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On the estimation of spread rate for a biological population
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Abstract

We propose a nonparametric estimator for the rate of spread of an introduced population. We prove that the limit
distribution of the estimator is normal or stable, depending on the behavior of the moment generating function. We show
that resampling methods can also be used to approximate the distribution of the estimators. c© 2001 Elsevier Science B.V.
All rights reserved
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1. Introduction and results

Ecologists use dispersal kernels to estimate the speed at which an introduced population might invade new
environments. A kernel is �tted to the scatter of o�spring locations about a parent, and this kernel is then used
to calculate a velocity of spread. There is growing awareness that these estimates can be extremely sensitive
to assumptions about kernel shape (Kot et al., 1996; Clark, 1998); di�erences in model forms that appear
subtle (and �t data sets equally well), may imply large di�erences in velocity estimates.
We demonstrate a method that sidesteps entirely assumptions concerning kernel shape by advancing directly

from empirical dispersal data to an estimator for spread rate.
A classical model for biological invasions is the integrodi�erence equation

us+1(x) =
∫ ∞

−∞
R0G(us(x − y)) dF(y); s= 0; 1; : : : ;
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where us(x) is the density of invading organisms at location x∈R and time s, R0¿ 1 is the geometric growth
rate of the population, G(u) describes nonlinear growth dynamics, and F is the distribution function of a
random variable X describing the distance an individual disperses in one time step. Here it is assumed that
R0G(u) has �xed points at u= 0 and u= 1, R0G(u)¿u for 0¡u¡ 1; G′(0) = 1 and sup0¡u61G(u)=u= 1:
Thus, the maximum per capita geometric growth is R0 which occurs as the population density approaches
0 (Weinberger, 1982). The asymptotic spread rate of the solutions arising from compact initial data can be
calculated under the assumption that the moment generating function of X

M (t) =
∫ ∞

−∞
etx dF(x)

exists on some nonzero interval [0; t0): Weinberger (1982) showed that under a wide variety of assumptions
on reproduction and dispersal, the rate of spread of a locally introduced population asymptotically approaches

c0 = inf
s¿0
Z(s)

as the time since the initial release becomes large. Here

Z(t) =
1
t
log(R0M (t)); 0¡t¡ t0:

The function Z(t) is continuous and can be shown to have a unique critical point � which gives a global
minimum for Z(t) and thus Z ′(�) = 0 and

c0 = Z(�): (1.1)

This was proved by Weinberger (1978) for density functions f = F ′ with bounded support (see Lemma 4:1
in Weinberger (1978) and its proof) and a straightforward extension of the proof includes the general case
above (cf. Lemma 9:1 in Weinberger, 1982).
Biological measurements of dispersal distances may be available without the knowledge of the underly-

ing distribution function. We consider how to estimate c0 in this case. We assume that the observations
X1; X2; : : : ; Xn are independent, identically distributed random variables with distribution function F . Since
we cannot assume any parametric form for F (cf. the empirical example in Kot et al. (1996)) we use a
nonparametric approach. We consider the estimation of M (t) with the empirical moment generating function

Mn(t) =
1
n

∑
16i6n

exp(tXi); 06t ¡∞:

This suggests that

Zn(t) =
1
t
log(R0Mn(t)); 0¡t¡∞

can be used as a nonparametric estimator for Z(t) and thus,

ĉn = Zn(�̂n)

can be used as a nonparametric estimator for c0, where

Z ′
n(�̂n) = 0:

We wish to note that the estimation of � and c0 �ts into the general scheme of estimation based on Laplace
transforms. Cs�orgő and Teugels (1990) introduced and investigated estimation of parameters using empirical
Laplace transforms and used the general scheme in �ve di�erent scenarios.
Let t0 = sup{t ¿ 0: M (t)¡∞}6∞ and assume throughout that t0¿ 0. Our �rst result is the strong con-

sistency of �̂n and ĉn.
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Theorem 1.1. If

�¡ t0 (1.2)

and

Z ′′(�) 6= 0; (1.3)

then we have

�̂n → � a:s: (1.4)

If (1:1) also holds; then

ĉn → c0 a:s: (1.5)

The proof of Theorem 1.1 will be given in Section 3. Next, we consider the asymptotic distributions of ĉn−c0
and �̂n − �. Let N (a; b) be a normal random variable with mean a and variance b¿0,

c1(t) =
1

tM (t)

and

c2(t) =−
{

1
t2M (t)

+
M ′(t)
tM 2(t)

}
:

Theorem 1.2. If

�¡ t0=2 (1.6)

and (1:3) holds; then

n1=2(�̂n − �) D→N (0; �2) (1.7)

with

�2 = (Z ′′(�))−2{c21(�)(M ′′(2�)− (M ′(�))2) + 2c1(�)c2(�)(M ′(2�)

−M (�)M ′(�)) + c22(�)(M (2�)−M 2(�))}:
If (1:1) also holds; then

n1=2(ĉn − c0) D→N (0; �2) (1.8)

with

�2 = c21(�)(M (2�)−M 2(�))− 2{Z ′(�)=Z ′′(�)}{c21(�)(M ′(2�)

−M (�)M ′(�)) + c1(�)c2(�)(M (2�)−M 2(�))}
+{Z ′(�)=Z ′′(�)}2{c21(�)(M ′′(2�)− (M ′(�))2) + 2c1(�)c2(�)(M ′(2�)

−M (�)M ′(�)) + c22(�)(M (2�)−M 2(�))}:

Condition (1.6) essentially means that exp(�X ) has more than two moments. Condition (1.6) may be
violated in some important cases. For example, if X is an exponential random variable and R0 is large, then
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(1.6) will be false. In the next theorem we consider the case when t0=2¡�¡t0. Let ��, 1¡�¡ 2 be a
stable random variable with index �. We say that the random variable Y is the domain of attraction of ��, if∑

16i6n

(Yi − EYi)=(n1=�L(n)) D→ ��

with some slowly varying function L, where Y1; Y2; : : : ; Yn are independent copies of Y . For the properties of
slowly varying functions we refer to Bingham et al. (1987).

Theorem 1.3. If (1:3) holds and X exp(�X ) is in the domain of attraction of �� with some 1¡�¡ 2; then
there is a slowly varying function L1(n) such that

n1−1=�L1(n)(�̂n − �) D→ ��: (1.9)

If (1:1) also holds; then there is a slowly varying function L2(n) such that

n1−1=�L2(n)(ĉn − c0) D→ ��: (1.10)

We note that if X exp(�X ) is in the domain of attraction of ��, then M (��− �)¡∞ and M (��+ �) =∞
for all 0¡�¡��.

2. Bootstrap

If we wish to use (1.8) to construct con�dence intervals or for hypothesis testing we need the value of the
asymptotic variance �2. Since �2 is unknown we must estimate it from the random sample. If �n satis�es

|�n − �|= oP(1); (2.1)

then under the conditions of Theorem 1.2 we have that

n1=2(ĉn − c0)
�n

D→N (0; 1): (2.2)

In the proof of (1.8) we show that

n1=2(ĉn − c0) = b0(�)n1=2(Mn(�)−M (�)) + b1(�)n1=2(M ′
n(�)−M ′(�)) + oP(1);

where b0(�) and b1(�) are easily computable functions of M (�); M ′(�) and M ′′(�), say b0(�)= b0(M (�); M ′(�);
M ′′(�)) and b1(�) = b1(M (�); M ′(�); M ′′(�)). Hence,

�2 = b20(�)(M (2�)−M 2(�)) + b21(�)(EX
2 exp(2�X )− (M ′(�))2)

+2b0(�)b1(�){EX exp(2�X )−M (�)M ′(�)}
and therefore the “plug in” method (i.e. replacing all expected values by the corresponding averages) gives

�2n = b̂
2
0{Mn(2�̂n)−M 2

n (�̂n)}+ b̂
2
1

{
1
n

∑
16i6n

X 2i exp(2�̂nXi)− (M ′
n(�̂n))

2

}

+2b̂0b̂1

{
1
n

∑
16i6n

Xi exp(2�̂nXi)−Mn(�̂n)M ′
n(�̂n)

}
; (2.3)

where b̂0 = b0(Mn(�̂n); M ′
n(�̂n); M

′′
n (�̂n)) and b̂1 = b1(Mn(�̂n); M

′
n(�̂n); M

′′
n (�̂n)). It is easy to see that �n of (2.3)

satis�es (2.1).
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Usually, the resampling methods provide better estimates for �2 than the “plug in” method. For example,
the jackknife can be used to get estimators for �2 which satisfy (2.1). For properties and implementations of
jackknife estimators for variance we refer to Shao and Tu (1995).
In this paper, we suggest the application of the “naive” bootstrap to estimate the distribution function of

n1=2(ĉn − c0). Other versions of the bootstrap resampling can also be used with minor modi�cations of our
procedure. Following Efron (1979), let X ∗

1 ; X
∗
2 ; : : : ; X

∗
m be a random sample with distribution function

Fn(t) =
1
n

∑
16i6n

I{Xi6t}:

This means, that conditionally on Xn = (X1; : : : ; Xn); X ∗
1 ; X

∗
2 ; : : : ; X

∗
m are independent, identically distributed

random variables with distribution function Fn(t). Using the bootstrap sample X ∗
1 ; X

∗
2 ; : : : ; X

∗
m we compute the

bootstrapped version of Mn(t) and Zn(t) de�ned as

Mm;n(t) =
1
m

∑
16i6m

exp(tX ∗
i )

and

Zm;n(t) =
1
t
log(R0Mm;n(t)):

Let

�̂m;n = inf{t ¿ 0 : Z ′
m;n(t) = 0}

and

ĉm;n = Zm;n(�̂m;n)

denote the bootstrap estimates for � and c0. Our result shows that the bootstrap can be used to simulate the
distribution function of n1=2(ĉn − c0).

Theorem 2.1. If the conditions of Theorem 1:2 are satis�ed; then

sup
−∞¡x¡∞

|P{m1=2(�̂m;n − �̂n)6x |Xn} − P{n1=2(�̂n − �)6x}| → 0 a:s:

and

sup
−∞¡x¡∞

|P{m1=2(ĉm;n − ĉn)6x |Xn} − P{n1=2(ĉn − c0)6x}| → 0 a:s:

as min(m; n)→ ∞.

By repeated Monte Carlo simulations we can produce as many copies of m1=2(ĉm;n − ĉn) as we wish,
the empirical distribution function of the copies of m1=2(ĉm;n − ĉn) can be used as an estimator for
P{n1=2(ĉn − c0)6x}.
The proof of Theorem 2.1 is outlined at the end of Section 3.

3. Proofs

The proof of Theorem 1.1 will be based on the following lemma.
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Lemma 3.1. For any 0¡T ¡t0 we have

sup
06t6T

|Mn(t)−M (t)| → 0 a:s: (3.1)

sup
06t6T

|M ′
n(t)−M ′(t)| → 0 a:s: (3.2)

sup
06t6T

|M ′′
n (t)−M ′′(t)| → 0 a:s: (3.3)

Proof. Let

M (1)
n (t) =

1
n

∑
16i6n

exp(tXi)I{Xi¿0};

M (2)
n (t) =

1
n

∑
16i6n

exp(tXi)I{Xi ¡ 0};

M (1)(t) = EM (1)
n (t) =

∫ ∞

0
etx dF(x)

and

M (2)(t) = EM (2)
n (t) =

∫ 0

−∞
etx dF(x):

Proposition 1 of Cs�orgő and Teugels (1990) (cf. also Cs�orgő, 1980) yields that

sup
06t6T

|M (1)
n (t)−M (1)(t)| → 0 a:s: (3.4)

and

sup
06t6T

|M (2)
n (t)−M (2)(t)| → 0 a:s:

which give (3.1). Similarly to (3.4), Proposition 1 of Cs�orgő and Teugels (1990) gives the strong uniform
convergence of all derivatives of M (1)

n (t) and M (2)
n (t) and, therefore, (3.2) and (3.3) are also proven.

Proof of Theorem 1.1. We have that

Z ′
n(t) =− log(R0Mn(t))

t2
+
M ′
n(t)

tMn(t)
:

Since

lim
t↓0

Mn(t) = 1 and lim
t↓0

M ′
n(t) =

1
n

∑
16i6n

Xi;

we get that

lim
t↓0

Z ′
n(t) =−∞:

By Lemma 3.1 we have that

sup
06t6�

M ′
n(t)

Mn(t)
→ sup

06t6�

M ′(t)
M (t)

a:s: (3.5)
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for any 0¡�¡t0 and

lim
�↓0

sup
06t6�

M ′(t)
M (t)

= EX: (3.6)

Let 0¡�¡min{(logR0)=(4EX + 4); t0}. Putting together (3.5) and (3.6) we get that there is a random
variable n1 = n1(!) such that

sup
06t6�

M ′
n(t)

Mn(t)
6EX + 1 if n¿n1:

However,

inf
06t6�

1
t
log(R0Mn(t))¿

1
�
inf
06t6�

log(R0Mn(t))

and by Lemma 3.1 there is a random variable n2 = n2(!) such that

inf
06t6�

log(R0Mn(t))¿ 1
2 logR0 if n¿n2(!):

If n¿max(n1; n2) we have that

sup
06t6�

tZ ′
n(t)6 sup

06t6�

M ′
n(t)

Mn(t)
+ sup
06t6�

−log(R0Mn(t))
t

6 EX + 1− 1
2�
logR0

6−1
�
logR0
4

:

This means that there is a random variable n0 = n0(!)¿max(n1; n2) and �¿ 0 such that Z ′
n(t)¡− 1 for all

06t6�, if n¿n0.
Since Z ′(t)→ −∞ as t ↓ 0 we have local minimum at �. Theorem A in Hardy (1996, p. 232) yields that

for any �∗ there are �¿ 0 and �6�− �∗6�1¡�¡�26�+ �∗¡t0 such that Z ′(�1)¡− � and Z ′(�2)¿�.
Let �2¡T ¡t0. By Lemma 3.1 we have that

sup
�6t6T

|Z ′
n(t)− Z ′(t)| → 0 a:s: (3.7)

and therefore Z ′
n(�1)6− �=2 and Z ′

n(�2)¿�=2, if n¿n3 = n3(!). Since Z
′
n(t) is continuous on [�1; �2], there

is �∗n ∈ (�1; �2) such that A′n(�∗n) = 0. Thus, we showed that there is a sequence �∗n such that Z ′
n(�

∗
n) = 0 and

�∗n → � a:s: If there is a subsequence �6n(k) satisfying Z ′
n(n(k))=0 and n(k) → ¡� a:s:, then (3.7) implies

that Z ′() = 0 contradicting the de�nition of �. Hence (1.4) is proven.
Similarly to (3.7) one can show that

sup
�6t6T

|Zn(t)− Z(t)| → 0 a:s: (3.8)

for any 0¡�¡T ¡t0. The continuity of Z(t) and (1.4) gives that

Z(�n)→ Z(�) = c0

and therefore (1.5) follows from (1.4).

The next lemma will be used in the proofs of Theorems 1.2 and 1.3.
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Lemma 3.2. We have that∣∣∣∣∣Zn(t)− Z(t)− 1
n

∑
16i6n

�i(t)

∣∣∣∣∣=OP(1)(Mn(t)−M (t))2 (3.9)

and ∣∣∣∣∣Z ′
n(t)− Z ′(t)− 1

n

∑
16i6n

�i(t)

∣∣∣∣∣=OP(1)(Mn(t)−M (t))2 + OP(1)(M ′
n(t)−M ′(t))2 (3.10)

for any 0¡t¡ t0; where

�i(t) = c1(t)(exp(tXi)−M (t))
and

�i(t) = c1(t)(Xi exp(tXi)−M ′(t)) + c2(t)(exp(tXi)−M (t)):

Proof. The mean-value theorem gives

Zn(t)− Z(t) = 1t {logMn(t)− logM (t)}

=
1

tM (t)
(Mn(t)−M (t))− 1

t�2
(Mn(t)−M (t))2;

where � is a point between Mn(t) and M (t). Now (3.9) follows from Lemma 3.1 with the choice of c(t) =
1=(tM (t)).
Similar arguments give (3.10). The details are omitted.

Lemma 3.3. If (1:1) holds; then

|�̂n − �− (Z ′(�)− Z ′
n(�))=Z

′′(�)|= oP(1)|Z ′
n(�)− Z ′(�)| (3.11)

and

|ĉn − c − {Zn(�)− Z(�)− Z ′(�)(Z ′
n(�)− Z ′(�))=Z ′′(�)}|= oP(1)|Z ′

n(�)− Z ′(�)|: (3.12)

Proof. Similarly to (3.7) we have

sup
�6t6T

|Z ′′
n (t)− Z ′′(t) | → 0 a:s: (3.13)

for any 0¡�¡T ¡t0=2. The mean value theorem gives

Z ′
n(�̂n)− Z ′

n(�) = Z
′′
n (�)(�̂n − �);

where � is between �̂n and �. By de�nition Z ′
n(�̂n) = 0, Z

′(�) = 0 and, therefore,

�̂n − �=− Z
′
n(�)
Z ′′
n (�)

=−Z
′
n(�)− Z ′(�)
Z ′′
n (�)

:

Hence, (3.11) follows from (3.13).
Next, we write

ĉn − c0 = Zn(�̂n)− Z(�)
= Zn(�̂n)− Zn(�) + Zn(�)− Z(�)
= Z ′

n(�)(�̂n − �) + Zn(�)− Z(�);
where � is between �̂n and �. Using (3.7) and (3.11) we obtain immediately (3.12).
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Proof of Theorem 1.2. According to Lemmas 3.2 and 3.3, the proof of (1.7) is complete if we show that

n−1=2

Z ′′(�)

∑
16i6n

�i(�)
D→N (0; �2): (3.14)

Condition (1.6) implies that E�2i (�)¡∞ and, therefore, (3.14) is an immediate consequence of the central
limit theorem.
Observing that E�2i (t)¡∞ and E�2i (t)¡∞, by the central limit theorem we have

n−1=2
( ∑
16i6n

�i(�)− Z ′(�)
∑
16i6n

�i(�)=Z ′′(�)

)
D→N (0; �2)

and, therefore, (1.8) follows from Lemmas 3.2 and 3.3.
Observing that E�i(t) = E�i(t) = 0,

E�2i (t) = c
2
1(t){M (2t)−M 2(t)};

E�2i (t) = c
2
1(t){M ′′(t)− (M ′(t))2}+ 2c1(t)c2(t){M ′(2t)

−M (t)M ′(t)}+ c22(t){M (2t)−M 2(t)}
and

E�i(t)�i(t) = c21(t){M ′(2t)−M (t)M ′(t)}+ c1(t)c2(t){M (2t)−M 2(t)};
the formulas for �2 and �2 can be easily derived from Lemmas 3.2 and 3.3.

Proof of Theorem 1.3. In the light of Lemmas 3.2 and 3.3 it is enough to show that

n−1=�K(n)
∑
16i6n

{Xi exp(�Xi)− EXi exp(�Xi)} D→ �� (3.15)

and

n−1=�K(n)
∑
16i6n

{exp(�Xi)−M (�)} P→ 0: (3.16)

The convergence in distribution in (3.15) follows immediately from the assumption that X exp(�X ) is in the
domain of attraction of ��.
Observing that |X |I{X60}exp(�X ) is a bounded random variable, Theorem 7:7 in Durrett (1991) yields

that

P{X exp(�X )¿t}= t−�K1(t); (3.17)

where K1(t) is a slowly varying function at ∞. For t large enough we get that

P{exp(�X )6t}= P
{
X6

1
�
log t

}

= P
{
X exp(�x)6

t
�
log t

}
= t−���(log t)−�K1

( t
�
log t

)
:

Karamata’s theorem (cf. Bingham et al. 1987, p. 21) yields that for any �¿ 0

K1 ((t=�)log t)
K1(t)

= O((log t)�) as t → ∞: (3.18)



234 J. Clark et al. / Statistics & Probability Letters 51 (2001) 225–234

Using again Theorem 7:7 in Durrett (1991) we can �nd a slowly varying function K∗(n) such that

n−1=�K∗(n)
∑
16i6n

{exp(�Xi)−M (�)} D→ ��:

Comparing the tails in (3.17) and (3.18) we get from (3.18) that

lim
n→∞K(n)=K

∗(n) = 0

and therefore the proof of (3.16) is complete.

Proof of Theorem 2.1. Since we can follow the proof of Theorem 1.2 very closely we just give an outline.
Elementary arguments similar to those proving Lemma 3.1 give that conditionally on Xn

sup
06t6T

|Mm;n(t)−Mn(t)| → 0 a:s: (3.19)

sup
06t6T

|M ′
m;n(t)−M ′

n(t)| → 0 a:s: (3.20)

and

sup
06t6T

|M ′′
m;n(t)−M ′′

n c(t)| → 0 a:s:

as min(m; n)→ ∞. The consistency of �̂m;n and ĉm;n can be derived from (3.19) and (3.20) along the lines of
the proof of Theorem 1.1. Using analogues of Lemmas 3.2 and 3.3 what we need is a central limit theorem
(conditionally) for sums in the form of

m1=2
{
1
m

∑
16i6n

(b0 exp(�X ∗
i ) + b1X

∗
i exp(�X

∗
i ))−

1
n

∑
16i6n

(b0 exp(�Xi) + b1(X1 exp(�Xi)))

}
:

Since EX 2 exp(2�X )¡∞, the required central limit theorem follows from Bickel and Freedman (1981).
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