
anda = 0.3. Predators catching up colonizing prey, and then slow the invasion. The
dimensionless speed of the prey wave is 0.07, and the speed of predator pursuit is 0.92.
Solutions are shown fromT = 0 to T = 200 at intervals of 20 dimensionless time units.
When the predators catch up the prey, the resulting coexistence wave moves at a speed
of 0.04. This slowing down can be seen in the prey profile, by observing that the gaps
between successive wavefronts get shorter after the predators have caught up. Parameters
areδ = 0.76, γ = 1, ε = 0.01—these are the same as for the speed calculations for a
range ofa as shown in Fig.2. Initial conditions, shown by the dashed lines, were of a prey
population at its carrying capacity for 0≤ x ≤ 80 and zero otherwise, and an introduction
of predator densityv = 0.9 on 0≤ x ≤ 1.

by zero-flux boundary conditions, henceforth referred to as an ‘edge solution’.

Transition layer. In the transition layer,u varies rapidly whilev is, to a first
approximation, constant. Rescaling space according tox =

√
εξ , stationary front

solutions of (3) must satisfy

d2u

dξ2
+ u

(
f (u)− v

h(u)

u

)
= 0

d2v

dξ2
+ εγ v(h(u)− δ)= 0.

Now in the limit asε → 0, v satisfiesd2v

dξ2 = 0, and sincev ≥ 0 asξ → ±∞, it
follows thatv = v0, a constant to be determined. Thus, we have a single equation
for u,

d2u

dξ2
+ u

(
f (u)− v0

h(u)

u

)
= 0, (23)
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Figure 4. Predator–prey phase plane for the model (3), with nullclines and PDE solutions.
Steady states of the homogeneous system are marked with asterisks. The solutions clearly
follow theu-nullclines (dotted lines), except for an abrupt transition between them. Model
details and parameters are as in Fig.3.

together with boundary conditions:

lim
ξ→−∞

u(ξ) = g−1(v0) = u0, lim
ξ→+∞

u(ξ) = 0,

lim
ξ→−∞

du

dξ
(ξ) = 0, lim

ξ→+∞

du

dξ
(ξ) = 0.

Here,g−1(v0) implies the choice of the correct (descending through the coexistence
steady state) branch of theu−nullclinev = g(u). Multiplying theu equation (23)
by du/dξ , noting that we have implicitly defined in the above boundary conditions
thatv0 = g(u0), and integrating with respect toξ yields∫

∞

−∞

{
d2u

dξ2
+ u

(
f (u)− g(u0)

h(u)

u

)}
du

dξ
dξ = 0.

The first term can be integrated directly, and for the second we use a change of
variables fromξ to u, to get[

1

2

(
du

dξ

)2]+∞
−∞

+

∫ u0

0
u

(
f (u)− g(u0)

h(u)

u

)
du= 0.

Applying the boundary conditions ondu
dξ gives the following equation which deter-

minesu0 consistent with a stationary solution:∫ u0

0
u

(
f (u)− g(u0)

h(u)

u

)
du= 0. (24)



666 M. R. Owen and M. A. Lewis

Note that this analysis is equivalent to that for determining the direction of waves
in the class of single variable PDEs with cubic-type kinetics (Murray, 1989).
Clearly, to stand any chance of getting a stationary wave, the above integrand must
have three zeros for some value ofu0. However, just determining au0 that satis-
fies (24) by no means guarantees a stationary solution, since we must be able to
match this inner front with outer solutions. In particular, the outer solutions must
attainv0 = g(u0) at the transition.

Right-hand outer solutions.Outside the transition layer,u satisfiesu f (u) −
vh(u) = 0, or equivalently using (6) u = 0 or u = g−1(v). We consider first the
right-hand outer solution, whenu = 0, so that for a stationary solution,v must
satisfy

d2v

dx2
− γ δv = 0, (25)

with boundary conditions

lim
x→+∞

v(x) = 0, v(0) = v0. (26)

We use this boundary condition because we require outer solutions which give the
zero speed value for the predator density,v = v0, at the transition layer.

Equation (25) has general solution

v(x) = Ae
√
γ δx
+ Be−

√
γ δx. (27)

Thus, applying the boundary conditions, we have thatA = 0 andB = v0, so that

dv

dx
(0) = −v0

√
γ δ. (28)

This is used to calculate the left-hand outer solution below.

Left-hand outer solutions.Now we consider the other outer layer. Recall that
we are trying to construct outer solutions which match the inner solution atv = v0.
Conservation of flux acrossv = v0 means that we must also match the derivative
of v.

In the second outer layer we have

d2v

dx2
+ γ v(h(g−1(v))− δ) = 0

with boundary conditions

v(−∞) = vs, v(0) = v0,

dv

dx
(−∞) = 0,

dv

dx
(0) = −v0

√
γ δ,
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which enforces the conservation of flux described above. Multiplying bydv/dx
and integrating with respect tox:

∫ 0

−∞

{
d2v

dx2
+ γ v

(
h(g−1(v))− δ

)}dv

dx
dx = 0.

In the same way as the analysis in the transition layer, the first term can be directly
integrated, and changing the variables fromx to v gives

[
1

2

(
dv

dx

)2]0

−∞

+

∫ v0

vs

γ v(h(g−1(v)− δ)dv = 0.

Thus, ∫ vs

v0

γ v h (g−1(v))dv =
1

2
γ δv2

0 −

∫ v0

vs

γ δv dv,

and the left- and right-hand outer solutions match atv0 if and only if

∫ vs

v0

v h
(
g−1(v)

)
dv =

δv2
s

2
. (29)

This describes the relationship between nonlinear prey dynamics,f andh [recall
g(u) = u f (u)/h(u)], and relative mortality rate of predators,δ, which is necessary
and sufficient for existence of a stationary solution, in the limit asε→ 0+.

Evaluating the left hand side of (29) can be awkward due to the necessity of
definingg−1, but fortunately a change of variables simplifies things considerably,
and also gives a condition foru0 = g−1(v0) directly. Settingu = g−1(v), it follows
thatv = g(u) anddv = g′(u)du, thus

∫ vs

v0

v h(g−1(v))dv =
∫ g−1(vs)

g−1(v0)

g(u)h(u)g′(u)du

=

∫ us

u0

u f (u)

h(u)
h(u)g′(u)du

=

∫ us

u0

u f (u)g′(u)du.

For simplicity we also write the right-hand side of (29) in terms ofu,

δv2
s

2
=
δg(us)

2

2
.
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Finally, then, we collect together the two conditions which must be satisfied for
u0 andδ in order for zero wave speed solutions of (7)–(8) to exist in the limit as
ε→ 0+: ∫ u0

0
u

(
f (u)− g(u0)

h(u)

u

)
du= 0, (30)

∫ us

u0

u f (u)g′(u)du−
δg(us)

2

2
= 0. (31)

Analysis on a semi-infinite domain.We now consider a stationary solution to (7)
on the semi-infinite domain−∞ < z≤ 0 with boundary conditions

U ′(0) = 0, V ′(0) = 0, lim
z→−∞

U (z) = us, lim
z→−∞

V(z) = vs. (32)

We assume that the transition layer for preyU (z) is a jump fromU = u0 > 0 to
U = 0 at a predator levelV = v0 which occurs at locationz = −b < 0. Analysis
similar to that given above yields (30) as a means of calculatingu0, and a modified
version of (31)∫ us

u0

u f (u)g′(u)du−
δg(us)

2

2
=
δg(u0)

2

2
(tanh2(

√
γ δb)− 1), (33)

from whichb can be calculated uniquely providing the left-hand side of (33) lies
between−δg(u0)

2/2 and zero, a less restrictive condition than (31). Solutions that
satisfy (30) and (33) are referred to as edge solutions.

Additional constraint. We have lost a small piece of information, because only
the square of the flux ofv enters in the previous calculation. In order to guarantee
that the flux has the correct sign as well as magnitude, we must havev0 ≤ vs since
v must be decreasing across the transition layer. This gives an additional constraint
onus andu0:

us ≤ u0, (34)

in order for solutions to (30) and (31) or (33) to be relevant.

2.5. Logistic growth. In this section we consider a variety of functional re-
sponses, in combination with logistic growth of the preyf (u) = 1−u. The steady
states for this model are therefore an extinction steady state,(u = 0, v = 0), a
prey-only steady state(u = 1, v = 0), corresponding to primary succession be-
fore predators have arrived, and a coexistence steady state(u = us, v = vs). As
stated previously, we also require the coexistence steady state to be stable, so have
g′(us) < 0.
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Figure 5. Characterization of solution behaviour according to location inα − δ

parameter space, whereα modulates the type II predation functional response,
h(u) = (α + 1)u/(α + u), andδ is the predator death rate. In the shaded region, edge
solutions are possible according to conditions (30), (33), and (34). The curves within the
shaded region show contours ofb, the distance of the transition layer from the right-hand
boundary, forb = 0.04 andb = 0.08. The asterisk indicates the location of the maximum
distance from the boundary,b = 0.118. For any givenα, the maximum distanceb is given
whenδ = 1− α.

Logistic growth with type I predation.We consider the caseh(u) = u. Condi-
tion (30) for zero wave speed givesu0 = 0 which prevents (31) or (33) from being
satisfied. Thus zero wave speed solutions and edge solutions are not possible, ir-
respective of the behaviour of outer solutions. This confirms our linear analysis of
wave speeds.

Logistic growth with type II predation.With logistic growth and type II preda-
tion, h(u) = (α + 1)u/(α + u), we just have two parameters to consider,α andδ.
The coexistence steady state is stable if and only ifδ > 1− α. For a givenα there
exists a unique solutionu0 to (30), but no corresponding solutions to (31), so that
stationary waves are not possible. This is in agreement with our linear analysis of
wave speeds. It remains to consider the possibility of edge solutions.

Figure5 shows the region inα − δ parameter space where there are solutions
to (30) and (33), subject to (34). Contours of constant values ofb are shown for
b = 0.04 and 0.08, and the point where the maximum possible distance from the
boundary,b = 0.118, is attained. Decreasingγ will increaseb, but this is simply
equivalent to a rescaling of space which stretches the domain.
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Figure 6. Maximum variation of predator density,v, across edge solutions for logistic
growth and type II predation,h(u) = (α + 1)u/(α + u). The panel shows the ratio of
v(0) to vs, which has a minimum of 0.755 (to 3 s.f.). The asterisk indicates the value for
the maximum distance from the boundary,b = 0.118. The crosses show values calculated
from numerical simulations of the full PDEs, which are clearly in very close agreement
with our analysis. The parameters for those simulations wereε = 0.00001, andδ = 1−α,
and an example simulation is illustrated in Fig.7 for α = 0.2.

It is straightforward to see from solutions to (25) that, for a transition layer at
distanceb from the right-hand boundary,

v(0) =
v0

cosh(
√
γ δb)

.

Note thatv0 is independent ofδ. vs and
√
γ δb are maximized byδ = 1− α, and

hencev(0) is minimized by the same value ofδ. Figure6 shows the ratio ofv(0) to
vs, which measures the maximum variation ofv across the domainx ∈ (−∞,0].
Thusv can vary to no less than 75% of its steady state value across the whole
domain. The variation from the transition layer atx = −b to the boundary at
x = 0 is even smaller, at less than 1%. These analytical predictions are verified
by numerical simulations of the full system, indicated by the crosses in the figure.
An example of such a numerically calculated edge solution is shown in Fig.7,
for α = 0.2. As predicted by our analysis, the transition layer is less than 0.118
dimensionless space units away from the boundary.

To summarise, with logistic growth and type II predation, stationary waves are
not possible, and edge solutions are possible in a restricted region of parameter
space. Such edge solutions are constrained to be close to the boundary, and can
only support very limited variation in predator density. Furthermore, edge so-
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Figure 7. Edge solution calculated for logistic growth and type II predation,h(u) = (α+
1)u/(α + u), with α = 0.2, δ = 0.8, andε = 0.00001. As predicted by our analysis, the
transition layer is less than about 0.12 dimensionless space units away from the boundary,
andv varies very little across the whole domain.

lutions are further restricted on finite, as opposed to semi-infinite, domains with
zero-flux boundary conditions—edge solutions move closer to the boundary, and
the variation in predator density is further reduced. Numerical investigations (not
shown for brevity) also indicate that as finite domains become shorter, such edge
solutions lose stability to the homogeneous coexistence steady state.

In contrast, we will see in the next section that with an Allee effect stationary
waves and edge solutions are possible, and the presence of stationary solutions
means that edge solutions can be arbitrarily far from the right-hand boundary, with
the full variation of predator density fromvs down to zero.

2.6. Strong Allee effect. We consider the case wheref (u) is given by (12)–
(13) and restrict consideration to a strong Allee effect 0< a < 1. Note that the
prey-only wave moves forward fora < 0.5, is stationary fora = 0.5, and moves
backwards for 0.5 < a < 1 (14). In order for predators to be able to reverse the
prey invasion we must find parameters (a < 0.5, δ) such that the coexistence wave
moves backwards. At the boundary of this regiona = ac(δ), the coexistence wave
is stationary and satisfies (30)–(31). We calculateu0 from (30) and use this to de-
termineac(δ) from equation (31) (zero wave speed solution) or from equation (33)
(edge solution). Results are given below.

Strong Allee effect with type I predation.We first consider the caseh(u) = u.
Figure8 shows a division ofa − δ parameter space according to solution type.
There is a locus of points on which the coexistence wave speed is zero. To the left
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Figure 8. Characterization of solution behaviour according to location ina− δ parameter
space, wherea determines the Allee threshold for prey [f (u) = 4(u − a)(1− u)/(1−
a)2], and δ is the predator death rate. Zero wave speed is given by solving (30), (31)
for u0, δ. On either side of the locus of zero wave speed parameter sets, waves travel in
opposite directions. Thus the region shaded dark grey is where reversal is possible. The
light grey region indicates where edge solutions are possible, as calculated by considering
condition (33) in place of (31). The single cross shows the parameters for the reversal
illustrated in Fig.9, and the three crosses indicate parameters for the edge solutions shown
in Fig. 10.

of this locus, coexistence waves are invasive, and to the right they are recessive.
As discussed above, a second locus of points, ata = 0.5, divides the space into
the left part where colonizing prey-only waves are invasive, and a right part where
prey-only waves are recessive. Together then, three regions are defined, the left-
most where both coexistence and prey-only are invasive; the centre region, where
prey-only is invasive, but coexistence is recessive; and the right-most, where both
coexistence and prey-only waves are recessive. Thus it is the centre region which
is of interest. It corresponds to the case when an advancing wave of colonizing
prey is caught up by a wave of predators, but then the combined wave recedes,
ultimately destroying both populations. Note that there is also a region in which
the coexistence steady state is unstable.

Figure9 shows the time evolution of spatial solutions which exhibit the predicted
reversal behaviour—the parameters used are indicated on Fig.8 by the cross in the
reversal region. Note that in the case illustrated,ε is not actually that small, but
our analytical predictions are remarkably accurate in such cases. Plotting these
solutions in theu − v phase plane (not shown for brevity) shows two heteroclinic
connections which correspond to advancing and receding waves, and the receding
wave does follow theu-nullclines as expected.

The parameter region for edge solutions given by (30), (33) is also shown on
Fig. 8—the three crosses indicate the parameter values for numerically simulated
examples which are illustrated in Fig.10. As parameters get closer to the locus
of points for zero speed coexistence waves, edge solutions move away from the
boundary. Stationary edge solutions are structurally stable in the sense that every



Predator–prey Waves 673

200

150

100

50

200

0

150

100

50

0

D
im

e
n
s
io

n
le

s
s
 t
im

e
D

im
e
n
s
io

n
le

s
s
 t
im

e

U, prey density

V, predator density

0 20 40 60 80 100 120
Dimensionless position

0 20 40 60 80 100 120

Dimensionless position

1

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0

Figure 9. Spatial solution for the predator–prey model (3), with f (u) = 4(u − a)(1−
u)/(1− a)2. Parameters area = 0.45, δ = 0.76, γ = 1, ε = 0.5, corresponding to the
cross in the reversal region of Fig.8. The simulation shows the catch-up of predators,
and subsequent reversal of the wave direction. Prey and predator densities are shown by
a grey scale, with black being the maximum density, and white being zero. Thus we can
see that the prey colonize vacant habitat slowly (cu ≈ 0.15), while being caught up by the
predators (cv ≈ 0.9), but once caught, both prey and predators recede (cuv ≈ −0.3).

point on the interior of this parameter region has a neighbourhood in(a, δ) space
for which an edge solution also exists. By way of contrast, the zero wave speed
solution does not have this property—arbitrarily small changes in parameters will
transform a stationary solution to an invasive or recessive wave. Hence we would
not expect to see zero wave speed solutions in nature.

This analysis shows that for type I predation a high prey growth threshold is re-
quired for reversal, and intuitively this means that the prey-only wave must already
be ‘close’ to reversal. This is also indicated by the proximity in parameter space
of both zero speed loci. In fact, the minimum growth threshold allowing reversal,
corresponding to the lower left point of the region shaded dark grey in Fig.8, is
minδ ac(δ) ≈ 0.394. Given that the prey carrying capacity is 1, such a high thresh-
old may not be ecologically plausible, and so in the following section we explore
the effect that different functional forms forh may have on the parameter ranges
which allow reversal.

Strong Allee effect with types II and III predation.We consider the effect of
different functional responses on the ‘reversibility’ of prey invasion by predators.
Here we consider whether type II and III predation can give reversal for a weaker,
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Figure 10. Edge solutions occur where predicted, for an Allee effect and type I predation.
The solid line shows a stationary solution calculated for the same parameters as in Fig.2,
with a = 0.4. Increasinga should move the edge solution away from the boundary, which
is illustrated by the dashed line fora = 0.41. Similarly, fora = 0.39 (dotted line) the
solution moves closer to the boundary. The parameters for these plots are indicated by
crosses on Fig.8.

more biologically likely, Allee effect. We consider the cases with type II predation,
h(u) = (α + 1)u/(α + u), and type III predation,h(u) = (αn

+ 1)un/(αn
+ un)

wheren ≥ 2. The distinction between types II and III arises from the change in
concavity in the type III functional response, which biologically describes preda-
tors switching from an alternate food source as prey density increases. In the type
III case we considern = 2 and 3.

Figure11 shows the reversal region for type II predation whose boundary was
calculated using (30)–(31). As the steepness of the functional responseα increases
the reversal region enlarges, and the minimum threshold for reversal diminishes.
As α → ∞, we expect the reversal region to approach the simpler case of a type
I functional response, since limα→∞ h(u) = u. This is confirmed by following the
minimuma in the reversal region asα increases, and observing that it approaches
0.394, the minimum value in the type I case. This is illustrated in Fig.13 (solid
line). Thus, type II predation is less likely to reverse an invasion than the simpler
type I case.

Now we consider the case with type III predation,h(u) = (αn
+1)un/(αn

+un).
Figure12 illustrates the reversal region forn = 2 andn = 3 asα increases. As
before, increasingα allows the reversal region to extend to the left, but this time the
limiting case is not identical to that for type I predation. Indeed, reversal is possible
for smaller prey growth thresholdsa than either type I or type II predation.
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Figure 12. Characterization of solution behaviour according to location ina−δ parameter
space with a type III functional response,h(u) = (1+ αn)un/(αn

+ un). In the shaded
regions, coexistence waves are recessive, whereas prey-only waves are invasive, so that
the introduction of predators can lead to reversal. The reversal region gets larger asα

increases.

Figure13 illustrates the minimum prey growth threshold which allows reversal
(i.e., the left-most point of the reversal region), and shows hown = 2 allows a
lower threshold than for type II predation, andn = 3 allows a still lower threshold.
Thus, withn = 3 we can get reversal witha = 0.3, which is an ecologically more
plausible threshold.

Figure14 shows how the transition from invasive to recessive waves, in numeri-
cal simulations of the full system, occurs close to that predicted by our analysis. In
the example illustrated, our analysis predicts reversal atδ ≈ 0.133, and we demon-
strate reversal betweenδ = 0.13 and 0.14 (the other model details and parameters
are in the figure legend).
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Figure 14. For type III predation,h(u) = (α3
+ 1)u3/(α3

+ u3), the change between
invasive and recessive waves is very close to that atδ ≈ 0.133 predicted by theory. The
top panels show the shaded reversal region and a cross indicating the parameters for the
simulation below. Growth wasf (u) = 4(u − a)(1− u)/(1− a)2, with a = 0.3, and the
other parameters wereε = 0.01,α = 10,γ = 1. Initial conditions are shown by the dotted
lines, and the solid lines show solutions from 1000 to 5000 dimensionless time units at
intervals of 1000.
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3. A PATCHY PREDATOR –PREY M ODEL

Predator–prey systems may not always be well suited to a continuum approach.
The environment may be patchy, or movement may take place in discrete steps.
The simplest form of movement has a population move from one patch to the next
at a rate proportional to the difference in population in those patches. We consider
one space dimension, with patches indexed byi , so that

ui
t = ui

(
f (ui )−

vi

ui
h(ui )

)
+ εd(ui−1

− 2ui
+ ui+1) (35a)

vi
t = γ v

i (h(ui )− δ)+ d(vi−1
− 2vi

+ vi+1). (35b)

Thus the population can move to patchi from patches(i−1) and(i+1), and does
so according to the difference in population between the patches. If the distance
between patches is1x and we scaled = (1x)−2 we regain our PDE model (3) as
the patches strongly couple in the limit1x→ 0. In this strong coupling limit, the
patchy model will exhibit invasion and reversal under conditions identical to those
for the PDE model.

We now consider the case whered is finite, and deduce that, as with the PDE
model (3), a strong Allee effect is needed to stop or reverse the wave.

3.1. Linear analysis. In a similar way as for the PDE model we may look for
travelling wave solutionsui (t) = U (z) andvi (t) = V(z), wherez = i − ct. The
resulting system is a pair of first-order ODEs with retarded and advanced contribu-
tions toU ′(z) andV ′(z), of the formU(z− 1)+U(z+ 1) andV(z− 1)+ V(z+ 1)
respectively. Linearization ahead of the coexistence wave, whereU = V = 0,
and substitution of solutions proportional toeλz, determines a pair of uncoupled
eigenvalue equations governing the decay of solutions ahead of the wave:

cλ+ f (0)+ 2εd(coshλ− 1)= 0 (36)

cλ− γ δ + 2d(coshλ− 1)= 0. (37)

The coshλ terms arise from the retarded and advanced contributions discussed
above.

The second eigenvalue equation (37), always gives real solutions forλ, for any
value of the speedc, but equation (36) will give us conditions onf which allow a
zero speed wave, in the same way as for the continuous model.

If there were a zero speed wave, settingc = 0 in (36), it follows that

coshλ =
2εd − f (0)

2εd
,
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and since for realλ, coshλ ∈ [1,∞), we need

2εd − f (0)

2εd
≥ 1,

which in turn leads to the requirement thatf (0) ≤ 0. Again we deduce that a
‘strong’ Allee effect is required for reversal. This is based on the requirement that
solutions cannot be oscillatory as they approachu = v = 0, since that would corre-
spond to negative values ofu andv. Not only would it be irrelevant biologically to
consider negative values, but it can be shown that non-negative initial data cannot
evolve in such a way (see Lemmas1 and2 in the Appendix).

3.2. Noninvasive solutions.The coexistence steady state is invasive if it spreads
throughout the domain. Such invasiveness typically takes the form of a wave as in-
troduced predators and prey colonize previously vacant territory. Accordingly, the
coexistence steady state is noninvasive if it does not spread to all locations. In this
section we will show that the discrete nature of patches means that, in the presence
of a strong Allee effect, it is possible for the coexistence travelling wave (7) to in-
vade while the equivalent wave for the patchy formulation (35) does not. This may
give rise to structurally stable stationary solutions for the predator–prey model (35)
(see Fig.16below). A similar phenomenon has been analysed byKeitt et al. (2000)
in an ecological context for the prey-only model. It also arises as so-called ‘propa-
gation failure’ in models for excitable systems in physiology (Keener, 1987, 1993).

Lemma3 in the Appendix shows that ifui (0) ≤ 1 for all i , ui (t) ≤ 1 for all
t and i . If we consider this case (ui

≤ 1) and a strong Allee effect for the prey
[ f (0) < 0], we can always find anε > 0 for which the solution to (35) is noninva-
sive.

PROPOSITION 1. Assume that the minimum growth rate

f− = min
u∈[0,1]

{u f (u)} < 0,

and that this minimum occurs for some u− ∈ (0,us).
Consider initial conditions for the patchy model(35) with 0 ≤ ui (0) ≤ 1 and

vi (0) ≥ 0 for all i , and suppose there exists j such that ui (0) ≤ u− for all i ≥ j .
Then coexistence in the patchy model(35) is noninvasive for all

ε < ε0 = −
f−

d(1− u−)
.

Proof. We restate the above condition asf− + εd(1− u−) < 0.
If there is an invasive solution, then we must be able to define the earliest timet∗

that any patchi ≥ j crossesu−:

t∗ = inf{t : ui (t) > u− for somei ≥ j }.
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Figure 15. Contours for zero speeds for the patchy model (35), as the spatial coupling
strengthd and the prey growth thresholda vary. The dotted line is the analytical prediction
for stationary fronts (εd < − f−/(1− u−)), the dashed line is the numerically calculated
contour for pinned prey-only waves (v ≡ 0), and the solid lines show zero-speed contours
for the full predator–prey system. Note that this delimits regions with positive and negative
speeds. The asterisk shows the parameters used for Fig.16, which according to this figure
should give invading prey-only waves but stationary coexistence waves—this is indeed the
case. Note that the contours are actually for speeds equal to±0.001.

Thus there exists a patchk ≥ j with uk(t∗) = u−, uk+1(t∗) ≤ u−, anduk
t (t
∗) ≥ 0.

From Lemmas1–3, 0≤ uk−1(t∗) ≤ 1, andvk(t∗) ≥ 0, so that

uk
t (t
∗)= u− f (u−)− v

k(t∗)h(u−)+ εd[u
k−1(t∗)− 2u− + uk+1(t∗)]

≤ f− + εd(1− 2u− + u−) = f− + εd(1− u−) < 0,

which is a contradiction.
Hence no patchi ≥ j ever crossesu−, and coexistence is not invasive. 2

This bound is similar to, but tighter than, previously deduced bounds that ensure
the prey-only system is stationary (Keitt et al., 2000). Figure15 shows the above
analytical bound, regions for invading and stationary solutions for the prey-only
model (35) with v ≡ 0, and regions for invading, stationary and receding solutions
for the full predator–prey system (35). Dynamics are strong Allee for the prey (12),
and type I predationh(u) = u. The parameter range 0< a < 0.5 ensures that the
prey-only PDE model would invade. The parameter 1≤ d ≤ 300 describes the
level of coupling between patches.

Figure16 illustrates this effect of switching from diffusive coupling to discrete
patches. Here the coexistence wave for (3) invades whereas the coexistence wave
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Figure 16. With a patchy model, stationary solutions are structurally stable. Other details
such as functional response, prey growth, etc, are as in Fig.3, and the spatial coupling
strength isd = 28. This value corresponds to the asterisk in Fig.15, which is precisely in
the region where prey-only waves invade but predator–prey coexistence waves are pinned.

for (35) stalls for sufficiently small spatial couplings. The simulation illustrated
usesd = 28 anda = 0.3, corresponding to the asterisk in Fig.15, which is pre-
cisely in the region where prey-only waves invade but predator–prey coexistence
waves are pinned. Further simulations, not shown for brevity, show that ifd is
decreased, both waves are pinned from the outset, and ifd is increased, the co-
existence wave does invade. The corresponding case of diffusive coupling was
illustrated in Fig.3, with identical local dynamics—in that case the coexistence
wave invaded.

4. DISCUSSION

Motivated by the suggestion that a recolonizing lupin wave on Mount St Helens
may be slowed or reversed by the presence of herbivores, we have investigated
whether such slowing or reversal is possible in general predator–prey systems,
which are often used in models of plant–herbivore interactions.

Analysis of a general continuous model has shown that zero wave speed solutions
are possible only with certain types of prey growth kinetics. We have identified a
relatively simple set of integral conditions which can be used to determine whether
reversal is possible for given model functions. The key requirement is for ‘strong’
Allee type growth functions, with a threshold effect, so that prey-only waves do
move forwards, but are themselves close to reversal. Intuitively, the threshold effect
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means that when the integral whose sign determines the wave direction for the
prey-only wave [the left-hand side of equation (30) with u0 = 1] is close to zero,
the addition of predation [the left-hand side of (30) with u0 < 1] can cause the
net prey growth to become negative, hence reversing the wave. It is important
to reinforce that just an Allee effect in which low densities give smaller but still
positive growth rates cannot give reversal by predation; reversal requires that the
prey must actually have negative growth rates at low densities. We have established
that reversal is possible when prey growth thresholds are as low as 30% of prey
carrying capacity, a biologically feasible threshold. In the presence of a weak
Allee effect predators may slow, but not reverse, the spread of prey.

Even when zero speed waves on an infinite domain are not possible, fronts may
stop when they approach a boundary with straightforward zero flux conditions.
With logistic growth, reversal is not possible under any circumstances, but such
edge solutions are possible. However, we have shown that such edge solutions
permit very little variation in predator density, and that the transition layer is con-
strained to be very close to the boundary. These findings cast doubt on the relevance
of this type of solution to the development of patchiness, as claimed byHastings
et al. (1997), unless the prey diffusion coefficientε is identically zero. In contrast,
because an Allee effect allows reversal, it also allows edge solutions arbitrarily far
from a boundary, and the full variation in predator density from its coexistence
steady state level down to zero.

We have also shown that for a patchy model with the same type of predator–prey
dynamics, non-invasive solutions are possible when prey movement is sufficiently
weak, even when the continuum model predicts invasion. This explains why nu-
merical simulations of continuous models using finite differences for spatial deriva-
tives can yield spurious stationary solutions—the system being solved in such cases
may closely resemble the patchy model of Section3. In fact, the numerical method
which approximates (3) with (35) is referred to as the ‘method of lines’ numeri-
cal algorithm.

These results naturally raise the question as to the existence of stationary and
reversing waves in other types of model such as integrodifferential equations, cou-
pled map lattices, and cellular automata. Another important type of dynamics to
consider in future work is ‘ratio-dependent predation’, where the predation rate
does not just depend on how many prey are available, but also on how many preda-
tors are competing for that resource. Also, preliminary analysis shows that models
with a generalist predator, which can survive on secondary prey species in the lead-
ing edge of the wave, more easily reverse prey invasions than the specialist predator
models of this paper.

With particular reference to the original motivation for this study, namely the
lupin–herbivore interaction at Mount St Helens, there are a number of conclusions
that may be drawn.Fagan and Bishop(2000) used a simple model incorporating
exponential growth and diffusion of lupins to predict that the wave of recolonizing
lupins would reverse and the entire lupin population would become extinct. How-
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ever, their study neglected the effect that declining lupin populations would have
on the herbivores. If the herbivores are wholly dependent on lupins (i.e., the her-
bivores are not generalist predators, see above, or there are no alternative sources
of food), then our analysis shows that this reversal could only occur if the lupins
are subject to a strong Allee effect. The only caveats to our analysis within the
reaction–diffusion framework are possibilities such as the ratio-dependent func-
tional response discussed above. Thus it is of considerable interest to determine
whether lupins are indeed subject to an Allee effect.

It may be that the reaction–diffusion framework is inappropriate for the lupin–
herbivore interaction at Mount St Helens, and that the effects seen at the site are
in part due to spatial and other interactions not included in the classical model
framework. There is some evidence that herbivory is concentrated at the wavefront
(Fagan and Bishop, 2000). This may be because recently established lupin patches
have not yet depleted the high levels of nutrients left over from the eruption, making
the plants in those patches more ‘tempting’ to herbivores (W. F. Fagan, personal
communication). Such an effect could require an age-structured approach to model
the situation appropriately. Alternatively, integrodifference or integrodifferential
equations may be the best way to capture the complexities of lupin seed dispersal,
such as occasional long distance dispersal events which may lead to patchiness.
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APPENDIX : BOUNDS ON ui AND vi FOR THE PATCHY M ODEL

In this section we construct bounds onui andvi for the patchy model (35).

L EMMA 1. If u i (0) ≥ 0 for all i , then ui (t) ≥ 0 for all i and for all t > 0.

Proof. Suppose thatu j (t) < 0 at some timet and for somej .
Then lett∗ = inf{t > 0 : u j (t) < 0 for somej }, so t∗ is the earliest time at

which any patch decreases below zero.
If follows thatu j (t∗) = 0 andui (t∗) ≥ 0 for all i .
However, equation (35a) implies that

u j
t (t
∗) = εd(u j−1(t∗)+ u j+1(t∗)).

Either (i) u j−1(t∗)+ u j+1(t∗) > 0 and we have a contradiction, or (ii)u j−1(t∗) =
u j+1(t∗) = 0. Repeating this process, starting withu j±1

t (t∗), must eventually reach
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the above contradiction, or find thatui (t∗) = 0 for all i . 2

L EMMA 2. If vi (0) ≥ 0 for all i , thenvi (t) ≥ 0 for all i and for all t > 0.

Proof. Exactly the same argument as for Lemma2 holds withu andεd replaced
by v andd. 2

L EMMA 3. If vi (0) ≥ 0 and ui (0) ≤ 1 for all i , then ui (t) ≤ 1 for all i and for
all t > 0.

Proof. Suppose thatu j > 1 at some timet and for somej .
Then lett∗ = inf{t > 0 : u j (t) > 1 for somej }.
It follows that u j (t∗) = 1, andui (t∗) ≤ 1 for all i . However, f (u j (t∗)) =

f (1) = 0, h(u j (t∗)) = h(1) = 1, and, by Lemma2, v j (t∗) ≥ 0, so that

u j
t (t
∗) = −v j (t∗)+ εd[u j−1(t∗)− 2+ u j+1(t∗)].

Either (i)v j (t∗) > 0 and we have the contradictionu j
t (t
∗) < 0; (ii) v j (t∗) = 0, and

u j−1(t∗) + u j+1(t∗) < 2, which gives the same contradiction; or (iii)v j (t∗) = 0,
andu j−1(t∗) = u j+1(t∗) = 1. As in Lemma1, repeating this process, starting with
u j±1

t (t∗), must eventually reach the above contradiction, or find thatui (t∗) = 1
for all i . 2
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