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Abstract. Despite the recognized importance of stochastic factors, models for ecological
invasions are almost exclusively formulated using deterministic equations [29]. Stochastic
factors relevant to invasions can be either extrinsic (quantities such as temperature or habitat
quality which vary randomly in time and space and are external to the population itself) or
intrinsic (arising from a finite population of individuals each reproducing, dying, and inter-
acting with other individuals in a probabilistic manner). It has been long conjectured [27]
that intrinsic stochastic factors associated with interacting individuals can slow the spread
of a population or disease, even in a uniform environment. While this conjecture has been
borne out by numerical simulations, we are not aware of a thorough analytical investigation.

In this paper we analyze the effect of intrinsic stochastic factors when individuals interact
locally over small neighborhoods. We formulate a set of equations describing the dynamics
of spatial moments of the population. Although the full equations cannot be expressed in
closed form, a mixture of a moment closure and comparison methods can be used to derive
upper and lower bounds for the expected density of individuals. Analysis of the upper solu-
tion gives a bound on the rate of spread of the stochastic invasion process which lies strictly
below the rate of spread for the deterministic model. The slow spread is most evident when
invaders occur in widely spaced high density foci. In this case spatial correlations between
individuals mean that density dependent effects are significant even when expected popula-
tion densities are low. Finally, we propose a heuristic formula for estimating the true rate of
spread for the full nonlinear stochastic process based on a scaling argument for moments.

1. Introduction

Biological invasions are more complex than the deterministic mathematical mod-
els indicate. Not only are there spatial and temporal variations in factors affecting
spread, but the observed density of organisms rarely can be described by a simple
expanding wave front; rather, it is typical to observe a series of invaded patches
which spread, coalesce and spawn new patches [30]. This can be seen clearly for
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species as diverse as cheat grass (Bromus tectorum), and house finch (Carpodacus
mexicanus) [15].

Stochastic factors play a key role here. In a spatially homogeneous environment,
stochastic movements of individuals affect the location of the patches of individuals.
This can be seen by modeling the behavior of individuals with a branching process
where individuals have given probabilities of reproducing and dying per unit time
and redistribute spatially. Using Monte Carlo simulations of the branching process
we show in Figure 1a and 1b that long distance dispersal over multiple space scales

Fig. 1. Monte-Carlo simulation of reproducing dispersing individuals. Each time step:
(i) individuals have a Poisson number of offspring, with mean of 1.5, (ii) offspring dis-
perse with random distances drawn from a redistribution kernel k(x). Angles are drawn
from a uniform distribution, and (iii) the parent individual then dies. Initially 20 individ-
uals were released at x = 0. The distribution of individuals is shown after 15 time steps
for simulations. Figures (a) and (b) use a composite Normal redistribution kernel (9) with
σ1 = 0.3606, σ2 = 9.2878 and p = 0.9. This gives an expected dispersal distance of one unit
and a maximum value of k(0) = 1. The only difference between the simulations shown in
(a) and (b) is the random number seed used. Figure (c) eliminates the long-distance dispersal
component by using the same kernel, but with p = 1.0. Notice the different spatial scale for
spread when the long-distance component is eliminated.
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yields spatial correlations between individuals as evidenced by ‘patchy’ spread,
with the locations of patches varying from simulation to simulation. Here individ-
uals are not interacting with each other; each of them is simply reproducing and
dispersing according to simple probabilistic rules given in the figure legend. The
spatial correlations evident in this kind of spread are discussed in detail in a recent
paper by Lewis and Pacala [20]. In this paper we concern ourselves with the role of
such spatial correlations in slowing the one-dimensional spatial spread of a popu-
lation subject to intrinsic stochastic factors and interacting spatially in a nonlinear
fashion.

The measure of the rate of spread we will use here is the so-called ‘expectation
velocity’ [27]. This can be described as the speed of movement c of a point xt

beyond which the expected number of individuals ne is fixed. Thus xt is defined
so that the integral of the expected density over the interval (xt , ∞) is ne. Here
expectation is taken over the entire ensemble of realizations of the stochastic pro-
cess. For example, to compute xt numerically over m Monte-Carlo simulations one
simply tracks the location of the m × neth individual from the right as a function
of time over m combined Monte-Carlo simulations (see Figures 3 and 4 for actual
calculations). While a typical invasion scenario would give rise to two such ‘far-
thest dispersing individuals’, one to the right and the other to the left, without loss
of generality we simply consider the rightward moving wave.

Other definitions of spread rates are given by

1. The speed of movement of a point xt at which the expected density of indi-
viduals ne is fixed [27]. This alternate definition of the expectation velocity
will coincide with our definition in the previous paragraph if the spreading
population forms a traveling wave – a translation invariant profile shifting to
the right at the given speed. Mollison [27] also argues that the two expectation
velocity definitions should coincide for linear stochastic processes and some
nonlinear stochastic processes.

2. The rate of change of the average location of the farthest forward individual
with respect to time [6]. McKean [24] showed that, in certain linear stochastic
processes, the distribution of the furthest forward individual can be modeled by
a nonlinear deterministic reaction-diffusion equation (KPP or Fisher equation),
which in turn exhibits traveling wave solutions.

It is known that simple nonlinear spatial lattice models support waves with
a constant asymptotic spread rate [7] and these rates have been approximated
analytically using pair-edge approximations [10]. Also, Mollison [28] showed
almost sure convergence of the ‘furthest-forward’ velocity for a general dispers-
al function with exponentially bounded tail. This result relies upon population
monotonicity – if an individual dies through nonlinear interactions it is only be-
cause there is another individual at the same lattice point already. However, our
interest in this paper is in nonlinear stochastic processes in continuousspace and
discrete time (as described below). It has not been shown mathematically when or
if such models have an asymptotically constant rate of spread. The result of Mol-
lison cannot be applied directly here, not only because space is continuous, but
also because the discrete time dynamics can actually violate the monotonicity



Spread rate for a nonlinear stochastic invasion 433

condition – two individuals that crowd each other will both die in a single time
step. We conjecture that the spread in such models does asymptotically achieve
a constant rate under certain conditions on the dispersal process (Conjecture 1 in
Section 7) and provide numerical evidence for this conjecture (Section 7).

Our approach in this paper is to derive an approximate deterministic model
which describes the first two spatial moments of the nonlinear stochastic process:
expected density and expected joint density. This model is not closed – unknown
higher order moments are needed to solve for the first two moments. By eliminating
various terms in the equations, we close the system and provide two new ‘models’.
The solution to the first yields an upper bound for expected density and the solution
to the second provides a lower bound. A constant asymptotic spread rate is calculat-
ed for the upper solution. The lower solution is shown to be valid for small time, but
invalid for large time. However, a formal calculation of the asymptotic spread rate
formula for this case indicates the qualitative role of competition with relatives in
slowing the wave. We propose a heuristic modification of this spread rate formula
based on a moment closure approximation. We then use this heuristic formula to
estimate the asymptotic spread rate of the nonlinear stochastic process and then
compare our estimates to numerical results from Monte-Carlo simulations.

2. A discrete-time deterministic model

Here individuals first undergo reproduction and then redistribute their offspring
according to a dispersal function, before reproduction occurs once again. If gen-
erations are non-overlapping, as is the case with annual plants and many insect
species, the process is described by

Nt+1(x) =
∫ ∞

−∞
k(z − x) f (Nt (z)) dz, (1)

where Nt(x) is the density of individuals at point x and time t . Density-dependent
fecundity is described by the nonlinear map f (N) with equilibria at extinction
(N = 0) and carrying capacity (N = N∗) so that f (0) = 0 and f (N∗) = N∗.
Dispersal is described a kernel or dispersal function, k(z−x), which depends upon
the distance |z − x| between the location of birth z and the location of settlement
x so that

k(z − x)�z�x = Probability of dispersing from �z about z to �x about x. (2)

Equation (1) states that the density of offspring at point z (denoted by f (Nt (z)),
multiplied by the dispersal function (denoted by k(z − x)) and then integrated over
all possible locations z in the study area, yields the density of individuals at the next
time step Nt+1(x). Historically integrodifference models have been used to predict
changes in gene frequency [35,38,37,22,21,23] and only more recently have they
been applied to ecological problems [17,12,13,16,18,11,14,32].

A detailed analysis of wave speeds for integrodifference models can be found
in the papers of Weinberger [37,38]. To summarize some key results from Wein-
berger’s analysis: providing f (N) ≤ f ′(0)N and f ′(N) ≥ 0 for all N > 0, and
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the moment generating function of the kernel

k̂(s) =
∫ ∞

−∞
exp(su) k(u) du (3)

exists on some interval [0, sm), then

1. traveling wave solutions to (1) exist and have minimum wave speed

c∗ = min
s>0

{
1

s
log(R0k̂(s))

}
(4)

where R0 = f ′(0) is the basic reproductive ratio for the population (R0 > 1).
2. the asymptotic speed of propagation of compact initial data N0(x) is c∗.

A heuristic understanding of the first result can be gleaned from a linear analysis
about the leading edge of the wave of spread. This yields

Nt+1(x) = R0

∫ ∞

−∞
k(z − x) Nt (z) dz. (5)

The ansatz for a traveling wave solution moving at speed c is that Nt+1(x) =
Nt(x − c). Substitution into (5), multiplication by exp(sx) and integration yields a
solvability criterion for nontrivial solutions

exp(sc) = R0k̂(s). (6)

The minimum value of c that will satisfy this equation is given by c = c∗ in (4).
In practice, the value of c∗ and the corresponding value s∗ can be calculated by the
double-root condition

c exp(sc) = R0k̂′(s). (7)

in conjunction with the solvability criterion (6) [19] (Figure 2). The corresponding
value s∗ satisfying (6)–(7) can be interpreted as the exponential rate of decay of
the leading edge of the wave. To see this we observe that we would have come
to the same solvability criterion (6) under the assumption that Nt(x) ∝ exp(−sx)

after deriving equation (5). Wave speeds lower than c∗ give rise to complex values
for s∗ and give an oscillatory, and thus negative, leading edge to the wave. These
wave speeds are excluded from consideration because they would lead to negative
densities. The second result from Weinberger (above) indicates that compact initial
data cannot converge to a wave moving at speed other than c∗. Henceforth we refer
to c∗ as the wave speed for (1).

The above argument that the asymptotic rate of spread of a nonlinear model is
governed by the minimum speed for which the leading edge of the wave is non-
negative is referred to as the linear conjecture[29,36] and is expected to hold if (a)
an individual’s reproduction in an ‘occupied’ environment is always less than in
a ‘virgin’ environment, in other words, no Allee-like effects and (b) the influence
of an individual on the environment far from its (present) position is negligible, in
other words, no long-distance density-dependence. The linear conjecture has been
used widely to calculate spread rates for single-species deterministic differential
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Fig. 2. Solvability criteria (6) and (25) calculated for a Laplace kernel k(x) =
α exp(−α|x|)/2. Figure (a) shows the dispersal kernel k(x) (solid line) and dispersal kernel,
corrected for interference from siblings k(x) − εR0k

2(x) (dotted line). The correspond-
ing moment generating functions (solid and dotted lines) and tangent exponential functions
exp(c+

∗ s) for c+
∗ = 0.105 (lower dashed curve) and exp(c∗s) for c∗ = 0.19 (upper dashed

curve) are shown in Figure (b). Notice that c+
∗ < c∗.

and integral models and a similar approach has been applied to models for inter-
acting species [31]. Note that the wave speed results of Weinberger (above) are
independent of, but consistent with, the linear conjecture.

Typical kernels with moment generating functions include the Normal distri-
bution and the exponential or Laplace kernel

k(x) = α

2
exp(−α|x|), α > 0. (8)

When a proportion p of the individuals disperse locally and a proportion 1−p dis-
perse over a larger distance the relevant kernel may be given by a linear composition
of Normal kernels:

k(x) = p N(0, σ 2
1 ) + (1 − p) N(0, σ 2

2 ). (9)

This kernel can be derived by assuming that a proportion p of the individuals diffuse
with a low diffusion coefficient D1 for a unit time period and a proportion 1 −p of
the individuals diffuse with a high diffusion coefficient D2 over the same unit time
period. The resulting distribution of individuals is given by (9) with σ 2

1 = 2D1 and
σ 2

2 = 2D2. In the context of modeling invasions, Shigesada and coworkers referred
to such diffusion over distinct spatial scales as ‘stratified diffusion’ [34].

The question arises as to the rate of spread of a solution to (1) when the redis-
tribution kernel does not have exponentially bounded tails, in other words when
the moment generating function (3) does not exist. Mollison [26] showed that, for
this case, continuous-time contact distribution models can have asymptotically in-
finite rates of spread. This is also true for integro-difference models. The analysis
for these models, including intermediate asymptotics on the rate of growth of the
speed, is given by Kot and coworkers [19].
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In this paper we use the traveling wave ansatz and a subsequent solvability cri-
terion to evaluate wave speeds for linear ‘multispecies’ integrodifference models
describing the nonlinear stochastic process. Here the ‘species’ are the spatial mo-
ments of the distribution of individuals. This analysis does not require recourse to a
multispecies version of the linear conjecture (above) because the integrodifference
models describing the nonlinear stochastic process are linear, although not closed.
Thus, after deriving the models in Sections 3 and 4, we focus on how to ‘close’
the system (Sections 5 and 6) and, once this is done, the wave speed calculation is
straightforward.

3. A discrete-time linear stochastic model

Stochastic models of population spread have been widely studied in the context of
the spread of an infection. An introduction to the early work in this area can be
found in a review by Mollison [27]. The idea that equations for ‘second-order den-
sities’, such as spatial covariance, would yield information about the spread of an
invading population was first pursued by Bartlett [2,3], and later by Daniels [8] and
others [5]. Later approaches to nonlinear spatial epidemic models include particles
interacting on a lattice [9] and coupling methods [1].

The simplest stochastic model involves only density-independent birth and dis-
persal. In this case equations for the successive moments can be written down
explicitly (see [8] for a linear integro-differential equation formulation). Here we
derive equations for the first two spatial moments for a population undergoing birth
and dispersal in discrete time and continuous space.

We define n(x) to be the expected density of individuals and n(2)(x, y) to be
the expected joint density of individuals. Here expectation is taken over the ensem-
ble of realizations for the stochastic process. Using these definitions, the spatial
covariance density function is

c(x, y) = n(2)(x, y) − n(x)n(y), x = y (10)

[4]. The correlation between locations of individuals is a scaled measure of this
covariance.

If R is a random variable representing each individual’s reproductive output,
with expected value R0 and variance σ 2, then equations governing the first two
moments of a population undergoing distinct birth and dispersal events in discrete
time are

nt+1(x) =
∫ ∞

−∞
R0 k(z − x) nt (z) dz (11)

and

ct+1(x, y) =
∫ ∞

−∞

{
R0(R0 − 1) + σ 2

}
nt (z) k(z − x) k(z − y) dz

+
∫ ∞

−∞
z2 =z1

∫ ∞

−∞
R2

0 ct (z1, z2) k(z1 − x) k(z2 − y) dz1 dz2. (12)
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where t is an index indicating the time step (t = 0, 1, 2, . . .) [20]. After reproduc-
ing, the parents are assumed either to die, or to disperse, being indistinguishable
from their offspring and included as part of their own reproductive output.

Equation (11) is simply a linear integrodifference equation for the expected
density. It is identical to the linearized deterministic model (5), and thus the wave
speed for (11) with compact initial data is given by (4). Hence the linear stochastic
and the deterministic models have identical wave speeds, a well-known feature of
spatial invasions [29].

The first term on the right hand side of (13) describes the spatial covariance
due to two individuals having an identical parent, and the second term describes
the spatial covariance due to two individuals from different but spatially correlat-
ed parents. Individuals are assumed to disperse independently from one another,
and are only spatially correlated due to sharing a common ancestor. The expected
number of ways to distribute indistinguishable siblings born at z to locations x

and y is E(R(R − 1)) = R0(R0 − 1) + σ 2. The birth rate variance σ 2 causes an
increase in the contribution to spatial covariance that arises from individuals pro-
ducing spatially correlated offspring. The case with a Poisson number of offspring
yields R0(R0 − 1) + σ 2 = R2

0. To keep the presentation clear in the remainder of
the paper, we will assume that parents have a Poisson number of offspring unless
stated otherwise.

4. A discrete-time nonlinear stochastic model

We now modify the linear stochastic model to include effects of local interactions.
Specifically, we assume that, prior to reproduction, an individual at point x at time
t inspects the neighborhood (x − ε/2, x + ε/2) for other individuals. If there are
others in this neighborhood the individual does not reproduce and dies. If there are
no others in this neighborhood the individual has a Poisson number of offspring
with mean R0 and dies. These offspring then disperse according to the kernel k.

The expected number of other individuals in the neighborhood of size ε is

∫ x+ε/2

x−ε/2

n
(2)
t (x, z)

nt (x)
dz (13)

and the expected number of pairwise interactions between other individuals is

∫ x+ε/2

x−ε/2

∫ x+ε/2

x−ε/2

n
(3)
t (x, z1, z2)

nt (x)
dz1 dz2. (14)

Under the assumption that the joint and triple densities are order 1 we observe
that equation (13) gives the approximate probability of having at least one other
individual in the neighborhood, an approximation valid to O(ε2). The assumption
that the spatial derivatives of n

(2)
t are order 1 allows us to simplify (13) further,

yielding the probability of having no other individuals in the neighborhood as

1 − ε
n̄

(2)
t (x)

nt (x)
+ O(ε2). (15)
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where
n̄

(2)
t (x) = lim

z→x
n

(2)
t (x, z) (16)

is the expected local joint density.
Thus the nonlinear stochastic model is given to leading order of ε by

nt+1(x) =
∫ ∞

−∞
R0 k(z − x) nt (z)

(
1 − ε

n̄
(2)
t (z)

nt (z)

)
dz.

=
∫ ∞

−∞
R0 k(z − x) (nt (z) − εn̄

(2)
t (z)) dz. (17)

The equation for the expected joint density now involves higher order moments,
and is given to leading order of ε by

n
(2)
t+1(x, y) =

∫ ∞

−∞
R2

0 k(z − x) k(z − y)(nt (z) − εn̄
(2)
t (z)) dz

+
∫ ∞

−∞
z2 =z1

∫ ∞

−∞
R2

0 k(z1 − x) k(z2 − y)(n
(2)
t (z1, z2)

−εn̄
(3)
t (z2, z1) − εn̄

(3)
t (z1, z2)) dz1 dz2. (18)

Here the local expected higher order density is given by

n̄
(3)
t (z1, z2) = lim

z3→z1
n

(3)
t (z1, z2, z3), (19)

in a manner similar to (16). As with (13) the first term on the right hand side of (18)
describes the joint density due to two individuals born of the same parent (siblings)
and the second term describes the joint density due to two more distantly related
individuals (cousins, second cousins and so forth). For the model to provide a valid
description of the population each of these two terms must be non-negative. Notice
that even though this system describes density-dependent interactions, it remains
linear. However, it is not closed – the equation for n

(2)
t (x, y) depends on higher

order moments.

5. Moment closure and comparison methods

One approach to analyzing systems such as (17,18) is to ‘close’ the system, by
making some assumptions about the higher order moments [33]. These higher or-
der moments may be set to zero, or may be written as the product of lower order
moments. The ‘closed’ system is then analyzed, and implications are made back to
the ‘open’ stochastic system. One drawback to this approach is that moment closure
methods are typically ad hoc, and it is thus difficult to draw a rigorous connection
between the behavior of the ‘open’ and ‘closed’ systems.

Our approach in this section is to ‘close’ equation (18) by discarding certain
terms. However, knowledge of the sign of the terms discarded will allow us to
determine whether the expected density in the ‘closed’ system is an upper or lower
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bound for the expected density in the ‘open’ system (17,18). Subsequent analyses
of the spread rate for the upper solution will allow us to bound the spread rate for
the full nonlinear stochastic system. Analysis of the lower solution will show that
it is valid for small time values, but not for large time. None-the-less, we proceed
to formally calculate a spread rate for the lower solution. This provides motivation
for the heuristic analysis in Section 6.

5.1. An upper solution and its wave speed

One method of moment closure is to assume that density-dependent interactions
only occur between siblings. Using n̄

(2)
t (x) to now denote the expected local joint

density of siblings we simplify (18) to

n̄
(2)
t+1(x) =

∫ ∞

−∞
R2

0 k2(z − x)(nt (z) − εn̄
(2)
t (z)) dz. (20)

Equations (17) and (20) thus yield an integrodifference model with two ‘species’:
expected density and expected local joint density of siblings. Again, if the model
is to provide a valid description of the densities, solutions to both of these equa-
tions must remain non-negative, a condition satisfied providing the local density
experienced by individuals, n̄

(2)
t (z)/nt (z), is O(1).

Intuitively we expect that ignoring density-dependent interactions with relatives
more distant than siblings would lead to an overestimate of the expected density
nt (x). This is indeed the case. More precisely, the solution n+

t (x) = nt (x) to (17,20)
provides a uniform upper bound for the solution nt (x) to (17,18). If the two sys-
tems of equations have identical initial data for the expected density and expected
local joint density then n+

t (x) ≥ nt (x) for all x and t . This is a direct result of the
corollary to the comparison theorem given in Appendix A in conjunction with the
fact that the second term in (18) is nonnegative.

Equations (17,20) can be rewritten as

mt+1(x) =
∫ ∞

−∞
R0(k(z − x) − εR0 k2(z − x))mt (z) dz, (21)

where

mt(x) = nt (x) − εn̄
(2)
t (x) (22)

nt+1(x) =
∫ ∞

−∞
R0k(z − x)mt (z) dz (23)

Here we assume that εR0kmax < 1, where kmax is the maximum value that the
dispersal kernel k(·) attains. In other words, the neighborhood of interaction (ε) is
small compared to the maximum density of offspring from a single parent (R0kmax).

The linear system (21) has a form similar to (5) and thus analysis of this system
yields a minimum wave speed of

c+
∗ = min

s>0

{
1

s
log(R0(k̂(s) − εR0k̂2(s)))

}
. (24)
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Here k̂2(s) is the moment generating function of the squared dispersal kernel. Pro-
viding the dispersal kernel in (21) is nonnegative (as assumed above), this wave
speed can be shown to be an upper bound on the rate of spread for compact initial
data m0(x) (see [38], Theorem 6.3). Therefore, equation (23) indicates that the
wave speed c+∗ is also an upper bound on the rate of spread of expected density
nt (x).

Alternatively, (24) arises from applying the heuristic approach in Section 2 di-
rectly to the linear system of two equations (17,20). The traveling wave ansatz is
nt+1(x) = nt (x − c), n̄

(2)
t+1(x) = n̄

(2)
t (x − c). Substitution into (17,20), multipli-

cation by exp(sx), integration and some algebra yields the solvability criterion

exp(sc) = R0(k̂(s) − εR0k̂2(s)). (25)

As in Section 2, the wave speed c+∗ in (24) arises as a double root with respect to s

of (25) (Figure 2).
In summary, we have results for (17,20) that are closely related to those

given by Weinberger for single-variable nonlinear integro-difference equations
(Section 2): traveling wave solutions have a minimum wave speed c+∗ and the
speed of propagation for compact initial data will not exceed c+∗ .

Note that as ε → 0 the minimum wave speed for the deterministic model (4)
is recovered. The stochastic wave speed solvability criterion (25) can be thought
of as a modification of the deterministic wave speed solvability criterion (6) where
the moment generating function is taken not of the dispersal kernel k(x), but of
the kernel modified to reflect dispersal events that were unsuccessful due to the
interference of siblings: k(x) − εR0k2(x). Because k(x) − εR0k2(x) ≤ k(x) and
is less that k(x) over some nontrivial range of x, c+∗ is strictly less than c∗.

A deterministic analog of (17) is

nt+1(x) =
∫ ∞

−∞
R0 k(z − x) (nt (z) − εn2

t (z)) dz. (26)

Here n̄
(2)
t is approximated by n2

t . Such an approximation relies on the Law of Mass
Action, which states that the probability of two individuals interacting is propor-
tional to the product of their expected densities. This ‘mean field’ formulation is
only valid if individuals have a random (Poisson) distribution in space. However the
random distribution assumption is violated when correlations between individuals
are present. For example, when spread is ‘patchy’ and there are positive correla-
tions between individuals, n̄

(2)
t > n2

t , and thus the formulation (26) underestimates
the strength of nonlinear interactions between individuals. In particular when the
spread is ‘patchy’ we expect n

(2)
t to be of the same magnitude as nt in the leading

edge of the wave, whereas n2
t � nt in the leading edge of the wave.

Although the nonlinear function in (26) does not satisfy Weinberger’s [37,38]
monotonicity constraint f ′(N) ≥ 0 for all N > 0, analysis about the leading edge
of a wave solution to (26) still gives the deterministic minimum wave speed value
c∗ (4). This wave speed was confirmed numerically by simulating (26) for various
dispersal kernels k(x) by comparing the rate of movement of the leading edge of
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the numerically simulated wave with c∗ (4) calculated for the same k(x). In fact,
it is possible to use comparison methods in [37,38] to extend the wave speed re-
sult of Weinberger in Section 2 to single-humped (essentially quadratic) functions
providing the map Nt+1 = f (Nt ) remains positive for all initial data N0 satisfying
f (N0) > 0 [19] (Lewis, Li and Weinberger, in preparation).

In conclusion, the wave speed c+∗ for the upper bound lies below the wave
speed c∗ for the mean field approximation because the correlations between sib-
lings slow the growth of the population, particularly at low densities, and thus the
rate of spread of the population is decreased. Because solutions to the upper bound
equations (17,18) spread no faster than c+∗ this speed is an upper bound on the rate
of spread of the nonlinear stochastic process.

5.2. A lower solution and its wave speed

A second method of moment closure is to assume that the expected third order
density is zero in (18). This gives

n
(2)
t+1(x, y) =

∫ ∞

−∞
R2

0 k(z − x) k(z − y)(nt (z) − εn̄
(2)
t (z)) dz

+
∫ ∞

−∞
z2 =z1

∫ ∞

−∞
R2

0 k(z1 − x) k(z2 − y) n
(2)
t (z1, z2) dz1 dz2. (27)

This assumption implies that lineages of relatives more distant than siblings have not
been regulated by nonlinear interactions with other individuals since they interacted
with siblings at birth or since t = 0, whichever is more recent. This assumption is
potentially flawed as it leads to unbounded geometric growth of n

(2)
t (x, y) in (27)

and hence to violation of our modeling requirement in Section 4 that n
(2)
t+1(x, y)

be of order 1. The implications of this unbounded growth are discussed below.
However, for now we assume that the model remains valid and proceed with the
formal analysis.

Intuition would lead us to believe that ignoring nonlinear interactions in the lin-
eages of distant relatives who may be now crowding a given individual will lead to
underestimation of the expected density nt (x). As before, the intuitive expectation
can be proved to be true. More precisely, the solution n−

t (x) = nt (x) to (17,27)
provides a uniform lower bound for the solution nt (x) to (17,18). If the two systems
of equations have identical initial data for the expected density and expected local
joint density then n−

t (x) ≤ nt (x) for all x. This is a direct result of the corollary to
the comparison theorem given in Appendix A in conjunction with the fact that the
expected third order density terms being non-negative means that the terms deleted
from (18) are nonpositive.

Analysis of the wave speed for (17,27) is facilitated by using ψ
(i)
t (x), the con-

tribution to the expected local joint density n̄
(2)
t (x) from pairs of individuals with

their most recent common ancestor at time i (i < t). The simplest case arises from
a single individual released at the point x = 0 at time t = 0 so that n0(x) = δ(x),
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n̄
(2)
0 (x) = 0. In this case (27) can be rewritten as

ψ
(i)
i+m(x) =

∫ ∞

−∞
R2m

0 k2
m−1(z − x)


ni(z) − ε

i−1∑
j=0

ψ
(j)
i (z)


 dz (28)

(Appendix B). Here we define the sum in (28) to equal zero when i = 0. Thus
(17,27) can be rewritten as

nt+1(x) =
∫ ∞

−∞
R0 k(z − x)

(
nt (z) − ε

t−1∑
i=0

ψ
(i)
t (z)

)
dz. (29)

ψ
(i)
t (x) =

∫ ∞

−∞
R

2(t−i)
0 k2

t−i−1(z − x)


nt (z) − ε

i−1∑
j=0

ψ
(j)
i (z)


 dz, (30)

where k0(x − y) = k(x − y) and kj is the j -fold convolution of k with itself:

kj (x − y) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
k(x − z1)k(z1 − z2) · · · k(zj−1 − zj )

×k(zj − y) dx1 dx2 · · · dxj−1 dxj , (31)

and, as before, we define the sums in (29)–(30) to equal zero when the final index in
the sum lies below the first index. Applying the approach in Section 2 to the linear
system (29,30) yields the solvability criterion

exp(sc) = R0k̂(s) − ε

∞∑
j=0

R
2j+2
0 k̂2

j (s) exp(−scj). (32)

The minimum wave speed c−∗ for this system, providing it exists (see below), is
calculated as the value c = c−∗ for which (32) has second order root (with respect
to s). The corresponding value of s, given by s = s−∗ , is the exponential decay of
the leading edge of the wave. Notice that if we truncate the infinite series in (32)
after the first term then we regain (25).

Again, the stochastic wave speed solvability criterion (32) can be thought of
as a modification of the deterministic wave speed criterion (4) where the moment
generating function is taken not of the dispersal kernel k(x), but of the kernel mod-
ified to reflect dispersal events that were unsuccessful due to the interference of all
possible relatives:

k(x) − ε

∞∑
j=0

R
2j+1
0 k2

j (x + jc). (33)

The first term of the sum in (33) describes interference to reproduction by siblings,
the second term describes interference by cousins and so on. The argument x+jc to
the dispersal kernel in (33) accounts for the wave having moved distance c per time
step. The interference effect of distant relatives is overestimated in this formula as
it is assumed that they have not been regulated by nonlinear interactions with other
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individuals since they interacted with their siblings at birth. The terms in the sum
(32), evaluated at s = 0, may quickly grow to be larger that order 1. In fact the
sum (32) is not guaranteed to converge – unbounded growth during the lineages
of relatives more distant than siblings mean that the interference term itself can be
unbounded.

6. Heuristic formula for the asymptotic rate of spread

As truncating the sum (33) after a single term leads to an underestimate of the total
interference to reproduction by other individuals, and keeping all the terms in the
sum leads to a severe overestimate of the interference, it is natural to ask whether
truncating the sum after a few terms, or providing diminishing weight to successive
terms in the sum, would provide a useful estimate for the asymptotic rate of spread
of the stochastic process.

A typical moment closure approximation for (18) would be to replace the third
order density by the product of the first and second so that

n
(2)
t+1(x, y) =

∫ ∞

−∞
R2

0 k(z − x) k(z − y)(nt (z) − εn̄
(2)
t (z)) dz

+
∫ ∞

−∞
z2 =z1

∫ ∞

−∞
R2

0 k(z1 − x) k(z2 − y)n
(2)
t (z1, z2)

− (1 − εnt (z1) − εnt (z2)) dz1 dz2. (34)

However, employing the linear conjecture to calculate the wave speed leads to the
linear equation (27). Thus the wave speed, providing it exists, is given by a double
root with respect to s of the solvability criterion (32) and we would gain nothing
by using this moment closure approximation. It can be reasoned that replacing n

(3)
t

in (18) with n
(2)
t nt in (34) implicitly assumes that n

(3)
t � n

(2)
t and nt in the leading

edge of the wave, whereas in cases where the spread is ‘patchy’ we expect n
(3)
t may

be of the same magnitude as n
(2)
t and nt .

Another moment closure approximation for (18), that would permit n
(3)
t to be

of the same magnitude as n
(2)
t and nt at the leading edge of the wave, replaces the

third order density by the quotient of squared second order density to the first order
density so that

n
(2)
t+1(x, y) =

∫ ∞

−∞
R2

0 k(z − x) k(z − y)(nt (z) − εn̄
(2)
t (z)) dz

+
∫ ∞

−∞
z2 =z1

∫ ∞

−∞
R2

0 k(z1 − x) k(z2 − y)n
(2)
t (z1, z2)

×
(

1 − ε
n

(2)
t (z1, z2)

nt (z2)
− ε

n
(2)
t (z1, z2)

nt (z1)

)
dz1 dz2. (35)
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Hence it would be implicitly assumed that the ratio of second to first order density
gives the ratio of third to second order density. However, employing the linear con-
jecture to calculate the wave speed leads to an equation whose coefficients depend
upon the ratio of n

(2)
t to nt at the leading edge of the wave, a ratio that we do not

know.
An alternative approach is to make a heuristic estimate of this ratio at the leading

edge of the wave and use it to estimate the value of

1 − ε
n

(2)
t (z1, z2)

nt (z2)
− ε

n
(2)
t (z1, z2)

nt (z1)
(36)

at the leading edge of the wave for use in (35). The ratio n
(2)
t (z1, z2)/nt (z1) can

be interpreted as the expected density of individuals at point z2, given that there is
already an individual at the point z1.

We consider the case where dispersal occurs over separate short and long length
scales, such as shown in Figures 1a and 1b for the composite Normal kernel (9).
Typically a lone colonizer will land in virgin territory at the leading edge of the
wave, reproduce, and generate a small ‘island’ of closely related individuals (Fig-
ures 1a and 1b). This island will grow in size. As the growth occurs individuals
will, on average, become more distantly related. Eventually, a long-distance colo-
nizer will leave this ‘island’ and start a new ‘island’, thus repeating the process and
moving the leading edge forward. The notion that the leading edge of the wave is
comprised of ‘islands’ of individuals is particularly clear when the dispersal occurs
over multiple length scales (compare Figure 1a and 1b with Figure 1c).

The expected density of individuals at point z2, given that there is already
an individual at the point z1 therefore depends on the age of the island that the
individual is in. For example, if the lone colonizer that started the island were
the individual’s parent, then the individual would only be surrounded by siblings.
If the parent were at point z, then the expected density of siblings at point z2
would be R0k(z − z2) ≤ R0kmax

0 , where kmax
0 is the maximum value that k0(x) at-

tains (see also equation (31)). As siblings disperse independently we simply bound
n

(2)
t (z1, z2)/nt (z1) above by R0kmax

0 , and (36) below by

β1 = max((1 − 2εR0kmax
0 ), 0). (37)

If the lone colonizer that started the island were the individual’s grandparent, then
the individual would only be surrounded by siblings and cousins. Thus n

(2)
t (z1, z2)/

nt (z1) would be bounded above by R0kmax
0 + R2

0kmax
1 , and (36) would be bounded

below by
β2 = max((1 − 2ε(R0kmax

0 + R2
0kmax

1 )), 0). (38)

Likewise, if the lone colonizer that started the island were the individual’s great-
grandparent, then the individual would only be surrounded by siblings, cousins and
second cousins. Thus n

(2)
t (z1, z2)/nt (z1) would be bounded above by R0kmax

0 +
R2

0kmax
1 + R3

0kmax
2 , and (36) would be bounded below by

β3 = max((1 − 2ε(R0kmax
0 + R2

0kmax
1 + R3

0kmax
2 )), 0). (39)
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Continuing in this manner, if the lone colonizer that started the island were born m

generations before the individual then (36) would be bounded below by βm where
β0 = 1 and

βm = max


1 − 2ε

m∑
j=1

R
j

0kmax
j−1, 0


 . (40)

for m > 0. Thus the appropriate value for (36) in equation (35) depends crucial-
ly upon the distribution of ages of ‘islands’ at the leading edge of the wave, a
distribution we do not know a priori.

Our heuristic approach entails tracking interactions between individuals ac-
cording to the time at which they shared their most recent common ancestor, as
we did for equations (29) and (30) in Section 5.2. For the purpose of calculating
interference to reproductive success from relatives we assume

Assumption 1. The most recent common ancestor can be used to approximate the
colonizer that started the ‘island’ on which both individuals are found.

Assumption 2. The factorβm defined in (40) can be used to approximate the factor
(36) in equation (35).

Thus we use different values of βm (40) for (36) in equation (35), depending
upon the number of time steps previous at which the individuals shared their most
recent common ancestor. Given that the most recent common ancestor was at time
i, we assume that the island started at time step t = i. Thus at time step t = i + 1
all individuals on the island are siblings, so β1 is an estimate for (36) in equation
(35). At time step t = i + 2 we use β2 as the estimate, and so on. This yields a
modified version of (30)

ψ
(i)
t (x) =

∫ ∞

−∞

(
t−i−1∏
m=0

R2
0βm

)
k2
t−i−1(z − x)


nt (z) − ε

i−1∑
j=0

ψ
(j)
i (z)


dz (41)

(Appendix B). We assume that the leading edge of the wave asymptotically achieves
a translation invariant ‘traveling-wave’ profile (see Conjecture 1 and related discus-
sion in Section 7). Applying the approach in Section 2 to the linear system (29,41)
yields the solvability criterion

exp(sc) = R0k̂(s) − ε

∞∑
j=0

R
2j+2
0


 j∏

m=0

βm


 k̂2

j (s) exp(−scj). (42)

Note that if all the βm’s were chosen to equal one this formula would simplify to
equation (32). The minimum wave speed c̃∗ for equation (42) is calculated as the
value c = c̃∗ for which (42) has second order root (with respect to s). The corre-
sponding value of s, given by s = s̃∗, is the exponential decay of the leading edge
of the wave. For this double root to yield the minimum wave speed in practice, we
must check that the right hand side of the equation, evaluated at s = 0, exceeds 1.
If it does not, a suggested modification to the heuristic formula (42) is to truncate
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the terms from the sum for the highest values of m for which βm = 0 until this
condition is satisfied.

As before, the stochastic wave speed estimate c̃∗ can be thought of as a modi-
fication of the deterministic wave speed formula (4) where the moment generating
function is taken not of the dispersal kernel k(x), but of the kernel modified to re-
flect dispersal events that were unsuccessful due to the interference of all possible
relatives:

k(x) − ε

∞∑
j=0

R
2j+1
0


 j∏

m=0

βm


 k̂2

j (x + jc). (43)

Note that Assumption 1 yields an inexact approximation. For example, on an island
three generations old, siblings and cousins do not provide the same interference to
reproduction as on an island two generations old. However, Assumption 1 requires
that, on each island, we calculate interference from siblings by assuming that the
islands are 1 generation old, and, on each island, we calculate interference from
cousins by assuming that the islands are 2 generations old. Similar assumptions are
used when calculating interference to reproduction on islands more than three gen-
erations old. Assumption 2 also provides an inexact approximation. The parameter
βm is a lower bound for (36) and thus overestimates the nonlinear interactions with
relatives, particularly when m is large and therefore βm = 0. However, the formula
(42) is the most accurate at the place where it is most crucial: at the leading edge
of the wave, where the size of the islands is relatively small.

7. Comparison with Monte-Carlo simulations

We used extensive numerical simulations in evaluating (i) our conjecture that the
leading edge of the wave achieves a constant expectation velocity asymptotically
in time (Conjecture 1, stated below) and (ii) our analytical predictions for spread
rates. Monte-Carlo simulations were run using NAG random number library rou-
tines in FORTRAN programs and are available to the reader upon request. Here
we used the same composite Normal dispersal kernel and growth rate as in Figure
1a, except for a one-dimensional spatial process. The values of σ 2

1 , σ 2
2 and p for

this composite Normal kernel were chosen so as to give k(0) = 1 and an expected
dispersal distance of 1. However, unlike Figure 1a, nonlinear stochastic interactions
between individuals were also included. Initial conditions were given by 20 indi-
viduals released randomly in space within distance 5 of the origin at time t = 0.
Each individual and its offspring were tracked explicitly in space and time.

Numerical evidence for a constant asymptotic expectation velocity for the lead-
ing edge of the nonlinear stochastic process is given in Figure 3. Here ε = 0.08 and
the average values of xt are given for ne = 0.5, 1.0, and 2.0. The average is taken
over 10,000 Monte-Carlo simulations. Each line depicting xt versus t achieves a
similar slope by the time interval 40 ≤ t ≤ 50, approximately 2.17 for ne = 0.5,
2.18 for ne = 1.0 and 2.18 for ne = 2.0. As stated in the Introduction, we know
of no proof that nonlinear stochastic processes considered here achieve a constant
expectation velocity. However, based on these, and other, extensive numerical sim-
ulations we make the following conjecture
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Fig. 3. Numerical evidence for a constant asymptotic expectation velocity for the nonlinear
stochastic process. Here we used the same composite Normal dispersal kernel and growth
rate as in Figure 1a, except now for a one-dimensional spatial process. Nonlinear spatial
interactions were included, as described in Section 4, for ε = 0.08. Average values of xt

are given for ne = 0.5 (solid dots), 1.0 (open dots), and 2.0 (open triangles). The average
is taken over 10,000 Monte-Carlo simulations. Each line depicting xt versus t achieves a
similar slope by the time interval 40 ≤ t ≤ 50.

Conjecture 1. For an exponentially bounded dispersal kernelk(x) the leading
edge of the nonlinear stochastic process described in Section 4 achieves a constant
expectation velocity asymptotically in time. Using the terminology of Section 1, for
ne sufficiently small,xt → constant ast → ∞.

Because the speed is independent of the exact small value of ne, the conjecture
implies that the expectation achieves a translation invariant ‘traveling wave form’,
at least locally at the leading edge of the wave. This property is used in Section 6.

We numerically calculated spread rates for ε = 0, 0.02, 0.04, 0.06 and 0.08.
Based on the results of the simulations shown in Figure 3 we used ne = 0.5 and
40 ≤ t ≤ 50 when evaluating asymptotic spread rates for the various values of
ε. This interval was chosen as having a sufficiently large value of t to accurate-
ly estimate the speed, but a sufficiently small value of t to make the calculation
feasible.

Table 1 and Figure 4 show numerical and predicted values for spread rates as
ε varies. The case ε = 0 has predicted spread rate c∗ = 3.69. Appendix C gives
details on calculating the moment generating function for the squared nth-fold con-
volutions of the composite Normal kernel and Table 1 gives the βm values (40).
These were needed to calculate c̃∗ in (42).
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Table 1. Wave speed results for various neighborhood sizes ε. The values βm, calculated
from (40), are used in the formula for the estimated wave speed c̃∗ (32). The values of βm

were set to zero for i ≥ 7 and ε = 0.02 so as to satisfy the constraint that the right hand side
of (42) evaluated at s = 0 exceeds 1. See the discussion in Section 6 for further details on
this. The upper bound on the wave speed c+

∗ is calculated from (32) and the empirical wave
speed ĉ is calculated from Monte-Carlo simulations as described in Section 7 and Figure 4.

β1 β2 β3 β4 β5 β6 β7 c+
∗ c̃∗ ĉ ĉ/c̃∗

ε = 0.02 0.94 0.88 0.82 0.74 0.65 0.53 0 3.59 3.28 2.83 0.863
ε = 0.04 0.88 0.76 0.64 0.48 0.29 0.06 0 3.49 2.99 2.65 0.886
ε = 0.06 0.82 0.65 0.45 0.22 0 0 0 3.38 2.77 2.39 0.863
ε = 0.08 0.76 0.53 0.27 0 0 0 0 3.27 2.57 2.17 0.844

Fig. 4. Spread rates for various interaction neighborhoods ε. Average spread rates are
shown for ε = 0.0 (top), 0.02, 0.04, 0.06 and 0.08 (bottom). Calculations are made as
in Figure 3. The number of Monte-Carlo simulations was m = 2, 000 2, 000, 4, 000, 6, 000
and 10, 000 for the values of ε, respectively. The additional simulations were made for larger
ε because, at any given t , there were fewer individuals for these values of ε. The simulations
for ε = 0 were only given up to t = 15. The slope of the ε = 0 line over the interval
10 ≤ t ≤ 15 is 3.73. The curve is extended by a line of slope c∗ = 3.69 for 15 ≤ t ≤ 50.
This truncation at time t = 15 was needed because the expected number of individuals at
time t = 50 is 1.3 × 1010.

Notice that the nonlinearities slow the wave dramatically: the case ε = 0.08
has an asymptotic speed which is less than two thirds that of the case ε = 0. The
heuristic wave speed estimate c̃∗ is much closer to the numerical wave speed ĉ than
is the deterministic wave speed c∗ = 3.69 or the upper bound on the wave speed
c+∗ . For the ε values given here c̃∗ has a relative error |(c̃∗ − ĉ)|/ĉ ranging from 11
to 16 %.
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8. Discussion

This paper investigates the effect of nonlinear interactions on the spread rate of a
stochastic process, a subject for which few rigorous analytical results exist. Our ap-
proach is to use various approximation methods to estimate the spread rate. We start
with approximate equations describing spatial moments of the population, equa-
tions that are valid when the interaction neighborhood ε is small and the moments
are order 1. Subsequent analysis of these equations yields upper and lower bounds
on the expected density of individuals and an upper bound on the spread rate for the
nonlinear stochastic process. The upper bound on the spread rate lies strictly below
the spread rate for the equivalent nonlinear deterministic model. This bound makes
more precise the belief that stochastic aspects of nonlinear interactions should slow
spread rates (see [29]).

It is not known analytically under which conditions the nonlinear stochastic
processes have constant spread rates. We conjecture that the leading edge of the
wave achieves an asymptotically constant expectation velocity. This Conjecture 1,
based on numerical simulations, implies that the leading edge of the wave achieves
a translation-invariant ‘traveling wave’ profile. This translation invariance property
is used in calculating a heuristic wave speed formula for the asymptotic expectation
velocity, a formula that matches well with the numerical Monte-Carlo simulation
results.

The key feature slowing spread of the nonlinear stochastic process is the co-
variance that arises between related individuals. The extreme case is evident in a
population distributed in a collection of widely-spaced randomly located ‘islands’.
Here the expected density is low, but the likelihood of having a nearby neighbor
is high. In terms of the variables of Section 4 n̄2

t � n2
t and thus ct � 0. Such

‘island’ patterns are especially likely in focal plant epidemics [30] such as pota-
to blight [25], where very local patches of infestation or hot spots are separated
spatially from other hot spots and are only connected through rare dispersal events
in which a spore escapes the canopy. Thus the inclusion of higher order moments
allows us to better describe the world ‘as the individual perceives it’ (in terms of
the likelihood of having nearby neighbors), as opposed to the world as perceived
through traditional deterministic models (in terms of expected density).
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Rich McLaughlin for helpful comments and feedback. Thanks to David Eyre for his encour-
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A. Comparison theorem

We compare solutions to

mt+1(x) =
∫ ∞

−∞
R0 k(z − x)

(
mt(z) − εm̄

(2)
t (z)

)
dz, (44)

m̄
(2)
t+1(x) =

∫ ∞

−∞
R2

0 k2(z − x)
(
mt(z) − εm̄

(2)
t (z)

)
dz + Mt+1(x) (45)
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with solutions to

nt+1(x) =
∫ ∞

−∞
R0 k(z − x)

(
nt (z) − εn̄

(2)
t (z)

)
dz, (46)

n̄
(2)
t+1(x) =

∫ ∞

−∞
R2

0 k2(z − x)
(
nt (z) − εn̄

(2)
t (z)

)
dz + Nt+1(x) (47)

where both systems have identical initial conditions so that n0(x) = m0(x) and
n

(2)
0 (x) = m

(2)
0 (x). These systems of equations only differ by the terms Mt+1(x)

and Nt+1(x) in (45) and (47) respectively.

Theorem 1 (Comparison). For t ≥ 3

mt(x) = nt (x) + εpt (x) + ε2R2
0

∫ ∞

−∞
k2(x − z)pt−1(z) dz (48)

where

pt (x0) = Nt(x0) − Mt(x0) +
t−1∑
i=1

Ri
0

∫ ∞

−∞
· · ·
∫ ∞

−∞
(Nt−i (xi) − Mt−i (xi))

×
i∏

j=1

(
k(xj−1 − xj ) − εR0k2(xj−1 − xj )

)
dx2 · · · dxi. (49)

Proof. We define

εpt (x) = (mt (x) − εm̄
(2)
t (z)) − (nt (x) − εn̄

(2)
t (x)), (50)

verify equation (49) for the case t = 2 and then use induction on t to verify equation
(49) for higher values of t . Lastly, equation (48) is given directly by the definition
of pt . �

Corollary 1. If εR0kmax < 1, wherekmax is the maximum value that the dispersal
kernelk(·) attains then, for any given timet and locationx,

1. If Ns(y) ≥ Ms(y) for all timess ≤ t and all possible spatial locationsy then
mt(x) ≥ nt (x), and

2. if Ns(y) ≤ Ms(y) for all timess ≤ t and all possible spatial locationsy then
mt(x) ≤ nt (x).

The condition εR0kmax < 1 guarantees that the modified dispersal kernel k(·) −
εR0k2(·) is nonnegative in equation (49). Hence the above inequalities follow di-
rectly from Theorem 1. We interpret the condition as meaning that the neighborhood
of interaction (ε) is small compared to the maximum density of offspring from a sin-
gle parent (R0kmax). In other words, interactions between siblings are sufficiently
weak.
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B. Derivation of equations involving ψ

The variable ψ
(i)
t (x) is defined to be the contribution to the expected local joint

density n̄
(2)
t (x) from pairs of individuals with their most recent common ancestor at

time i (i < t). The simplest initial distribution of individuals is a single individual
released at the point x = 0 at time t = 0 so that n0(x) = δ(x) and n̄

(2)
0 (x) = 0.

The expected local joint density is then given as

n̄
(2)
t (x) =

t−1∑
i=0

ψ
(i)
t (x), (51)

for t > 0, and thus (17) can be rewritten as (29).
The first term in equation (27) describes the joint density arising from siblings

having identical parents. Using this term we see that

ψ
(i)
i+1(x) =

∫ ∞

−∞
R2

0 k2(z − x)


ni(z) − ε

i−1∑
j=0

ψ
(j)
i (z)


 dz. (52)

The second term in equation (27) describes the propagation of this joint density
during successive time steps. Using this term we see that

ψ
(i)
i+2(x) =

∫ ∞

−∞
R2

0 k2(y − x)

∫ ∞

−∞
R2

0 k2(z − y)


ni(z) − ε

i−1∑
j=0

ψ
(j)
i (z)


 dz dy

=
∫ ∞

−∞
R4

0 k2
1(z − x)


ni(z) − ε

i−1∑
j=0

ψ
(j)
i (z)


 dz. (53)

Continuing in this manner yields equation (28).
When the factor βm (40) is used to approximate (36) in equation (35) we have a

variant of (27) with βm multiplying the second term in (27). The value of the index
m is given as the number of time steps previous at which individuals shared their
most common ancestor. Thus we have

ψ
(i)
i+1(x) =

∫ ∞

−∞
R2

0 β0k2(z − x)


ni(z) − ε

i−1∑
j=0

ψ
(j)
i (z)


 dz, (54)

ψ
(i)
i+2(x) =

∫ ∞

−∞
R4

0 β0β1k
2
1(z − x)


ni(z) − ε

i−1∑
j=0

ψ
(j)
i (z)


 dz. (55)

and so on. Continuing in this manner yields

ψ
(i)
i+m(x) =

∫ ∞

−∞
R2m

0


m−1∏

j=0

R2
0βj


 k2

m−1(z − x)


ni(z) − ε

i−1∑
j=0

ψ
(j)
i (z)


 dz,

(56)
and this can be rewritten as (41).
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C. Calculations with the composite normal kernel

The composite normal kernel

k(x) = pN(0, σ 2
1 ) + (1 − p)N(0, σ 2

2 ) (57)

has its (n − 1)th fold convolution as

kn−1(x) =
n∑

j=0

(
n

j

)
pj (1 − p)n−jN(0, jσ 2

1 + (n − j)σ 2
2 ). (58)

The moment generating function of this convolution squared is

k̂2
n−1(s) =

n∑
j=0

n∑
k=0

(
n

j

)(
n

k

)
pj+k(1 − p)2n−j−k exp(σ 2

jks
2/2)√

2π((j + k)σ 2
1 + (2n − j − k)σ 2

2 )

, (59)

where

σjk = (jσ 2
1 + (n − j)σ 2

2 )(kσ 2
1 + (n − k)σ 2

2 )

(j + k)σ 2
1 + (2n − j − k)σ 2

2

. (60)
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